# Chapter 12: Proposed Phase III Early Restoration Projects: Florida

## 12.1 Introduction

## 12.2 Beach Enhancement Project at Gulf Islands National Seashore: Project Description

12.2.1 Project Summary

12.2.2 Background and Project Description

12.2.3 Evaluation Criteria

12.2.4 Performance Criteria, Monitoring and Maintenance

12.2.5 Offsets

12.2.6 Cost

## 12.3 Beach Enhancement Project at Gulf Islands National Seashore: Environmental Review

12.3.1 Introduction and Background

12.3.2 Project Location

12.3.3 Project Scope

12.3.4 Operations and Maintenance

12.3.5 Affected Environment and Environmental Consequences

12.3.6 Summary and Next Steps

12.3.7 References

## 12.4 Gulf Islands National Seashore Ferry Project: Project Description

12.4.1 Project Summary

12.4.2 Background and Description

12.4.3 Evaluation Criteria

12.4.4 Performance Criteria, Monitoring and Maintenance

12.4.5 Offsets

12.4.6 Cost

## 12.5 Gulf Islands National Seashore Ferry Project: Environmental Review

12.5.1 Introduction and Background

12.5.2 Project Location

12.5.3 Construction and Installation

12.5.4 Operations and Maintenance

12.5.5 Affected Environment and Environmental Consequences

12.5.6 Summary and Next Steps

12.5.7 References
CHAPTER 12: PROPOSED PHASE III EARLY RESTORATION PROJECTS: FLORIDA

12.1 Introduction

In response to the Deepwater Horizon Oil Spill, the Florida Department of Environmental Protection and the Florida Fish and Wildlife Conservation Commission have hosted, and continue to host, public meetings to inform the public about the NRDA process and, in particular, the Early Restoration process. As part of these meetings, the Florida Trustees have solicited, and continue to solicit, specific project ideas that could be implemented as part of the Early Restoration process. In addition to the public meetings, the Florida Trustees have also set up a website, http://www.deepwaterhorizonflorida.com, where members of the public can submit and view restoration project proposals. The Florida Trustees have compiled, and regularly update, a list of all project proposals received, which they have and will continue to consider when developing potential projects to be part of this and future Early Restoration efforts.

For the identification of potential Early Restoration projects, the Florida Trustees are only considering projects that occur within the limited geographic area of the 8-county panhandle region. This is the area in which boom was deployed and that was impacted by response and SCAT activities related to the Spill. In addition, DOI and NOAA identified potential projects utilizing screening considerations outlined in Chapter 7 focused on federal trust resources. Working from this structure, and as described in Chapter 2, the Trustees are proposing 30 projects in Florida, many of which have multiple components for Phase III of Early Restoration (see Table 12-1 and Figure 12-1 below). The first two projects in the table are projects that would be implemented by the US Department of the Interior in Florida. All 30 projects meet the criteria outlined in the OPA regulations, the Framework Agreement, and additional screening considerations applied by NOAA and DOI (see Chapter 7), and are consistent with the goal of compensating the public for natural resource injuries and loss of associated services resulting from the Spill.

Within the remainder of this chapter, there is a subsection for each proposed Phase III project. Each project-specific subsection begins with a general description of the project and relevant background information, followed by: 1) a discussion of the project’s consistency with project evaluation criteria; 2) a description of planned performance criteria, monitoring and maintenance; 3) a description of the type and quantity of Offsets BP would receive if the project is selected for implementation; and 4) information about estimated project costs.

Each of the proposed projects falls within proposed project types in the Trustees’ programmatic action alternatives, identified and evaluated in previous sections of this document (Chapters 5 and 6). Following each project description is a project-specific environmental review, which provides information and analysis about anticipated environmental consequences of the proposed project. These project-specific environmental reviews also help ensure proposed project locations, methods, timing and other factors reasonably maximize project benefits, minimize potential adverse consequences, and otherwise address environmental compliance needs.
Environmental Justice, as defined in Executive Order 12898, was not identified as an issue during the scoping period for this Phase III ERP/EIS. Based on county-level data, none of the eight Florida counties\(^1\) where Early Restoration projects are planned qualify as areas of minority population pursuant to the CEQ and EPA guidelines. That is, the minority population in the eight county area (both as a whole and on a county-by-county basis) does not exceed 50 percent, nor is any minority population in this area meaningfully greater than the minority population percentage in the state.

Likewise, there is little concern that the area qualifies as a low-income population. The possible exception is Franklin County, where as of 2012, 24 percent of the population lives below the poverty threshold, which is 10 percent greater than the state-wide average. The Trustees have not determined that this is a meaningful difference such that Franklin County should be considered an Environmental Justice area of concern for the purposes of this document. However, even if Franklin County was considered to be an Environmental Justice area of concern, the projects proposed in the area would not have a disproportionate adverse impact on the county's low-income population, as no high and adverse impact is expected to result from the proposed projects. As discussed below, the projects would be expected to have positive impacts on all county residents' access to, and enjoyment of, area natural resources.

**Table 12-1. Proposed Phase III Early Restoration projects in Florida.**

<table>
<thead>
<tr>
<th>PROPOSED PROJECT</th>
<th>ALTERNATIVE 4</th>
<th>ALTERNATIVE 2</th>
<th>ALTERNATIVE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOCATION</td>
<td>CREATE AND IMPROVE WETLANDS</td>
<td>PROTECT SHORELINES AND REDUCE EROSION</td>
</tr>
<tr>
<td>1 Beach Enhancement Project at Gulf Islands National Seashore</td>
<td>FL(^1)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2 Ferry Project at Gulf Islands National Seashore</td>
<td>FL(^1)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3 Florida Cat Point Living Shoreline Project</td>
<td>FL</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4 Florida Pensacola Bay Living Shoreline Project</td>
<td>FL</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5 Florida Seagrass Recovery Project</td>
<td>FL</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6 Perdido Key State Park Beach Boardwalk Improvements</td>
<td>FL</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7 Big Lagoon State Park Boat Ramp Improvement</td>
<td>FL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Bob Sikes Pier Parking and Trail Restoration</td>
<td>FL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Escambia, Santa Rosa, Okaloosa, Bay, Franklin, Wakulla, Gulf and Walton
<table>
<thead>
<tr>
<th>PROPOSED PROJECT</th>
<th>LOCATION</th>
<th>ALTERNATIVE 4</th>
<th>ALTERNATIVE 2</th>
<th>ALTERNATIVE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Florida Artificial Reefs</td>
<td>FL</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>10 Florida Fish Hatchery</td>
<td>FL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>11 Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle</td>
<td>FL</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>12 Shell Point Beach Nourishment</td>
<td>FL</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>13 Perdido Key Dune Restoration Project</td>
<td>FL</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Florida Oyster Cultch Placement Project</td>
<td>FL</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Strategically Provided Boat Access Along Florida’s Gulf Coast</td>
<td>FL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>16 Walton County Boardwalks and Dune Crossovers</td>
<td>FL</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>17 Gulf County Recreation Projects</td>
<td>FL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>18 Bald Point State Park Recreation Areas</td>
<td>FL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>19 Enhancements of Franklin County Parks and Boat Ramps</td>
<td>FL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20 Apalachicola River Wildlife and Environmental Area Fishing and Wildlife Viewing Access Improvements</td>
<td>FL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>21 Navarre Beach Park Gulfside Walkover Complex</td>
<td>FL</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>22 Navarre Beach Park Coastal Access and Dune Restoration</td>
<td>FL</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>23 Gulf Breeze Wayside Park Boat Ramp</td>
<td>FL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>24 Developing Enhanced Recreational Opportunities at the Escribano Point Portion of the Yellow River Wildlife Management Area</td>
<td>FL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>25 Norrieigo Point Restoration and Recreation Project</td>
<td>FL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PROPOSED PROJECT</td>
<td>LOCATION</td>
<td>ALTERNATIVE 4</td>
<td>ALTERNATIVE 2</td>
<td>ALTERNATIVE 3</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>----------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Deer Lake State Park Development</td>
<td>FL</td>
<td></td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>City of Parker – Oak Shore Drive Pier</td>
<td>FL</td>
<td></td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>Panama City Marina Fishing Pier, Boat Ramp and Staging Docks</td>
<td>FL</td>
<td></td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>Wakulla Marshes Sands Park Improvements</td>
<td>FL</td>
<td></td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>Northwest Florida Estuarine Habitat Restoration, Protection and Education – Fort Walton Beach</td>
<td>FL</td>
<td></td>
<td>X X X</td>
<td></td>
</tr>
</tbody>
</table>

*These proposed projects would be implemented on federally-managed lands and managed by DOI.*
Figure 12-1. Locations of Proposed Phase III Early Restoration Projects in Florida.
12.2 Beach Enhancement Project at Gulf Islands National Seashore: Project Description

12.2.1 Project Summary
This project involves removing fragments of asphalt and road-base material (limestone aggregate and some chunks of clay) that have been scattered widely over the Fort Pickens, Santa Rosa, and Perdido Key areas of the Florida District of Gulf Islands National Seashore, managed by the National Park Service, and replanting areas, as needed, where materials are removed. These materials originated from roads damaged during several storms and hurricanes. The asphalt- and road-base-covered conditions are clearly unnatural and impact the visitor experience both aesthetically and physically in these National Seashore lands. This project would enhance the visitor experience in the cleaned-up areas. The exact method for removing the material would be left to the contractor hired if the project is approved, but would involve primarily mechanized equipment, supplemented by small crews using hand tools. The estimated cost for this project is $10,836,055.

12.2.2 Background and Project Description
As noted above, this proposed project would take place in the Fort Pickens, Santa Rosa, and Perdido Key areas of the Florida District of Gulf Islands National Seashore (see Figure 12-2 below). The materials designated for removal originated from roads damaged during several storms and hurricanes since 1995 and were spread over an area of barrier island habitat hundreds of acres in size and over 14 miles long (see Figure 12-3 and Figure 12-4). These materials are found in both vegetated and un-vegetated areas and in both flat open beaches and dune areas. Additionally, there is also a small, two-mile-long area on the Gulf side of the Fort Pickens area where sections of the old road and some miscellaneous chunks of concrete may exist in the intertidal and subtidal zones where visitors sometimes walk, wade, and swim. Fragments and materials range in shape and size from large slabs down to brick- and pea-size (i.e., from approximately 10 feet in size down to a quarter of an inch).

Over the years, areas covered with materials have been observed by Seashore staff. Rough maps have been created to locate these areas, which total approximately 400 acres. In reality, however, these materials could exist over a much greater area. This is due to the highly dynamic nature of the area such that, since these observations were made, wind and water have been continually uncovering and moving these materials over an area as great as approximately 2,041 acres. This includes 1,303 acres over 7.3 miles in the Santa Rosa area, 631 acres over 5.0 miles in the Fort Pickens area, 99 acres over 2.0 miles in the Perdido Key area (west of Fort Pickens, across the mouth of the bay), and approximately eight acres in the intertidal and subtidal zones on the Gulf side of the Fort Pickens area (see Figure 12-5, Figure 12-6 and Figure 12-7). The extent to which cleanup would occur over all these areas is unknown, but would depend on how much cleanup could occur with the project funding available. Therefore, in the environmental compliance documents for this project, consultations requested and impacts analyzed are for cleanup activities over the entire 2,041 acre area.
Figure 12-2. Asphalt removal project boundaries (outlined in red).
Figure 12-3. Asphalt fragments and road-base materials.

Figure 12-4. Asphalt fragments, road-base material, and a remnant road.
Figure 12-5. Potential project area (bounded by red line) of 1,303 acres at Santa Rosa area.
Figure 12-6. Potential project area (bounded by red line) of 631 acres at Fort Pickens area (in-water project area bounded by black diamonds).
Based on initial observations made by Seashore staff over the years, the majority of the land area proposed to be cleaned is assumed to have materials only at the surface (0-3 inches). A smaller area – perhaps 100-200 acres – is assumed to have materials up to approximately six inches deep; an even smaller area – perhaps 10-20 acres – is expected to have materials up to three feet deep. A very small area – perhaps 5-15 acres – is expected to have materials several feet deep, including, possibly, the intertidal and subtidal zones at the Fort Pickens area. Buried materials may be removed to the extent practical to ensure that these materials do not “daylight” in the future due to wind or water erosion.

12.2.2.1 Timelines and Methodology
Cleanup activities on land would occur seven months each year during the late summer, fall, and winter months when disturbance of visitors would be minimal. Cleanup activities would not occur between March 15 and August 15 since this is the height of the bird nesting season and most of the sea turtle nesting season. Outside of these dates, no work would occur in areas where bird or turtle nests remain. Effects to threatened and endangered species and their critical habitats, along with measures to mitigate these effects, have been addressed in consultations with the U.S. Fish and Wildlife Service (USFWS) and National Marine Fisheries Service (NMFS). Endangered Species Act Section 7 consultations were completed with USFWS on November 1, 2013 (Imm 2013) and with NMFS on March 12, 2014.
Cleanup activities on land are expected to take up to four years, and re-planting (see below) up to three years, making total project duration approximately five years. Cleanup activities in-water would occur four months each year during the late fall and winter months to prevent disturbance of nesting and hatching sea turtles. Cleanup activities there would not occur between March 15 and Nov. 15. Additionally, no clean-up would take place outside these dates in areas where bird or turtle nests persist. Depending on how widely the materials are found to be distributed, how long it takes to clean them up, and the actual cleanup costs, the area cleaned could be as small as approximately 50 acres per seven-month year, or as large as approximately 300 acres per seven-month year.

The method for removing the material would involve primarily mechanized equipment, supplemented by small crews using hand tools. Mechanized equipment such as dump trucks, roll-off dumpsters, backhoes, tractors with sifters and front-end loaders, and “pushable” sifters could be used. Hand tools such as rakes, shovels, scoops, buckets, screens, etc. would also be used by crews in sensitive areas (e.g. wetlands, dunes and densely vegetated areas, near nests or burrows, etc.). This equipment would be staged in the parking lots nearest the work area. Access to areas to be cleaned would be via the parking lots and road, as long as vegetated dunes would not be crossed and damaged in the process.

The on-land sand-asphalt-fragment-road-base mixture would be sifted in place. However, in some areas up to three-foot mounds of asphalt fragments (and sand) exist (typically by the side of the road in certain areas); in these areas it may be gathered and temporarily stockpiled at a nearby parking lot (i.e. staging area) and sifted. In this case the clean sand would then be re-deposited back at the original site. The separated asphalt and road base material would be disposed of at a nearby landfill and/or taken to a nearby recycling facility, both off-site.

The mechanized equipment would be used in un-vegetated areas (un-vegetated landscapes dominate the areas to be cleaned). Areas that are vegetated (e.g., dunes and beach mouse habitat) would either not be cleaned or would be cleaned using hand tools. Large mechanized equipment would avoid dunes by at least 10 feet from the toe of the dune (could be less at designated access points where a narrow break in the dune occurs). Smaller mechanized equipment, e.g. pushable sifters, could be used up to the toe of a dune. Much of the proposed project area is sparsely vegetated. In these areas, resource managers would determine whether or not the vegetation is dense enough to warrant avoiding with mechanized equipment and treating with hand tools instead. If it isn’t, then mechanized equipment would be used, resulting in the removal of vegetation at that location. It is assumed that approximately 10% of the total area to be mechanically cleaned contains vegetation that would be destroyed in the cleanup process. Re-planting these areas with like numbers and like species of plants is planned as part of this project. This re-planting work could include removing and preserving plants before cleaning an area and replanting them afterwards.

Additional activities to support re-planting include collection of plant cuttings or seeds, plant propagation, delivery and installation of plant material, and protection, monitoring, and re-planting if needed. Assuming a normal transplant density of 21,000 plants per acre, a 10% density of plants in the areas cleaned, and several hundred acres cleaned, this could likely result in several hundred thousand plants being re-planted into the cleaned areas.
For the small, eight-acre area where removing asphalt and some concrete could occur in the intertidal and subtidal zones, work would only occur during the fall and winter months to prevent disturbance to nesting and hatching sea turtles. No work would occur between March 15 and November 15. A large backhoe with a long arm and bucket (or grapple) on the end would be used. No work would be done from boats or barges. The backhoe would operate near the mean low water (MLW) line and reach out perhaps five-to-fifteen feet – but no more than 20 feet – to retrieve materials. Depth of removal from these zones is not known but would be determined based on technical feasibility, cost effectiveness, and, using best professional judgment, the likelihood of the materials becoming uncovered in the reasonably near future – e.g., in the 0-3 feet deep range. Sand would also be scooped up with the pieces of asphalt or concrete and would be deposited on the beach just above the surf line where the pieces – and incidental amounts of sand only – would be taken off-site and disposed of. Remaining sand would be returned to the intertidal zone where it was removed from to the extent reasonably possible. As such, only negligible amounts of sand would be removed from the intertidal zone.

12.2.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. The project would enhance the public’s use and/or enjoyment of natural resources by removing asphalt and other foreign materials from beaches and dunes, helping to offset adverse impacts to recreational uses at the Seashore caused by the Spill. Thus, the nexus to resources injured by the Spill is clear (see C.F.R. § 990.54(a) (2) and Sections 6a-6c of the Early Restoration Framework Agreement).

In addition to enhancing the public’s use and enjoyment of natural resources, the project would benefit terrestrial vegetation and terrestrial habitat. Accordingly, the project also benefits more than one resource and/or service. See 15 C.F.R. § 990.54 (a)(5). The project is technically feasible and utilizes proven techniques with established methods and documented results (personal communication, Mark Nicholas, 2013) and can be implemented with minimal delay. Government agencies have successfully implemented similar beach cleaning projects in the region. For these reasons, the project has a high likelihood of success. See C.F.R. § 990.54(a)(3) and Section 6e of the Early Restoration Framework Agreement.

A thorough environmental review, including review under applicable environmental statutes and regulations, is described in section 12.2.5; that review indicates that adverse effects from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse effects described in 12.2.5 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (15 C.F.R. § 990.54(a)(4)).

Cost estimates are based on similar past projects, and based on these estimates the project can be conducted at a reasonable cost. See C.F.R. § 990.54(a)(1). As a result, the project is considered feasible and cost effective. The project is not inconsistent with long-term restoration needs. (See C.F.R. § 990.54(a)(1),(3), and Sections 6d-6e of the Early Restoration Framework Agreement).

12.2.4 Performance Criteria, Monitoring and Maintenance
The restoration objective of this project is to restore a portion of the lost visitor use of the Seashore caused by the Spill by improving the future visitor experience there. This would be accomplished by improving the appearance of the Seashore and the public’s enjoyment of use of the Seashore. The
aesthetic and physical improvements would improve the visitors’ experience by keeping them from walking on or swimming among the asphalt and road-base materials. The project would be deemed successful when observation shows road materials have been removed and replanted areas established. As such, performance criteria for this project are the removal of the materials from an area and the short-term survival (i.e., 80% after 90 days) of replanted vegetation. Each of these criteria can be easily monitored and confirmed through visual observation. To confirm materials have been removed from an area, monitoring would occur immediately after an area has been cleaned, and then again some days, weeks, or months later in case wind or water uncovers additional materials or in case storm overwash events have redistributed materials back into the same areas or into new areas. Additionally, visitor use would be monitored using existing Seashore protocols for the gathering and evaluation of visitor feedback, including the routine use of visitor comment card surveys.

Monitoring plant survival at replanted areas would likely occur three months after planting to confirm that the percent-survival performance criterion (at least 80%) is met.

No long-term maintenance activities beyond the five-year duration of this project are expected for this project and are not budgeted.

12.2.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $21,672,110 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured on DOI lands in Florida, which would be determined by the Trustees’ assessment of lost recreational use for the Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.

12.2.6 Cost
The total estimated cost to implement this project is $10,836,055. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, design, implementation, monitoring, and potential contingencies.

---

2 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.3 Beach Enhancement Project at Gulf Islands National Seashore: Environmental Review

The proposed beach enhancement project involves removing fragments of asphalt and road-base material that have been scattered widely over the Fort Pickens, Santa Rosa, and Perdido Key areas of the Florida District of the Seashore.

12.3.1 Introduction and Background

This project is consistent with Alternative 3, “Contribute to Providing and Enhancing Recreational Opportunities”, and more specifically, “Enhance Recreational Experiences.” The alternative incorporates multiple project types to address an important type of injury caused by the Spill: lost and degraded recreational use of Gulf resources. This project involves enhancing recreational experiences through reducing and removing land-based debris. Land-based debris can be disturbing and disruptive to recreational activities and aesthetic experiences like beach going, hiking, and general sightseeing. Removal of debris not only restores the natural beauty of the coastal environment for visitors to enjoy, but also removes debris that is potentially harmful to humans and wildlife.

See Sections 12.1.2 and 12.1.2.1 for detailed introductory and background information for this project.

12.3.2 Project Location

The Seashore is located in Florida (Escambia, Santa Rosa, and Okaloosa counties) and Mississippi (Jackson and Harrison counties). Covering more than 14 miles of Santa Rosa Island, the proposed project is located at the Fort Pickens, Santa Rosa, and Perdido Key Areas of the Seashore, near Pensacola Beach in Escambia County, Florida (see Figure 12-2 above).

12.3.3 Project Scope

This project involves removing fragments of asphalt and road-base material (limestone aggregate and some chunks of clay) that have been scattered widely over the Fort Pickens, Santa Rosa, and Perdido Key areas of the Florida District of Gulf Islands National Seashore, managed by the National Park Service. These materials originated from roads damaged during several storms and hurricanes. Debris removal methods would involve primarily mechanized equipment, supplemented by small crews using hand tools. For details see Section 12.1.2.1. Work would be contracted, and exact methods for cleanup would be identified at that time. The following environmental analysis and the extent to which cleanup would occur over all these areas is unknown, but would depend on how much cleanup could occur with the project funding available. Therefore, in the environmental compliance documents for this project, consultations requested and impacts analyzed are for cleanup activities over the entire 2,041 acre area. Consultation also analyzes maximum use of equipment and other cleanup activities as the exact areas where each type of activity could be utilized are not known yet.

The locations of proposed removal of asphalt and other road based materials from the project area can be found in Figure 12-2 above. Cleanup activities are expected to take up to four years, and re-planting up to three years, making the total project duration approximately five years. Depending on how widely the materials are found to be distributed, how long it takes to clean them up, and what actual cleanup costs end up being, the area cleaned could be as small as approximately 50 acres per seven-month year, or as large as approximately 300 acres per seven-month year.
12.3.4 Operations and Maintenance
No operations or maintenance activities are anticipated as a result of this project once beach enhancement activities are completed. Materials would be removed as current project funding allows.

12.3.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental effects of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected resources and environmental consequences of the project.

12.3.5.1 No Action
Both OPA and NEPA require consideration of the No Action alternative. For this Draft Phase III ERP proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected resources subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.3.5.2 Physical Environment
12.3.5.2.1 Geology and Substrates
Affected Resources
The proposed project areas in Fort Pickens, Santa Rosa, and Perdido Key all consist predominantly of sand that has formed as the supratidal open beach and dunes and is the substrate in the intertidal and subtidal areas. Island and shoreline ridge deposits are largely devoid of clay and silt because these sand formations were deposited by wind after ocean currents transported the parent material. For example, Santa Rosa Island is composed of approximately 99% medium grained quartz sand (NPS 2011c). Perdido Key and Santa Rosa Island, including the project areas, like all barrier islands, are a product of natural functions such as erosion/accretion and overwash. The islands migrate to the west through the daily process of alongshore drift and to the north during extreme storm events through overwash. Barrier islands migrate relative to sea level and the energy dynamics of the system through the redistribution of sand. Studies at the Seashore have shown that the volume of sand on the island remains relatively stable; it is just redistributed to the north. From a geological standpoint, it is critical to the long-term survival of the barrier island to allow these processes to continue (NPS 2006).

Following hurricane impact, these same natural functions serve to rebuild the structure of the island. The island is fronted by a low-elevation beach berm that develops following a hurricane and can be overtopped by elevated water levels during strong frontal storms. Overwash during these storms is part of the post-hurricane recovery of the barrier island. The sediment deposited in these overwash fans is important to the recovery of the dunes and the vertical structure of the island. The dune system redevelops from and within the overwash sediments and through sediment delivery under fair-weather conditions. Overwash during both extreme and frontal storms is a strong control on the ecological makeup and diversity of the island, and any impedance to overwash would not only alter the post-hurricane topography but also the ecology (Houser and Oravetz 2006).
Environmental Consequences

Possible impacts from this project include compaction, erosion, and topographical changes. The removal of asphalt and other road-based materials would not cause compaction in the open beach or dune areas due to the wide wheels or tracks that must be used in the sand and the inherently low compactibility of sand. Compaction in the intertidal zone where larger equipment could be possible since moisture makes the sand there more compactable. Impacts would be short-term and minor, however, due to the constant wave and tidal action in that area that would rapidly re-work the sand profile back to a natural condition. Beneficial effects on compaction are expected in all areas where these hard, dense road materials are removed and the sand is returned to its natural state.

Impacts from the project on erosion and topography are not expected in the open beach or dunes areas. In the one small area – roadside berms where old asphalt piles could be up to three feet deep – it is possible that this substrate would not be sifted in place, but rather scooped up and removed to a nearby location (e.g. parking lot), sifted there, and the remaining sand returned to its original location. The only impact on topography here would be short-term (< 24 hours) and minor while the material is gone, but beneficial once it is returned and is restored to its natural (lower) height. Also, beneficial effects on erosion and topography over the entire supratidal project area are expected in the long-term since removing these foreign materials would allow more plant growth; more plant growth, in turn, traps moving sand (from wind or water) and actually lessens erosion and promotes accretion and natural dune-building processes. In the event that a backhoe is used to remove asphalt in the intertidal and subtidal zones, an increase in erosion potential would occur and sand could be redistributed locally via waves. Additionally, as foreign materials are scooped out of these zones, sand would be scooped up also, creating a hole or depression. Once this mix of sand and foreign materials is separated on the beach and the sand is returned to the spot it came from, and natural wave and tidal action works these areas, impacts would be highly localized, short-term, and therefore minor.

Additional beneficial impacts from this project include the restoration of color, consistency, and temperature of the sands back to near natural conditions.

12.3.5.2.2 Hydrology, Water Quality, and Floodplains

Affected Resources

Although the great majority of the project area is devoid of surface water resources, some do exist. However, due to the ephemeral nature of nearly all of the surface water features in the project area, there is no current and accurate inventory of them. It is known, however, that brackish ponds, lagoons, and freshwater marshes are located in permanently flooded to intermittently exposed wetland depressions and occur sparsely across the project area. This community type is generally found in freshwater environments. In some cases, where lagoons are connected to the sound or ocean, where frequent overwash occurs, where residual concentrations of salts exist in the base soils, or where salt water intrudes into the groundwater, water may be brackish. This community’s habitat is usually formed during severe storm overwash events such as during hurricanes when the storm surge rushing across the islands scours and gouges out depressions. These depressions subsequently fill with fresh or brackish water creating ponds and lagoons (NPS 2011c). The Santa Rosa area has many "swales". These are often ephemeral in nature and form during wet years. The Fort Pickens area has the 3 perennial ponds just north of the road, and another ephemeral wet area by parking lot 21 (GUIS staff, personal
communication, 2013). Lagoons and other surface water features are believed to occur on the Perdido
Key and Santa Rosa areas.

The relatively high water table and associated lateral seepage through the coarse sandy soils is the
primary source for the water that fills and maintains these wet depressions. Frequent rains also play an
important role in recharging water levels in these depressions and providing an additional fresh water
source. Water depths tend to be relatively shallow, averaging 1 to 3 feet deep, although depths as
much as 9 feet have been observed in some ponds (NPS 2011c).

Because of the dynamic nature of barrier islands, these water features tend to constantly change and in
many cases are short lived (NPS 2011c).

There are no known freshwater rivers, streams, or springs in the project area (GUIS staff, personal
communication, 2013).

The great majority of the project area is devoid of water resources.

In addition to groundwater and surface waters, the entire project area is classified as a coastal
floodplain and therefore falls under the requirements of Executive Order 11988 (Floodplain
Management) and the NPS Procedural Manual 77-2.

**Environmental Consequences**

There would be no impacts from this project to on-island surface water or groundwater hydrology. This
is primarily because there are so few on-island water resources, but also, for those that exist (e.g.
permanent brackish ponds and lagoons or ephemeral ponds/swales), equipment would stay out of and a
safe distance (to be determined, but at least 10 ft.) from them. Groundwater would not be impacted
from this project since it is below typical asphalt removal depths. Where it is not – e.g., near ephemeral
freshwater wetlands where groundwater is extremely shallow – these areas would be avoided by
equipment.

There would be no impacts from this project to on-island water quality. This is primarily because there
are so few on-island water resources, but also, for those that exist (e.g. permanent brackish ponds and
lagoons or ephemeral ponds/swales), equipment would stay out of and a safe distance (to be
determined, but at least 10 ft.) from them. Very minor long-term beneficial effects on groundwater
quality are expected from the removal of the asphalt and any hydrocarbons or other compounds that
may still be leaching out of these materials into the water table.

As described earlier, this project could require some removal work in the intertidal and sub-tidal zones
of the Gulf and, as such, could create some turbidity there. It is anticipated that all impacts to turbidity
would be short-term in nature occurring only during removal activities. Increases in turbidity are not
expected to be substantial, however, since background levels of subtidal turbidity are high in this area
anyway due to wave action. Additionally, BMPs along with other avoidance, mitigation and permit
conditions required by state and federal regulatory agencies would be used to minimize water quality
and sedimentation impacts. As such, impacts to water quality in this area would be minor. Very small
long-term beneficial impacts to water quality are expected from the removal of the asphalt and any
hydrocarbons or other compounds that may still be leaching out of these materials into the water.
There would be no impacts to water quality in Santa Rosa Sound or Pensacola Bay since asphalt removal would not take place there.

For the in-water portion of this project, the proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (USACE) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). These activities would occur where asphalt and possibly concrete chunks are removed from the inter-tidal and subtidal zones. The Jacksonville Corps District was contacted in 2013 for a preliminary discussion of the permitting process. Continued coordination with USACE and final authorization pursuant to CWA/RHA will be completed prior to project implementation.

Although the entire project area is designated as a coastal floodplain, a Floodplain Statement of Findings (per Procedural Manual 77-2) is not required for this project since: a) no development (structures, facilities, topographic alterations, etc.) would occur there and therefore no staff or visitors would be put at an increased safety risk; b) no modifications would be made that would either adversely affect the natural resources and functions of the floodplain or increase flood risks; and c) this project would help restore natural floodplain values in this area by removing the foreign materials and allowing more natural flow of water over land during flood events. As such, this project is in compliance with NPS Director’s Order #77-2: Floodplain Management.

12.3.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
In Table 12-2, below, both State of Florida and federal primary ambient air quality standards for criteria air pollutants are presented.

The USEPA proposed strengthening the air quality standards for ground-level ozone to 0.075 ppm in 2008. To attain this standard, the three-year average of the fourth-highest daily maximum 8-hour average ozone concentrations measured at each monitor within an area over each year must not exceed 0.075 ppm. The 2006 to 2008 average of the fourth-highest daily maximum 8-hour ozone concentration for Pensacola was 0.079 ppm, and thus Escambia County would be designated as nonattainment according to the proposed 2008 ozone standard (USEPA 2009a).

Available monitoring data from 2003 to 2007 were used to estimate air quality parameters for the Seashore as part of the Air Quality in National Parks 2008 Annual Performance and Progress Report. The five-year average of the annual fourth-highest 8-hour ozone concentrations at the Seashore was determined to be greater than or equal to 0.076 ppm, and the Seashore was assigned the status of significant concern with an improving trend (NPS 2011a).

Escambia County, Florida has an annual fine-particle particulate matter (PM) concentration of 8.4 µg/m^3, which meets the national standard of 12 µg/m^3, and is slightly better than the national average of 9.20 µg/m^3. It also has an annual average sulfur dioxide concentration of 14 ppb, which meets the national sulfur dioxide standard of 75 ppb, and is slightly better than the national average of 19.00 ppb. There is currently no data available for Escambia County regarding carbon monoxide, nitrogen oxide, or lead levels (http://air-quality.findthedata.org/l/159/Escambia-County, 2013).
Additionally, there is no trend analysis data is available for visibility, ammonium, nitrate, or sulfate parameters for the Seashore (NPS, 2013).

In 2013, Escambia County was in attainment of the National Ambient Air Quality Standards (NAAQS) for all criteria pollutants as designated by the USEPA.

**Table 12-2. State and Federal Ambient Standards for Criteria Air Pollutants.**

<table>
<thead>
<tr>
<th>POLLUTANT</th>
<th>AVERAGING PERIOD</th>
<th>FEDERAL PRIMARY STANDARD</th>
<th>STATE OF FLORIDA STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone</td>
<td>8-hour</td>
<td>0.075 ppm</td>
<td>Same as Federal</td>
</tr>
<tr>
<td></td>
<td>1-hour (daily max.)</td>
<td>0.12 ppm</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>PM2.5</td>
<td>Annual (arithmetic mean)</td>
<td>15.0 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>35 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>PM10</td>
<td>Annual (arithmetic mean)</td>
<td>NA</td>
<td>50 µg/m³</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>150 µg/m³</td>
<td>150 µg/m³</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>8-hour</td>
<td>9 ppm</td>
<td>9 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>35 ppm</td>
<td>35 ppm</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>Annual (arithmetic mean)</td>
<td>0.053 ppm</td>
<td>0.05 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.100 ppm</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>Annual (arithmetic mean)</td>
<td>0.03 ppm</td>
<td>0.02 ppm</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>0.14 ppm</td>
<td>0.10 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour (per annum)</td>
<td>NA</td>
<td>0.40 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour (per 7 days)</td>
<td>NA</td>
<td>0.25 ppm</td>
</tr>
<tr>
<td></td>
<td>5-minute</td>
<td>NA</td>
<td>0.80 ppm</td>
</tr>
<tr>
<td>Lead</td>
<td>Rolling 3-month average</td>
<td>0.15 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td></td>
<td>Quarterly average</td>
<td>1.5 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>Total Suspended Particulate</td>
<td>Annual (geometric mean)</td>
<td>NA</td>
<td>60 µg/m³</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>NA</td>
<td>150 µg/m³</td>
</tr>
</tbody>
</table>

In addition, under the terms of the 1990 CAA amendments, the Seashore is designated as a Class II airshed. By definition, Class II areas of the country are set aside for protection under the CAA. Protection is somewhat less stringent than in Class I areas. The primary means by which the protection and enhancement of air quality are accomplished are through implementation of NAAQS (NPS 2008). These standards address six pollutants known to harm human health: ozone, carbon monoxide, particulate matter, sulfur dioxide, lead, and nitrogen oxides (NPS 2008). Under Class II, modest increases in air pollution are allowed beyond baseline levels for particulate matter, sulfur dioxide, nitrogen, and nitrogen dioxide, provided the NAAQS are not exceeded (NPS 2008).

Greenhouse Gases (GHGs) are chemical compounds found in the Earth’s atmosphere that absorb and trap infrared radiation as heat. Global atmospheric GHG concentrations are a product of continuous emission (release) and removal (storage) of GHGs over time. In the natural environment, this release and storage is largely cyclical. For instance, through the process of photosynthesis, plants capture atmospheric carbon as they grow and store it in the form of sugars. Human activities such as
deforestation, soil disturbance, and burning of fossil fuels disrupt the natural cycle by increasing the GHG emission rate over the storage rate, which results in a net increase of GHGs in the atmosphere. The principal GHGs emitted into the atmosphere through human activities are CO\(_2\), methane, nitrous oxide, and fluorinated gases, such as hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride (USEPA 2010). CO\(_2\) is the major GHG emitted, and the burning of fossil fuels accounts for 81 percent of all U.S. GHG emissions (USEPA 2010). Currently GHG emissions are not monitored or collected at the Seashore.

**Environmental Consequences**

Project implementation would require the use of heavy equipment which would temporarily affect air quality in the immediate project vicinity due to construction vehicle emissions. Fine particulate matter associated with the removal of asphalt and other road base materials and the replacement of sand may become temporarily airborne during project implementation. Any adverse air quality impacts that would occur would be localized, short-term, and minor.

The use of gasoline and diesel-powered construction vehicles and equipment, including cars, trucks, and backhoes, would contribute to an increase in GHG emissions. Estimated construction equipment and use and subsequent emissions for the proposed project are detailed in Table 12-3.

**Table 12-3. Greenhouse gas emissions of the proposed project.**

<table>
<thead>
<tr>
<th>VESSEL/CONSTRUCTION EQUIPMENT AND PROJECTED NUMBER</th>
<th>NO. OF HOURS OPERATED(^3)</th>
<th>CO(_2) (METRIC TONS)(^4)</th>
<th>CH(_4) (CO(_2)E) (METRIC TONS)(^5)</th>
<th>NOX (CO(_2)E) (METRIC TONS)</th>
<th>TOTAL CO(_2)E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulldozer (1)(^6)</td>
<td>1,800</td>
<td>684</td>
<td>0.36</td>
<td>0.36</td>
<td>684.72</td>
</tr>
<tr>
<td>Backhoe (3)(^7)</td>
<td>1,800</td>
<td>1,890</td>
<td>1.08</td>
<td>1.08</td>
<td>1,892.16</td>
</tr>
<tr>
<td>Dumptruck (1)(^8)</td>
<td>1,800</td>
<td>612</td>
<td>0.36</td>
<td>0.36</td>
<td>612.72</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,189.60</td>
</tr>
</tbody>
</table>

Based on the assumptions described in the table above, and the small scale and short duration of the proposed project, predicted greenhouse gas emissions would be short-term and minor and would not exceed the 25,000 metric tons per year put forth by the Council on Environmental Quality (CEQ) as a level above which to conduct a detailed analysis of said emissions (CEQ, 2010). Therefore, the project would have only short-term minor impacts on GHG emissions.

---

\(^3\) Emissions assumptions for all equipment based on 10-hour days of operation, 6 days a week per piece of equipment over a 7-month construction period.

\(^4\) CO\(_2\) emissions assumptions for diesel and gasoline engines based on USEPA 2009b.

\(^5\) CH\(_4\) and NOx emissions assumptions and CO\(_2\)e calculations based on USEPA 2011.

\(^6\) Current construction estimates indicate two Bobcats, however, existing GHG emissions are not available for Bobcats therefore it was assumed that GHG emissions for two Bobcats would be similar to those of one bulldozer.

\(^7\) GHG emissions data is not available for tractors, and it was assumed that tractors would have similar GHG emissions to backhoes.

\(^8\) Construction equipment emission factors based on USEPA NONROAD emission factors for 250hp pieces of equipment. Data was accessed through the California Environmental Quality Act Roadway Construction Emissions Model.
12.3.5.2.4 Noise

Affected Resources
Noise can be defined as unwanted sound, and noise levels and impacts are interpreted in relationship to its effects on nearby residents or organisms. Noise associated with recreational land uses, such as boating, can be of concern to surrounding communities. Noise also emanates from vehicular traffic associated with project sites during construction. Ambient noise (the existing background noise environment) can be generated by a number of noise sources, including mobile sources, such as airplanes, automobiles, trucks, and trains; and stationary sources such as construction sites, machinery, or industrial operations. The Noise Control Act of 1972 (42 U.S.C. 4901 to 4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale which approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-4 presents some familiar sounds and their decibel levels. Table 12-5 presents noise levels produced by typical construction equipment.

Table 12-4. Familiar sounds and their decibel levels (dB).

<table>
<thead>
<tr>
<th>SOUND</th>
<th>DECIBEL LEVEL (DB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whisper</td>
<td>30</td>
</tr>
<tr>
<td>Normal Conversation</td>
<td>50-65</td>
</tr>
<tr>
<td>Vacuum cleaner at 10 feet</td>
<td>70</td>
</tr>
<tr>
<td>Midtown Manhattan Traffic Noise</td>
<td>70-85</td>
</tr>
<tr>
<td>Lawnmower</td>
<td>85-90</td>
</tr>
<tr>
<td>Train</td>
<td>100</td>
</tr>
<tr>
<td>Nearby Jet Takeoff</td>
<td>130</td>
</tr>
</tbody>
</table>

Source: Occupational Safety and Health Administration 2012

Table 12-5. Noise levels produced by typical construction equipment.

<table>
<thead>
<tr>
<th>TYPE OF EQUIPMENT</th>
<th>MAXIMUM LEVEL (DBA) AT 50 FEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Grader</td>
<td>85</td>
</tr>
<tr>
<td>Bulldozers</td>
<td>85</td>
</tr>
<tr>
<td>Heavy Trucks</td>
<td>88</td>
</tr>
<tr>
<td>Backhoe</td>
<td>80</td>
</tr>
<tr>
<td>Pneumatic Tools</td>
<td>85</td>
</tr>
<tr>
<td>Crane</td>
<td>85</td>
</tr>
<tr>
<td>Combined Equipment</td>
<td>89</td>
</tr>
</tbody>
</table>


For the in-water portion of the project, asphalt slabs and concrete chunks may be broken up in the water if they can’t be removed and broken up on land. This would cause impulsive noises that could be somewhere in the range of 154-196 dB re:1 uPa zero-to-peak level and 176 dB re:1 uPa RMS level (Laughlin, 2006). Impact hammers in the open air could have sound levels in the range of 93–98 dBA (Laughlin, 2007b).
The primary sources of ambient (background) noise in the project area are operation of vehicles, commercial and recreational vessels, the nearby Pensacola Airport, and natural sounds such as wind, surf, and wildlife. The levels of noise in the project area varies, depending on the season and/or the time of day, the number and types of sources of noise, and distance from the sources of noise. Noise levels in the project area are primarily from commercial and recreational vessels, and vehicles on Highway 399. Noise levels fluctuate with highest levels usually occurring during the spring and summer months due to the increased boating and coastal beach activities.

Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the project. Noise-sensitive land uses in the project area include residences and beach recreationists, although for most of the work residences would be over a mile away and recreationists would be much fewer in the late summer/fall/winter months when this project would be implemented.

In-water work activities contribute to noise in the underwater environment and are a concern for both the NMFS and the USFWS. There are numerous contributing sources to background marine sound conditions, including those from marine mammals (71 dB), lightning strikes (260 dB), waves breaking, and rain on the open surface and by human or mechanical sources including recreational activities and boating (150-195 dB). These levels are maximum source levels. Although there are many sources of noise in the underwater environment, the most common sources of noise associated with construction activities are via hammering. Impulsive noises like this have short duration and consist of a broad range of frequencies (CRS Report 96-603). Similar to above-ground noise, underwater noise levels fluctuate in the project area with the greatest impacts coming during the spring and summer months due to increased human presence, increased boating and coastal beach activities.

**Environmental Consequences**

Instances of increased noise are expected during the removal of asphalt and other road base materials. Although construction noise could last on-land as long as seven months per year for four years, it would be remote (away from residences), and it would occur primarily in the off-season for recreationists. As such, impacts to humans during project implementation would be short-term and minor.

Noise is expected to disturb terrestrial wildlife, including birds and mammals in the project area. Although wildlife would be able to avoid noisy areas and the project would occur during a part of the year when biological activity in the project area is generally low, impacts are expected to be short-term and moderate.

Mitigation measures that could limit noise during on-land activities include: limiting activity at project sites to daytime hours (dawn to dusk); promoting awareness among contractors that producing prominent discrete tones and periodic noises (e.g., excessive dump truck gate banging) should be avoided as much as possible; limiting activity to time periods for visitor use of the site is at its lowest (i.e. late summer, fall and winter; Monday through Friday, possibly Saturday, not Sunday); and possibly employing noise-controlled construction equipment to the maximum extent possible.

Regarding underwater noise, if the backhoe bucket or grapple is used to break up asphalt or concrete pieces in the water by striking it, momentary sounds could exceed both the 160 dB re 1 uPa RMS level for impulsive noise and the 180 dB re 1 uPa zero to peak level. Also, if the backhoe is parked with its
tracks (or wheels) in the water, the 120 dB re 1uPA RMS level could be exceeded from engine noise. Mitigation measures would include breaking up large pieces on land (rather than in-water) whenever possible, and keeping the backhoe vehicle itself out of the water as much as possible. Also, although the window of time for in-water cleanup activities is four months per year for four years, it is expected to only take a total of two months. Additionally, the shallowness of the water in this area should have a dampening effect on any project-generated underwater noise. With these caveats in mind, and also the short term and localized nature of this activity, impacts to underwater sound would be minor.

12.3.5.3 Biological Environment

12.3.5.3.1 Living Coastal and Marine Resources

Coastal and Submerged Aquatic Vegetation

Affected Resources

Seagrass
No seagrass occurs in the areas where asphalt will be removed.

Terrestrial Vegetation
Terrestrial vegetation occurring in the project area is typical of a barrier island dune-and-open-beach environment. Primary plant associations occurring in the project area include sea oats (*Uniola paniculata*), beach panic grass (*Panicum amarum*), and beach elder (*Iva imbricata*) (Seashore staff, personal communication, 2013). Densely vegetated areas in the project area can be seen in Figure 12-8, Figure 12-9, and Figure 12-10 below. There are approximately 67 acres of dense vegetation at the Fort Pickens area, approximately 225 acres at the Santa Rosa area, and approximately eight acres at the Perdido Key area. These are areas where mechanized equipment will not be allowed during the project. No federally protected plant species are present within any of the project areas.

Wetlands exist in the project area along the Pensacola Bay and include estuarine and marine deepwater, estuarine and marine wetland, freshwater emergent wetland, and freshwater forested/shrub wetland (NPS 2006). Wetlands located in the project area can be seen below in Figure 12-11, Figure 12-12, and Figure 12-13 (Note: due to the ephemeral and dynamic nature of many of these wetlands, these maps may not be entirely accurate). The intertidal zone marked in Figure 12-11 is also classified as wetland.
Figure 12-8. Fort Pickens area – dense vegetation.
Figure 12-9. Santa Rosa area – dense vegetation.
Figure 12-10. Perdido Key area – dense vegetation.
Figure 12-11. Fort Pickens wetlands located in the project area.
Figure 12-12. Santa Rosa wetlands located in the project area.
Figure 12-13. Perdido Key wetlands located in the project area.
Environmental Consequences

None of the areas associated with debris removal contain submerged aquatic vegetation such as seagrass or federally protected plant species. Therefore, the project would have no impact on these categories of plants. Impacts are likely to occur to terrestrial vegetation from removal and associated activities. As stated earlier, where vegetation in the project area is sparse, mechanized equipment would move through that area since stopping to preserve and workaround every single plant is impractical. As such, sparsely spaced vegetation would be destroyed. It is assumed that all of the areas to be cleaned mechanically are sparsely vegetated, i.e., that they have 10% the plants of an area that is to be densely revegetated. Therefore, impacts to vegetation could be substantial and could involve the loss of hundreds of thousands of plants resulting in short-term moderate adverse impacts. These impacts would be mitigated within 12 months, wherein all destroyed vegetation would be replaced. This would be done either by removing all sparse vegetation before asphalt removal activities begin and replanting it afterwards, or by harvesting plant material (e.g., seeds, cuttings), cultivating it, and replanting the cleaned area with it. As such, impacts to vegetation would become short-term and minor. Long-term beneficial impacts to terrestrial vegetation would result from removing the asphalt and road base materials which act as physical impediments to naturally occurring plant establishment and growth.

According to NPS Procedural Manual #77-1: Wetland Protection, a proposed NPS action that would have adverse impacts on wetlands would require preparation of a “Wetland Statement of Findings” as part of the NEPA process. However, certain actions may be excepted from this requirement, including: “actions designed to restore degraded (or completely lost) wetland, stream, riparian, or other aquatic habitats or ecological processes” (Section 4.2.1.h of PM #77-1). For this exception, “restoration” refers to reestablishing environments in which natural ecological processes can, to the extent practicable, function as they did prior to disturbance.

- Short-term wetland disturbances that are directly associated with and necessary for implementing the restoration may be allowed under this exception.
- Conditions 1 and 2 in Appendix 2 of PM #77-1 may be waived for this excepted action if adverse impacts on hydrology and fauna exceed “minor” but are necessary to achieve restoration objectives. Justification for this waiver must be included in the NEPA document.
- Actions causing a cumulative total of up to 0.25 acres of new, long-term adverse impacts on natural wetlands may be allowed under this exception if they are directly associated with and necessary for the restoration (e.g., small structures).

Appendix 2 of PM #77-1 presents a set of conditions that must be satisfied and best management practices (BMPs) that must be implemented for a proposed action to qualify as excepted. If one or more of the conditions or BMPs cannot be met, then the action reverts to full compliance with PM #77-1 and a Wetland Statement of Findings is required. Additional BMPs or conditions may be appropriate depending on local conditions or special circumstances. The conditions/BMPs are as follows:

1. **Effects on hydrology and fluvial processes:** Action must have only negligible to minor, new adverse effects on site hydrology and fluvial processes, including flow, circulation, velocities,
hydroperiods, water level fluctuations, sediment transport, channel morphology, and so on. Care must be taken to avoid any rutting caused by vehicles or equipment.

2. **Effects on fauna:** Action must have only negligible to minor, new adverse effects on normal movement, migration, reproduction, or health of aquatic or terrestrial fauna, including at low flow conditions.

3. **Water quality protection and certification:** Action is conducted so as to avoid degrading water quality to the maximum extent practicable. Measures must be employed to prevent or control spills of fuels, lubricants, or other contaminants from entering the waterway or wetland. Action is consistent with state water quality standards and Clean Water Act Section 401 certification requirements (check with appropriate state agency).

4. **Erosion and siltation controls:** Appropriate erosion and siltation controls must be maintained during construction, and all exposed soil or fill material must be permanently stabilized at the earliest practicable date.

5. **Proper maintenance:** Structure or fill must be properly maintained so as to avoid adverse impacts on aquatic environments or public safety.

6. **Heavy equipment use:** Heavy equipment use in wetlands must be avoided if at all possible. Heavy equipment used in wetlands must be placed on mats, or other measures must be taken to minimize soil and plant root disturbance and to preserve preconstruction elevations.

7. **Stockpiling material:** Whenever possible, excavated material must be placed on an upland site. However, when this is not feasible, temporary stockpiling of excavated material in wetlands must be placed on filter cloth, mats, or some other semipermeable surface, or comparable measures must be taken to ensure that underlying wetland habitat is protected. The material must be stabilized with straw bales, filter cloth, or other appropriate means to prevent reentry into the waterway or wetland.

8. **Removal of stockpiles and other temporary disturbances during construction:** Temporary stockpiles in wetlands must be removed in their entirety as soon as practicable. Wetland areas temporarily disturbed by stockpiling or other activities during construction must be returned to their pre-existing elevations, and soil, hydrology, and native vegetation communities must be restored as soon as practicable.

9. **Topsoil storage and reuse:** Revegetation of disturbed soil areas should be facilitated by salvaging and storing existing topsoil and reusing it in restoration efforts in accordance with NPS policies and guidance. Topsoil storage must be for as short a time as possible to prevent loss of seed and root viability, loss of organic matter, and degradation of the soil microbial community.

10. **Native plants:** Where plantings or seeding are required, native plant material must be obtained and used in accordance with NPS policies and guidance. Management techniques must be implemented to foster rapid development of target native plant communities and to eliminate invasion by exotic or other undesirable species.

11. **Boardwalk elevations:** Minimizing shade impacts, to the extent practicable, should be a consideration in designing boardwalks and similar structures. (Placing a boardwalk at an elevation above the vegetation surface at least equal to the width of the boardwalk is one way to minimize shading.)
12. **Wild and Scenic Rivers**: If the action qualifies as a water resources project pursuant to Section 7(a) of the Wild and Scenic Rivers Act, then appropriate project review and documentation requirements under Section 7(a) are required.

13. **Coastal zone management**: Action must be consistent, to the maximum extent practicable, with state coastal zone management programs.

14. **Endangered species**: Action must not jeopardize the continued existence of a threatened or endangered species or a species proposed for such designation, including degradation of critical habitat (see NPS Management Policies 2006 and guidance on threatened and endangered species).

15. **Historic properties**: Action must not have adverse effects on historic properties listed or eligible for listing in the National Register of Historic Places.

An exception to the requirement to prepare a Wetland Statement of Findings is warranted for this project since:

- It would be improving wetland functions by removing the foreign materials from around them and, to the extent possible, from within them;
- No mechanized asphalt removal equipment would operate in supratidal wetlands or within 10 feet of them;
- Any cleanup of material from supratidal wetlands would only be done by crews using hand tools;
- Any disturbances of wetlands by crews would be short-term (during project implementation only);
- Prior to bringing equipment into a supratidal area, the area would be scouted for wetlands and clearly marked for avoidance;
- All 15 conditions and BMPs listed above would be adhered to.

**Terrestrial Wildlife Species**

**Affected Resources**

A number of wildlife species occur in and around the project areas. Although on the barrier islands upland animal species are somewhat limited in number due to the lack of diversity in vegetation and difficulty of access from mainland areas, there are a variety of invertebrates, reptiles, birds and small mammals that could be present in the project area. (NPS 2006).

The Santa Rosa beach mouse (*Peromyscus polionotus leucocephalus*) is one of eight subspecies of the oldfield mouse (*Peromyscus polionotus*) that occur, or occurred, on barrier islands and other coastal areas of Florida and Alabama. This mouse occurs only on Santa Rosa Island, including: areas near East Pass, Fort Walton Beach, Navarre Beach, Fort Pickens, Eglin Air Force Base, and east of Pensacola Beach. Currently, this species is not afforded protection under the ESA, like other beach mice subspecies, because of landowner implementation of voluntary conservation measures and protected areas of habitat. Santa Rosa beach mouse habitat is restricted to the primary dunes, interdunal areas, and secondary and scrub dunes along the Gulf coast of Santa Rosa Island. They eat fruits and seeds of dune plants, primarily sea oats (*Panicum repens*) and beach grass (*Panicum amarums*), and occasionally eat invertebrates. They breed year-round (NPS 2011b).
**Environmental Consequences**

Santa Rosa Beach Mice inhabit the sand dunes on Santa Rosa Island. During project work, construction crews would be operating mechanized equipment on the beach and small crews may be walking along the beach removing fragments of material by hand. Machinery would not be used within dune habitats used by the mice; however crews could use hand tools. The noise produced by the machinery and movement of the machinery and people along the beaches may disturb Santa Rosa Beach Mice, vibrate the dunes, collapse burrows, or cause adults to temporarily abandon burrows leaving juveniles in the nest. However, conservation measures would be put in place to ensure operation of machinery is conducted in a manner such that these effects are avoided. If equipment and machinery could be left in place overnight, mice could shelter under or around it. Therefore, measures have been designed to avoid these impacts as well. Based on the incorporation of avoidance measures (see Table 12-7) in to the project, the Trustees expect any impacts to only be short-term and minor.

Regarding terrestrial wildlife in general, removal activities might impact them. The project activities could result in the temporary displacement, injury, or death of “non-protected” (i.e., non-T&E) wildlife like invertebrates in the sand. Overall, removal activities would be expected to have short-term, minor impacts on wildlife. There would be small, long-term beneficial effects, however, to terrestrial wildlife as a result of this project due to the improvement of habitat.

---

![Figure 12-14](image-url) **Figure 12-14.** Fort Pickens project area species habitat. (NOTE: Polygon boundaries do not line up well because they were based on different aerial images. Tide levels at the time aerial images were taken could also have factored into this.)
Figure 12-15. Santa Rosa project area species habitat.
Figure 12-16. Perdido Key project area species habitat. (NOTE: Polygon boundaries do not line up well on the north shoreline because they were based on different aerial images. Tide levels at the time aerial images were taken could also have factored into this. The south border of the project area – roughly in the center of the Key – is correct as shown.)

**Marine and Estuarine Fauna (fish, shell beds, benthic organisms)**

**Affected Resources**
More than 200 species of fish have been observed in waters surrounding the Seashore. The most abundant fish species are the anchovy (*Anchoa* sp.) and the silverside (*Menidia* sp.); both species are also abundant in the shallow nearshore waters. Myriad larval and young fish occupy the shallow waters around the islands and find food and protection in the seagrass beds (NPS 2011a).

**Gulf Sturgeon Critical Habitat**
See Protected Species section below.
**Shellfish**
Several species of shellfish that are commercially, recreationally, and ecologically important occur in Seashore waters, including blue crabs (*Callinectes sapidus*), stone crabs (*Menippe mercenaria*), and many species of shrimp (NPS 2006).

**Marine Mammals**

**Affected Environment**
It is unlikely but possible that marine mammals such as dolphins and manatees would be found in the intertidal and subtidal marine waters of the Gulf where the in-water portion of this project could occur.

**Environmental Consequences**
In-water components of the project would result in short-term, minor impacts to the marine fauna described above during removal activities. However, disturbed individuals would likely return to the area after activities cease and the removal of asphalt and other road-base material would provide overall long-term benefits to marine species. Where asphalt and concrete are removed from the intertidal zone, habitat for species should slightly benefit as a result of the removal of these unnatural materials from the sandy surface. As mentioned above, alteration would primarily involve some temporary increases to turbidity and changes to the topography. However, these changes should not affect marine fauna because impacts would be highly localized and short-term (minutes to hours) and would occur in an area that is already very turbid due to wave action. Similarly, alterations to topography would be short-term (hours to days) and are not likely to impact fauna due to the small project footprint and the ability of these species to avoid disturbed areas. After asphalt or concrete materials are removed from the intertidal and subtidal zones, the sand that was removed with the asphalt and concrete materials and deposited on the beach above the surf line would be returned to its original location to the best extent possible and all ruts and mounds would be filled and smoothed out, thus minimizing the topographical alterations.

Typically most marine mammal species in the Gulf are found in deeper waters on the outer continental shelf or along the shelf break; therefore, they are not likely to be impacted during the restoration activities.

However, if they were in the area of work, noise and other activity associated with the proposed in-water work for this project may temporarily disturb manatees and dolphin species through temporary impacts on prey abundance, water quality (turbidity), and underwater noise. Consultation was initiated with USFWS for this project, and on November 1, 2013, USFWS concurred that the project is not likely to adversely affect manatees as long as standard conditions are adhered to (Imm 2013). Standard Manatee Conditions for In-Water Work (USFWS 2011) would be implemented and adhered to during project implementation (see Table 12-7 and Chapter 6 for specific conditions). These conditions will be complied with, and it is anticipated that with these conservation measures in place, the proposed work would result only in short-term minor impacts to manatees as defined in Chapter 6 of this document. Dolphins are a highly mobile species and would be expected to move away from the construction area during in-water activities. The Beach Enhancement project would adhere to all applicable federal, state, and local permit conditions for the protection of marine mammals. No take of marine mammals under the MMPA is anticipated.
Protected Species
Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act and bald eagles protected under the Bald and Golden Eagle Protection Act.

DOI consulted with the USFWS for threatened and endangered terrestrial, riverine, and estuarine species and their critical habitats, and on November 1, 2013, received concurrence with its determination that the project is not likely to adversely affect the following species: green sea turtle, hawksbill turtle, Kemp’s ridley sea turtle, leatherback sea turtle, Northwest Atlantic DPS loggerhead sea turtle, piping plover, red knot, West Indian manatee, and Perdido Key beach mouse, or the designated critical habitat for the Northwest Atlantic DPS loggerhead sea turtle, piping plover, or Perdido Key beach mouse (Imm 2013). No effects would occur to all other species considered within the consultation. Within that consultation, DOI also coordinated with USFWS regarding the Migratory Bird Treaty Act and the Bald and Golden Eagle Protection Act. Table 12-9 discusses the agreed upon conservation measures for migratory birds resulting from that coordination.

DOI also consulted with NMFS regarding marine threatened and endangered species, critical habitats, and EFH. On March 12, 2014, NMFS concurred that the project was not likely to adversely affect Gulf sturgeon, loggerhead, Kemp’s ridley, green, leatherback or hawksbill sea turtles, or designated or proposed critical habitat for any of those species (Crabtree, 2014). On April 4, 2014, NMFS concurred that any adverse impacts to EFH from the project would be short-term and minor. NMFS offered no conservation recommendations for mitigation of those potential impacts pursuant to Section 305(b)(2) of the Magnuson-Stevens Fisheries Conservation and Management Act.

Affected Resources

Special Status Species
USFWS and NMFS list species as threatened or endangered when they meet criteria detailed under the ESA of 1973. In, or in the vicinity of the Seashore, several terrestrial and marine species are listed as protected by USFWS. Based on existing literature and completed consultations with the USFWS and NMFS, Table 12-6 identifies the species that are likely to occur in the Florida Panhandle and whose habitat type is present in the project area.
Table 12-6. List of Federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle.

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>STATUS</th>
<th>HABITAT DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acipenser oxyrhinchus desotoi (Gulf sturgeon)</td>
<td>T, CH</td>
<td>RIVERINE: spawning over bedrock, cobble, clean gravel, marl, soapstone, or hard clay substrates. ESTUARINE/MARINE: unvegetated sandy shorelines, shallow shoals, and other areas containing mostly sand; Critical Habitat present in project area around Perdido Key, Ft. Pickens and Santa Rosa.</td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caretta caretta (loggerhead turtle) Northwest Atlantic Distinct Population Segment</td>
<td>T, PCH</td>
<td>TERRESTRIAL: sandy beaches; Nesting; Proposed Critical Habitat present in project area at Perdido Key. ESTUARINE/MARINE: unvegetated sandy shorelines, shallow shoals, and other areas containing mostly sand.</td>
</tr>
<tr>
<td>Chelonia mydas (green sea turtle)</td>
<td>E</td>
<td>TERRESTRIAL: sandy beaches; Nesting. ESTUARINE/MARINE: unvegetated sandy shorelines, shallow shoals, and other areas containing mostly sand.</td>
</tr>
<tr>
<td>Dermochelys coriacea (leatherback turtle)</td>
<td>E</td>
<td>TERRESTRIAL: sandy beaches; Nesting. ESTUARINE/MARINE: unvegetated sandy shorelines, shallow shoals, and other areas containing mostly sand.</td>
</tr>
<tr>
<td>Eretmochelys imbricata (hawksbill sea turtle)</td>
<td>E</td>
<td>TERRESTRIAL: sandy beaches; Nesting. ESTUARINE/MARINE: unvegetated sandy shorelines, shallow shoals, and other areas containing mostly sand.</td>
</tr>
<tr>
<td>Lepidochelys kempii (Kemp’s Ridley Sea Turtle)</td>
<td>E</td>
<td>TERRESTRIAL: sandy beaches; Nesting. ESTUARINE/MARINE: unvegetated sandy shorelines, shallow shoals, and other areas containing mostly sand.</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charadrius melodus (piping plover)</td>
<td>T, CH</td>
<td>ESTUARINE: exposed unconsolidated substrate. MARINE: exposed unconsolidated substrate. TERRESTRIAL: dunes, sandy beaches, and inlet areas. Mostly wintering and migrants. Critical Habitat present in project area at Santa Rosa.</td>
</tr>
<tr>
<td>Calidris canutus rufa (red knot)</td>
<td>P</td>
<td>ESTUARINE: exposed unconsolidated substrate. MARINE: exposed unconsolidated substrate. TERRESTRIAL: sandy beaches, and inlet areas. Mostly wintering and migrants.</td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peromyscus polionotus trissylepis (Perdido Key beach mouse)</td>
<td>E, CH</td>
<td>TERRESTRIAL: beach dune, coastal scrub. - Critical Habitat present in project area at Perdido Key.</td>
</tr>
<tr>
<td>Trichechus manatus (West Indian manatee)</td>
<td>E</td>
<td>ESTUARINE: submerged vegetation, open water. MARINE: open water, submerged vegetation. RIVERINE: alluvial stream, blackwater stream, spring-run stream.</td>
</tr>
</tbody>
</table>

Status: E=endangered, T=threatened, P=proposed, CH=critical habitat, PCH=proposed critical habitat.

Source: This table reflects the information provided by the USFWS Biological Evaluation Form, September 27, 2013.
**Gulf Sturgeon (Acipenser oxyrinchus desotoi):**
The Gulf sturgeon is an anadromous species which migrates from coastal bays and estuaries to large coastal rivers in the spring for spawning and then returns to brackish and marine environments from October through March for foraging. It is likely to be using estuarine and marine habitats surrounding the project area from mid- to late fall through early spring for foraging.

**Gulf Sturgeon Critical Habitat**
The proposed project area is located in critical habitat for Gulf sturgeon (See Figure 12-17, Figure 12-18, and Figure 12-19). Near shore waters within one nautical mile of the mainland from Pensacola Pass to Apalachicola Bay and the Perdido Key area and the area north of Santa Rosa Island were designated as critical habitat, as they are believed to be important migratory pathways between Pensacola Bay and the Gulf of Mexico for feeding and genetic exchange (NPS 2011a). The Primary Constituent Elements for Gulf sturgeon critical habitat that are present within or adjacent to the project area are: 1) Abundant food items, such as detritus, aquatic insects, worms, and/or mollusks, within riverine habitats for larval and juvenile life stages; and abundant prey items, such as amphipods, lancelets, polychaetes, gastropods, ghost shrimp, isopods, mollusks and/or crustaceans, within estuarine and marine habitats and substrates for subadult and adult life stages; 2) Water quality, including temperature, salinity, pH, hardness, turbidity, oxygen content, and other chemical characteristics, necessary for normal behavior, growth, and viability of all life stages; 3) Sediment quality, including texture and other chemical characteristics, necessary for normal behavior, growth, and viability of all life stages; and 4) Safe and unobstructed migratory pathways necessary for passage within and between riverine, estuarine, and marine habitats (e.g., an unobstructed river or a dammed river that still allows for passage).
Essential Fish Habitat

The 1996 Magnuson-Stevens Fishery Conservation and Management Act (MFCMA) requires cooperation among NMFS, anglers, and federal and state agencies to protect, conserve, and enhance Essential Fish Habitat (EFH). EFH is defined as those waters and substrates necessary to fish for spawning, breeding, feeding, or growth to maturity. The designation and conservation of EFH seek to minimize adverse effects on habitat caused by fishing and non-fishing activities. NOAA’s Estuarine Living Marine Resources (ELMR) Program developed a database on the distribution, relative abundance, and life history characteristics of ecologically and economically important fishes and invertebrates in the nation’s estuaries. NOAA designated EFH for more than 30 estuaries in the northern Gulf of Mexico for a number of species of finfish and shellfish. All of Pensacola Bay and waters surrounding the Seashore are designated as EFH. Therefore, EFH is present in the proposed beach enhancement project area for the following species:

- Sandbar Shark (*Carcharhinus plumbeus*)
- Scalloped Hammerhead Shark (*Sphyma lewini*)
- Bonnethead Shark (*Sphyma tiburo*)
- Finetooth Shark (*Carcharhinus isodon*)
- Tiger Shark (*Galeocerdo cuvier*)
- Blacktip Shark (*Carcharhinus limbatis*)
- Spinner Shark (*Carcharhinus brevippina*)
- Atlantic Sharpnose Shark (*Rhizoprionodon terraenovae*)
- Bull Shark (*Carcharhinus leucas*)
- Blacknose Shark (*Carcharhinus acronotus*)
- Brown Shrimp (*Penaeus aztecus*)
- White Shrimp (*Penaeus setiferus*)
- Pink Shrimp (*Penaeus duorarum*)
- Red drum (*Sciaenops ocellatus*)
- Reef Fish (43 Species)

Loggerhead Sea Turtle (*Caretta caretta*):
The Northwest Atlantic Distinct Population Segment (DPS) of the loggerhead sea turtle (loggerhead) is regularly observed using the Seashore for nesting and the surrounding waters for swimming, migrations, and foraging. Preferences for nesting beaches include high energy coarse-grained beaches adjacent to the ocean that are narrow and steeply sloped (NOAA Fisheries 2013c). Habitat for foraging and migration includes open ocean, inshore areas, bays, salt marshes, ship channels, and mouths of large rivers. This sea turtle feeds on mollusks, fish, crustaceans, and other marine organisms. Turtle nesting typically occurs on sandy beaches during the months of May through August, with hatching occurring from late July through October (NPS 2011a).

Loggerhead Sea Turtle Critical Habitat
Critical habitat for the loggerhead sea turtle has been proposed within the project area at Perdido Key (see Figure 12-19). Proposed critical habitat includes the extra-tidal or dry, sandy beaches from the mean high-water line to the toe of the secondary dune, which are capable of supporting a high density of nests or serving as an expansion area for beaches with a high density of nests and that are well
distributed within each State, or region within a State, and representative of total nesting (USFWS 2013b). Proposed primary constituent elements (PCEs) for loggerheads includes: 1) Suitable nesting beach habitat that: (a) has relatively unimpeded nearshore access from the ocean to the beach for nesting females and from the beach to the ocean for both post-nesting females and hatchlings and (b) is located above mean high water to avoid being inundated frequently by high tides. 2) Sand that: (a) allows for suitable nest construction, (b) is suitable for facilitating gas diffusion conducive to embryo development, and (c) is able to develop and maintain temperatures and moisture content conducive to embryo development. 3) Suitable nesting beach habitat with sufficient darkness to ensure that nesting turtles are not deterred from emerging onto the beach and hatchlings and post-nesting females orient to the sea. These PCEs are present at Perdido Key.

**Green Sea Turtle (*Chelonia mydas*):**
The green sea turtle breeding populations in Florida and on the Pacific Coast of Mexico are federally listed as endangered. All other populations are federally listed as threatened. In the Gulf of Mexico, green sea turtles are found in offshore and near-shore waters. Green sea turtles are herbivorous, feeding mainly on seagrasses and algae. In the southeastern United States, nesting generally occurs between June and September on sandy beaches. Eggs hatch approximately two months later. Hatchlings swim to offshore areas where they live for several years. As the juveniles mature, they return to near-shore foraging grounds where they become almost exclusively herbivorous (NMFS, 2009). Green sea turtles nest within the project area.
Leatherback Sea Turtle (*Dermochelys coriacea*):

While not common, there have been sporadic observations of Leatherback Turtles in Mississippi waters (MDWFP 2001). Leatherback sea turtles are federally listed as endangered. This species mainly inhabits the offshore open ocean; however, it does use nearshore coastal waters during nesting or feeding. Their main forage item is jellyfish. This species migrates long distances from nesting to feeding areas. The leatherback turtle mates in the waters adjacent to nesting beaches and along turtle migratory corridors. Females nest on sandy, tropical beaches several times during a nesting season, which occurs from March to July, typically at 8- to 12-day intervals. After nesting, females migrate from tropical waters to more temperate waters. Leatherback turtles rarely nest in the project area; however, Seashore staff documented its first leatherback nest in 2000 (NPS, 2007).

Hawksbill Sea Turtle (*Eretmochelys imbricata*):

The Hawksbill sea turtle is federally listed as endangered. Although this species uses various habitats such as the open ocean, bays, and estuaries throughout different life stages, it is mainly associated with coral reefs. The main dietary items of this species are sponges and other invertebrates (NOAA Fisheries 2013a). The main threat to hawksbills is habitat loss of coral reef communities (NMFS, 2009). In the continental United States, nesting is generally limited to the southeast coast of Florida and the Florida Keys (NMFS, 2009). Although nesting is possible in the panhandle of Florida and Hawksbill sea turtles have been observed at the Seashore, they are very rare and nesting within the project area has never been reported or documented (Hoggard, 2009).

Kemp’s Ridley Sea Turtle (*Lepidochelys kempii*):

The Kemp’s Ridley sea turtle, federally listed as endangered and the most critically endangered of all five of the listed sea turtle species endemic to the area, is distributed throughout the Gulf of Mexico and U.S. Atlantic seaboard. Typical habitat for this species includes nearshore and inshore coastal waters; often salt marshes and neritic zones with muddy or sandy substrate (NOAA Fisheries 2013b). Their diet consists mainly of swimming crabs, fish, jellyfish, and mollusks. Nesting occurs from May to July, with an incubation period of 50 to 60 days. Post-hatchlings travel offshore to avoid predation in shallow waters. Once the Kemp’s Ridley turtle reach a carapace length of approximately 8 inches, it returns to near-shore waters to feed and develop (NMFS, 2009). The Kemp’s Ridley turtle is known to nest within the project area (Hoggard, 2009).

Piping Plover (*Charadrius melodus*):

The piping plover, federally listed as threatened, uses shorelines and sparsely vegetated sand beaches, mudflats, and salt marshes for feeding and resting during migration and winter months. Breeding and nesting do not occur along the Gulf coast. Piping plovers begin arriving to the Seashore in July and remain into the following May; wintering habitat is concentrated in open beaches and tidal flats. Full surveys have not been conducted, but within the Florida District of the Seashore, piping plovers are known to winter in tidal flat areas on Perdido Key and on the north side of Santa Rosa Island (NPS 2011b).

**Piping Plover Critical Habitat**

Parts of the Seashore have been designated as critical habitat for wintering piping plover (see Figure 12-18 and Figure 12-19). The PCEs for piping plover wintering habitat are those habitat components that support foraging, roosting, and sheltering and the physical features necessary for maintaining the
natural processes that support these habitat components. PCEs are as follows: 1) Intertidal flats with sand or mud flats (or both) with no or sparse emergent vegetation, 2) Adjacent unvegetated or sparsely vegetated sand, mud, or algal flats above high tide are also important, especially for roosting piping plovers. Such sites may have debris, detritus, or microtopographic relief (less than 50 cm above substrate surface) offering refuge from high winds and cold weather, and 3) Important components of the beach/dune ecosystem include surf-cast algae, sparsely vegetated back beach and salterns, spits, and washover areas. Washover areas are broad, unvegetated zones with little or no topographic relief, that are formed and maintained by the action of hurricanes, storm surge, or other extreme wave action. The PCEs are found in geologically dynamic coastal areas that support intertidal beaches and flats (between annual low tide and annual high tide) and associated dune systems and flats above annual high tide. These PCEs are present in the project area. Activities that affect PCEs include those that directly or indirectly alter, modify, or destroy the processes that are associated with the formation and movement of barrier islands, inlets, and other coastal landforms. Those processes include erosion, accretion, succession, and sea-level change. The integrity of the habitat components also depends upon daily tidal events and regular sediment transport processes, as well as episodic, high-magnitude storm events (Service 2001).

**Red Knot (Calidris canutus rufa):**
The red knot, federally listed as a candidate species, is a long-distance migrant which migrates as part of a large flock. The southeastern United States is mostly used as wintering habitat or as a migrating stopover for red knots; small populations overwinter in Florida although most migrate to South America. Wintering/migrating habitat consists of marine and estuarine habitats, with exposed unconsolidated substrate, dunes, and sandy beaches. In Florida, foraging occurs along sandy beaches, tidal mudflats, salt marshes, peat banks, and mangrove and brackish lagoons. Data on the distribution of red knot within the Seashore is not available, although they have been spotted in the project area (map provided by eBird [www.ebird.org](http://www.ebird.org) and created November 19, 2013).

**Perdido Key Beach Mouse (Peromyscus polionotus trissylepsis):**
The Perdido Key beach mouse, federally listed as endangered, is one of eight subspecies of the oldfield mouse (Peromyscus polionotus) that occur, or occurred, on barrier islands and other coastal areas of Florida and Alabama. The Perdido Key beach mouse occurs in the wild only on Perdido Key. Perdido Key beach mouse habitat is restricted to the primary dunes, interdunal areas, and secondary and scrub dunes along the Gulf coast of Perdido Key. They eat fruits and seeds of dune plants, primarily sea oats (Panicum repens) and beach grass (Panicum amarums), and occasionally eat invertebrates. They breed year-round (NPS 2011b).

**Perdido Key Beach Mouse Critical Habitat**
Perdido Key beach mouse critical habitat is within the project area at Perdido Key (see Figure 12-19). PCEs for Perdido Key beach mouse are: 1) A contiguous mosaic of primary, secondary scrub vegetation and dune structure, with a balanced level of competition and predation and few or no competitive or predaceous nonnative species present, that collectively provide foraging opportunities, cover, and burrow sites; 2) Primary and secondary dunes, generally dominated by sea oats that, despite occasional temporary impacts and reconfiguration from tropical storms and hurricanes, provide abundant food resources, burrow sites, and protection from predators; 3) Scrub dunes, generally dominated by scrub oaks, that provide food resources and burrow sites and provide elevated refugia during and after
intense flooding due to rainfall and/or hurricane induced storm surge; 4) Functional, unobstructed habitat connections that facilitate genetic exchange, dispersal, natural exploratory movements, and recolonization of locally extirpated areas; and 5) A natural light regime within the coastal dune ecosystem, compatible with the nocturnal activity of beach mice, necessary for normal behavior, growth and viability of all life stages. Beach mouse habitat at Perdido Key consists mainly of primary and secondary dune habitat, but provides the longest contiguous expanse of frontal dune habitat within the historic range of the PKBM, and possesses all five PCEs essential to conservation of the species. The area was included in the initial critical habitat designation (50 FR 23872) as well as the 2006 revision (71 FR 60238).

**West Indian Manatee (Trichechus manatus):**
The West Indian manatee is federally listed as endangered. The Florida manatee (Trichechus manatus latirostrus), a subspecies of the West Indian manatee, is found in the Florida District of the Seashore. The manatee is a large gray or brown aquatic mammal native to the United States in Florida, Georgia, and Puerto Rico. Manatees may be found in coastal or estuarine waters in Florida, but are most common in peninsular Florida. Manatees are found in shallow rivers, estuaries, and inshore coastal areas where they feed on seagrasses and other aquatic vegetation. During the winter months, manatees migrate to the warmer waters of south Florida or form large aggregations in natural springs and industrial outfalls where water temperatures are elevated. At the Seashore, manatee sightings are rare but have been documented in the Gulf of Mexico and Pensacola Bay (NPS, 2011b).

![Figure 12-17. Fort Pickens project area special status species' critical habitat.](image-url)
Figure 12-18. Santa Rosa project area special status species’ critical habitat.
Environmental Consequences
The proposed project could impact the protected species described above. DOI initiated informal consultation with the USFWS, and on November 1, 2013 the USFWS concurred with the DOI determination that the project is “Not Likely to Adversely Affect” the following species within their jurisdiction: green sea turtle, hawksbill turtle, Kemp’s ridley sea turtle, leatherback sea turtle, Northwest Atlantic DPS loggerhead sea turtle, piping plover, red knot, West Indian manatee, and Perdido Key beach mouse (Imm, 2014). USFWS also concurred that the project is not likely to adversely affect the designated terrestrial critical habitats for Northwest Atlantic DPS loggerhead sea turtle, piping plover, and Perdido Key beach mouse.

DOI also initiated consultation with NOAA’s NMFS for the portion of this project that would take place in the intertidal zone. In a letter dated March 12, 2014, NMFS concurred that the project is not likely to adversely affect leatherback, Kemp’s ridley, hawksbill, loggerhead, or green sea turtles, or Gulf sturgeon, nor the designated or proposed critical habitats for these species occurring within NMFS’ jurisdiction (Crabtree, 2014).

The project is considered “Not Likely to Adversely Affect” Gulf sturgeon or sea turtles within either USFWS or NOAA jurisdiction. DOI also determined that two of the seven Primary Constituent Elements for Gulf sturgeon would be impacted from the project: “abundant food items” would sustain minor

Figure 12-19. Perdido Key project area special status species’ critical habitat.
impacts and “water quality” would sustain negligible impacts. NMFS concurred, stating that the impacts to the essential features of Gulf sturgeon critical habitat and proposed loggerhead critical habitat are expected to be negligible due to the small size of the project footprint, the mitigation measures in place for sea turtles, the time of year the project would be implemented, and the ability of Gulf sturgeon to avoid disturbed areas.

Most of the project work would occur during the late summer, fall and winter months when sea turtles are less likely to be present in the terrestrial environment. However, project work may coincide with sea turtle hatchling presence (i.e. Aug. 15 – Nov. 1). During this time construction crews would be operating mechanized equipment on the beach and small crews may be walking along the beach removing some fragments of material by hand. The noise produced by the machinery and movement of the machinery along the beaches may disturb any late nesting sea turtles or could crush nests. Ruts made by vehicles on shore can potentially trap sea turtles/hatchlings. Removal of large pieces of material may create holes that could potentially trap sea turtles or hatchlings, and hatchlings are vulnerable to being run over. Table 12-6 describes conservation measures to protect sea turtles during all life stages. The USFWS concurred that this project is “Not Likely to Adversely Affect” the five sea turtles on land, and NMFS concurred that it is “Not Likely to Adversely Affect” the sea turtles in marine environments. In the concurrence letter, NMFS characterized the potential effects of the project as insignificant because there is equally suitable forage and refuge habitat further along either side of the project area, construction will only occur during daylight hours in a very small portion of the overall project area at any given time, and because increases in turbidity and alterations in benthic topography will be temporary, highly localized, and short-lived in an area that is already very turbid due to wave action. The implementation of conservation measures and the short duration and highly localized nature of the project would minimize any potential impacts such that they are short-term and minor.

This project could temporarily impede nearshore access (PCE 1) and short-term, temporary driving on the beach could compact sand. Conservation measures in Table 12-7 below would be implemented to ensure PCEs will continue to support the survival and recovery of Northwest Atlantic DPS of loggerhead sea turtles; therefore any impacts to critical habitat would be short-term and minor.

This project would likely result in short-term, minor adverse impacts to EFH due to benthos disturbances and turbidity. Again, these impacts would be short-term and highly localized. Removal of asphalt and concrete from these zones would actually have a small but long-term benefit on EFH by removing impediments to the normal use of the sandy benthos in this area by EFH species. DOI consulted with NMFS regarding potential impacts to EFH from the in-water portion of this project. In a letter dated April 4, 2014, NMFS concurred that adverse impacts to EFH will be short-term and minor. Further, NMFS offered no conservation recommendations pursuant to the Magnuson-Stevens Act.

Project work would occur during the late summer, fall and winter months over a period of approximately 4 years. Piping Plovers and Red Knots do not nest in the project area, but do use it for wintering habitat. Both species could be startled by work crews, vehicles, and machinery and stop foraging or roosting. However, these birds would be expected to move away from the disturbance to other suitable habitats outside of the disturbance area. There is an abundance of suitable foraging and roosting habitat within the Seashore and within 2 miles of the action area in which plovers would be expected to move to or within (i.e., within their normal range of movements). The noise produced by
the machinery and movement of the machinery and personnel along the beaches may disturb either species present on site, but both could avoid disturbance by moving into adjacent areas of unimpacted habitat. Therefore we would not expect startling and temporary displacement to interrupt or have long-term consequences to normal behaviors. Foraging habitats are abundant within the Seashore and sand and prey items would be sieved on site and not removed from the area therefore we do not expect indirect effects to piping plover from a loss of prey base. Based upon the normal movement patterns of Piping Plover and Red Knot and the conservation measures outlined in Table 12-7 below (allowing movement of their own volition, and watching for the birds), any impacts would be short-term and minor.

Areas containing habitat components that are essential for primary biological needs of foraging, sheltering, and roosting are considered critical habitat. In the long-term, construction activity impacts should be largely beneficial to critical habitat, with cleanup improving long-term foraging, sheltering, and roosting resources. Cleanup would improve the piping plover critical habitat PCEs of sparsely vegetated intertidal flats, flats above high tide, back beach and washover areas by removing roadbed debris, thus returning the site to a more natural condition. During project work, construction crews would be operating mechanized equipment on the beach and small crews may be walking along the beach removing fragments of material by hand. Sand would be sifted in place and all sand and non-roadbed-related debris would be returned as near as possible to its original location. The vast majority of the material to be removed is expected to cause surficial disturbance only. No significant change to the structure of existing landscape features (including PCEs) is expected, and should changes occur, they would occur because of the removal of foreign materials and should not affect the way landscape features are formed and maintained in the future. Further, the project is not anticipated to alter the way any coastal processes (such as washovers and spits) occur. During project implementation machinery on the beach may compact sand and/or create divots where asphalt is removed, however this is not expected to change plant densities in any way, and where plants are removed appropriate native plants would be planted in their place. Thus no short or long-term effects to piping plover critical habitat are expected to occur.

In addition, we do not expect increased visitor use due to the project; rather we expect the project to result in an improved visitor experience. Therefore, we do not expect indirect effects from human use to increase or impact any of the protected species or critical habitats discussed above.

The majority of this project is to be accomplished on shore; however, a portion of this project would occur in the intertidal zone on the Gulf side of the Fort Pickens area. Due to the depth of water within the intertidal zone, lack of submerged aquatic vegetation, and rarity of encountering West Indian manatees at Gulf Islands National Seashore, it is unlikely that West Indian manatees would be present in the action area. In-water asphalt removal would not involve the use of boats or barges. Construction equipment such as a backhoe with a long arm and bucket, located on shore near the mean low tide line, may be used to retrieve materials. Turbidity of the water within the intertidal zone may increase during the project work within this area and the noise from the machinery may affect species within the intertidal zone and adjacent areas. If transiting the area manatees could be startled by in-water removal or have difficulty navigating due to turbidity. We expect West Indian manatees to naturally avoid any areas of increased turbidity as they are not known to use turbid habitats. We do not expect this avoidance of the project area to result in changes to normal behaviors. Also, because of the wave action
in this area, natural background levels of turbidity are already high. Conservation measures (see Table 12-7) would be implemented to prevent any direct impacts to the manatee. Therefore, any potential impacts would be short-term and minor.

Perdido Key Beach Mice inhabit the sand dunes along Perdido Key, but not other locations considered within this project. During project work, construction crews would be operating mechanized equipment on the beach and small crews may be walking along the beach removing fragments of material by hand. Machinery would not be used within dune habitats used by the mice; however crews could use hand tools in those areas. The noise produced by the machinery and movement of the machinery and people along the beaches may disturb the Perdido Key Beach Mice, vibrate the dunes, collapse burrows, or cause adults to temporarily abandon burrows leaving juveniles in the nest. However, conservation measures would be put in place to ensure operation of machinery is conducted in a manner such that these effects are avoided. If equipment and machinery were left in place overnight, mice could shelter under or around it. Therefore, measures have been designed to avoid these impacts as well. Based on the incorporation of avoidance measures to the project (see Table 12-7), we expect any impacts to be short-term and minor.

PCEs for Perdido Key beach mouse critical habitat largely refer to landscape level areas (including vegetation and dune structure and habitat connections). This project would not affect the area on a landscape level. Work would occur in small areas and move from one area to the other as asphalt and aggregate material are removed. It is unlikely that this work would alter the landscape mosaic of vegetation, dunes, and other habitat connections with which the PCEs are concerned. Where vegetation is damaged it would be replaced, though vegetation in mouse habitat is expected to be avoided. The PCE of natural light regimes would not be affected because all work would occur within daylight hours. Therefore, we expect any impacts to critical habitat to be short-term and minor.

During restoration activities, a monitor would be present that would be able to halt work if federally-listed species are located in the project area. Work would be halted until such time as the area is deemed safe to continue the operation. Additionally, NOAA-NMFS’ sea turtle “construction conditions” would be followed. Overall, restoration activities would restore the site to its natural conditions, which should have a positive impact on the federally listed species who utilize the project area. No negative impacts to marine mammals or sea turtles would be anticipated as a result of the proposed project. Table 12-7 provides the conservation measures that would be implemented to reduce impacts to protected species.

Table 12-7. Explanation of actions (conservation measures) to be implemented to reduce impacts to protected species.

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>ACTIONS TO MINIMIZE IMPACTS</th>
</tr>
</thead>
</table>
| Gulf Sturgeon                | • Instruct all personnel associated with the project in the potential presence of Gulf sturgeon. Furthermore, inform the project personnel of the civil and criminal penalties for harming, harassing, or killing species that are protected.  
• Keep noise low (in air and in water) to the greatest extent possible.  
• Care shall be taken in lowering equipment or material below the water surface and into the sediment. These precautions would be taken to ensure no harm occurs to any sturgeon which may have entered the project area undetected.  
• In the unlikely event that a protected Gulf sturgeon approaches any near-shore areas of the proposed project, work would immediately cease until the sturgeon moves away from the area on its own volition. |

50
<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>ACTIONS TO MINIMIZE IMPACTS</th>
</tr>
</thead>
</table>
| Sea Turtles (Loggerhead Turtle, Green Sea Turtle, Leatherback Turtle, Hawksbill Sea Turtle, Kemp’s Ridley Sea Turtle) | - The Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS 2006) would be implemented to protect Gulf sturgeon.  
- Construction activities would be limited to the late summer, fall and winter months when sea turtles are less likely to be nesting and hatchlings are less likely to be leaving the nest.  
- The Seashore would increase turtle crawl and nest monitoring in areas between May 1 and Aug 31 in an effort to locate and identify all crawls, false crawls and nests. These nests would be marked for avoidance (following standard procedures) by foot traffic and vehicles.  
- In areas where adults or hatchlings could be present and vehicles or mechanical equipment maybe used, a pre-operational survey would be conducted to ensure no adults or hatchlings are present or in the path of the equipment.  
- All construction personnel will be trained/instructed as to what they are to do in the presence of a sea turtle.  
- Construction activities would occur during daylight hours and noise would be kept to the minimum feasible.  
- All construction personnel would be notified of the potential presence of sea turtles both on the beach and in the water and would be reminded of the need to avoid sea turtles.  
- All construction personnel would be notified of the criminal and civil penalties associated with harassing, injuring, or killing sea turtles.  
- In areas where adults or hatchlings could be present and vehicles or mechanical equipment maybe used, a pre-operational survey would be conducted to ensure no adults or hatchlings are present or in the path of the equipment.  
- All construction personnel would be notified of the potential presence of sea turtles both on the beach and in the water and would be reminded of the need to avoid sea turtles.  
- All construction personnel would be notified of the criminal and civil penalties associated with harassing, injuring, or killing sea turtles.  
- Construction noise would be kept to the minimum feasible.  
- All construction personnel would be notified that if equipment is left onsite overnight, a qualified biologist would walk around the equipment and look for signs of birds before moving the equipment, contacting a qualified biologist if signs of birds’ presence are detected.  
| Proposed Critical Habitat Loggerhead | - To avoid impacts to PCE 1 regarding relatively unimpeded nearshore access for nesting females and hatchlings, no work would be completed in the nearshore area until all known nests in the vicinity have hatched. In addition, Seashore staff would monitor for nests, crawls, and nesting females from May 1 and Aug 31 in an effort to locate and identify all crawls, false crawls and nests.  
- Short-term, temporary driving on the beach could compact sand. The driving would be between nesting seasons allowing for the full natural cycle of wind/rain erosion and accretion of sand to occur. Therefore, this project should not in any way change the nature of the sand in the project area (PCE 2). Instead, the project would improve the physical conditions of sand in the project area by removing foreign materials. The project would be sifted in place, thus not removing sand.  
- Work on this project would only occur during daylight hours and would therefore not affect the light regime needed for post-nesting females and hatchlings to orient to the sea.  
| Piping Plover and Red Knot | - All construction personnel would be instructed and trained in the protection of shorebirds and seabirds.  
- Construction personnel would be notified of the criminal and civil penalties associated with harassing, injuring, or killing shorebirds and seabirds.  
- Construction activities would be conducted in accordance with the Florida Fish and Wildlife Conservation Commission’s guidelines. These guidelines were developed to protect nesting shorebirds and would be applied to foraging and roosting Piping Plover and Red Knot.  
- If piping plovers or red knots are present, work would not occur until the birds have moved from the area by 150 feet.  
- Construction noise would be kept to the minimum feasible.  
- All construction personnel would be notified that if equipment is left onsite overnight, a qualified biologist would walk around the equipment and look for signs of birds before moving the equipment, contacting a qualified biologist if signs of birds’ presence are detected.  

<table>
<thead>
<tr>
<th>SPECIES/Critical Habitat</th>
<th>ACTIONS TO MINIMIZE IMPACTS</th>
</tr>
</thead>
</table>
| Piping Plover Critical Habitat | - The project would not remove sand from intertidal, sand, or mud flats.  
- The project would occur in very localized locations for very short periods of time, allowing for intact sand, mud, and algal flats, as well as surf-cast algae, back beach, salterns, spits and washover areas to remain nearby as others are disturbed. |
| Perdido Key Beach Mouse | - All construction personnel would be notified of the potential presence of Perdido Key beach mice (PKBM) and reminded of the criminal and civil penalties associated with harassing, injuring, or killing Perdido Key beach mice.  
- To minimize impacts to PKBM in burrows, a qualified biologist would survey the project site before work commences and flag potential burrows and tracks so that they can be avoided.  
- Only hand tools would be used within a five-foot radius of a burrow opening or any observed mice tracks.  
- Mechanized equipment would not be used to remove the materials within areas known to support beach mice. Small crews, guided by a biologist, may remove product with hand tools to some extent.  
- Equipment and vehicles would avoid the dune by 10 feet from the toe of the dune.  
- Construction noise would be kept to the minimum feasible.  
- Construction would occur during the day to minimize disturbance to nocturnal patterns.  
- Equipment, vehicles, and project debris would not be stored in a manner or location where it could be colonized by mice.  
- All construction personnel would be notified that if equipment is left onsite overnight, a qualified biologist would walk around the equipment and look for signs of mice before moving the equipment. |
| Perdido Key Beach Mouse Critical Habitat | - The project would occur in very localized locations for very short periods of time, allowing the mosaic of primary, secondary scrub vegetation and dune structure to remain unchanged.  
- When plants are destroyed during the project, appropriate native plants would be planted in the same location to minimize effects to the vegetative composition of the area.  
- Only hand tools would be used within the dunes, reducing possible impacts to burrows and reactions to noise and vibration.  
- No mechanized equipment would be used or left in the dunes.  
- Project work would only occur during daylight hours, as such the project would not alter the natural light regime of the area. |
| West Indian manatee | - All construction personnel would be notified of the potential presence of West Indian manatees in the water and reminded of the criminal and civil penalties associated with harassing, injuring, or killing West Indian manatees.  
- All workers would be educated that there could be West Indian manatees in the water and would be advised to look for manatees and, if observed, wait until manatees leave the area to put the equipment in the water.  
- In-water construction activities would be limited to the late summer, fall and winter months when West Indian manatees are less likely to be present within the construction area. Care would be taken when lowering equipment into the water and the sediment in order to ensure that no harm is caused to West Indian manatee that may potentially be in the water within the construction area.  
- Should a West Indian manatee come within 50 feet of the project area during construction activities, work would immediately cease until the West Indian manatee has moved away from the project area on its own.  
- Construction noise would be kept to the minimum feasible. |
Migratory Birds and Bald Eagles

Affected Resources
More than 300 species of birds have been recorded at Gulf Islands National Seashore. Bird species utilize the project area for resting, nesting, foraging, wintering, or migratory rest stops (NPS 2006). Birds in the area include songbirds, waterfowl, wading birds, birds of prey, and shorebirds. To protect nesting shorebirds, the Seashore temporarily closes nesting areas above the beach for specific time periods each year (NPS 2011a). During nesting season (March through August), Seashore biologists locate, count, and monitor nests of the least tern (Sterna antillarum), snowy plover (Charadrius alexandrinus tenuirostris), black skimmer (Rynchops niger), and other shorebirds. Table 12-8 identifies the types of species common on the seashore and the habitats and behaviors exhibited by these groups while present. As part of their overall consultation, DOI coordinated with the USFWS regarding the Migratory Bird Treaty Act and the Bald and Golden Eagle Protection Act. Agreed-upon conservation measures to minimize impacts to birds in the project area can be found in Table 12-9.

In late 2004, Hurricane Ivan caused extensive storm surge and flooding on Santa Rosa Island. The majority of Seashore lands located on Santa Rosa Island were washed over (i.e., dunes washed away, leaving large open areas of flat, non-vegetated terrain). These flat areas of the Seashore temporarily became habitat for nesting shorebirds such as plovers, terns, skimmers, and gulls (NPS 2006). While natural successional processes are resulting in the island ecosystem reaching equilibrium, including re-vegetation, which has decreased the area of preferred nesting habitat, the Fort Pickens Area still contains broad expanses of open habitat ideally suited for nesting shorebirds.

Table 12-8. Types of bird species common to the project area, their behaviors, and potential impacts to them.

<table>
<thead>
<tr>
<th>SPECIES*</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wading birds (herons, egrets, ibises, wood stork, American flamingo)</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Wading birds primarily forage and feed at the water’s edge. As such, they may be impacted locally and temporarily by the project. It is expected that they would be able to move to another nearby location to continue foraging, feeding and resting. These birds primarily nest and roost in trees or shrubs (e.g. pines, Baccharus and mangroves), which occur outside the project area. In addition, this project would not take place during nesting season; therefore this project is not anticipated to impact nesting.</td>
</tr>
<tr>
<td>Shorebirds (plovers, oystercatchers, stilts, sandpipers)</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Shorebirds forage, feed, rest, and roost in the project area. As such, they may be impacted locally and temporarily by the project. It is expected that they would be able to move to another nearby location to continue foraging, feeding and resting. These birds primarily nest and roost in the dunes. However, this project would not take place during nesting season; therefore it is not anticipated to impact nesting.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Seabirds forage, feed, rest, and roost in the project area. As such, they may be impacted locally and temporarily by the project. It is expected that they would be able to move to another nearby location to continue foraging, feeding and resting. These birds primarily roost in the dunes. However, this project would not take place during nesting season; therefore it is not anticipated to impact nesting.</td>
</tr>
<tr>
<td><strong>SPECIES</strong>*</td>
<td><strong>BEHAVIOR</strong></td>
<td><strong>SPECIES/HABITAT IMPACTS</strong></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Raptors (osprey, hawks, eagles, owls)</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Raptors forage, feed, and rest in the project area. As such, they may be impacted locally and temporarily by the project. It is expected that they would be able to move to another nearby location to continue foraging, feeding and resting. Most raptors are aerial foragers and soar long distances in search of food. The areas in the Seashore where these birds roost and nest are not within the project area.</td>
</tr>
<tr>
<td>Goatsuckers (nighthawks, whip-poor-will, Chuck-will’s widow)</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Goatsuckers forage, feed, rest, and roost in the project area. However, they are nocturnal/crepuscular and therefore not active during the project work period. They nest in thickets and woodlands, which are not included in the project area. In addition, this project would not take place during nesting season; therefore it is not anticipated to impact nesting.</td>
</tr>
<tr>
<td>Waterfowl (geese, swans, ducks, loons, and grebes)</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Waterfowl forage, feed, rest, and roost in the project area. As such, they may be impacted locally and temporarily by the project. It is expected that they would be able to move to another nearby location to continue foraging, feeding and resting. These birds primarily roost and nest in low vegetation. However, this project would not take place during nesting season; therefore it is not anticipated to impact nesting.</td>
</tr>
<tr>
<td>Doves and pigeons</td>
<td>Foraging, feeding, resting, roosting</td>
<td>Doves and pigeons could forage, feed, rest, and roost in the project area. However, they are unlikely to utilize sandy habitat. In addition, this project would not take place during nesting season; therefore it is not anticipated to impact nesting.</td>
</tr>
<tr>
<td>Rails and coots</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Rails and coots forage, feed, rest, and roost in the project area. As such, they may be impacted locally and temporarily by the project. However they are most likely to favor marshy areas. It is expected that they would be able to move to another nearby location to continue foraging, feeding and resting if disturbed by the project. These birds primarily roost and nest in marshes, which are not within the project area. In addition, this project would not take place during nesting season; therefore it is not anticipated to impact nesting.</td>
</tr>
</tbody>
</table>

*Gulf Islands National Seashore lists 345 species of birds known to occur there. The above table lists species guilds and the genus type for those most likely to occur in the project area. The full list of species occurrences can be found at: [http://www.nps.gov/guis/naturescience/loader.cfm?csModule=security/getfile&pageID=525505](http://www.nps.gov/guis/naturescience/loader.cfm?csModule=security/getfile&pageID=525505)

**Bald Eagles**

Bald eagles are known to nest within 1 mile of the project site (FDEP, personal communication, September 26, 2013). Based on the distance from proposed project activities, nesting of the known occurrences of bald eagle would not be impacted. However, if a bald eagle nest were observed in the vicinity of the project site, conservation measures to protect bald eagles would be implemented (see Chapter 6 for specific measures). To minimize potential for impacts to nesting bald eagles, the consultation protection measures may include 1) addressing prescribed nest tree protection zones, and 2) preparation of a bald eagle nest protection plan (including nesting behavior disturbance monitoring). Bald eagles have been known to tolerate certain potential disturbances in their breeding territories. Should these conservation measures be implemented for active nest sites adjacent to enhancement activities in the project area, potential impacts to the bald eagle would be short-term and minor. The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on
large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s Bald Eagle Management Plan guidelines would be followed (FWC 2008).

**Environmental Consequences**

No bald eagles nest within or adjacent to the Seashore; therefore, no impacts to this species are expected. The Seashore prohibits all activity in and around nesting migratory birds. Therefore, no impacts to any nesting birds, eggs, chicks, or fledglings would occur. Outside of nesting season, in the short-term, beach enhancement efforts would likely impact birds in the area of construction activities due to general human disturbance and increased noise. These species are expected move away from areas of active construction to other adjacent areas and resume normal foraging, resting, and loafing behaviors. There is sufficient suitable feeding and resting habitat available along the beaches surrounding the project areas to support additional bird use. In addition, conservation measures would be implemented to minimize impacts to migratory birds from the project to the maximum extent practicable (Table 12-9). Therefore, impacts would be short-term and minor. There would be small, long-term beneficial effects to bird habitat as a result of this project as the asphalt would be removed and would not interfere with breeding, foraging, resting, or other normal behaviors.

Table 12-9. Types of bird species common to the project area and the conservation measures which would be taken to minimize potential impacts to them.

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wading birds (herons, egrets, ibises, wood stork, American flamingo)</td>
<td>Care would be taken to minimize noise and vibration near areas where foraging or resting birds are encountered. All disturbance would be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity. Roosting should not be impacted because the project would occur during daylight hours only. Nesting would not be impacted because the project would not occur during nesting season.</td>
</tr>
<tr>
<td>Shorebirds (plovers, oystercatchers, stilts, sandpipers)</td>
<td>Care would be taken to minimize noise and vibration near areas where foraging or resting birds are encountered. All disturbance would be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity. Roosting should not be impacted because the project would occur during daylight hours only. Nesting would not be impacted because the project would not occur during nesting season.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care would be taken to minimize noise and vibration near areas where foraging or resting birds are encountered. All disturbance would be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity. Roosting should not be impacted because the project would occur during daylight hours only. Nesting would not be impacted because the project would not occur during nesting season.</td>
</tr>
<tr>
<td>Raptors (osprey, hawks, eagles, owls)</td>
<td>No work would occur within 500 feet of any bald eagle nests. Care would be taken to avoid working near other raptor nests, and to minimize noise and vibration in their vicinities. Roosting should not be impacted because the project would occur during daylight hours only, and because the areas where these birds nest are not within the project area. A staff biologist would advise the contractor of the nesting status of all identified raptor nests near the project area and approve of work in the vicinity.</td>
</tr>
<tr>
<td>Goatsuckers (nighthawks, whip-poor-will, Chuck-will’s widow)</td>
<td>All work would be done during daylight hours. These birds are nocturnal/crepuscular and as such, should not be foraging or feeding while work occurs. Care would be taken to minimize noise and vibration near habitat where these birds are resting or roosting. Nesting would not be impacted because the project would not occur during nesting season.</td>
</tr>
<tr>
<td>SPECIES/SPECIES GROUP</td>
<td>CONSERVATION MEASURES TO MINIMIZE IMPACTS</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------------------</td>
</tr>
<tr>
<td>Waterfowl (geese, swans, ducks, loons, and grebes)</td>
<td>Care would be taken to minimize noise and vibration near areas where foraging or resting birds are encountered. All disturbance would be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity. Roosting should not be impacted because the project would occur during daylight hours only. Nesting would not be impacted because the project would not occur during nesting season.</td>
</tr>
<tr>
<td>Doves and pigeons</td>
<td>It is unlikely that doves and pigeons would be impacted by this project.</td>
</tr>
<tr>
<td>Rails and coots</td>
<td>Care would be taken to minimize noise and vibration near areas where foraging or resting birds are encountered. All disturbance would be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity. Roosting should not be impacted because the project would occur during daylight hours only. Nesting would not be impacted because the project would not occur during nesting season.</td>
</tr>
</tbody>
</table>

**Non-Native Species**

**Affected Resources**

Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within, and possibly expand out into adjacent areas after their initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

**Environmental Consequences**

Best Management Practices (BMPs) to control the spread of any invasive species present and prevent the introduction of new invasive species due to the project would be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. Other measures that could be implemented are identified in Chapter 12 Appendix A. Due to the implementation of BMPs, we expect risk from invasive species introduction and spread to be short-term and minor.

**12.3.5.4 Human Uses and Socioeconomics**

**12.3.5.4.1 Socioeconomics and Environmental Justice**

**Affected Resources**

The population of Escambia County was 302,715 in 2012 and accounted for 1.6 percent of the state's total population. In 2013, median household income in Escambia County was $40,917, which was approximately seven percent lower than the median household income in the State of Florida. Escambia County contains both minority and low-income populations; however, as noted in the introduction to this chapter, no communities of environmental justice concern are located adjacent to the project area.

The Fort Pickens Area of the Seashore provides numerous types of visitor experience that allow for enjoyment of the Seashore resources across a broad range of socioeconomic groups. Approximately 32,000 Seashore senior citizen visitors gain access through a Golden Age Passport each year, which
accounts for approximately 4 percent of total visitation (NPS 2006). The Seashore provides a “Beach Wheel Chair” for the physically disabled; approximately 150 people utilize this service each summer season. The Fort Pickens Area takes in approximately $1.2 million a year in entry and campground fees. Collecting this money employs 10 permanent and 5 seasonal staff. The Fort Pickens Area contains two food retail sites, generating in excess of $250,000 gross revenue and $10,500 income to the Seashore, and employing six people (NPS 2006). Much of the Seashore’s visitation has traditionally come from people wishing to visit the Fort Pickens Area. The existence of the Fort Pickens Area has a significant economic impact to nearby communities, including Pensacola, Pensacola Beach, Gulf Breeze, and Navarre Beach. Each of these communities derives important economic benefits from persons who stop to shop or seek lodging while visiting. Of the $1.2 million the Fort Pickens Area takes in, approximately $450,000 goes to the collection of fees and approximately $500,000 goes toward repair and maintenance of Seashore infrastructure, improvements to visitor use areas, and programs. This money is returned to the local economy.

**Environmental Consequences**

A socioeconomic analysis regarding beach enhancements showed that approximately 6.67 jobs, $397,000 in local economic output and $315,000 in local labor income would be generated per million dollars of proposed project funds spent (DOI, 2012). The proposed project is anticipated to spend $10,836,055 and as such could result in approximately 72.3 jobs being created, $4,301,892 in local economic output, and $3,413,340 in labor income, resulting in short-term beneficial impacts to the local economy. There would be indirect beneficial effects to the local economy due to the potential for increased recreational and tourist activity in response to beach enhancement projects. These economic benefits would flow towards the Seashore as well as local service and retail industry sectors. Beneficial economic effects would accrue to local recreational supply retailers, restaurants, and hospitality providers. The proposed project would not adversely affect any low income or minority populations since these populations do not reside in or near the project area. Overall, no adverse impacts would occur to socioeconomics and environmental justice as a result of the proposed project.

12.3.5.4.2  Cultural Resources

**Affected Resources**

For this component of the proposed project, the “area of potential effect” consists of the beach enhancement project area identified in Figure 12-5, Figure 12-6, and Figure 12-7. This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. A 2006 archeological investigation of a portion of the project area found three midden sites potentially eligible for listing in the National Register. While the Section 106 review process is ongoing, an initial review of the project indicates that a historic property may exist within the project area.

**Environmental Consequences**

---

9 The Draft PEIS/DERP stated there were eight sites in the area of potential effect. Mistakenly included in that number were five sites that are within the Seashore boundary, but not within the project area.
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse effects on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.3.5.4.3 Infrastructure

Affected Resources
Infrastructure for the purpose of this analysis includes both transportation and utility networks. Vehicle use (for both transportation and maintenance) constitutes the primary source of energy consumption in the project area.

Environmental Consequences
Based on the nature of the beach enhancement project there would be no changes to infrastructure or additional public utility requirements. A solid waste management plan would be implemented to manage the collection, recycling and disposal of asphalt, road-base materials and non-project-related waste generated during implementation activities. Existing roads would be used to access the project area. The project would use fuels but would not prevent access to any known energy resources in the project vicinity, such as coal, oil, or natural gas.

There would be short-term minor impacts to infrastructure as a result of this project in that the equipment transiting the road between clean-up sites could cause minor traffic jams.

12.3.5.4.4 Land and Marine Management

Affected Resources
Except for the areas just east of the Fort Pickens and Santa Rosa project areas and just west of the Perdido Key project area, the three project areas are devoid of commercial or private development and consist of open beach and dune. The Pensacola Bay and Santa Rosa Sound border the project area to the north and the Gulf of Mexico borders the project to the south. The proposed project area is currently used for recreational activities and is managed by the NPS.

Environmental Consequences
Under the Coastal Zone Management Act of 1972, the selection of early restoration projects must be consistent to the maximum extent practicable with the federally-approved coastal management programs for states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with public review of the Phase III DERP/PEIS on December 12, 2013 (Federal Trustees 2013). The State of Florida responded on February 28, 2014, concurring with the federal determination of consistency for purposes of the Phase III early restoration plan (Milligan 2014).

Under the proposed project, no changes would occur to the current land use at the project site or the adjoining shoreline areas or subtidal area. The area would remain in open space recreational use and land use and management authority at the Seashore would remain under the purview of the Seashore. Thus, no impacts would occur to Land and Marine Management under the proposed project.
12.3.5.4.5  Aesthetics and Visual Resources

Affected Resources
The project area primarily consists of open sandy wind beach, dunes, vegetation, and scattered asphalt and road-base materials throughout. The topography of the area is flat to gently sloping. Except for some vehicular traffic and some boats and airplanes, the project area is a natural and generally appealing landscape and soundscape. Over the last decade or so, however, visitors have complained to Seashore staff about the negative impacts of the asphalt and road base fragments on their aesthetic experience of the Seashore. The once white sandy beach is no longer as white as it once was and now contains these dark foreign materials in addition to the sand.

Environmental Consequences
Short-term impacts to visual resources would result from implementing the proposed project components. Large construction equipment such as backhoes would temporarily obstruct the shoreline views for visitors and recreational users at the site. These short-term project implementation-related impacts would be minor. Upon completion of asphalt and road base removal, beneficial impacts to aesthetics and visual resources throughout the project area would be long-term.

12.3.5.4.6  Tourism and Recreational Use

Affected Resources
Beach access is a major expectation of Seashore visitors. The access routes take the traveler through dunes of white sand along the shores of the Gulf of Mexico and Santa Rosa Sound, a terrain of striking beauty. The fort is a destination to many visitors, and guided fort tours are offered daily during summer months. As mentioned above, over the last decade or so, a number of visitors to the different project areas have commented on the scattering of asphalt and the detriment of the asphalt to the overall Seashore experience as a natural area.

In the four years prior to Hurricane Ivan (2000-2003), annual attendance in the Fort Pickens Area averaged approximately 682,000 visitors (NPS 2011a). After Hurricane Ivan damaged Fort Pickens Road on September 16, 2004, visitation to the Fort Pickens Area fell to virtually zero. Since the road reopened in May 2009, visitation has returned to levels similar to those prior to Hurricane Ivan, although it dropped again after the Deepwater Horizon oil spill.

Environmental Consequences
During the project period, recreational experience would be impacted from noise and visual disturbances associated with the use of heavy equipment; the use of some areas by visitors could be impacted. While these temporary inconveniences would result in minor short-term impacts on tourism and recreational use during the project, impacts would be kept low by implementing the project during the slowest part of the tourist season – i.e., late summer, fall, and winter – and because other nearby areas will continue to be available. It is expected that the removal of asphalt would result in a long-term beneficial impact to overall visitor experience by allowing users to experience the site in its natural state.
12.3.5.4.7 Public Health and Safety and Shoreline Protection

Affected Resources
No hazardous materials currently exist at the project site where the potential for human exposure presents a substantial risk. The Seashore is situated along an area of stable coastline not prone to significant shoreline erosion under normal conditions. Other natural hazards do not occur in any great abundance within the boundaries of the Seashore.

Environmental Consequences
No direct or indirect impacts on public health and safety would occur as a result of the proposed project. No hazardous waste would be created during removal. All hazardous materials (e.g., diesel fuels) handled during removal would be contained and appropriate barriers would be in place to ensure the protection of adjacent water resources from potential spills and leaks. Personal protective equipment would be required, as appropriate, for all construction personnel and authorized access zones would be established, if needed, at the perimeter of the project site during implementation. As a result, no impacts to public health and safety would occur from the implementation of the proposed project. There would be, however, a small beneficial effect on public health and safety with the removal of the asphalt fragments from both the open beach and in-water areas; the material currently poses tripping hazards in some cases and some risk of abrasions on bare feet.

12.3.6 Summary and Next Steps
The proposed Beach Enhancement at Gulf Islands National Seashore project involves removing fragments of asphalt and road-base material (limestone aggregate and some chunks of clay) that have been scattered widely over the Fort Pickens, Santa Rosa, and Perdido Key areas of the Florida District of Gulf Islands National Seashore, managed by the National Park Service, and replanting areas, as needed, where materials are removed. The asphalt- and road-base-covered conditions are clearly unnatural and impact the visitor experience both aesthetically and physically in these National Seashore lands. This project would enhance the visitor experience in the cleaned-up areas. The project is consistent with Alternative 3 (Contribute to Providing and Enhancing Recreational Opportunities) and Alternative 4 (Preferred Alternative).

Final NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, and short-term moderate impacts may occur to soundscapes during project implementation, no major adverse impacts are anticipated to result. The project would enhance and increase the public’s use and enjoyment of the natural resources by improving the beach at the Gulf Islands National Seashore. The Trustees have considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees determination on the selection of the project will be included in the Record of Decision.

12.3.7 References


Imm, D. 2013. Memorandum to Field Supervisor, Panama City Ecological Services Office, Subject Informal Consultation Request for the Proposed Early Restoration Project – Beach Enhancement at Gulf Islands National Seashore, Florida. Sent September 27, 2013. Concurrence signed by Donald Imm, November 1, 2013.


Laughlin, J. 2006. Underwater sound levels associated with driving steel and concrete piles near the Cape Disappointment boat launch facility, wave barrier project. Seattle, Washington: Washington State Department of Transportation.


12.4 Gulf Islands National Seashore Ferry Project: Project Description

12.4.1 Project Summary
The proposed DOI Ferry project involves the purchase of up to three ferries to be used to ferry visitors (no automobiles) between the City of Pensacola, Pensacola Beach, and the Fort Pickens area of the Gulf Islands National Seashore (Seashore) in Florida. The need for an alternative means to access the Fort Pickens area of the Seashore was made especially apparent when hurricanes and storms in 2004 and 2005 destroyed large segments of the road, eliminating vehicle access through this eight-mile-long area. A viable ferry service to this area of the Seashore would allow visitors to enjoy the Seashore not only if the road were to be destroyed again, but also by providing alternative options for visitor access. Operational responsibility for the boats (i.e., all aspects of the ferry service including preparing a business plan, staffing, ticket sales, vessel maintenance and repairs, insurance, licensing, getting regular inspections, etc.) has not yet been determined but would likely be either Escambia County or the National Park Service (or their contractor). The determination would be made by the ferry service stakeholders and would be based on several factors, including adequacy of staffing, experience, institutional stability, etc. Regardless of the operator, however, all BMPs described in this Environmental Review would be followed such that impacts to all stakeholders’ trust resources are protected. The estimated cost for this project is $4,020,000.

12.4.2 Background and Description
This project would fund the purchase of up to three ferries to be used to ferry visitors (no automobiles) between the City of Pensacola, Pensacola Beach, and the Fort Pickens area of the Seashore in Florida. It also involves the connected but separate actions of: constructing two passenger queuing areas (one with a small ticketing facility); constructing a floating dock, a landing, and a ramp between the two in one area; and constructing a dock that is fixed to and extending from an existing pier in another area. Council on Environmental Quality (CEQ) regulations require connected actions to be analyzed in the same NEPA analysis as a proposed action (40 C.F.R. §1508.25(a1)). These connected actions would not utilize funds from this proposed project, but rather would be undertaken with separate funding by a non-federal partner. Should the ferries be delivered before the docks are funded or completed, DOI has identified the interim option of docking the ferries at the existing Plaza de Luna marina, and operating the ferries from the existing docks at Plaza de Luna marina and Quietwater Beach (and the Fort Pickens pier as originally planned).

A “Fort Pickens Pier and Ferry Service Environmental Assessment” (EA) was completed in 2011; however, that document did not address the connected actions described above. That EA and its corresponding Finding of No Significant Impact (FONSI) analyzed the potential impacts of the ferry service and now-complete Fort Pickens pier construction project (NPS 2011). The EA and FONSI determined the selected action (Alternative C: Construct a New Fixed Pier Along the Fort Pickens

---

10 The National Park Service defines connected actions as those that are “closely related” to the proposal and alternatives. Actions are connected if they automatically trigger other actions that may have environmental impacts; they cannot or will not proceed unless other actions have been taken previously or simultaneously; or they are interdependent parts of a larger action and depend on the larger action for their justification (NPS Director’s Order 12 Handbook).
Seawall, which includes the ferry operation) would not have significant adverse impacts to public health, public safety, threatened or endangered species, or other unique characteristics of the region. Based on the evaluation of the impact of that proposed action on aspects affecting the quality of the human environment, the EA and FONSI determined that an Environmental Impact Statement was not required. The following Affected Resources and Environmental Consequences sections do not address the actions and topics covered in the 2011 Environmental Assessment, but rather cover only the connected actions of constructing the two new ferry docking and passenger facilities and the operation of the ferries around those facilities.

The need for an alternative means to access the Fort Pickens area of the Seashore was made especially apparent when hurricanes and storms in 2004 and 2005 destroyed large segments of the road, eliminating vehicle access through this eight-mile-long area. For five years the only means of visitor access to this area was by foot, bicycle, private boat, or limited Commercial Use Authorization permits. This severely restricted access to the Seashore for everyone, especially those with disabilities, the elderly, and the very young.

To address the need for alternative public access, the 2009 “Fort Pickens/Gateway Community Alternative Transportation Study” examined transportation alternatives to this area and determined that a ferry service to the Seashore’s Fort Pickens area from the City of Pensacola and Pensacola Beach would be appropriate. The study also found that if the financial burden of purchasing the ferries could be removed from the ferry service operator, the service would be much more viable financially. This Early Restoration project would allow that by purchasing up to three ferry boats and making those available free of cost to the ferry service operator, who thereafter would be responsible for their maintenance costs. A viable ferry service to this area of the Seashore would allow visitors to enjoy the Seashore not only if the road were to be destroyed again, but also while the road is still there by providing additional visitor access to the Seashore that otherwise would not exist. In so doing, this project would partially restore the visitor use that was lost at the Seashore due to the Spill.

Each ferry would carry up to 149 passengers (see Figure 12-20) and two would operate daily during the peak summer season (mid-May through mid-August), with each making three (or so) trips per day. Ferry operation is expected to be reduced during the off-peak season. The annual duration of ferry operation would be approximately eight months. The ferries would make three stops: City of Pensacola (at a new dock adjacent to Plaza de Luna in Pensacola Harbor), Pensacola Beach (at a new dock connected to the existing public pier at Quietwater Beach), and Fort Pickens within Gulf Islands National Seashore (at the newly constructed pier just east of the auditorium and museum). See Figure 12-21 below. The National Park Service would own the boats. The operating entity should be determined by early 2014, and would likely be either Escambia County or the National Park Service, either of which may contract the actual operation out to a separate entity. “Operation” means all aspects of the ferry service including staffing, ticket sales, vessel maintenance and repairs, acquiring insurance, licensing, etc. The final design of the ferries would be agreed upon by the interested parties, including the City of Pensacola, Escambia County, Santa Rosa Island Authority, and the National Park Service. Once the construction contract is awarded, the boats should be manufactured within approximately 12 months. The ferry vessels are expected to have an operational lifetime of 30 years.
Regarding the actions that are connected to the purchase of the ferries, the new boat dock and queuing area would be immediately adjacent to the City of Pensacola Plaza de Luna facility (see Figure 12-22 below). The ticketing facility, the other queuing area, and the pier extension would be at the Pensacola Beach Quietwater Beach facility (see Figure 12-23 below). These connected activities would not be paid for with the $4,020,000 in project funds.

The queuing and ticketing facilities would be simple, functional structures that could be permanent, but might also be temporary. The structures would be located on already disturbed (e.g., concrete-, asphalt-, wood plank-, and/or landscape-covered) areas, or on the dock itself (in the case of the Quietwater Beach facility).

Preliminary indications are that the location of the floating boat dock and ramp near Plaza de Luna would likely be at the north end of the existing berth area or at the angled wall on the west side of that same area, either location requiring up to approximately 20 pilings be driven into the benthic substrate. The new dock at Quietwater Beach would require up to approximately 16 pilings, would be fixed to the existing public pier, and could be up to 100 feet in length. Additionally, there would be improvements to the existing dock, including railings being installed. The floating docks and ramp would be constructed off-site and delivered to the sites by barge. The landing would also be constructed off-site and would be delivered to the area either by truck or barge. Both docks would be constructed and installed by barge. No dredging in either area would be needed. The ferries would be moored at the City of Pensacola dock at night.

Should the ferries be delivered and ready for operation before the docks are funded or completed, DOI has identified the interim option of docking the ferries at the existing Plaza de Luna marina, and operating them from the existing docks at Plaza de Luna marina and Quietwater Beach (and the Fort Pickens pier as originally planned). At Quietwater Beach the same dock would be used but no improvements or alterations would be made to it, nor would any on-land facility improvements or alterations be made to accommodate the additional flow of ferry passengers to the area.

At Plaza de Luna the existing dock at the marina (immediately west of the eventual new dock site) would be temporarily used but no improvements or alterations would be made to it, nor would any on-land facility improvements or alterations be made to accommodate the additional flow of ferry passengers to the area. (Use of the marina would be subject to an agreed-upon lease which would ensure that there would be no unacceptable impacts to marina facilities and which would end once the permanent docking facilities improvements were ready).
Figure 12-20. Example of a 149-passenger catamaran ferry.

Figure 12-21. Routes and destinations for the ferry system.
Figure 12-22. City of Pensacola connected actions approximate area next to (in the basin just east of) Plaza de Luna facility where parking lot, landing, ramp, dock and passenger queuing area would be.

Figure 12-23. Pensacola Beach’s connected actions approximate area (blue rectangle) at Quietwater Beach where a new floating dock and queuing/ticketing structures would be.
12.4.3 Evaluation Criteria
This proposed project meets the evaluation criteria established by OPA and the Framework Agreement. Visitor use of the Seashore was lost due to the Spill and this project would restore some of that use by providing ferries so that a successful ferry service could be established for visitors to use. (See 15 C.F.R. § 990.54(a)(2) and also 6(a-c) of the Framework Agreement). The project is designed to restore lost visitor use of the Seashore during the Spill, and would benefit other natural resources and services to the extent the ferry service reduces vehicular traffic and associated adverse effects, such as emissions. This restoration project has a clear nexus to the injuries caused by the Spill. (See 15 C.F.R. § 990.54(a)(5)).

The project is technically feasible and utilizes proven techniques with established methods and documented results. The National Park Service utilizes alternative transportation such as ferries, shuttles, and trams at many of its units, with such conveyances often being operated by a concessionaire. The Seashore’s General Management Plan supports the establishment of a ferry service in the Pensacola Bay area. In addition, there is long standing support from other regional entities including The Santa Rosa Island Authority, the regional metropolitan planning organization, and the local transit authority.

The project cost is based on several quotes received from boat manufacturers. Project expenses are straightforward since they almost exclusively involve the cost to have the boats manufactured. Thus, the project can be conducted at a reasonable cost. (See C.F.R. § 990.54(a)(1)).

A thorough environmental review, including review under applicable environmental statutes and regulations, is described in section 12.4, indicates that adverse effects from the project would largely be minor and extremely localized. In addition, the best management practices and measures to avoid or minimize adverse effects described in 12.4 would be implemented. As a result, collateral injury would be avoided and minimized (15 C.F.R. § 990.54(a)(4)).

The likelihood of project success is high since ferry boat design and construction is commonplace and ordering and purchasing the ferries is a straightforward transaction. Also, with regard to the ferry service, the 2009 Alternative Transportation Study found that as long as the operator of the ferry business did not have to purchase the actual ferry boats, the ferry service would likely be commercially successful. Finally, the construction of the new docks and passenger facilities, although not part of the proposed restoration project, are very straightforward actions and the interim docking option is available should the ferries be completed before the new docks. (See 15 C.F.R. § 990.54(a)(3) and also 6(e) of the Framework Agreement).

For these reasons, the project is considered feasible and cost effective. It is believed that the project would not be inconsistent with long-term restoration needs. (See C.F.R. § 990.54(a)(1),(3), and Sections 6(d)-6(e) of the Early Restoration Framework Agreement).

12.4.4 Performance Criteria, Monitoring and Maintenance
The restoration objective of this project is to restore a portion of the lost visitor use of the Seashore caused by the Spill. The success criteria for the project would be met if construction of the ferries is completed as specified, on schedule, and on budget. Visitor use of the ferries would be monitored through annual compilations of ridership statistics and through the use of existing park protocols for
gathering visitor feedback. These existing protocols include the routine use of visitor comment card surveys and the collection of annual ridership statistics.

Regular boat maintenance would be the responsibility of the entity operating the service and would be funded by ongoing ticket sales.

12.4.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for this proposed recreational use project. NRD Offsets are $8,040,000 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured on DOI lands in Florida, which would be determined by the Trustees’ assessment of lost recreational use for the Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.11

12.4.6 Cost
The total estimated cost to implement this project is $4,020,000. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning and engineering and design of the ferries, construction of the same, and performance monitoring of construction and annual ridership.

11 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.5 Gulf Islands National Seashore Ferry Project: Environmental Review

The proposed National Park Service (NPS), Gulf Islands National Seashore Ferry Purchase project would fund the purchase of up to three ferries to be used to ferry visitors (no automobiles) between the City of Pensacola, Pensacola Beach, and the Fort Pickens area of Gulf Islands National Seashore in Florida. It involves the connected actions of: constructing two passenger queuing areas – one with a small ticketing facility; constructing a floating dock near Plaza de Luna, a landing, and a ramp between the two in one area; and constructing an additional floating dock at Quietwater Beach. These connected actions would not be funded with project funds.

A viable ferry service to this area of the Seashore would allow visitors to enjoy the Seashore if the road to Fort Pickens were destroyed and would allow additional visitor access to the Seashore that would otherwise not be available. This project would partially restore the visitor use lost at the Seashore due to the Spill. Operational responsibility for the boats (i.e., all aspects of the ferry service including preparing a business plan, staffing, ticket sales, vessel maintenance and repairs, insurance, licensing, getting regular inspections, etc.) has not yet been determined but would likely be either the City of Pensacola or the National Park Service (or subcontractors). The estimated cost for this project is $4,020,000.

12.5.1 Introduction and Background

The need for an alternate means to access the Fort Pickens Area of the Seashore was made apparent when hurricanes and storms in 2004 and 2005 destroyed large segments of the road, eliminating vehicle access through this eight-mile-long area. For five years the only means of visitor access to this area was by foot, bicycle, private boat, or through limited Commercial Use Authorization permits. This severely restricted access to the Seashore for everyone, especially those with disabilities, the elderly, and the very young.

To address the need for alternative public access, the 2009 “Fort Pickens/Gateway Community Alternative Transportation Study” (NPS 2009a) examined transportation alternatives to this area and determined a ferry service to the Fort Pickens area from the City of Pensacola and Pensacola Beach would be appropriate. The study found that if the financial burden of purchasing the ferries could be removed from the ferry service operator, the service would be much more viable financially. This Early Restoration project would allow that by purchasing up to three ferry boats and making those available free of upfront cost to the ferry service operator, who thereafter would be responsible for their maintenance costs. A viable ferry service to this area of the Seashore would allow visitors to enjoy the Seashore not only if the road were to be destroyed again, but also while the road is still there by allowing additional new visitors access to the Seashore that they otherwise would not have. In so doing, this project would partially restore the visitor use that was lost at the Seashore due to the Spill.

A new dock was recently constructed near the visitor center in the Fort Pickens Historic District, per the selected action in the 2011 “Fort Pickens Pier and Ferry Service Environmental Assessment” (NPS, 2011). This dock consists of a 20-foot-wide, 260-foot-long pier for ferry use, an attached 60-foot pier for

---

12 Actual number of ferries purchased will be based on the recommendation of the feasibility study currently underway and expected to be completed in October, 2013, and on the actual costs of the ferries.
Seashore administrative use, and associated ramps. A sheltered passenger waiting area/pavilion was also constructed near the walkway leading to the dock.

12.5.2 Project Location
The ferry service – analyzed in the 2011 *Fort Pickens Pier and Ferry Service Environmental Assessment* – is located in Pensacola Bay and would serve the City of Pensacola, Pensacola Beach, and the Fort Pickens area of Gulf Islands National Seashore (see Figure 12-21). One of the ferry docking points, also analyzed in the 2011 Environmental Assessment, has already been built.

The actions that are connected to the purchase of the ferry boat are the construction of docking and ferry passenger facilities and accommodations at the City of Pensacola near the Plaza de Luna marina and park, and at the Pensacola Beach Quietwater Beach area (see Figure 12-22 and Figure 12-23 above).

12.5.3 Construction and Installation
Once the construction contract is awarded, the boats would be manufactured within approximately 12 months. Regarding the actions that are connected to the purchase of the ferries, the new boat dock and queuing area would be immediately adjacent to the City of Pensacola Plaza de Luna facility (see Figure 12-22 above). The ticketing facility, the other queuing area, and the pier extension or floating dock would be at the Pensacola Beach Quietwater Beach facility (see Figure 12-23 above). These connected activities would not be paid for by the $4,020,000 in project funds.

The queuing and ticketing facilities would be simple, functional structures that could be permanent, but might also be temporary. The structures would be located on already disturbed (e.g., concrete-, asphalt, wood plank-, and/or landscape-covered) areas.

Preliminary indications are that the location of the floating boat dock and ramp near Plaza de Luna would likely be the north end of the existing berth area or at the angled wall on the west side of that same area, either location requiring up to approximately 20 pilings be driven into the benthic substrate. The floating dock at Quietwater Beach would require approximately 16 pilings, would be attached to the existing public pier and could be up to 100 feet in length. Additionally, there would be improvements to the existing dock, including railings. The floating docks and ramp would be constructed off-site and delivered to the sites by barge. The landing would also be constructed off-site and would be delivered to the area either by truck or barge. Both docks would be constructed and installed by barge. No dredging would be needed.

12.5.4 Operations and Maintenance
Each ferry would carry up to 149 passengers (see Figure 12-20 above) and operate daily during the peak summer season (mid-May through mid-August), with each making three (or so) trips per day. Ferry operation would be reduced during the off-peak season. The annual duration of ferry operation would be approximately eight months. The ferries would make three stops: City of Pensacola (at a new dock adjacent to Plaza de Luna in Pensacola Harbor), Pensacola Beach (at a new dock connected to the public pier at Quietwater Beach), and Fort Pickens within Gulf Islands National Seashore (at the newly constructed pier just east of the auditorium and museum). The ferries would be moored at the City of Pensacola dock at night. It is anticipated that a third ferry, if purchased, would only be used as a backup if one of the two in use are out of commission for any reason.
Should the ferries be delivered and ready for operation before the docks are funded or completed, DOI has identified the interim option of docking the ferries at the existing Plaza de Luna marina, and operating the ferries from the existing docks at Plaza de Luna marina and Quietwater Beach (and the Fort Pickens pier as originally planned). At Quietwater Beach the same dock would be used but no improvements or alterations would be made to it, nor would any on-land facility improvements or alterations be made to accommodate the additional flow of ferry passengers to the area.

At Plaza de Luna the existing dock at the marina (immediately west of the eventual new dock site) would be temporarily used but no improvements or alterations would be made to it, nor would any on-land facility improvements or alterations be made to accommodate the additional flow of ferry passengers to the area. (Use of the marina would be subject to an agreed-upon lease which would ensure that there would be no unacceptable impacts to marina facilities and which would end once the permanent docking facilities improvements are ready).

The National Park Service would own the boats. The operating entity should be determined by early 2014, and would likely be Escambia County or the National Park Service, either of which may contract the actual operation out to a separate entity. (“Operation” means all aspects of the ferry service including staffing, ticket sales, vessel maintenance and repairs, insurance, licensing, etc.). The final design of the ferries would be agreed on by the interested parties, including the City of Pensacola, Escambia County, Santa Rosa Island Authority, and the National Park Service. The ferry vessels are expected to have an operational lifetime of 30 years.

Regular boat maintenance would be the responsibility of the entity operating the service and would be funded by ongoing ticket sales.

Visitor use in the form of ridership statistics would be monitored annually for this project.

12.5.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental effects of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected resources and environmental consequences of the project.

12.5.5.1 No Action
Both OPA and NEPA require consideration of the No Action alternative. For this Draft Phase III ERP proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected resources subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.
12.5.5.2 Physical Environment

12.5.5.2.1 Geology and Substrates

Affected Resources
The geology in the project area consists of the benthic substrate into which the dock pilings would be driven and the on-land developed areas that new facilities would be built on. The former consists of sandy substrate that is presumably degraded and contaminated to some extent due to the long-standing development and boat activity around it for so many years (this is especially true of the Plaza de Luna area). The latter consists of concrete, asphalt, or landscaped areas whose natural geological characteristics were lost years ago when these areas were developed.

Environmental Consequences
The ferry operation should have no impact on in-water or on-land geology or substrates at the City of Pensacola or Pensacola Beach ferry facilities. Construction of the new facilities, however, particularly driving pilings into the benthic substrate, would have long-term minor impacts there. The interim option of docking and operating the ferries from existing facilities would have no impacts on this resource. There should be no notable impacts to construction of facilities on land since these areas are already developed.

12.5.5.2.2 Hydrology and Water Quality

Affected Resources
The principal waterbodies associated with the project area are Pensacola Bay and Santa Rosa Sound. Pensacola Bay and Santa Rosa Sound surrounding the Santa Rosa Island area have been designated as Outstanding Florida Waters (OFWs), indicating these bodies of water are worthy of special protection due to natural attributes. An OFW is designated by the Florida Environmental Regulation Commission (ERC); once it is determined that the environmental, social, and economic benefits of the Special Water status outweigh the environmental, social, and economic costs (Rule 62-302.700(5), FAC). The Florida Department of Environmental Protection (FDEP) is granted the authority by Section 403.061(27), FS, to establish rules for OFWs. The purpose of the designation as an OFW is to protect existing good water quality. FDEP will not issue permits for direct pollutant discharges to OFWs, which would lower ambient (existing) water quality, or for indirect discharge, which would significantly degrade the OFW.

The project area is located in the southwest part of Pensacola Bay at Pensacola Harbor and in the western end of Santa Rosa Sound near Quietwater Beach. Pensacola Bay has been impacted by numerous non-point and point pollution sources resulting in a reduction of natural biodiversity and productivity in the Bay. Non-point sources include urban stormwater runoff, agricultural runoff, marinas, boat traffic, the drainage of wetlands, and seepage of contaminated groundwater into surface waters. Point sources include effluent from two sewer outlets near Pensacola; septic systems on Gulf Breeze peninsula; a chemical plant and coal-fired electric power plant on the Escambia River; a paper mill on the Perdido River; the American Creosote Works hazardous waste site; the Port of Pensacola; and Pensacola NAS, which contains a number of hazardous waste sites (USACE, 2009 as cited in NPS, 2011). Most of these impacts are from the landward areas along Pensacola Bay.
The hydrological features of the project area, of course, are Pensacola Bay and Santa Rosa Sound. These features, outside of tidal influences and the effects of storms, are naturally stable due to their size.

**Environmental Consequences**

Best management practices, promulgated by the U.S. Department of Transportation and the operating permit, would dictate mitigation measures needed to control and minimize impacts to water quality from the ferry service at the project areas. The ferry service using the new docks (or the interim option of using the existing docks) would introduce additional vessel traffic; however, currently, recreational and commercial boating traffic is high in these areas. Therefore, minor and long-term impacts to water quality would be associated with the operation of the ferry service.

The installation of the two floating docks, ramp and landing could result in increased turbidity. These impacts on water quality should be short-term and minor. (The interim option of docking and operating the ferries from existing facilities will have no impacts on turbidity.) Additionally, the operation of the boats at these new docks, especially with fueling operations at one or both of them, could result in impacts to water quality in these areas. Some incidental amounts of fuel would enter the water during fueling. These impacts on water quality should be long-term and minor. The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (USACE) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). The Jacksonville Corps District was contacted in 2013 for a preliminary discussion of the permitting process and needs associated with the construction of the two new docks. Continued coordination with USACE and final authorization pursuant to CWA/RHA will be completed prior to project implementation. Responsibility for this will lie with the entity that receives the funding for these “connected actions” and that oversees their construction.

Mitigation for fueling operations would include a Spill Prevention, Control, and Countermeasures (SPCC) Plan.

**12.5.5.2.3 Air Quality and Greenhouse Gas Emissions**

**Affected Resources**

In Table 12-10, below, both State of Florida and federal primary ambient air quality standards for criteria air pollutants are presented.

The USEPA proposed strengthening the air quality standards for ground-level ozone to 0.075 ppm in 2008. To attain this standard, the three-year average of the fourth-highest daily maximum 8-hour average ozone concentrations measured at each monitor within an area over each year must not exceed 0.075 ppm. The 2006 to 2008 average of the fourth-highest daily maximum 8-hour ozone concentration for Pensacola was 0.079 ppm, and thus Escambia County would be designated as nonattainment according to the proposed 2008 ozone standard (USEPA 2009a).
Table 12-10. State and Federal Ambient Standards for Criteria Air Pollutants.

<table>
<thead>
<tr>
<th>POLLUTANT</th>
<th>AVERAGING PERIOD</th>
<th>FEDERAL PRIMARY STANDARD</th>
<th>STATE OF FLORIDA STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone</td>
<td>8-hour</td>
<td>0.075 ppm</td>
<td>Same as Federal</td>
</tr>
<tr>
<td></td>
<td>1-hour (daily max.)</td>
<td>0.12 ppm</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>PM2.5</td>
<td>Annual (arithmetic mean)</td>
<td>15.0 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>35 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>PM10</td>
<td>Annual (arithmetic mean)</td>
<td>NA</td>
<td>50 µg/m³</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>150 µg/m³</td>
<td>150 µg/m³</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>8-hour</td>
<td>9 ppm</td>
<td>9 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>35 ppm</td>
<td>35 ppm</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>Annual (arithmetic mean)</td>
<td>0.053 ppm</td>
<td>0.05 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.100 ppm</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>Annual (arithmetic mean)</td>
<td>0.03 ppm</td>
<td>0.02 ppm</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>0.14 ppm</td>
<td>0.10 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour (per annum)</td>
<td>NA</td>
<td>0.40 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour (per 7 days)</td>
<td>NA</td>
<td>0.25 ppm</td>
</tr>
<tr>
<td></td>
<td>5-minute</td>
<td>NA</td>
<td>0.80 ppm</td>
</tr>
<tr>
<td>Lead</td>
<td>Rolling 3-month average</td>
<td>0.15 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td></td>
<td>Quarterly average</td>
<td>1.5 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>Total Suspended Particulate</td>
<td>Annual (geometric mean)</td>
<td>NA</td>
<td>60 µg/m³</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>NA</td>
<td>150 µg/m³</td>
</tr>
</tbody>
</table>

Escambia County, Florida has an annual fine-particle particulate matter (PM) concentration of 8.4 µg/m³, which meets the national standard of 12 µg/m³, and is slightly better than the national average of 9.20 µg/m³. It also has an annual average sulfur dioxide concentration of 14 ppb, which meets the national sulfur dioxide standard of 75 ppb, and is slightly better than the national average of 19.00 ppb. There is currently no data available for Escambia County regarding carbon monoxide, nitrogen oxide, or lead levels (http://air-quality.findthedata.org/l/159/Escambia-County, 2013). Additionally, no trend analysis data is available for visibility, ammonium, nitrate, or sulfate parameters for the Seashore (NPS, 2013).

In 2013, Escambia County was in attainment of the National Ambient Air Quality Standards (NAAQS) for all criteria pollutants as designated by the USEPA.

Greenhouse Gases (GHGs) are chemical compounds found in the Earth’s atmosphere that absorb and trap infrared radiation as heat. Global atmospheric GHG concentrations are a product of continuous emission (release) and removal (storage) of GHGs over time. In the natural environment, this release and storage is largely cyclical. For instance, through the process of photosynthesis, plants capture atmospheric carbon as they grow and store it in the form of sugars. Human activities such as deforestation, soil disturbance, and burning of fossil fuels disrupt the natural cycle by increasing the GHG emission rate over the storage rate, which results in a net increase of GHGs in the atmosphere. The principal GHGs emitted into the atmosphere through human activities are CO₂, methane, nitrous oxide,
and fluorinated gases, such as hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride (USEPA 2010). CO₂ is the major GHG emitted, and the burning of fossil fuels accounts for 81 percent of all U.S. GHG emissions (USEPA 2010). Currently GHG emissions are not monitored or collected at the Seashore.

**Environmental Consequences**

Dock construction would require the use of barges, construction/installation equipment, and ferries. The floating docks and ramp would be constructed off-site and delivered to the sites by barge. The landing would also be constructed off-site and would be delivered to the area either by truck or barge. The docks would be installed by barge. No dredging would be expected. This would temporarily affect air quality and elevate greenhouse gas emissions in the project vicinity due to emissions from the equipment and the ferries. Any air quality impacts that would occur would be localized, and limited by the size of the project. Therefore, impacts to air quality would be minor and short-term. Due to the emissions of the ferry boats themselves, the proposed project would have long-term minor impacts on air quality at the City of Pensacola and Pensacola Beach docking facilities.

Engine exhaust from the ferries, the barge, and the construction/installation equipment would contribute to an increase in greenhouse gases. Table 12-11 describes the likely greenhouse gas emission scenario for the implementation of this project.

**Table 12-11. Expected greenhouse gas emissions resulting from the project.**

<table>
<thead>
<tr>
<th>CONSTRUCTION EQUIPMENT</th>
<th>NO. OF HOURS OPERATED</th>
<th>CO₂ (METRIC TONS)</th>
<th>CH4 (CO₂E) (METRIC TONS)</th>
<th>NOX (CO₂E) (METRIC TONS)</th>
<th>TOTAL CO₂ EQUIVALENT (METRIC TONS PER YEAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup Truck</td>
<td>80^a</td>
<td>0.48</td>
<td>0.0003</td>
<td>0.003</td>
<td>0.48</td>
</tr>
<tr>
<td>Barge</td>
<td>80^b</td>
<td>32</td>
<td>0.09</td>
<td>0.36</td>
<td>32.3</td>
</tr>
<tr>
<td>Pile Drivers^c</td>
<td>80^e</td>
<td>1.17</td>
<td>0.0009</td>
<td>0.009</td>
<td>1.17</td>
</tr>
<tr>
<td>Ferries (2)</td>
<td>3,840^f</td>
<td>2,160</td>
<td>4.8</td>
<td>19.2</td>
<td>2,184</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4,080</td>
<td>2,194</td>
<td>4.89</td>
<td>19.57</td>
<td>2,218</td>
</tr>
</tbody>
</table>

^a Assuming 24 hours of operation for the pickup truck  
^b Because no greenhouse gas emission information is known for barges, the emissions from a tugboat was used for this analysis  
^c Assuming the barge would run for 16 hours  
^d Because no greenhouse gas emission information is known for pile drivers, the emissions from a grader was used for this analysis  
^e Assuming 24 hours of operation for the pile drivers  
^f Assuming 2 ferries, operating 8 hours a day for 8 months

Based on the assumptions described in Table 12-11 above, and the small scale and short duration of the construction portion of the proposed project, predicted greenhouse gas emissions would be short-term and minor and would not exceed the 25,000 metric tons per year put forth by the Council on Environmental Quality (CEQ) as a level above which to conduct a detailed analysis of said emissions (CEQ, 2010). For the ferry operation impacts to air quality and GHG from emissions would be long-term and minor. If the interim docking option occurs, the impacts would be the same as those of the ferry operation only (i.e., long-term only, not short-term), as no construction would be necessary.

^13 CH₄ and NOx emissions assumptions and CO₂e calculations based on EPA 2011
12.5.5.2.4 Noise

Affected Resources

Noise can be defined as unwanted sound, and noise levels and impacts are interpreted in relationship to its effects on nearby residents or organisms. Noise associated with recreational uses, such as boating, can be of concern to surrounding communities. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale which approaches the sensitivity of the human ear across the frequency spectrum. Table 12-12 presents some familiar sounds and their decibel levels.

Table 12-12. Familiar sounds and their decibel levels (dB).

<table>
<thead>
<tr>
<th>SOUND</th>
<th>DECIBEL LEVEL (DB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whisper</td>
<td>30</td>
</tr>
<tr>
<td>Normal Conversation</td>
<td>50-65</td>
</tr>
<tr>
<td>Vacuum cleaner at 10 feet</td>
<td>70</td>
</tr>
<tr>
<td>Midtown Manhattan Traffic Noise</td>
<td>70-85</td>
</tr>
<tr>
<td>Lawnmower</td>
<td>85-90</td>
</tr>
<tr>
<td>Train</td>
<td>100</td>
</tr>
<tr>
<td>Nearby Jet Takeoff</td>
<td>130</td>
</tr>
</tbody>
</table>

Source: Occupational Safety and Health Administration 2012.

For the in-water pile driving portion of the project, impulsive noises could be somewhere in the range of 154-196 dB re:1 uPa zero-to-peak level, and 176 dB re:1 uPa RMS level (Laughlin, 2006).

The primary sources of ambient (background) noise in the project area are operation of vehicles, commercial and recreational vessels, the nearby Pensacola Airport, and natural sounds such as wind and wildlife. The levels of noise in the project area varies, depending on the season and/or the time of day, the number and types of sources of noise, and distance from the sources of noise. Noise levels in the project dock areas are primarily from commercial and recreational vessels, vehicles, and human activity. Noise levels fluctuate, with highest levels usually occurring during the spring and summer months due to increased boating and coastal activities.

Noise-sensitive receptors include humans and wildlife (primarily birds) above water, and marine/estuarine species under water.

In-water work activities contribute to noise in the underwater environment and are a concern for both the NMFS and the USFWS. There are numerous contributing sources to background marine sound conditions, including those from marine mammals (71 dB), lightning strikes (260 dB), waves breaking, and rain on the open surface and by human or mechanical sources including recreational activities and boating (150-195 dB). These levels are maximum source levels. Although there are many sources of noise in the underwater environment, the most common sources of noise associated with construction activities are via hammering. Impulsive noises like this have short duration and consist of a broad range of frequencies (CRS Report 96-603). Similar to above-ground noise, underwater noise levels fluctuate in the project area with the greatest impacts coming during the spring and summer months due, primarily, to increased boating activities.
Environmental Consequences
The ferry service is expected to make three round-trips per day between the three areas in the peak season. The operation of the ferry service would result in long-term, minor adverse impacts to soundscapes by increasing the boat traffic in these areas. The ferry service would have long-term minor impacts to underwater fauna near the new docks from the noise of ferry operation. There would be short-term minor impacts on the natural soundscape on land and under water from the installation of the floating docks, ramp, and landing, and the construction of the two queuing areas and the ticketing facility. The impacts on soundscapes would be localized to the construction area. If the interim docking option occurs, the impacts would be the same as those of the ferry operation only (i.e., long-term only, not short-term), as no construction would be necessary.

12.5.5.3 Biological Environment

12.5.5.3.1 Living Coastal and Marine Resources

Affected Resources

Protected Species
Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act and bald eagles protected under the Bald and Golden Eagle Protection Act.

The ferry purchase would not have any impacts to protected species and, as mentioned above, the previous EA and associated Section 7 consultations under the ESA documented that the operation of the ferry service is not likely to adversely affect listed species or critical habitats. However, these prior coordination effects did not evaluate potential impacts from the connected actions. Within and surrounding the two project areas, Gulf sturgeon, five species of sea turtles, and West Indian manatee could be present. Each of these species and their critical habitat (where applicable) are described above in section 12.2.5.3; therefore we only describe habitat use here.

DOI completed consultation with USFWS for the connected actions on February 6, 2014. The species of concern can be found in Table 12-6. USFWS concurred with DOI’s determination that the project’s connected actions are not likely to adversely affect West Indian manatee, Gulf sturgeon, or Gulf sturgeon’s critical habitat (McClain 2014). DOI agreed to abide by the conservation measures found in Table 12-13. Further, USFWS agreed that the project will have no effect on the other listed species and critical habitats in the project vicinity, including five species of sea turtles. Within that consultation, DOI also coordinated with USFWS regarding the Migratory Bird Treaty Act and the Bald and Golden Eagle Protection Act and the potential of the connected actions to affect those birds. Descriptions of the birds that are likely to utilize the area, and of their likely behaviors in the area, are listed in Table 12-8. Table 12-9 discusses the agreed-upon conservation measures for Migratory Birds.

DOI coordinated with NOAA-NMFS on ESA compliance for this project. NOAA concluded that any impacts of the connected actions (i.e., improving the dock facilities) on ESA resources need not be considered at this time because these particular actions will not be project-funded. Rather, the entity
building the docks will be responsible for that at the same time as acquiring a USACE permit for construction activities.

**Gulf Sturgeon and Critical Habitat**

Gulf sturgeon could be present in the area of new pier construction between mid- to late fall and early spring during their estuarine/marine wintering period. Gulf sturgeon would be expected to forage, rest, and migrate through this area.

Gulf sturgeon critical habitat is also present in the project areas. All marine and estuarine PCEs are present within the project area. The applicable PCEs for Gulf sturgeon in estuarine environments include 1) abundant food items, 2) appropriate water quality, 3) appropriate sediment quality, and 4) safe and unobstructed migratory pathways.

**Sea Turtles**

Each of the five species of sea turtles (loggerhead, green, Kemp’s ridley, leatherback and hawksbill) could be swimming and possibly foraging (if forage is available) in the project area. Neither area supports any habitat suitable for nesting and no nesting is known to occur in either location.

Terrestrial loggerhead critical habitat has not been proposed in either project location.

**West Indian Manatee**

Manatees could be traversing through the project area when water temperatures are warmer (late spring/early summer to early fall). The project location does not support submerged aquatic vegetation; however, it could be present nearby. Therefore, manatees may forage in nearby areas.

**Environmental Consequences**

The impacts to listed species from the operation of the ferries in Pensacola Bay were addressed during the 2011 EA (discussed above) and the regulating agencies concurred with an “NLAA” determination. Nothing has changed with the proposed operation of the ferries and all previously agreed upon conservation measures would be implemented. (If the interim docking option is utilized, environmental consequences to protected species would be the same as for the ferry operation since no construction would occur.)

During construction of the connected actions, the piers at Plaza De Luna and Quietwater Beach, turbidity of the water may increase and the noise from the machinery may affect species within the area. If transiting the area, Gulf sturgeon could be startled by in-water construction or have difficulty navigating due to turbidity. We expect Gulf sturgeon to naturally avoid any areas of increased turbidity as they are not known to use turbid habitats. We do not expect this avoidance of the project area to result in changes to normal behaviors. Conservation measures in Table 12-13 should reduce any impacts to Gulf sturgeon from in-water construction to only short-term, minor impacts.

No long-term impacts to Gulf sturgeon’s critical habitat or PCEs are expected from this project. There may be a temporary increase in turbidity, as well as changes in food abundance and water quality at the project site during construction but not throughout the critical habitat unit. However, these changes would be temporary and extremely localized and would not affect the open waters of Pensacola Bay. Conservation measures (see Table 12-13) would be implemented to ensure this project has no impacts to Gulf sturgeon critical habitat.
Sea turtles nest on seaward-facing beaches. No such habitat exists within the project area. Therefore the proposed project would not impact sea turtles in their terrestrial habitats. As with Gulf sturgeon above, increases in turbidity could occur due to project construction. We would expect turtles to move from the area of increased turbidity to avoid indirect effects from temporary changes in water quality. These movements would not be expected to change any normal behavior patterns. To avoid direct impacts to sea turtles, the Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS 2006) would be implemented. Therefore, any impacts to sea turtles from the connected actions are expected to be short-term and minor. No sea turtle critical habitat is proposed or designated within the action area; therefore, none would be impacted.

West Indian manatees inhabit fresh, brackish, and marine environments in water 5-20 feet deep throughout their range. The new piers, once completed, should have no effect on manatees as they would be used for Ferry operation only rather than new boat slips or marinas (i.e., no increase in other boat traffic due to pier construction). No seagrass beds occur in the vicinity of the new pier locations. Manatees could be in the vicinity while the piers at Plaza De Luna and Quietwater Beach are under construction. Turbidity of the water may increase during construction and the noise from the machinery may affect species within the area. If transiting the area, manatees could be startled by in-water construction or have difficulty navigating due to turbidity. We expect the West Indian manatee to naturally avoid any areas of increased turbidity as they are not known to use turbid habitats. We do not expect this avoidance of the project area to result in changes to normal behaviors. Conservation measures should avoid direct impacts to manatees from in-water construction (see Table 12-13 below). Therefore any impacts to manatees are expected to be short-term and minor.

DOI consulted with USFWS regarding the connected actions and USFWS concurred that the actions are not likely to adversely affect the protected species in the area if conservation measures are implemented. No take of marine mammals under the MMPA is anticipated.

**Table 12-13. Conservation measures to minimize impacts to protected species during implementation of actions connected to the NPS Ferry Purchase.**

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
</table>
| Gulf Sturgeon     | • Instruct all personnel associated with the construction and operational phases of the project in the potential presence of Gulf sturgeon and the need to avoid collisions with them. Furthermore, inform the construction site personnel and personnel associated with operating the ferry of the civil and criminal penalties for harming, harassing, or killing species that are protected.  
• Keep construction noise low (in air and in water) to the greatest extent possible.  
• Construct piers from floating barges using floating turbidity barriers made of materials that would not allow Gulf sturgeon to become entangled. Barriers would be properly secured and would be monitored regularly so that no animals are entangled or trapped.  
• Care shall be taken in lowering equipment or material below the water surface and into the sediment. These precautions would be taken to ensure no harm occurs to any sturgeon which may have entered the construction area undetected.  
• Maintain spill response kits on board during construction.  
• In the unlikely event that a protected Gulf sturgeon approaches (within 100 yards) any near-shore, littoral areas of the proposed project, work would immediately cease until the sturgeon moves away from the area on its own volition.  
• All vessels associated with the construction project shall operate at “no wake/idle” speeds at all times while in the construction area and while in water depths where the draft of the vessel provides less than a four-foot clearance from the bottom. All
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>vessels would preferentially follow deep-water routes (e.g., marked channels) whenever possible.</td>
<td></td>
</tr>
<tr>
<td>Loggerhead, green, Kemp’s ridley, leatherback, and hawksbill sea turtles</td>
<td>• Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS 2006) would be implemented.</td>
</tr>
</tbody>
</table>
| West Indian manatee | • Below represent agreed upon conservation measures as approved in the 2010 consultation and are from the in-water work. If the 2010 and April 2013 in-water manatee construction guidelines differ, the more recent would be followed:  
  o All personnel associated with the project shall be instructed about the presence of manatees and manatee speed zones, and the need to avoid collisions with and injury to manatees. The permittee shall advise all construction personnel that there are civil and criminal penalties for harming, harassing, or killing manatees which are protected under the Marine Mammal Protection Act, the Endangered Species Act, and the Florida Manatee Sanctuary Act.  
  o All vessels associated with the construction project shall operate at “Idle Speed/No Wake” at all times while in the immediate area and while in water where the draft of the vessel provides less than a four-foot clearance from the bottom. All vessels would follow routes of deep water whenever possible.  
  o Siltation or turbidity barriers shall be made of material in which manatees cannot become entangled, shall be properly secured, and shall be regularly monitored to avoid manatee entanglement or entrapment. Barriers must not impede manatee movement.  
  o All on-site project personnel are responsible for observing water-related activities for the presence of manatee(s). All in-water operations, including vessels, must be shut down if a manatee(s) comes within 50 feet of the operation. Activities would not resume until the manatee(s) has moved beyond the 50-foot radius of the project operation, or until 30 minutes elapses if the manatee(s) has not reappeared within 50 feet of the operation. Animals must not be herded away or harassed into leaving.  
  o Any collision with or injury to a manatee shall be reported immediately to the FWC Hotline at 1-888-404-FWCC. Collision and/or injury should also be reported to the U.S. Fish and Wildlife Service in Jacksonville (1-904-232-2580) for north Florida or Vero Beach (1-561-562-3909) for south Florida.  
  o Temporary signs concerning manatees shall be posted prior to and during all in-water project activities. All signs are to be removed by the permittee upon completion of the project. Awareness signs that have already been approved for this use by the Florida Fish and Wildlife Conservation Commission (FWC) must be used. One sign measuring at least 3 ft. by 4 ft. which reads Caution: Manatee Area must be posted. A second sign measuring at least 8 1/2” by 11” explaining the requirements for “Idle Speed/No Wake” and the shutdown of in-water operations must be posted in a location prominently visible to all personnel engaged in water-related activities. |

**Migratory Birds and Bald Eagles**

**Affected Resources**

**Migratory Birds**
Over 300 species of birds have been recorded at Gulf Islands National Seashore, which is near the project area. Bird species use the Seashore for resting, nesting, foraging, wintering, or migratory rest stops (NPS, 2006, as cited in NPS, 2011). However, the project areas are highly developed, urban piers and marinas. We expect common migratory birds to be present resting and foraging, but not nesting.
Table 12-14 identifies the types of species common in the Pensacola Bay area and the habitats and behaviors exhibited by these groups while present.

**Table 12-14. Types of migratory bird species common at the Seashore (near the project area) and the habitats and behaviors exhibited by these groups while present.**

<table>
<thead>
<tr>
<th>SPECIES*</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wading birds (herons, egrets, ibises, wood stork, American flamingo)</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Wading birds primarily forage and feed at the water’s edge. As such, they may be impacted locally and temporarily by the project. It is expected that they would be able to move to another nearby location to continue foraging, feeding and resting. These birds primarily nest and roost in trees or shrubs (e.g. pines, Baccharus and mangroves), which occur outside the project area.</td>
</tr>
<tr>
<td>Shorebirds (plovers, oystercatchers, stilts, sandpipers)</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Shorebirds forage, feed, rest, and roost in the project area. As such, they may be impacted locally and temporarily by the project. It is expected that they would be able to move to another nearby location to continue foraging, feeding and resting. These birds primarily nest and roost in the dunes.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Seabirds forage, feed, rest, and roost in the project area. As such, they may be impacted locally and temporarily by the project. It is expected that they would be able to move to another nearby location to continue foraging, feeding and resting. These birds primarily roost in the dunes.</td>
</tr>
<tr>
<td>Raptors (osprey, hawks, eagles, owls)</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Raptors forage, feed, and rest in the project area. As such, they may be impacted locally and temporarily by the project. It is expected that they would be able to move to another nearby location to continue foraging, feeding and resting. Most raptors are aerial foragers and soar long distances in search of food. The areas near the Seashore where these birds roost and nest are not within the project area.</td>
</tr>
<tr>
<td>Goatsuckers (nighthawks, whip-poor-will, Chuck-will’s widow)</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Goatsuckers forage, feed, rest, and roost in the project area. However, they are nocturnal/crepuscular and therefore not active during the project work period. They nest in thickets and woodlands, which are not included in the project area.</td>
</tr>
<tr>
<td>Waterfowl (geese, swans, ducks, loons, and grebes)</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Waterfowl forage, feed, rest, and roost in the project area. As such, they may be impacted locally and temporarily by the project. It is expected that they would be able to move to another nearby location to continue foraging, feeding and resting. These birds primarily roost and nest in low vegetation.</td>
</tr>
<tr>
<td>Doves and pigeons</td>
<td>Foraging, feeding, resting, roosting</td>
<td>Doves and pigeons could forage, feed, rest, and roost in the project area. However, they are unlikely to utilize sandy habitat.</td>
</tr>
<tr>
<td>Rails and coots</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Rails and coots forage, feed, rest, and roost in the project area. As such, they may be impacted locally and temporarily by the project. However they are most likely to favor marshy areas. It is expected that they would be able to move to another nearby location to continue foraging, feeding and resting if disturbed by the project. These birds primarily roost and nest in marshes, which are not within the project area.</td>
</tr>
</tbody>
</table>

*Gulf Islands National Seashore lists 345 species of birds known to occur there. The above table lists species guilds and the genus type for those most likely to occur there. The full list of species occurrences can be found at: http://www.nps.gov/guis/naturescience/loader.cfm?csModule=security/getfile&pageID=525505
Bald Eagles
Though Bald Eagles could fly over the project area, they are not known to nest in or adjacent to it. Bald eagles are known to nest within 1 mile of the project site (FDEP, personal communication, September 26, 2013). The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s Bald Eagle Management Plan guidelines would be followed (FWC 2008). DOI also coordinated with USFWS regarding the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act, and no take is anticipated.

Environmental Consequences
No bald eagles are known to nest within or adjacent to the project area. Also, although migratory birds may rest in the project area, the area is too developed and busy for them to nest there. If birds do occasionally spend time in the project area, they can move away from areas during construction. As such, impacts from this project on bald eagles and migratory birds would be short-term and minor. If the interim docking option is utilized, there should be no impacts on this resource.

Marine and Estuarine Resources

Affected Resources

Seagrass
Appropriate conditions for seagrass growth do not occur at either Plaza de Luna or Quietwater Beach.

Fish
More than 200 species of fish have been observed in waters surrounding the Seashore. The most abundant fish species is the anchovy (*Anchoa* sp.) and the silverside (*Menidia* sp.); both species are also abundant in the shallow nearshore waters. Myriad larval and young fish occupy the shallow waters around the islands and find food and protection in the seagrass beds (USACE, 2009 as cited in NPS, 2011).

Essential Fish Habitat
The 1996 Magnuson-Stevens Fishery Conservation and Management Act (MFCMA) requires cooperation among NMFS, anglers, and federal and state agencies to protect, conserve, and enhance essential fish habitat (EFH). EFH is defined as those waters and substrates necessary to fish for spawning, breeding, feeding, or growth to maturity. The designation and conservation of EFH seek to minimize adverse effects on habitat caused by fishing and non-fishing activities. NOAA’s Estuarine Living Marine Resources (ELMR) Program developed a database on the distribution, relative abundance, and life history characteristics of ecologically and economically important fishes and invertebrates in the nation’s estuaries. NOAA has designated EFH for more than 30 estuaries in the northern Gulf of Mexico for a
number of species of finfish and shellfish. All of Pensacola Bay is designated as EFH. Species with EFH at the City of Pensacola Plaza de Luna dock area are:

- Brown Shrimp (*Penaeus aztecus*)
- White Shrimp (*Penaeus setiferus*)
- Pink Shrimp (*Penaeus duorarum*)
- Reef Fish (43 Species)
- Red Drum (*Sciaenops ocellatus*)
- Coastal Migratory Pelagics

Species with EFH at the Pensacola Beach Quietwater dock area are:

- Sandbar Shark (*Carcharhinus plumbeus*)
- Scalloped Hammerhead Shark (*Sphyma lewini*)
- Tiger Shark (*Galeocerdo cuvier*)
- Spinner Shark (*Carcharhinus brevipinna*)
- Atlantic Sharpnose Shark (*Rhizoprionodon terraenovae*)
- Silky Shark
- Brown Shrimp (*Penaeus aztecus*)
- White Shrimp (*Penaeus setiferus*)
- Pink Shrimp (*Penaeus duorarum*)
- Red Drum (*Sciaenops ocellatus*)
- Reef Fish (43 Species)
- Coastal Migratory Pelagics

**Shellfish**

Several species of shellfish that are commercially, recreationally, and ecologically important occur in waters in the general vicinity of Quietwater Beach, including blue crabs (*Callinectes sapidus*), stone crabs (*Menippe mercenaria*), and many species of shrimp (NPS, 2011).

**Marine Mammals**

The Atlantic spotted dolphin spends the majority of its life offshore, while the bottlenose dolphins often travel into coastal bays and inlets for feeding and reproduction (NPS, 2006, as cited in NPS, 2011). Noise and other activity associated with proposed in-water construction may temporarily disturb manatees and dolphin species in the vicinity of the project area through temporary impacts on prey abundance, water quality (turbidity), and underwater noise. Standard Manatee Conditions for In-Water Work (USFWS 2011) would be implemented and adhered to during project construction (see Chapter 6 for specific conditions). It is anticipated that these conservation measures would result only in short-term minor impacts to manatees from the proposed project. Dolphins are a highly mobile species and would be expected to move away from the construction area during in-water activities. This ferry project would adhere to all applicable federal, state, and local permit conditions for the protection of marine mammals.
Environmental Consequences

Seagrass
There would be no effects on seagrass at Plaza de Luna or Quietwater Beach because seagrass does not occur there.

Special Status Species
For projects in waters accessible to sea turtles, NMFS has developed standardized Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS 2006). These conditions are typically applied to projects as part of the Clean Water Act Section 404 permit issued for in-water work. It is unlikely that the project site contains submerged aquatic vegetation, which is the preferred foraging habitat of sea turtles. To minimize risks in the aquatic environment, all construction conditions identified in the Sea Turtle and Smalltooth Construction Conditions would be implemented and adhered to during project construction to minimize the risk of collisions.

Noise and other activity associated with proposed in-water construction may temporarily disturb manatees and dolphin species in the vicinity of the project area through temporary impacts on prey abundance, water quality (turbidity), and underwater noise. Standard Manatee Conditions for In-Water Work (USFWS 2011) would be implemented and adhered to during project construction (see Chapter 6 for specific conditions). It is anticipated that these conservation measures would result only in short-term minor impacts to manatees from the proposed project. Dolphins are highly mobile species and would be expected to move away from the construction area during in-water activities. Neither the ferry operation nor the interim utilization of the existing docking facilities would have impacts on these special status species.

As noted above, consultations were initiated with USFWS for 18 species. DOI determined, and in a letter dated February 6, 2014 USFWS concurred, that the project would have “No Effect” on 16 species and would be “Not Likely to Adversely Affect” two species – the Gulf sturgeon and the West Indian manatee (McClain 2014). Impacts of this project on these species would be short-term and minor.

DOI coordinated with NOAA-NMFS on ESA compliance for this project. NOAA concluded that any impacts of the connected actions (i.e., improving the dock facilities) on ESA resources need not be considered at this time because these particular actions will not be project-funded. Rather, the entity building the docks will be responsible for that at the same time as acquiring a USACE permit for construction activities.

Fish
Due to the high level of mobility of fish and the short-term and highly localized nature of the construction related to this project, impacts on fish from this project would be short-term and minor. If the interim docking option is utilized there should be no impacts to this resource.

Essential Fish Habitat
There would be permanent impacts on EFH in the two project areas due to the installation of pilings for the docks. However, because the pilings would occupy such a small area and would be placed in areas that are already highly impacted by an existing concrete wall (Plaza de Luna area), dock (Quietwater Beach area) and boat traffic (both areas), the Trustees anticipate impacts on EFH would be long-term and minor. DOI coordinated with NOAA-NMFS on EFH for this project. NOAA concluded that any
impacts on EFH do not need to be considered for connected actions (i.e., improving the dock facilities). Rather, the entity building the docks will be responsible for that at the same time as acquiring a USACE permit for construction activities.

Shellfish
Due to the mobility of shellfish and the short term and highly localized nature of the construction related to this project, impacts on shellfish from this project would be short-term and minor. If the interim docking option is utilized, there should be no impacts to this resource.

Marine Mammals (excluding manatees which are discussed above)
Dock construction would be highly localized and short term. As such, impacts to marine mammals would be short-term and minor. The proposed project may permanently increase the potential for ferry collisions with certain species near the two new docks once the proposed ferry is operational. The risk of vessel strike impacts to certain species resulting from ferry traffic is very low due to most species’ mobility and the required harm avoidance measures that would be implemented by ferry operators (e.g., training ferry crew members to observe for swimming marine species and restricting ferry speeds when they are observed). Additionally, the introduction of a scheduled ferry service could potentially reduce the number of vessels traversing from the mainland to Fort Pickens which currently make trips in these areas. Based on the above, the risk of vessel strike impacts to marine mammals from ferry operations is long-term and minor. There may be some impacts to marine mammals from the noise of pile driving, however these impacts will be temporary and localized (only during construction), and as such, would be short-term and minor. No take of marine mammals under MMPA is anticipated. If the interim docking option is utilized, the impacts would be the same as those of the ferry operation only (i.e., long-term only, not short-term), as no construction would be necessary.

Non-Native Species

Affected Resources
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within, and possible expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

Environmental Consequences
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project would be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. Other measures that could be implemented if needed are identified in Chapter 12 Appendix A. Due to the implementation of BMPs, we expect risk from invasive species introduction and spread to be short-term and minor. If the interim docking option is utilized, the risk from invasive species introduction and spread would be even lower since there would be no new materials, equipment, or vessels on site to construct the facilities.
12.5.5.4 Human Uses and Socioeconomics

12.5.5.4.1 Socioeconomics and Environmental Justice

Affected Resources

A detailed financial analysis of the ferry operation is currently being prepared but will not be complete until summer 2014. Additionally, these actions are small enough in scope and far enough away (e.g., the docks are on the water) from businesses or groups that environmental justice issues and potentially affected parties are few, if any.

Environmental Consequences

Providing alternate access to the Fort Pickens Area would be important to the socioeconomic environment of the local area by providing a key missing infrastructure element for a future regional water transportation system. The ferry operation, as well as the installation of the floating docks, ramp, and landing, and the construction of the two queuing areas and the ticketing facility would likely require new jobs to be established. As a result, there should be no adverse impacts to socioeconomic factors. There should, however, be both short-term and long-term beneficial effects to socioeconomic factors in the areas served by the ferry operation. There should be no environmental justice impacts either. In fact, there may be long-term environmental justice benefits by providing another regional transportation option for people to use.

If the interim docking option is utilized, there would be no short-term beneficial impacts, but there could be long-term (i.e., until the new dock facilities are built) minor adverse impacts to socioeconomics if normal marina users (i.e. boat owners/users) used the marina less or differently than they currently are due to the presence of the ferries and passengers. There should also be long-term beneficial effects in areas served by the ferry operation. There may also be long-term environmental justice benefits by providing another regional transportation option.

12.5.5.4.2 Cultural Resources

Affected Resources

A survey of cultural resources in the Plaza de Luna and Quietwater Beach project areas has not yet been conducted. However, both areas are already highly disturbed and urbanized. The purchase of the ferries will not require a 106 review.

Environmental Consequences

A complete review of this project under Section 106 of the NHPA is ongoing and will be concluded prior to any project activities that would restrict consideration of measures to avoid, minimize, or mitigate any adverse effects on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.5.5.4.3 Infrastructure

Affected Resources

There is much existing infrastructure in the areas where the new docks and facilities would be. This includes docks, landings, fueling infrastructure, utilities, parking lots, sidewalks, etc. As already
described, two new docks would be added, as well as a landing and a ramp in one area, passenger queuing areas, a ticket booth, and other minor improvements.

**Environmental Consequences**
This project could have small, long-term beneficial impacts to energy resources due to its effect of reducing car travel to the areas that the ferries will service.

Since the exact scope of the new facilities is still being determined, impacts on infrastructure are not perfectly understood at this time. However, generally speaking, these two new facilities, and the operation of the ferry system in these areas, would have no impact on some infrastructure and long-term minor impacts on others. For example, where infrastructure capacity such as transportation routes, ferry passenger waiting areas, ticketing facilities, possibly parking, bathroom capacity, and dock space would be increased, there would be no impacts; in fact there would be long-term beneficial impacts in some cases. However, where infrastructure capacity, such as water and sewer lines and electricity would not be increased, there could be long-term minor impacts. If the interim docking option were to be utilized, long-term beneficial impacts would not occur, but it could still have minor adverse impacts at both docking locations by increasing use of and demands on existing infrastructure. Where the ferry operation between points around Pensacola Bay and Fort Pickens reduces vehicle miles traveled on the roads between them, there would be a long-term beneficial effect to the road infrastructure here.

12.5.5.4.4 Land and Marine Management

**Affected Resources and Environmental Consequences**
Although the purchase of the ferries and the improvements to the docking facilities would result in the need for intensive management of the facilities, the ferries, and the ferry operation, the impacts from this project would be long-term and beneficial. This is because the project would improve public amenities and access to the ferry service, allow local resource and facilities managers to better manage areas for human enjoyment, and align with existing transportation management goals for the area.

If the interim docking facilities option is utilized, there would be an increase in visitors in the existing marina facilities, adding to the management requirements for those areas without the benefit of properly designed and sized facilities. However, the impact to land and marine management would still be long-term beneficial for the same reasons as the final version of the project above, but it would not be as pronounced because fewer amenities (in the form of the two dock facilities) would be constructed to aid in the public’s access of the ferries.

Under the Coastal Zone Management Act of 1972, the selection of early restoration projects must be consistent to the maximum extent practicable with the federally-approved coastal management programs for states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with public review of the Phase III DERP/PEIS on December 12, 2013 (Federal Trustees 2013). The State of Florida responded on February 28, 2014, concurring with the federal determination of consistency for purposes of the Phase III early restoration plan (Milligan 2014).
12.5.5.4.5  Aesthetics and Visual Resources

Affected Resources and Environmental Consequences

The project areas are currently highly developed and the naturalness of each are significantly and, for all practical purposes, permanently compromised. Impacts to aesthetic and visual resources could be long-term and minor for those who prefer more natural landscapes/seascapes. However, it is also possible that the aesthetic experience for those using the ferries in these areas would be improved. Thus there may be a small, long-term beneficial effect.

If the interim docking option is utilized, impacts could be long-term and minor if visitors don’t enjoy seeing the ferries and passengers at the docks, but the impact would be less because no additional facilities would be built.

12.5.5.4.6  Tourism and Recreational Use

Affected Resources

In the four years prior to Hurricane Ivan (2000-2003), annual attendance in the Fort Pickens Area averaged approximately 682,000 visitors (NPS 2011). After Hurricane Ivan damaged Fort Pickens Road on September 16, 2004, visitation to the Fort Pickens Area fell to virtually zero. Since the road reopened in May 2009, visitation has returned to levels similar to those prior to Hurricane Ivan, although it dropped again after the Deepwater Horizon oil spill.

Environmental Consequences

Providing water access to the Fort Pickens Area via ferry service would give visitors the opportunity for a water-based experience, which is not currently available. Installation of the floating docks, the ramp, and the landing, and the construction of the two queuing areas and the ticketing facility may have a short-term minor impact to tourism and recreational use if certain nearby areas are closed and inaccessible. However, since these areas would be used by many tourists, this project would have significant long-term, beneficial effects on tourism and recreational use. If the interim docking option is utilized, there could be long-term (i.e., until the new dock facilities are built) minor adverse impacts to tourism and recreational use because of potential crowding and other inconveniences associated with the lack of the new docking facilities.

12.5.5.4.7  Public Health and Safety and Shoreline Protection

Affected Resources

Levels of public health and safety in these areas is currently high, although there are always some risks to public safety around water and moving vessels such as boats. Construction work in the areas would be done to code, including meeting all OSHA standards for workers. This includes the standards to which the ferry boats themselves would be built. Areas under construction would be demarcated so that the public stay out and away from potentially harmful materials or situations. Once passengers are using these areas in the future, all federal, state, and local safety requirements for the operating of the ferry service would be followed. This includes the handling and use of hazardous materials such as boat fuel, solvents, biocides, lubricants, etc. Also, ferry boats moored at the marina could potentially serve as a source of non-point pollution resulting from inadvertent releases of fuel or oil.

Regarding shorelines, the City facility would be built on an already hardened (concrete) “shoreline” and the Pensacola Beach facility would be off the shoreline altogether, extending from the existing dock.
Environmental Consequences

Given the information stated above, impacts of the project to public health and safety would be short-term and minor during project construction, and long-term and minor during ferry operations around these new dock areas. If the interim docking option is utilized, impacts on public safety would be more adverse, but still long-term (i.e., until the new dock facilities are built) and minor, because the docking areas in particular would not be optimally sized or constructed to accommodate the greater number of people using them. There may also be some long-term beneficial effects if boat trips – presumably safer than car trips – reduce risk to the public who are traveling between the areas serviced by the ferries.

Regarding hazardous materials, in the event of a fuel or oil spill from construction equipment, all procedures, regulations and laws pertaining to Oil Spill Prevention and Response would be adhered to and the incident would be reported to appropriate agencies. As such, there would be no known effects of hazardous materials on public health and safety.

There would be no known effects of the project or ferry operation around these two new docking areas to shorelines.

12.5.6 Summary and Next Steps

The proposed Gulf Islands National Seashore Ferry Project involves the purchase of up to three ferries to be used to ferry visitors (no automobiles) between the City of Pensacola, Pensacola Beach, and the Fort Pickens area of the Seashore in Florida. A viable ferry service to this area of the Seashore would allow visitors to enjoy the Seashore not only if the road were to be destroyed again, but also by providing alternative options for visitor access. The project is consistent with Alternative 3 (Contribute to Providing and Enhancing Recreational Opportunities) and Alternative 4 (Preferred Alternative).

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and increase the public’s use and enjoyment of the natural resources by providing a ferry service between the City of Pensacola, Pensacola Beach, and the Gulf Islands National Seashore. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees determination on the selection of the project will be included in the Record of Decision.

12.5.7 References


Florida Department of Environmental Protection. 2001. Seagrass Management Plan for Big Lagoon and Santa Rosa Island.


Houser, C., and J. Oravetz. 2006. Frequency and Distribution of Overwash Events: A Report to the National Park Service. Center for Environmental Science and Research, Department of Environmental Studies, University of West Florida.


# CHAPTER 12: PROPOSED PHASE III EARLY RESTORATION PROJECTS: FLORIDA (continued)

12.6 Florida Cat Point Living Shoreline Project: Project Description

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6.1</td>
<td>12.6.1</td>
<td>Project Summary</td>
<td>1</td>
</tr>
<tr>
<td>12.6.2</td>
<td>12.6.2</td>
<td>Background and Project Description</td>
<td>1</td>
</tr>
<tr>
<td>12.6.3</td>
<td>12.6.3</td>
<td>Evaluation Criteria</td>
<td>3</td>
</tr>
<tr>
<td>12.6.4</td>
<td>12.6.4</td>
<td>Performance Criteria, Monitoring and Maintenance</td>
<td>4</td>
</tr>
<tr>
<td>12.6.5</td>
<td>12.6.5</td>
<td>Offsets</td>
<td>5</td>
</tr>
<tr>
<td>12.6.6</td>
<td>12.6.6</td>
<td>Cost</td>
<td>5</td>
</tr>
</tbody>
</table>

12.7 Florida Cat Point Living Shoreline Project: Environmental Review

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.7.1</td>
<td>12.7.1</td>
<td>Introduction and Background</td>
<td>6</td>
</tr>
<tr>
<td>12.7.2</td>
<td>12.7.2</td>
<td>Project Location</td>
<td>7</td>
</tr>
<tr>
<td>12.7.3</td>
<td>12.7.3</td>
<td>Construction and Installation</td>
<td>10</td>
</tr>
<tr>
<td>12.7.4</td>
<td>12.7.4</td>
<td>Operations and Maintenance</td>
<td>12</td>
</tr>
<tr>
<td>12.7.5</td>
<td>12.7.5</td>
<td>Affected Environment and Environmental Consequences</td>
<td>12</td>
</tr>
<tr>
<td>12.7.6</td>
<td>12.7.6</td>
<td>Summary and Next Steps</td>
<td>32</td>
</tr>
<tr>
<td>12.7.7</td>
<td>12.7.7</td>
<td>References</td>
<td>33</td>
</tr>
</tbody>
</table>

12.8 Florida Pensacola Bay Living Shoreline Project: Project Description

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.8.1</td>
<td>12.8.1</td>
<td>Project Summary</td>
<td>37</td>
</tr>
<tr>
<td>12.8.2</td>
<td>12.8.2</td>
<td>Introduction and Background</td>
<td>37</td>
</tr>
<tr>
<td>12.8.3</td>
<td>12.8.3</td>
<td>Evaluation Criteria</td>
<td>39</td>
</tr>
<tr>
<td>12.8.4</td>
<td>12.8.4</td>
<td>Performance Criteria, Monitoring and Maintenance</td>
<td>40</td>
</tr>
<tr>
<td>12.8.5</td>
<td>12.8.5</td>
<td>Offsets</td>
<td>41</td>
</tr>
<tr>
<td>12.8.6</td>
<td>12.8.6</td>
<td>Cost</td>
<td>41</td>
</tr>
</tbody>
</table>

12.9 Florida Pensacola Bay Living Shoreline Project: Environmental Review

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.9.1</td>
<td>12.9.1</td>
<td>Introduction and Background</td>
<td>42</td>
</tr>
<tr>
<td>12.9.2</td>
<td>12.9.2</td>
<td>Project Location</td>
<td>42</td>
</tr>
<tr>
<td>12.9.3</td>
<td>12.9.3</td>
<td>Construction and Installation</td>
<td>43</td>
</tr>
<tr>
<td>12.9.4</td>
<td>12.9.4</td>
<td>Operations and Maintenance</td>
<td>44</td>
</tr>
<tr>
<td>12.9.5</td>
<td>12.9.5</td>
<td>Affected Environment and Environmental Consequences</td>
<td>47</td>
</tr>
<tr>
<td>12.9.6</td>
<td>12.9.6</td>
<td>Summary and Next Steps</td>
<td>82</td>
</tr>
</tbody>
</table>
12.10 Florida Seagrass Recovery Project: Project Description ............................................. 89
  12.10.1 Project Summary .................................................................................................. 89
  12.10.2 Background and Project Description ................................................................. 89
  12.10.3 Evaluation Criteria ............................................................................................ 90
  12.10.4 Performance Criteria, Monitoring and Maintenance ......................................... 91
  12.10.5 Offsets ............................................................................................................. 92
  12.10.6 Cost ................................................................................................................. 92

12.11 Florida Seagrass Recovery Project: Environmental Review .................................... 93
  12.11.1 Introduction and Background .......................................................................... 93
  12.11.2 Project Location ............................................................................................... 93
  12.11.3 Construction and Installation .......................................................................... 95
  12.11.4 Operations and Maintenance .......................................................................... 99
  12.11.5 Affected Environment and Environmental Consequences .......................... 100
  12.11.6 Summary and Next Steps ............................................................................... 118
  12.11.7 References .................................................................................................. 119

12.12 Perdido Key State Park Beach Boardwalk Improvements: Project Description .......... 122
  12.12.1 Project Summary ............................................................................................ 122
  12.12.2 Background and Project Description ................................................................. 122
  12.12.3 Evaluation Criteria .......................................................................................... 122
  12.12.4 Performance Criteria, Monitoring and Maintenance ......................................... 124
  12.12.5 Offsets ............................................................................................................. 125
  12.12.6 Cost ................................................................................................................. 125

12.13 Perdido Key State Park Beach Boardwalk Improvements: Environmental Review ........ 126
  12.13.1 Introduction and Background .......................................................................... 126
  12.13.2 Project Location ............................................................................................... 127
  12.13.3 Construction and Installation .......................................................................... 127
  12.13.4 Operations and Maintenance .......................................................................... 129
  12.13.5 Affected Environment and Environmental Consequences .......................... 129
  12.13.6 Summary and Next Steps ............................................................................... 145
  12.13.7 References .................................................................................................. 146

12.14 Big Lagoon State Park Boat Ramp Improvement: Project Description ...................... 148
  12.14.1 Project Summary ............................................................................................ 148
  12.14.2 Background and Project Description ................................................................. 148
12.19 Florida Artificial Reef Creation and Restoration: Environmental Review ........................................ 213
  12.19.1 Introduction and Background .................................................................................. 213
  12.19.2 Project Location .................................................................................................... 214
  12.19.3 Construction and Installation .............................................................................. 214
  12.19.4 Operations and Maintenance ............................................................................. 220
  12.19.5 Affected Environment and Environmental Consequences .............................. 220
  12.19.6 Summary and Next Steps .................................................................................. 239
  12.19.7 References ......................................................................................................... 240

12.20 Florida Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center: Project Description .............................................................................................................. 244
  12.20.1 Project Summary .................................................................................................. 244
  12.20.2 Background and Project Description ................................................................... 244
  12.20.3 Evaluation Criteria ............................................................................................. 245
  12.20.4 Performance Criteria, Monitoring and Maintenance ......................................... 246
  12.20.5 Offsets ................................................................................................................ 247
  12.20.6 Cost ..................................................................................................................... 247

12.21 Florida Fish Hatchery: Environmental Review .............................................................. 248
  12.21.1 Introduction and Background .............................................................................. 248
  12.21.2 Project Location .................................................................................................. 249
  12.21.3 Construction and Installation .............................................................................. 254
  12.21.4 Operations and Maintenance ............................................................................. 258
  12.21.5 Affected Environment and Environmental Consequences .............................. 260
  12.21.6 Summary and Next Steps .................................................................................. 281
  12.21.7 References ......................................................................................................... 282

12.22 Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle: Project Description .......................................................................................... 286
  12.22.1 Project Summary ................................................................................................ 286
  12.22.2 Background and Project Description ................................................................... 286
  12.22.3 Evaluation Criteria ............................................................................................. 286
  12.22.4 Performance Criteria, Monitoring and Maintenance ......................................... 288
  12.22.5 Offsets ................................................................................................................ 288
  12.22.6 Cost ..................................................................................................................... 289

12.23 Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle: Environmental Review .............................................................. 290
  12.23.1 Introduction and Background .............................................................................. 290
12.24 Shell Point Beach Nourishment: Project Description ......................................................... 320
  12.24.1 Project Summary ....................................................................................................... 320
  12.24.2 Background and Project Description ...................................................................... 320
  12.24.3 Evaluation Criteria ................................................................................................. 321
  12.24.4 Performance Criteria, Monitoring and Maintenance .............................................. 322
  12.24.5 Offsets .................................................................................................................. 322
  12.24.6 Cost ....................................................................................................................... 323

12.25 Shell Point Beach Nourishment: Environmental Review .................................................. 324
  12.25.1 Introduction and Background ................................................................................. 324
  12.25.2 Project Location ..................................................................................................... 325
  12.25.3 Construction and Installation .................................................................................. 325
  12.25.4 Operations and Maintenance ................................................................................. 327
  12.25.5 Affected Environment and Environmental Consequences .................................. 328
  12.25.6 Summary and Next Steps ....................................................................................... 338
  12.25.7 References ............................................................................................................. 338

12.26 Perdido Key Dune Restoration Project: Project Description ............................................... 340
  12.26.1 Summary Project Information .................................................................................. 340
  12.26.2 Background and Project Description ...................................................................... 340
  12.26.3 Selection Criteria ................................................................................................... 340
  12.26.4 Performance Criteria, Monitoring and Maintenance .............................................. 342
  12.26.5 Offsets .................................................................................................................. 342
  12.26.6 Cost ....................................................................................................................... 343

12.27 Perdido Key Dune Restoration Project: Environmental Review ......................................... 344
  12.27.1 Introduction and Background ................................................................................. 344
  12.27.2 Project Location ..................................................................................................... 345
  12.27.3 Construction and Installation .................................................................................. 346
  12.27.4 Operations and Maintenance .................................................................................. 347
  12.27.5 Affected Environment and Environmental Consequences .................................. 347
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.27.6 Summary and Next Steps</td>
<td>364</td>
</tr>
<tr>
<td>12.27.7 References</td>
<td>364</td>
</tr>
<tr>
<td>12.28 Florida Oyster Cultch Placement Project: Project Description</td>
<td>367</td>
</tr>
<tr>
<td>12.28.1 Project Summary</td>
<td>367</td>
</tr>
<tr>
<td>12.28.2 Background and Project Description</td>
<td>367</td>
</tr>
<tr>
<td>12.28.3 Evaluation Criteria</td>
<td>368</td>
</tr>
<tr>
<td>12.28.4 Performance Criteria, Monitoring and Maintenance</td>
<td>369</td>
</tr>
<tr>
<td>12.28.5 Offsets</td>
<td>370</td>
</tr>
<tr>
<td>12.28.6 Cost</td>
<td>371</td>
</tr>
<tr>
<td>12.29 Florida Oyster Cultch Placement Project: Environmental Review</td>
<td>372</td>
</tr>
<tr>
<td>12.29.1 Introduction and Background</td>
<td>372</td>
</tr>
<tr>
<td>12.29.2 Project Location</td>
<td>373</td>
</tr>
<tr>
<td>12.29.3 Construction and Installation</td>
<td>373</td>
</tr>
<tr>
<td>12.29.4 Operations and Maintenance</td>
<td>378</td>
</tr>
<tr>
<td>12.29.5 Affected Environment and Environmental Consequences</td>
<td>380</td>
</tr>
<tr>
<td>12.29.6 Summary and Next Steps</td>
<td>399</td>
</tr>
<tr>
<td>12.29.7 References</td>
<td>400</td>
</tr>
</tbody>
</table>
12.6 Florida Cat Point Living Shoreline Project: Project Description

12.6.1 Project Summary
The proposed Cat Point (Franklin County) Living Shoreline project is intended to employ living shoreline techniques that utilize natural and/or artificial breakwater material to reduce shoreline erosion and provide habitat off Eastpoint, Florida. Combining these objectives, this project would create breakwaters to reduce wave energy, increase benthic secondary productivity, and create salt marsh habitat. Proposed activities include expanding an existing breakwater by creating up to 0.3 miles of new breakwater that will provide reef habitat and creating salt marsh habitat. The total estimated cost for this project is $775,605.

12.6.2 Background and Project Description
The Trustees propose to implement living shoreline techniques at the Apalachicola National Estuarine Research Reserve (ANERR) Office Complex and Nature Center in Eastpoint, Florida in Franklin County (see Figure 12-1 for General location and Figure 12-2 for additional project details). This area has been the location of previous successful living shoreline projects that contribute to shoreline protection. The constructed breakwater would also serve to protect approximately 1 acre of salt marsh habitat that would be planted as part of the project as well as limiting future erosion.

Combining the objectives of reducing shoreline erosion and providing habitat, this project would create breakwaters to reduce wave energy, increase benthic secondary productivity, and create salt marsh habitat. The restoration work proposed includes placing the breakwater structures approximately 30 feet from the shoreline, which would likely have an approximate 5 foot crest width with a height that falls within the mean high and low water lines of the site. The specific breakwater elevation and technique design would be selected to maximize shoreline protection and meet state regulatory requirements. The living shoreline techniques would be employed along approximately 0.3 mile of shoreline. Additionally, plugs of Saltmarsh Cordgrass (Spartina alterniflora) would be planted on 2 to 3 foot centers in the area located landward of the breakwater. Plants would be installed within 30-days of the first growing period subsequent to construction of the breakwater. The restoration methods proposed here are established methods for this type of restoration project.
Figure 12-1. General location of envisioned Cat Point (Franklin County) Living Shoreline Project.
12.6.3 Evaluation Criteria

This proposed project meets the evaluation criteria for the Framework Agreement and OPA. As a result of the Deepwater Horizon oil spill and associated response activities, benthic secondary productivity and salt marshes along the north central Gulf coast suffered adverse impacts. This project seeks to foster reef development and salt marsh habitat, which would help compensate the public for Spill-related injuries and losses to benthic secondary productivity and salt marsh habitats. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and utilizes proven techniques with established methods and documented results. Florida agencies have successfully implemented similar projects in the region. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Furthermore, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.6, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and
measures to avoid or minimize adverse impacts described in 12.6 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). The project is part of the long-term restoration and resource management plans of the Apalachicola NERR and therefore is consistent with long term restoration needs of the State. See Section 6d of the Framework Agreement.

Many ecological projects, including ones similar to this project, were submitted as a restoration project on the NOAA website (http://www.gulfrestoration.noaa.gov) and submitted to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Cat Point living shoreline project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.6.4 Performance Criteria, Monitoring and Maintenance
As part of the project costs, monitoring would be conducted to ensure project designs were correctly implemented and to evaluate project effectiveness. Performance criteria would be used to determine project success or the need for corrective actions. The monitoring has been designed around the following project objectives: 1) to protect created marsh habitat from erosion, and 2) to promote reef development for bivalves and other invertebrates. Monitoring activities would be planned for 5 years following the completion of the project and are estimated to cost approximately $62,578. Specific success criteria include: 1) the construction of breakwaters that meet project design criteria, support benthic secondary productivity, reduce wave energy affecting the shoreline, and are sustained for the expected life of the project; 2) the creation of salt marsh habitat that meets project design criteria and achieves the designed percent cover by native saltmarsh vegetation; and 3) the reduction of shoreline erosion which protects created salt marsh habitat.

Baseline monitoring would be conducted to collect data that would be used as a point of comparison for implementation and post implementation monitoring data. Implementation monitoring would be conducted to ensure that the breakwaters were constructed with the appropriate dimensions. In general, components of this monitoring would potentially evaluate the production and support of organisms on the breakwater (e.g., benthic secondary productivity), the stability of the breakwater protecting the shoreline (e.g., salt marsh habitat) and the creation of salt marsh habitat. Performance criteria would be established to determine whether the project achieves the desired breakwater specifications, benthic secondary productivity, and salt marsh habitat created.

Components of this monitoring may include collecting information with respect to:

- Structural integrity of breakwater/reef structure;
- Height/elevation and width of breakwater/reef structure;
- Consolidation rate of breakwater/reef structure;
- Shoreline (salt marsh) profile;
- Shoreline (salt marsh) position;
- Bivalve density, size, biomass, and survival;
- Non-bivalve invertebrate density and biomass; and
- Percent cover and survival of planted marsh vegetation.
Adaptive management procedures will be used to correct deficiencies or maintenance needs identified through monitoring. Furthermore, a minimum of 80 percent of the plantings must be viable at the end of the first growing season subsequent to initial planting. Viable area coverage shall be monitored in following years to ensure establishment of salt marsh vegetation. Monitoring of the plantings would occur for a minimum of 5 years with a minimum of one site inspection per year. Annual reports and photographs would be prepared during the monitoring period.

12.6.5 Offsets
For the purposes of negotiations of Offsets with BP in accordance with the Framework Agreement, the Trustees used Habitat Equivalency Analysis and Resource Equivalency Analysis to estimate appropriate biological and habitat Offsets for the Cat Point Living Shoreline Project. Habitat Offsets (expressed in DSAYs) were estimated for salt marsh habitat protected by this restoration, based on the expected spatial extent and duration of improvements attributable to the project. In estimating DSAYs, the Trustees considered a number of factors, including, but not limited to, anticipated protection of created salt marsh habitat provided by the project and the time period over which the project would continue to provide benefits. The Trustees and BP agreed that if this restoration is selected for implementation, BP would receive Offsets of 4.3 DSAYs of Salt Marsh Habitat in Florida, applicable to Salt Marsh Habitat injuries in Florida, as determined by the Trustees’ total assessment of injury for the Spill.

Benthic Secondary Productivity Offsets (expressed in DKg-Ys) were estimated for expected increases in invertebrate infaunal and epifaunal biomass attributable to the project. In estimating DKg-Ys, the Trustees considered a number of factors, including, but not necessarily limited to, typical productivity in the project area, estimated project lifespan and project size. The Trustees and BP agreed that if this restoration is selected for implementation, BP would receive Offsets of 3,266 DKg-Ys of benthic Secondary Productivity in Florida, applicable to benthic Secondary Productivity injuries in Florida, as determined by the Trustees’ total assessment of injury for the Spill. If the Offsets exceed the benthic Secondary Productivity injury in Florida, the Trustees and BP will apply “excess” Offsets to injuries to benthic Secondary Productivity within Federal waters on the Continental Shelf, excluding those associated with mesophotic reefs. These Offsets would not apply to injuries in Mississippi, Alabama, Louisiana and/or Texas.

These Offset types and amounts are reasonable for this project.

12.6.6 Cost
The total estimated cost to implement this project is $775,605. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and potential contingencies.
12.7 Florida Cat Point Living Shoreline Project: Environmental Review

The proposed Cat Point (Franklin County) Living Shoreline project would use living shoreline techniques including natural and/or artificial breakwater material to stabilize shorelines along an area just off the Apalachicola National Estuarine Research Reserve (ANERR) Office Complex and Nature Center, Eastpoint, Florida. This project would expand on an existing breakwater, creating up to 0.3 mile breakwater to dampen wave energy and create salt marsh habitat. This area has been the location of previous successful living shorelines projects that contribute to shoreline protection. The constructed breakwaters would serve to protect approximately 1 acre of salt marsh habitat that would be planted by the project as well as limiting future erosion.

The breakwater/living shoreline method would be employed along approximately 0.3 mile of shoreline. The structures would likely be placed approximately 30 feet from the shoreline and would likely have an approximately 5-foot crest width with a height that falls within the mean high and low water lines of the site. The specific breakwater elevation and technique would be selected during the design and permitting stage to maximize shoreline protection and meet state regulatory requirements.

12.7.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon oil spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf of Mexico in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not, fully address all injuries caused by the spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement, after public review of a draft, the Trustees released a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees, announcing the development of additional future Early Restoration projects for a Draft Phase III ERP.

This living shoreline project in Franklin County was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the state of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and Oil Pollution Act (OPA), the project meets Florida criteria that Early Restoration projects occur in the eight-county panhandle area that deployed boom and was impacted by the Spill.

Apalachicola Bay is located in the northwestern region of Florida. To reduce erosion and restore habitat, living shoreline and marsh creation techniques can be used to stabilize eroding shorelines by dampening wave energy while also providing habitat that was once present in the project area.
Building on previous efforts that were used as mitigation measures for other projects, the Florida Department of Environmental Protection (FDEP) is proposing to employ living shoreline techniques in Apalachicola Bay to reduce shoreline erosion and enhance habitat. The proposed project would construct approximately 1 acre of salt marsh to protect and restore areas that experienced the highest rates of erosion. The breakwaters would create a total of 0.3 mile of intertidal reef to protect the shallow embayment and created salt marsh habitat.

This project would also address the impacts to habitat and biota caused by the Deepwater Horizon oil spill (see Code of Federal Regulations [C.F.R.] 990.54(a)(2) and Sections 6a–6c of the Framework Agreement) using established techniques (Gulf and Atlantic States Marine Fisheries Commissions 2004). State and local government agencies have successfully completed similar projects, including an earlier phase of a similar project in Apalachicola Bay at the same location.

12.7.2   Project Location
The proposed Cat Point Living Shoreline Early Restoration project is located along the northwestern portion of St. George Sound, approximately 6 miles east of Apalachicola in Franklin County, Florida. The site is east of the St. George Island bridge on property owned by the state and managed by the ANERR (Figure 12-3 and
Figure 12-4).
Figure 12-3. Project location map, Franklin County, Florida.
12.7.3 Construction and Installation

12.7.3.1 Engineering and Design

Building upon the experience of FDEP on similar efforts, such as the original Cat Point Living Shoreline, breakwaters would be constructed along selected shoreline in Apalachicola Bay. Construction activities would include placement of linear structures that may use natural rock or shell-based materials, or both. The proposed project depths are approximately 1 to 2 feet below mean lower low water (MLLW) at the existing breakwater. The specific breakwater elevation and technique would be selected during design and permitting to maximize shoreline protection and meet state regulatory requirements.

The breakwater/living shoreline method would be employed along approximately 0.3 mile of shoreline. The structures would be placed approximately 30 feet from the shoreline and have an approximately 5-foot crest width with a height that falls within the mean high and low water lines of the site. Additionally, the project would create and restore approximately 1 acre of salt marsh habitat. One of the breakwater units could be constructed with bagged shell material while the other would probably be constructed of rock riprap. Gaps would be constructed between the units, which would be a minimum
of 3 feet wide, to minimize the risk of species entrapment. No long-term maintenance is anticipated for the breakwaters after materials are placed and stabilized.

Construction of the breakwaters would occur during winter months (November through early March) when the extreme low tides would leave the breakwater material placement area exposed so materials can be placed from shore using a combination of cranes or backhoes. The project placement area will be accessed by an existing road (Millender Street). The location for the placement of the breakwater materials, along with any preferred transportation paths, will be marked during construction using PVC stakes that would be driven by hand using a post driver or other means into the sediment. Following final materials placement these stakes would be removed. Materials and equipment would be staged in the state-owned lands adjacent to the road right-of-way. Preliminary construction details are as follows:

**Northern Structure—Riprap Structure**
- Total project length = 689 feet
- Crest width = 5 feet
- Assumed bottom elevation = −1.5 feet, MLLW (based upon nautical charts)
- Total structure height = 2.5 feet [(5.24−4.29) − (−1.5) = 2.45 feet → 2.5 feet]
- Bagged shell veneer depth = 0.50 foot
- Riprap depth = 1.50 feet
- Estimate initial settlement = 0.5 foot
- Design side slopes are 2 horizontal to 1 vertical
- Breakwater distance from shoreline = 30 feet
- Reach of each breakwater = 70 feet
- Length of each gap between breakwater = up to 25 feet, with a minimum 3 foot gap

**Southern Structure—Bagged Shell Structure**
- Total project length = 750 feet
- Crest width = 5 feet
- Assumed bottom elevation = −1.5 feet, MLLW (based upon nautical charts)
- Total structure height = 2.5 feet [(5.24−4.29) − (−1.5) = 2.45 feet → 2.5 feet]
- Bagged shell veneer depth = 0.50 foot
- Riprap depth = 1.50 feet
- Estimate initial settlement = 0.5 foot
- Design side slopes are 2 horizontal to 1 vertical
- Breakwater distance from shoreline = 30 feet
- Reach of each breakwater = 70 feet
- Length of each gap between breakwater = up to 25 feet, with a minimum 3 foot gap

During construction, the *Sea turtle and Smalltooth Sawfish Construction Guidelines* (NOAA, 2006), the *Standard Manatee Conditions for In-water Work* (USFWS, 2011), and *Measures for Reducing Entrapment Risk to Protected Species* (NOAA, 2012) will be implemented.

In addition, vegetative plantings would be installed behind the breakwater structures along the shoreline for approximately 1 acre of marsh creation. Marsh construction would involve planting of native marsh plant species on 2- to 3-foot centers. This activity would commence once the constructed
breakwater material placement is complete and stabilized so the restored areas would be protected to the fullest extent possible.

12.7.4 Operations and Maintenance
Monitoring would be conducted to ensure project designs are correctly implemented and to evaluate project effectiveness. Performance criteria would be used to determine project success or the need for corrective actions. The monitoring has been designed around the project objectives, which are to protect created marsh habitat from erosion and to promote reef development for bivalves and other invertebrates. Monitoring activities are planned for 5 years following the completion of the project. Specific success criteria includes the construction of breakwaters that meet project design criteria, support benthic secondary productivity, reduce wave energy affecting the shoreline, and are sustained for the expected life of the project. Also included is the creation of salt marsh habitat that meets project design criteria and achieves the designed percent cover of native salt marsh vegetation; and the reduction of shoreline erosion, which would protect created salt marsh habitat.

Baseline monitoring would be conducted to collect data that would be used as points of comparison for implementation and post-implementation monitoring data. Implementation monitoring would be conducted to ensure that the breakwaters were constructed with the appropriate dimensions. In general, components of this monitoring would evaluate the production and support of organisms on the breakwater (e.g., benthic secondary productivity), the performance of the breakwater in protecting the shoreline (e.g., salt marsh habitat), and the creation of salt marsh habitat. Performance criteria would be established to determine whether the project achieves the desired breakwater specifications, benthic secondary productivity, and salt marsh habitat created. Components of this monitoring may include collecting information with respect to:

- Structural integrity of breakwater/reef structure;
- Height/elevation and width of breakwater/reef structure;
- Consolidation rate of breakwater/reef structure;
- Shoreline (salt marsh) profile;
- Shoreline (salt marsh) position;
- Bivalve density, size, biomass, and survival;
- Non-bivalve invertebrate density and biomass; and
- Percent cover and survival of planted marsh vegetation.

Adaptive management procedures will be used to correct deficiencies or maintenance needs identified through monitoring. Furthermore, a minimum of 80 percent of the plantings must be viable at the end of the first growing season subsequent to initial planting. Viable area coverage shall be monitored in following years to ensure establishment of salt marsh vegetation. Monitoring of the plantings would occur for a minimum of 5 years with a minimum of one site inspection per year. Annual reports and photographs would be prepared during the monitoring period.

12.7.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental effects of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected resources and environmental consequences of the project.
12.7.5.1 No action

Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue the this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.7.5.2 Physical Environment

12.7.5.2.1 Geology and Substrates

Affected Resources

The existing geology and substrates in the project area at Cat Point can be described as gently sloping sandy/silty beaches in an estuarine system, specifically the Apalachicola River and Bay Basin. The estuarine embayments are in the Gulf Coastal Lowlands subdivision. The lowlands are a series of parallel terraces rising from the coast in successively higher levels (Scott et al. 2006). They formed during the Pleistocene Epoch (Great Ice Age), when fluctuating sea levels were associated with the growth and melting of ice caps. Dunes, barrier islands, beach ridges, and other topographical features were stranded inland as seas receded. Land surfaces of the lowlands are generally level and less than 100 feet above sea level. Substantial areas are less than 30 feet above sea level and are characterized by extensive wetlands.

The Apalachicola Bay area has been sculptured from an alluvial plain underlain by sand, gravel, silt, and clay. The Soil Survey for Franklin County identifies the areas chosen for placement of the marsh creation and living shorelines structures as “Waters of the Gulf of Mexico” and no soils data are provided. The natural bay shoreline is fringed by wide, shallow sandflats between 3 and 5 feet deep (Williams 2004).

Environmental Consequences

The proposed project would have minor, short-term impacts to the geology and substrates along the shoreline. The existing sandy substrate would be covered with hard structure reef materials. However, the project footprint is very small and encompasses approximately 0.3 acres of area. Disturbance to geologic features or soils would be detectable, but would be small and localized. There would be no changes to local geologic features or soil characteristics.

In the long term, the net benefits of habitat protection and restoration outweigh this direct impact by increasing benthic habitat diversity and creating structural complexity that supports a greater diversity and abundance of marine aquatic species.

12.7.5.2.2 Hydrology and Water Quality

Affected Resources

Cat Point is located within the Apalachicola NERR and characterized by its good water quality conditions. Briefly, the NERR is a system of 28 sites nation-wide that are protected through partnerships with the coastal states and NOAA.
Hydrology
Apalachicola Bay is a lagoon and estuary that encompasses St. George Sound, St. Vincent Sound, and East Bay. The entire bay area encompasses approximately 200 square miles. There are several rivers that drain into the bay, and these include the Apalachicola River and Carabelle River.

Water Quality
Apalachicola Bay is mostly designated as a Class II Shellfish Harvesting Area. It has excellent water quality, and the waters of the bay are tested regularly.

Floodplains
The project is located in Federal Emergency Management Agency (FEMA)—designated flood zone according to the Flood Insurance Rate Maps (FIRMs) for Franklin County (FIRM No. 12037C0532E, Franklin County). The project is located in Zone VE, with a base flood elevation of 14 feet above mean sea level (AMSL). VE zones are coastal flood zones with velocity hazards.

Wetlands
The project would take place in open water, off an existing paved road, and on bay beach areas. There are no wetlands identified in these areas (Department of the Interior [DOI] 2013).

Environmental Consequences
The impact on hydrology would be measurable, but it would be small and localized. The footprint of the project is near to the shore and encompasses approximately 0.3 acre of land.

The impact to water quality would be short term and minor. During the construction phase of the project, it is likely that sandy soils would be disturbed as the substrate is placed in the water. This would result in a detectable change to water quality, but the change would be expected to be small and localized. Impacts would quickly become undetectable. State water quality standards as required by the CWA would not be exceeded.

The project area is classified as a high-velocity flood zone. Impacts may result in a detectable change to natural and beneficial floodplain values, but the change would be expected to be small and localized. There would be no appreciable increased risk of flood loss, including impacts on human safety, health, and welfare.

The project area is not in a wetland. However, by installing the living shoreline/breakwaters, wetlands would be created behind the breakwaters. This is a beneficial effect as it would create additional estuarine habitat that can host many species that are present in the region.

Construction activities would use best management practices (BMPs) and are anticipated to last 3 to 6 months from the time site preparation and access activities begin. The calendar year timing would depend on the timing of funding availability and the contract award along with any permit constraints required as a result of listed species considerations. BMPs may include, but would not necessarily be limited to, the following:

- Installation of floating turbidity barriers
- Installation of erosion control measures along the perimeter of all work areas
- Stabilization of all filled areas with sod, mats, barriers, or a combination
- Storing and fueling vehicles away from aquatic areas
• Re-vegetation of exposed soils when construction activities are complete

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (Corps) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the Corps and final authorization pursuant to CWA/RHA will be completed prior to project implementation.

12.7.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
The current air quality index in the project area is good, with respect to both National Ambient Air Quality Standards (NAAQS) and carbon dioxide (CO₂) emissions. Air quality in the Florida panhandle is in attainment with the NAAQS (Environmental Protection Agency [EPA] 2013).

The rock and shell-based materials would be placed by heavy equipment (e.g., front-end loader, crane) from shore, as the area where the materials would be placed is exposed at low tide. A vehicle would be used to transport riprap boulders and oyster shell material from staging areas near the shoreline to a location where they would be picked up by the crane, which would place the material in the intertidal areas to construct the breakwater structure(s). Some engine emissions would be generated from the vehicle and crane for 8 hours per day, 5 days per week, for up to 3 months to construct the structure and restore the shoreline including any material staging areas. Plantings for the restored/created salt marsh would be made primarily using hand tools or light equipment if minor re-grading and equipment moving/boring is needed. Table 12-1 lists the greenhouse gas emissions expected from use of mechanized equipment.

Environmental Consequences
Negative impacts to air quality would be minor because the construction phase of the living shoreline project would be short in duration and would use minimal heavy equipment. The impact on air quality may be measurable, but would be localized and temporary, such that the emissions would not exceed the EPA’s de minimis criteria for a general conformity determination. The contributions to greenhouse gases may be measurable, but below 25,000 metric ton/year of CO₂ or its equivalent. Marsh plantings would have a moderate beneficial impact to air quality. Over time, the plantings would propagate and the marsh area would fill in. This would create additional land area where seagrasses and other relevant plant materials would enrich the environment.
Table 12-1. Greenhouse Gas Emissions for various mechanized equipment.

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>TOTAL HOURS USED</th>
<th>CO₂ FACTOR- MT/100 HRS</th>
<th>CO₂ (MT)²</th>
<th>CH₄ FACTOR- MT/100 HRS</th>
<th>CH₄ (CO₂E) (MT)³</th>
<th>N₂O FACTOR- MT/100 HRS</th>
<th>NOX (CO₂E) (MT)</th>
<th>TOTAL CO₂E (MT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crane</td>
<td>480</td>
<td>0.29</td>
<td>1.39</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.001</td>
<td>0.0048</td>
<td>1.39</td>
</tr>
<tr>
<td>Dump Truck</td>
<td>96</td>
<td>0.344</td>
<td>0.33</td>
<td>0.0002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.33</td>
</tr>
<tr>
<td>Boat⁴</td>
<td>480</td>
<td>1.3</td>
<td>6.24</td>
<td>0.002</td>
<td>0.01</td>
<td>0.01</td>
<td>0.05</td>
<td>6.3</td>
</tr>
<tr>
<td>Pickup Truck⁵</td>
<td>180</td>
<td>0.16</td>
<td>0.29</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.001</td>
<td>0.002</td>
<td>0.3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,236</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.32</td>
</tr>
</tbody>
</table>

1 Emissions assumptions for all equipment based on 8 hours of operation
2 CO₂ emissions assumptions for diesel and gasoline engines based on Environmental Protection Agency (EPA) 2009
3 CH₄ and NOx emissions assumptions and CO₂e calculations based on EPA 2011
4 Fuel economy assumptions for a 300-hp marine diesel powerboat and 1,000-hp marine diesel passenger ferry based on Becker 2013.
5 Emissions assumptions for an 8-cylinder, 6.2-liter gasoline engine Ford F150 pickup based on Department of Energy (DOE) 2013 and 18-gallon (half-tank) daily fuel consumption.

mt = metric tons; CO₂ = carbon dioxide; CH₄ = methane; N₂O = nitrous oxide; NOx = nitrogen oxide/dioxide; CO₂e = carbon dioxide equivalent

12.7.5.2.4 Noise

Affected Resources

Existing ambient noise levels along the shoreline at Cat Point are generally low and predominantly result from daily boating activities in St. George Sound. Noise can be defined as unwanted sound and noise levels, and its impacts are interpreted in relation to impacts on nearby visitors to the recreational areas and wildlife in the project vicinity. The Noise Control Act of 1972 (42 USC 4901–4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale that approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-2 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.

Noise levels in the project area vary depending on the season, time of day, number and types of noise sources, and distance from noise sources. Existing sources of noise in the project area are from vehicles, recreational boating, overhead aircraft, and ambient natural sounds such as wind, waves, and wildlife. Existing ambient noise levels in the ANERR are generally low and predominantly result from human visitation and offshore boating activities.
Table 12-2. Common noise levels.

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (DBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawnmower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Adapted from Bonneville Power Administration (BPA) 1986, 1996.

Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the project. Noise-sensitive receptors in the project vicinity include Apalachicola NERR use and wildlife.

Environmental Consequences

During the construction phase of the project, increased noise from operation of the crane and other construction equipment could attract attention, but their contribution to the soundscape would be localized and not of consequence, nor would it affect current user activities. Once built, the proposed project would not cause long-term noise impacts.

12.7.5.3 Biological Environment

12.7.5.3.1 Living Coastal and Marine Resources

Vegetation

Affected Resources

The project area has both an onshore (road to access project area and staging areas on the beach) and offshore component. According to the Natural Vegetation of Florida map the project area is located on previously existing sand pine (*Pinus clausa*) scrub forest. This vegetation type is mostly on excessively drained deep sandy soils and occurs on dunes of coastal strand and old dunes or dry sands in the interior (Davis 1967). Based on aerial reviews, the project site appears to contain mainly unvegetated sandy beach areas.

Offshore, there are a variety of aquatic plants that are present in the existing marsh areas near the project area. During the original construction of the existing Cat Point Living Shoreline, several species of native saltwater plants were placed behind the living shoreline to facilitate marsh creation. These included saltgrass (*Distichlis spicata*), marsh-hay cordgrass (*Spartina patens*), railroad vine (*Ipomoea pes-caprae*), and saltmarsh cordgrass (*Spartina alterniflora*).

In addition to these plants, there are seagrasses present on the other side of the bay, approximately 5 miles from the project site (Florida Fish and Wildlife Conservation Commission [FWC] 2011). These include primarily shoal grass (*Halodule wrightii*). Seagrass communities are essential breeding, rearing, and feeding grounds for many important recreational and commercial fisheries, and wildlife including the endangered West Indian manatee (*Trichechus manatus*) and various species of sea turtles.
Environmental Consequences

The current project would include expansion of the current living shoreline, and work would take place in the water. As part of the project, the area behind the newly constructed living shoreline would be planted with several species of native saltwater plants. As the plants would be placed behind the breakwater by hand, the disturbance would be minor and localized to the areas that are being actively planted. Breakwater materials would be placed in the project area via crane or front end loader from the shore. During the creation of the original living shoreline, any exotic species were removed concurrent with planting and will be removed as part of this project.

Overall, impacts on native vegetation may be detectable, but would not alter natural conditions and would be limited to localized areas. Infrequent disturbance to individual plants could be expected, but without affecting local or range-wide population stability. Infrequent or insignificant one-time disturbance to locally suitable habitat could occur, but sufficient habitat would remain functional at both the local and regional scales to maintain the viability of the species. In the long term, the marsh plantings would likely create additional habitat for marine species and wading birds, prevent further erosion of the shoreline, improve water quality, reduce wave activity, and increase sediment deposition in the area.

The FDEP may require permits and impose reasonable conditions as necessary to ensure that the construction complies with the provisions of Chapter 62-346.050 (3) of the Florida Administrative Code (FAC), which states in part that dredging and filling in, on, or over surface waters of the state remain subject to the requirements of Chapter 62-312, FAC, including the need to obtain a separate permit under that chapter until the effective date of the rules adopted under Section 373.4145(1)(b), Florida Statutes (FS). The FDEP permit also grants state-owned submerged lands authorization from the Board of Trustees of the Internal Improvement Trust Fund (Board of Trustees) pursuant to Article X, Section 11 of the Florida Constitution, and Section 253.77, FS and Chapter 258, FS. On November 18, 2011, FDEP issued Environmental Resource Permit No. 19-0304982-001-EI to construct the existing breakwaters and created salt marsh areas as mitigation to offset wetland impacts associated with a separate project constructed by a power company. Both the project and mitigation authorized by the permit issued from FDEP (as well as USACE Permit No. SAJ-2011-00557) are complete. Mitigation monitoring of the existing created salt marsh habitat is ongoing. However, the current FDEP and USACE permits only authorized construction of the original structures. The proposed project includes extensions of the existing living reef system (breakwaters); therefore, new Clean Water Act Section 404 permits to construct the project will be required.

12.7.5.4 Wildlife Habitat

Affected Resources

The onshore portion of the project area (mainly the beach area to be used for staging) provides habitat for wildlife such as wading birds (herons and egrets), swimmers (cormorants and anhingas), brown pelicans (*Pelecanus occidentalis*), and birds of prey that feed on juvenile and adult fish. The most common resident marsh and wading birds are great blue heron (*Ardea herodias*), little blue heron (*Egretta caerulea*), white ibis (*Eudocimus albus*), great egret (*Ardea alba*), snowy egret (*Egretta thula*), tricolored egret (*Egretta tricolor*), yellow-crowned night heron (*Nyctanassa violacea*), and black-crowned night heron (*Nycticorax nycticorax*). Urban and open, vacant land adjacent to the project area serves as a refuge and staging area for many passerine birds during migration, and large concentrations
of shorebirds are sometimes observed feeding in the mudflats occurring in the vicinity of the project area.

Based on the types of habitat present, and because of its size, elevation, and location, it is expected that ruderal species such as raccoon, opossum, grey squirrel, and other non-game mammals be present in upland areas in the project vicinity.

**Environmental Consequences**

Construction activities in the terrestrial portions of the project area are limited to use of an existing, paved road and staging of equipment and materials on the beach. Terrestrial populations of animals, including small mammals and some birds, would potentially be subject to short-term, minor impacts to their habitats. The natural processes sustaining them would be detectable, but localized and would not measurably alter natural conditions. Small changes to local population numbers, population structure, and other demographic factors could occur. Sufficient habitat would remain functional at both the local and range-wide scales to maintain the viability of the species.

In the long term, the addition of the living shoreline would provide additional feeding sources for some of the terrestrial animals as habitat for aquatic species would be expanded. The addition of the breakwaters would reduce wave velocity and decrease erosion, which may create a more stable shoreline; this would ultimately result in a protected nearshore environment for the species that live there.

**12.7.5.5  Marine and Estuarine Fauna (fish, shell beds, benthic organisms)**

**Affected Resources**

The project area provides habitat for numerous fish and other marine species. The value of marine habitats at the project site has been affected by population growth, development, and wastewater disposal. Increased coastal development, in particular, has contributed to displaced habitats, loss of wetlands, and greater amounts of stormwater runoff entering the bay and its tributaries (Northwest Florida Water Management District [NWFWMD] 2011). Nonetheless, the marine environment at the project site provides habitat to an array of aquatic species including ladyfish (*Elops saurus*), hardhead catfish (*Arius felis*), gafftopsail catfish (*Bagre marinus*), and pigfish (*Orthopristis chrysoptera*), among others. Benthic organisms such as bivalves, gastropods and other mollusks, anemones, amphipods, annelids, crustaceans, and echinoderms are also abundant in these waters.

**Environmental Consequences**

The proposed project would likely result in short-term, minor adverse impacts due to construction of the breakwater structures in shallow, intertidal habitat that may harbor invertebrates or sessile organisms. Small fish that frequent the intertidal area within the construction envelope are highly mobile and would be displaced to suitable habitat in the restoration area. However, these species are typically numerous in the area and recolonize quickly. The proposed breakwaters would benefit the fish and invertebrate community by providing additional structures that attract prey. Impacts would be detectable and localized but small. Disturbance of individual species would occur; however, there would be no change in the diversity or local populations of marine and estuarine species. Any disturbance would not interfere with key behaviors such feeding and spawning. There would be no restriction of movements daily or seasonally.
The proposed project would provide long-term benefits to marine species providing additional fish habitat, increased benthic productivity, and enhanced recruitment and production of fish and invertebrates. The proposed breakwaters and restoration of the salt marsh communities would benefit numerous aquatic species such as blue crab (*Callinectes sapidus*), bivalves (*oysters*) and gastropods (*Gastropoda sp.*), red drum (*Sciaenops ocellatus*), and speckled sea trout (*Cynoscion nebulosus*). Over the life of the project, the quality of fish habitat would increase, and the stabilization of shoreline community would allow it to become more productive. The greater overall beneficial impact resulting from the restored habitat would outweigh potential short-term impacts to these species. Therefore, short- and long-term impacts to marine and estuarine fauna are expected to be minor as a result of project construction.

### 12.7.5.6 Protected Species

**Affected Resources**

Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act (MMPA), essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trusteess first reviewed the species list for Franklin County, Florida. Table 12-3 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

**Table 12-3. Potential Impacts to Species/Critical Habitats managed by USFWS**

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle; Leatherback turtle, Loggerhead turtle</td>
<td>The main risk to sea turtles during execution of this project would come from collisions during the placement of the breakwater materials, which could result in harm or mortality. Consultation has been completed with NMFS, the agency that has jurisdiction to review impacts to sea turtles in the estuarine and marine environments. The planting activity associated with the restoration of the salt marsh habitat should not pose a risk given the limited extent of the acreage involved and the fact that the project is on the shore side of Apalachicola Bay in an area that is not turtle nesting habitat. No nesting habitat is present on the adjacent shoreline; therefore no effect to sea turtles in terrestrial habitats are anticipated. No designated or proposed critical habitat for sea turtles occurs within the action area: therefore, none will be adversely modified or destroyed.</td>
</tr>
</tbody>
</table>

---

1 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered
- Kemp’s Ridley Sea Turtle, *Lepidochelys kempii*, Endangered

Additional information for some of these species is provided below.

**Sea Turtles and Marine Mammals**

There are five species of endangered or threatened sea turtles that may occur or have the potential to occur in the project area. These include green turtle, hawksbill turtle, Kemp’s ridley turtle, leatherback turtle, and loggerhead turtle. Sea turtles forage in the waters of the coastal Florida panhandle region and have the potential to occur in the waters where in-water work is proposed. The project site contains potentially suitable sea turtle nesting habitat along the sandy beach, but the site is on the bay side where nesting is uncommon.

Twenty-two marine mammals are native to the Gulf of Mexico: 21 pelagic species of whales and dolphins, and the West Indian manatee (see Chapter 3). Of these species, the endangered West Indian manatee has the potential to occur in the project area waters. Manatees typically seek out shallow seagrass areas as preferred feeding habitat. Additionally, bottlenose dolphin (*Tursiops truncatus*)
populations are known to migrate into bays, estuaries, and river mouths and could be located in the proposed project area (NMFS 2013a). Bottlenose dolphins have been observed entering and leaving nearshore coastal waters (NMFS 2012).

**Smalltooth Sawfish and Gulf Sturgeon**

Smalltooth sawfish (*Pristis pectinata*) do not typically use northern Gulf of Mexico waters (NMFS 2013b). Gulf sturgeon are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Pearl River in Louisiana to the Suwannee River, in Florida (NMFS 2009). Adult fish reside in rivers for 8 to 9 months each year and in estuarine or Gulf of Mexico waters during the 3 to 4 cooler months of each year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993).

Gulf sturgeon critical habitat was jointly designated by the NMFS and USFWS on April 18, 2003 (50 C.F.R. 226.214). The proposed project site is located within the Florida Nearshore Gulf of Mexico Critical Habitat Unit 11, which contains winter feeding and migration habitat for Gulf sturgeon. Critical habitat was designated based on seven primary constituent elements (PCEs) essential for its conservation, as defined in the 2003 Federal Register.

These seven elements are listed below. PCEs present at the project site include elements applicable to estuarine and marine habitats (i.e., elements 1, 5, 6, and 7).

1. Abundant food items, such as detritus, aquatic insects, worms, and/or mollusks, within riverine habitats for larval and juvenile life stages; and abundant prey items, such as amphipods, lancelets, polychaetes, gastropods, ghost shrimp, isopods, mollusks, and/or crustaceans, within estuarine and marine habitats and substrates for subadult and adult life stages;
2. Riverine spawning sites with substrates suitable for egg deposition and development, such as limestone outcrops and cut limestone banks, bedrock, large gravel or cobble beds, marl, soapstone, or hard clay;
3. Riverine aggregation areas, also referred to as resting, holding, and staging areas, used by adult, subadult, and/or juveniles, generally, but not always, located in holes below normal riverbed depths; these are believed necessary for minimizing energy expenditure during freshwater residency and possibly for osmoregulatory functions;
4. A flow regime (i.e., the magnitude, frequency, duration, seasonality, and rate-of-change of freshwater discharge over time) necessary for normal behavior, growth, and survival of all life stages in the riverine environment, including migration, breeding site selection, courtship, egg fertilization, resting, and staging, and for maintaining spawning sites in suitable condition for egg attachment, egg sheltering, resting, and larval staging;
5. Water quality, including temperature, salinity, pH, hardness, turbidity, oxygen content, and other chemical characteristics necessary for normal behavior, growth, and viability of all life stages;
6. Sediment quality, including texture and chemical characteristics, necessary for normal behavior, growth, and viability of all life stages; and
7. Safe and unobstructed migratory pathways necessary for passage within and between riverine, estuarine, and marine habitats (e.g., an unobstructed river or a dammed river that still allows for passage) (see Figure 12-5 for Gulf sturgeon critical habitat near the project area).
Figure 12-5. Critical habitat for Gulf sturgeon near the Cat Point Living Shoreline project area.
**Piping Plover**
The sandy beaches and shorelines adjacent to the project area offer suitable foraging and resting habitat for the piping plover during the winter migratory season, and piping plover may forage in the shallow waters of the project area. Natural shorelines in the proposed project vicinity provide suitable winter migration resting habitat for the piping plover. Piping plover wintering habitat includes beaches, mudflats, and sandflats, as well as barrier island beaches and spoil islands (Haig 1992 as cited by USFWS 2013). On the Gulf Coast, preferred foraging areas are associated with wider beaches, mudflats, and small inlets (USFWS 2013).

**Red Knot**
The red knot, a proposed species for listing under the ESA, uses the state of Florida both for wintering habitat and migration stopover habitat for those that continue to migrate to specific wintering locations in South America (Niles et al. 2008) and could be present at the project site. Wintering and migrating red knots forage along sandy beaches, tidal mudflats, salt marshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms, and roost on high sandflats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008).

**Essential Fish Habitat**
EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as "those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity." The designation and conservation of EFH seeks to minimize adverse effects on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Table 12-4 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Cat Point Living Shoreline project site which is located along the northwestern portion of St. George Sound within the Apalachicola National Estuarine Research Reserve (ANERR).

Table 12-4. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.

<table>
<thead>
<tr>
<th>EFH Category</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Highly Migratory Species</td>
<td>Atlantic Sharpnose Shark Adult</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark Juvenile</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark Adult</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark Adult</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark Neonate</td>
</tr>
<tr>
<td>EFH Category</td>
<td>Species</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>Bonnethead Shark Adult</td>
<td></td>
</tr>
<tr>
<td>Bonnethead Shark Juvenile</td>
<td></td>
</tr>
<tr>
<td>Bonnethead Shark Neonate</td>
<td></td>
</tr>
<tr>
<td>Bull Shark Juvenile</td>
<td></td>
</tr>
<tr>
<td>Finetooth Shark Adult and Juvenile</td>
<td></td>
</tr>
<tr>
<td>Great Hammerhead Shark All</td>
<td></td>
</tr>
<tr>
<td>Nurse Shark Juvenile</td>
<td></td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark Juvenile</td>
<td></td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark Neonate</td>
<td></td>
</tr>
<tr>
<td>Spinner Shark Juvenile</td>
<td></td>
</tr>
<tr>
<td>Spinner Shark Neonate</td>
<td></td>
</tr>
</tbody>
</table>

| Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic | |
| Cobia | |
| King Mackerel | |
| Spanish Mackerel | |

| Gulf of Mexico Red Drum | Red Drum |
| Gulf of Mexico Shrimp | Brown Shrimp |
| | Pink Shrimp |
| | White Shrimp |

| Reef Fish Resources of the Gulf of Mexico | Almaco Jack |
| | Banded Rudderfish |
| | Black Grouper |
| | Blackfin Snapper |
| | Blueline Tilefish |
| | Cubera Snapper |
| | Gag |
| | Goldface Tilefish |
| | Gray (Mangrove) Snapper |
| | Gray Triggerfish |
| | Greater Amberjack |
| | Hogfish |
| | Lane Snapper |
| | Lesser Amberjack |
| | Mutton Snapper |
| | Nassau Grouper |
| | Queen Snapper |
| | Red Grouper |
| | Red Snapper |
| | Scamp |
| | Silk Snapper |
| | Snowy Grouper |
| | Speckled Hind |
| | Tilefish |
| | Vermilion Snapper |
| | Warsaw Grouper |
| | Wenchman |
| | Yellowedge Grouper |
| | Yellowfin Grouper |
| | Yellowmouth Grouper |

**State-Listed Birds, MBTA and BGEPA**
There are numerous state of Florida–listed bird species with potential for occurrence in and around the Cat Point Living Shoreline project site. These include Arctic peregrine falcon (*Falco peregrinus tundrius*), least tern (*Sterna antillarum*), southeastern American kestrel (*Falco sparverius paulus*), Florida sandhill crane (*Grus canadensis pratensis*), American oystercatcher (*Haematopus palliates*), and southeastern/Cuban snowy plover (*Charadrius alexandrinus tenuirostris*).
The proposed project site is located across the bay from the St. George Island Causeway, more than 1 mile away. This causeway island, approximately 1.3 miles long and 50 yards wide, is one of the most important nesting sites in the panhandle for terns, skimmers, oystercatchers, and laughing gulls. Documented nesting species include least tern, gull-billed tern, caspian tern, royal tern, sandwich tern, sooty tern (one pair in 2007 and 2008), black skimmer, and American oystercatcher (Audubon 2012). Many of the species that could be in the vicinity of the project site are also state listed. St. George Sound provides important foraging habitat for many MBTA birds and raptors that may be present during the nesting season or may use the area as overwintering habitat.

Bald eagles are known to nest within 1 mile of the project site (FDEP, personal communication, September 26, 2013). The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s Bald Eagle Management Plan guidelines would be followed (FWC 2008).

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-5 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

Table 12-5. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds and oystercatchers</td>
<td>Foraging, feeding, resting, nesting</td>
<td>Shorebirds nest, forage, feed, and rest, and in the types of habitats consistent with some of the shoreline areas near proposed actions. As such, foraging, feeding, and resting may be impacted locally and temporarily by the project. NO nesting habitat is known in the project area; however, if nesting birds (adults, eggs, chicks) are present, impacts will be avoided.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Resting, roosting, nesting</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats. However, the level of project activity in open water could startle foraging or resting birds. Because activities will occur during the day roosting should not be impacted. Nesting is not known in the action area.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-6.
Table 12-6. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds and oystercatchers</td>
<td>The Trustees expect foraging and resting birds would be able to move to another nearby location to continue foraging and resting. If construction and planting occurs during shorebird nesting season (February 15 to August 31), the FWC will be contacted to obtain the most recent guidance to protect nesting shorebirds or rookeries and their recommendations will be implemented.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. Nesting should not be impacted because the project will not occur near nesting habitats.</td>
</tr>
</tbody>
</table>

**Environmental Consequences**

**Protected Species**

The USFWS reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On March 20, 2014 the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect West Indian manatee, piping plover, and red knot (if listed). This review also concurred with the Trustees’ conclusion the project would have no effect on five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead).

NMFS also reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On April 11, 2014 the review of potential impacts to species managed by NMFS was completed. NMFS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect Kemp’s ridley, leatherback, and loggerhead sea turtles in marine habitats (Croom, 2014). This review also concluded hawksbill and leatherback sea turtles will not be present, thus, they will not be affected. Similarly, the NMFS review concurred that Smalltooth sawfish are unlikely to be encountered and therefore will not be affected (Croom, 2014).

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ *Sea Turtle and Smalltooth Sawfish Construction Conditions* (NMFS, 2006), NMFS’ *Measures for Reducing Entrapment Risk to Protected Species* (NMFS, 2012), *Standard Manatee Conditions for In-Water Work* (USFWS, 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

**Essential Fish Habitat**

On March 5, 2014 NMFS completed its evaluation of potential EFH impacts and concurred with the Trustees’ assessment that the project is not likely to adversely affect EFH (Fay, 2014). The project would not result in adverse, direct impacts to emergent wetlands, existing oyster reefs, or Submerged Aquatic
Vegetation (SAV). Most motile fauna such as crab, shrimp, and finfish will likely avoid the area of potential effect during the construction process. The project may result in minor, adverse short term impacts to benthic organisms and temporarily affect habitat utilization by individuals considered under EFH fishery management plans.

The proposed work in the EFH area reflects the expansion of an existing breakwater through the installation of approximately 0.3 linear feet of new breakwater. Additionally, approximately 1 acre of salt marsh habitat, anticipated to be protected by the breakwater, would be planted. Installation of the breakwaters and planting native salt marsh vegetation may result in a small area of existing habitat being converted from one EFH habitat to another type; however, both habitat changes will be small and are anticipated to have a net beneficial impact to habitat quality and species found in the area. As a result, disturbance to species will be limited in their spatial extent, minor in scope, and brief in duration. Construction activities may have a minor, short term impact on habitat. During construction, all appropriate BMPs will be followed to minimize the potential impacts of construction activities on EFH and species in the area. During construction, adjacent areas with equivalent or better habitat will be available and undisturbed and organisms could move away from disturbed areas.

State-listed Birds, MBTA, BGEP A
There is a known bald eagle nest within 1 mile of the project site but greater than 660 feet from project activities. Based on the distance from proposed project activities, nesting of the known occurrences of bald eagle would not be impacted. However, if a bald eagle nest were observed in the vicinity of the project site, conservation measures to protect bald eagles will be implemented (see Chapter 6 for specific measures).

Consultation with FWC concerning the proposed project and anticipated construction schedule relative to known bald eagle nest sites in the project vicinity and the nesting season in Florida (October 1 to May 15) would be required prior to commencement of activities. To minimize potential for impacts to nesting bald eagles, the consultation protection measures may include 1) addressing prescribed nest tree protection zones, and 2) preparation of a bald eagle nest protection plan (including nesting behavior disturbance monitoring). Bald eagles have been known to tolerate certain potential disturbances in their breeding territories. Should these conservation measures be implemented for active nest sites adjacent to enhancement activities in the project area, potential impacts to the bald eagle would be short term and minor.

At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

Invasive Species

Affected Resources
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.
Environmental Consequences

Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.7.5.7 Human Uses and Socioeconomics

12.7.5.7.1 Socioeconomics and Environmental Justice

Affected Resources

The population of Franklin County is approximately 11,686. The following table shows population data for Franklin County and Florida (Table 12-7).

Table 12-7. Census data for Franklin County and the State of Florida.

<table>
<thead>
<tr>
<th>PEOPLE QUICKFACTS</th>
<th>FRANKLIN COUNTY</th>
<th>FLORIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population, 2010 (April 1) estimate base</td>
<td>11,549</td>
<td>18,802,690</td>
</tr>
<tr>
<td>Population, percent change, April 1, 2010, to July 1, 2012</td>
<td>1.2%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Population, 2010</td>
<td>11,549</td>
<td>18,801,310</td>
</tr>
<tr>
<td>Persons under 5 years, percent, 2012</td>
<td>4.6%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Persons under 18 years, percent, 2012</td>
<td>16.5%</td>
<td>20.7%</td>
</tr>
<tr>
<td>Persons 65 years and over, percent, 2012</td>
<td>18.9%</td>
<td>18.2%</td>
</tr>
<tr>
<td>Female persons, percent, 2012</td>
<td>42.4%</td>
<td>51.1%</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau 2013.

Environmental Consequences

This project would have a short-term, minor impact to the local population through disruption of localized fishing, use of the public road, and use of the public beach during construction. Limiting access to the road and beach in that location may prevent people from visiting the area during the construction period; this may have a small effect on local retail sales (food, gasoline, or similar items). A few individuals, groups, businesses, properties, or institutions would be impacted. Impacts would be short term, small and localized. These impacts are not expected to substantively alter social and/or economic conditions. Actions would not disproportionately adversely impact minority populations and low-income populations.
Direct, short-term, moderate benefits through local job creation would result from construction activities. Long-term, indirect, moderate benefits would result from increasing recreational and fishing value of the area. Greater fishing success may increase the number of fishing trips in the area, which could generate ancillary purchases such as license fees, fuel, equipment, or other ancillary purchases.

This project is not designed to create a benefit for any group or individual, but rather would provide benefits on a local and regional basis. Because the project occurs in an area that is not disproportionately minority or low income (see Table 12-7), there are no indications that the proposed living shoreline project would be contrary to the goals of Executive Order 12898 or would create disproportionate adverse human health or environmental impacts on minority or low-income populations of the surrounding community.

12.7.5.7.2 Cultural Resources

Affected Resources
This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Environmental Consequences
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.7.5.7.3 Infrastructure

Affected Resources
The landward side of the proposed project area is developed with a variety of infrastructure that includes shoreline protection, roads, parks, and residential development. The breakwater/living shoreline creation would take place in nearshore, open-water habitats. The breakwater and associated marshlands are well away from existing infrastructure.

Environmental Consequences
As Millender Street would be used to access the site area during the construction phase of the project, there may be a minor, short-term, temporary increase in traffic and slow-moving construction equipment in this transportation corridor. The action would affect public services or utilities but the impact would be localized and within operational capacities. Once construction is complete, there would be no effect to infrastructure.
12.7.5.7.4 Land and Marine Management

Affected Resources
The landward side of the proposed project has a variety of land uses that include recreational, commercial, and residential land uses as well as publicly owned lands. The lands in the immediate vicinity of the project area include a public park, public beach area and a previously constructed living shoreline. The current project would build on this existing project.

The project area would be located in a coastal area that is regulated by the federal CZMA of 1972 and the Florida Coastal Management Act of 1978.

Environmental Consequences
Although the action would require several permits for the short-term construction period, it would not require a variance, zoning change, or amendment to a land-use area or comprehensive management plan. The long-term impact of the project would be minor because it would not affect overall use and management beyond the project area. It would be consistent with current land use.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

12.7.5.7.5 Aesthetics and Visual Resources

Affected Resources
The landward side of the proposed project has a variety of land uses that provide access for residents, visitors, and commuters. The breakwater would be constructed in an area characterized as open water.

Environmental Consequences
Aesthetics would be reduced in the project area during construction due to the physical presence of the equipment used to transport the material and the presence of other land-based support equipment. There would be a change in the viewshed that would be readily apparent but would not attract attention, dominate the view, or detract from current user activities or experiences. The current aesthetic is consistent with a beach environment (including sand and water).

After the construction event, the view of the environment would still include a sandy beach and bay area, along with additional marshlands. The living shoreline would likely be just above or below the water line pending on the tides. This should not alter the view from the beach.
12.7.5.7.6  Tourism and Recreational Use

**Affected Resources**
Access to the project area would be via Millender Street, which is a public road. The equipment and materials would be staged on the state-owned public park area on either side of Millender Road. Recreational activities that take place on or along the beach may include but are not limited to fishing, swimming, sunbathing, and exercising.

**Environmental Consequences**
For a short time, the construction process would limit recreational activities, especially near the construction areas. The impact would be minor, it would be detectable and/or would only affect some recreationalists. Users would likely be aware of the action but changes in use would be slight. There would be partial closures to protect public safety. Impacts would be local.

Once completed, the project would result in a neutral impact by providing greater recreational uses for the project area, more protections from wave action by the living shoreline structure, and improved wildlife habitat.

12.7.5.7.7  Public Health and Safety and Shoreline Protection

**Affected Resources**
The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act (RCRA); the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); the Emergency Planning and Community Right-to-Know Act; and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of these materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

**Environmental Consequences**
Project construction would require mechanical equipment that uses oil, lubricants, and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of construction-related hazardous materials such as vehicle fuels, oil, hydraulic fluid, and other vehicle maintenance fluids, and to avoid releases and spills. If a release should occur, it would be contained and cleaned up promptly in accordance with all applicable regulations, and the incident would be reported to appropriate agencies. As a result, no impacts associated with construction-related hazardous materials would be anticipated. The period of time during which a release could occur from construction activities would be short, and any release would be expected to be minor.

12.7.6  Summary and Next Steps
The proposed Florida Cat Point Living Shoreline Project is intended to employ living shoreline techniques that utilize natural and/or artificial breakwater material to reduce shoreline erosion and provide habitat off EastPoint, Florida. Combining these objectives, this project would create reefs to reduce wave energy, increase benthic secondary productivity, and create salt marsh habitat. Proposed activities include expanding an existing breakwater creating up to 0.3 miles of new breakwater and create 1 acre of salt marsh habitat. The project is consistent with the selected alternative in the Final Phase III
ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would provide long-term benefits by creation of approximately 1 acre of salt marsh, and approximately 0.3 miles of living shoreline. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

### References


Croom, M. 2014. Memorandum to Leslie Craig, Ref.: Deepwater Horizon-Early Restoration Plan Phase III Living Shoreline Projects. April, 11 (Note: signed for Crabtree, R.)


Department of the Interior, Deepwater Horizon Natural Resource Damage Assessment and Restoration (NRDAR) 2013. Memorandum to the Field Supervisor, Panama City Ecological Services Office, Florida. Informal Consultation Request for the Proposed Cat Point (Franklin County) Living Shoreline Project, Florida.


Fay, V. 2014. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for the proposed Cat Point Living Shoreline project in Apalachicola Bay, Franklin County, Florida. March, 5.


Gulf of Mexico Fishery Management Council. 2005. Generic Amendment Number 3 for Addressing Essential Fish Habitat Requirements, Habitat Areas of Particular Concern, and Adverse Effects of Fishing.


National Oceanic and Atmospheric Administration (NOAA). 2009. *Amendment 1 to the Consolidated Atlantic Highly Migratory Species Fishery Management Plan Essential Fish Habitat and EIS*.


USFWS 2011 Standard Manatee Conditions for In-Water Work.

12.8 Florida Pensacola Bay Living Shoreline Project: Project Description

12.8.1 Project Summary
The proposed Pensacola Bay Living Shorelines project is intended to employ living shoreline techniques that utilize natural and/or artificial breakwater material to reduce shoreline erosion and provide habitat at two sites within a portion of Pensacola Bay. This project would create reefs to reduce wave energy, increase benthic secondary productivity, and create salt marsh habitat. Proposed activities include constructing breakwaters that will provide reef habitat and creating salt marsh habitat at both sites. In total, approximately 18.8 acres of salt marsh habitat and 4 acres of reefs would be created. The estimated cost for this project is $10,828,063.

12.8.2 Introduction and Background
The proposed Pensacola Bay Living Shoreline project is located in Escambia County along an urban shoreline of Pensacola Bay that has been the location of previous successful living shoreline projects. This project proposes to implement living shoreline techniques at two neighboring sites, Project GreenShores Site II (PGS II) and Sanders Beach (see Figure 12-6 for general location and Figure 12-7 for additional detail). PGS II is located immediately west of Muscogee Wharf and would build off work completed as part of a previous Project GreenShores effort. The Sanders Beach site is 3 miles to the west, near the mouth of Bayou Chico. The project design for the Sanders Beach site is in the initial planning phase but the intention is to expand on the Project GreenShores effort by implementing similar restoration techniques.

Combining the objectives of reducing shoreline erosion and providing habitat, this project would create reefs to reduce wave energy, increase benthic secondary productivity, and create salt marsh habitat. Reefs would be created by placing a total of approximately one mile of breakwaters, linear structures that may utilize artificial and/or shell-based materials. The breakwaters would have variable crest widths (30-80 ft) based on desired wave reduction and a height that falls within the mean high and low water lines (intertidal) of the site. The specific breakwater elevation and design would be selected to maximize protection of salt marsh habitat created, meet state regulatory requirements, and avoid or minimize conflicts with current uses at the proposed sites.
Figure 12-6. General location of proposed Pensacola Bay Living Shoreline Project.

Figure 12-7. Location of proposed PGS Site II and Sanders Beach Sites.
12.8.3 Evaluation Criteria

This proposed project meets the evaluation criteria established under OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and associated response activities, benthic secondary productivity and salt marsh habitats along Florida’s Panhandle suffered adverse impacts. This project seeks to foster reef and salt marsh habitat development, which would help compensate the public for Spill-related injuries and losses to benthic secondary productivity and salt marsh habitat. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and utilizes proven techniques with established methods and documented results. Several studies of living shoreline techniques have found that these projects can successfully reduce shoreline erosion while providing habitat and water quality benefits (LaPeyre, et al. 2013², Scyphers et al. 2011³, Berman et al. 2007⁴). Similar projects have also been successfully implemented in Florida, including Project GreenShores efforts in Pensacola Bay. Project GreenShores, a multi-partner, phased effort led by FDEP, included multi-million dollar habitat restoration and creation projects along the urban shoreline of Pensacola Bay. The first phase of Project GreenShores was completed in 2003 and received several awards including the 2003 Coastal America Partnership Award, the 2004 EPA Gulf of Mexico Program’s Gulf Guardian Award and The Conservation Award from the Francis M. Weston Audubon Society in 2007. Over time the living shorelines techniques implemented at the Project GreenShores sites have resulted in 50-90% oyster coverage of breakwater structures, over 60 species of birds (migratory and resident populations) observed using created habitats, and species such as grey snapper, sheepshead, redfish, mullet, flounder, speckled trout, blue crab, and stone crab identified during aquatic surveys (FDEP 2012⁵). For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement.

Furthermore, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.8, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.8 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed

---


project is part of restoration plans put forward by Florida state agencies as funding priorities, and is therefore consistent with the long term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many ecological projects, including ones similar to this project, were submitted as a restoration project on the Gulf Spill Restoration website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Pensacola Bay Living Shoreline Project meets Florida’s criteria that Early Restoration projects occur in the 8-county panhandle area that deployed boom and was impacted by the Spill.

12.8.4 Performance Criteria, Monitoring and Maintenance

As part of the project costs, monitoring would be conducted to ensure project designs were correctly implemented and to evaluate project effectiveness. Performance criteria would be used to determine project success or the need for corrective actions. The monitoring would be designed around the following project objectives: 1) protect created marsh habitat from erosion, and 2) promote reef development for bivalves and other invertebrates. Monitoring activities would be planned for up to a 7 year period and are estimated to cost approximately $669,723. Specific success criteria include: 1) the construction of reefs that meet project design criteria, support benthic secondary productivity, reduce wave energy affecting the shoreline, and are sustained for the expected life of the project; 2) the creation of salt marsh habitat that meets project design criteria and achieves the designed percent cover by native saltmarsh vegetation; and 3) the reduction of shoreline erosion which protects created salt marsh habitat.

Baseline monitoring would be conducted to collect data that will be used as a point of comparison for implementation and post implementation monitoring data. Performance criteria would be established to determine whether the project achieves the desired breakwater specifications, benthic secondary productivity, and salt marsh habitat created. Components of this monitoring may include collecting information with respect to:

- Structural integrity of breakwater/reef structure;
- Height/elevation and width of breakwater/reef structure;
- Consolidation rate of breakwater/reef structure;
- Shoreline (salt marsh) profile;
- Shoreline (salt marsh) position;
- Wave energy;
- Bivalve density, size, biomass, and survival;
- Non-bivalve invertebrate density and biomass; and
- Percent cover and survival of planted marsh vegetation.

Adaptive management procedures will be used to correct deficiencies or maintenance needs identified through monitoring. Adaptive management activities may include adding additional material to the surface of a breakwater, adding additional hardened structure (e.g. riprap), adding additional natural materials (e.g. fossilized oyster shell), and/or replacing warning signs. Furthermore, a minimum of 80 percent of the plantings must be viable at the end of the first growing season subsequent to initial planting. Viable area coverage shall be monitored in following years to ensure establishment of salt
marsh habitat. All monitoring and adaptive management procedures would follow disturbance minimization measures, especially as they relate to vessel use around the project area.

12.8.5 Offsets
For the purposes of negotiations of Offsets with BP in accordance with the Framework Agreement, the Trustees used Resource Equivalency Analysis and Habitat Equivalency Analysis to estimate appropriate biological and habitat Offsets for the Pensacola Bay Living Shoreline Project. Habitat Offsets (expressed in DSAYs) were estimated for salt marsh habitat created by this proposed project based on the expected spatial extent and duration of improvements attributable to the project. In estimating DSAYs, the Trustees considered a number of factors, including, but not limited to, new marsh created by the project, the time period it would take for created marsh to provide different levels of ecological benefits, the time period over which the project would continue to provide benefits, and the ecological benefits of created marsh relative to existing marsh habitats that were not affected by the Spill. The Trustees and BP agreed that if this Early Restoration project is selected for implementation, BP would receive Offsets of 86.63 DSAYs of Salt Marsh Habitat in Florida, applicable to Salt Marsh Habitat injuries in Florida, as determined by the Trustees’ total assessment of injury for the Spill.

Benthic Secondary Productivity Offsets (expressed in DKg-Ys) were estimated for expected increases in invertebrate infaunal and epifaunal biomass attributable to the project. In estimating DKg-Ys, the Trustees considered a number of factors, including, but not necessarily limited to, typical productivity in the project area, estimated project lifespan and project size. The Trustees and BP agreed that if this Early Restoration project is selected for implementation, BP would receive Offsets of 28,813 DKg-Ys of benthic secondary productivity, applicable to benthic Secondary Productivity injuries in Florida, as determined by the Trustees’ total assessment of injury for the Spill. If these benthic Secondary Productivity Offsets exceed the specified injury, the Trustees and BP will apply “excess” Offsets for benthic Secondary Productivity within Federal waters on the Continental Shelf, excluding those associated with mesophotic reefs. These Offsets would not apply to injuries in Alabama, Mississippi, Louisiana or Texas. These Offset types and amounts are reasonable for this project.

12.8.6 Cost
The total estimated cost to implement this project is $10,828,063. This cost reflects cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and potential contingencies.
12.9 Florida Pensacola Bay Living Shoreline Project: Environmental Review

The National Oceanic and Atmospheric Administration (NOAA) and the Florida Department of Environmental Protection (FDEP) propose to employ living shoreline techniques, which utilize natural and artificial breakwater materials, to stabilize shorelines by dampening wave energy while also increasing benthic secondary productivity and providing salt marsh habitat that was once abundant in the region. The restoration goals of this project are to construct breakwaters to create approximately 4 acres of reef habitat and 18.8 acres of salt marsh habitat.

The proposed living shoreline project is located in Escambia County along an urban shoreline of Pensacola Bay that has been the location of previous successful living shoreline projects. This project proposes to implement living shoreline techniques at two neighboring sites, Project GreenShores Site II (PGS II) and Sanders Beach (see Figure 12-8 for general location and Figure 12-9 for additional detail). PGS II is located immediately west of Muscogee Wharf and would complete and expand the construction of a third breakwater at this site, building off work completed as part of a previous Project GreenShores effort. The Sanders Beach site is three miles to the west, near the mouth of Bayou Chico. The project design for the Sanders Beach site is in the initial planning phase but the intention is to expand on the Project GreenShores effort by implementing similar design and restoration techniques at this site. Combining the objectives of shoreline stabilization and providing habitat, this project would construct breakwaters to reduce wave energy, increase benthic secondary productivity, and create salt marsh habitat.

12.9.1 Introduction and Background

In April 2011, the Trustees and BP entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is under way. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects will be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement, the Trustees released, after public review of a draft, a Phase I ERP in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, NOAA issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This living shoreline project in Pensacola Bay within Escambia County was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the project meets Florida’s criteria that Early Restoration projects occur in the 8-county panhandle area that deployed boom and was impacted by the Spill.
Pensacola Bay, the fifth large estuarine system in Florida (Butts 1998), is located in the northwestern region of Florida. Historical records show that Pensacola Bay once contained extensive seagrass meadows, salt marshes, and harvestable oysters. The influences of overfishing, inadequate sewage disposal, urban stormwater runoff, industrial discharges, dredging, filling, and shoreline hardening have led to a depletion and degradation of these natural resources (Thorpe et al. 1997). Instead of hardening shorelines, a living shorelines approach can be used to reduce shoreline erosion by dampening wave energy while also providing habitat that was once abundant in the region. The NOAA and FDEP are proposing to employ living shoreline techniques in Pensacola Bay to create a total of approximately 18.8 acres of salt marsh habitat and approximately 4 acres of reef habitat to increase benthic secondary productivity.

This project would address the impacts to habitat and biota caused by the Deep Water Horizon Oil Spill (See C.F.R. § 990.54(a)(2) and Sections 6a-6c of the Early Restoration Framework Agreement) using established techniques. State and local government agencies have successfully completed similar projects including an earlier phase of the Project Greenshores effort in Pensacola Bay.

12.9.2 Project Location
The proposed Pensacola Bay Living Shoreline Early Restoration project is located in the northern portion of Pensacola Bay in Escambia County, Florida and include the Sanders Beach (30° 23’ 59 N; 87° 13’ 56 W) and Project Greenshores Site II (PGS II) (30° 24’ 37 N; 87° 12’ 10 W) areas (see Figure 12-8). The project would be located on City of Pensacola Sovereign Submerged Lands.

Figure 12-8. General location of proposed Pensacola Bay Living Shorelines Project.
12.9.3 Construction and Installation

12.9.3.1 Engineering and Design

Building upon the experience of NOAA and FDEP on similar efforts such as Project Greenshores, a living shorelines approach would be used in Pensacola Bay. Construction activities would include placement of breakwaters, linear structures that may utilize artificial and/or shell-based materials and salt marsh creation. The final engineering and design process would determine material needs and the placement, alignment, and construction of breakwaters. Materials such as riprap and fossilized oyster shell would be evaluated. The specific breakwater elevation and design would be selected to reduce shoreline erosion, meet state regulatory requirements, and avoid or minimize conflicts with current uses of the proposed sites. The estimated depths for placement of breakwater structures are approximately 4 feet below Mean Lower Low Water (MLLW) at the PGS II and approximately 2 ft below MLLW at the Sanders Beach site. Over time, the breakwaters are expected to develop into reefs colonized by benthic species including, but not limited to, bivalve mollusks (e.g. oysters, clams), annelid worms, shrimps, and crab. Further site evaluations and engineering studies will also determine the salt marsh planting areas and elevations required to maximize successful establishment of a marsh platform that would be planted with local, native vegetation such as Smooth Cordgrass (Spartina alterniflora).

Activities associated with breakwater construction and salt marsh habitat creation are regulated by the U.S. Army Corps of Engineers (Corps). The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project
will be coordinated with the Corps pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the Corps and final authorization pursuant to CWA/RHA will be conducted during the engineering and design of the project and will be completed prior to project implementation.

12.9.3.2 Constructing Breakwaters
Two construction areas are identified under the Pensacola Bay Living Shoreline Project: 1) PGS II, and 2) Sanders Beach. The final dimensions and placement of the breakwaters will be determined through a design process that includes public involvement, additional investigational studies at the sites, and a permitting process. Therefore, the final footprint for breakwater construction and the number of acres of reef at each site may vary from the description below. However, the overall goal across both project sites is to create approximately 4 acres of reef and 18.8 acres of salt marsh.

1. Construction activities at PGS II would include completion and expansion of an existing breakwater with a crest width anticipated to be 100 ft and total height anticipated to be 3.5 ft. Average water depth is estimated to be -4 ft (below) MLLW, therefore final crest elevation is anticipated to be -0.5 ft (below) MLLW. The calculated volume of material is approximately 11,000 tons of riprap/fossilized oyster shell, but may vary based on final design requirements. It is anticipated that a barge mounted crane (or other similar heavy equipment) would be used to distribute material according to the design cross-section. A footprint of approximately 1.9 acres of fine-grained sediment would be covered with riprap/fossilized oyster shell. Additionally, up to 6 warning signs placed on 12-inch diameter posts would be pushed into the bottom adjacent to the breakwater with appropriate signage for marine traffic. No materials are anticipated for removal from the site. Additional opportunities at PGS II to meet the overall goal of 4 acres of reef habitat will be evaluated during a comprehensive design process for the proposed project.

2. Activities at the Sanders Beach site would include construction of breakwaters up to approximately 2,400 ft long with appropriately sized gaps between structures to maintain tidal exchange. A footprint of up to approximately 3.15 acres of fine-grained sediment would be covered with a riprap/fossilized oyster shell. The breakwaters crest width is anticipated to be 30 ft and total height is anticipated to be 3.5 ft. Average water depth is estimated to be -2.5 ft (below) MLLW, therefore final crest elevation is anticipated to be +0.63 ft (above) MLLW. Calculated volume of material is approximately 14,000 tons of riprap/fossilized oyster shell but may vary based on final design requirements. It is anticipated that a barge mounted crane (or other similar heavy equipment) would be used to distribute material to the design cross-section. Additionally, 8 warning signs placed on 12-inch diameter posts would be pushed into the bottom adjacent to the breakwater with appropriate signage for marine traffic. No materials are anticipated for removal from the site. The final design for Sanders Beach may result in a smaller footprint for the breakwaters based on public involvement and further site studies during the design process.

12.9.3.3 Anticipated Breakwater Construction Process
Breakwaters would be constructed at both sites using a similar process; however, the PGS II has deeper water (approximate 4.5’ depth, on average) and a firmer (sandy) bottom compared to the Sanders Beach site, which has an average water depth of approximately 3.0 ft. The outer limits of the breakwaters would be marked with poles pushed into the bottom and extending approximately 3 ft above the water surface. Prior to working in the area, existing bottom elevations along the breakwater
would be surveyed and elevation controls would be established. The height of the breakwater would be based on bottom elevations and crest elevation. Barriers, navigation warning signs (lighted and unlighted), and other markers would be established along the work area to protect boaters. These would be maintained throughout the project until permanent markers are established. Sign installation methods will be selected to minimize the generation of underwater sound. Therefore, it is expected that sign posts would be pushed in using equipment on-site during breakwater construction, such as a track hoe or may be jetted in if needed.

Best management practices would be implemented to control turbidity levels and meet state requirements during construction activities. The State of Florida requires that turbidity levels are less than or equal to 29 Nephelometric Turbidity Units (NTU) above natural background conditions for waters of the State. Floating turbidity screens that meet FDEP specifications would be deployed during project construction to contain and control turbidity or silt in the project area.

During construction, it is anticipated that one or more work barges with a crane (or other similar heavy equipment) would be positioned along the seaward side of the breakwater. A material barge would be positioned seaward of the work barge in sufficient depth of water, but within reach of the equipment. The work and material barges would safely meet the draft requirements in the areas and be operated and maintained in sufficient draft to the extent practical. Placement of the riprap/fossilized oyster shell would be monitored to ensure the breakwater dimensions, slopes and crest elevation as designed are achieved.

12.9.3.3.1  Salt Marsh Habitat Creation

After the breakwaters have been constructed, selected landward areas would be filled with dredge material obtained from suitable source areas near the project sites. Selection of the type(s) of dredge to be used for marsh creation would be based on the final design and environmental considerations. To avoid potential impacts to protected species, the proposed project would not use a hopper dredge unless required due to site conditions at the selected source sites. Additional site evaluation and sediment testing would also be conducted to identify the most suitable borrow sites. Due to larger sediment grain size and weight characteristic of the area, which settle more quickly, perimeter containment dikes are not anticipated for construction. As described above, floating turbidity screens would be deployed during salt marsh habitat creation activities to control turbidity levels and meet State of Florida requirements. Sediment controls would remain in place throughout the dredging and filling process.

The marsh creation areas would be filled with dredged material beginning at the most landward extent designed for the marshes and filling seaward. Filling with dredge material would continue until marsh elevations determined through the final design process are achieved. Marsh elevations would be designed to meet the requirements of native marsh plant species and to withstand normal wave heights for the project area. Based on similar efforts, it is estimated that a total of approximately 102,000 cubic yards of fill would be required to create 18.8 acres of salt marsh. Sediment controls would remain in place throughout the dredging and filling process. Once the entire marsh creation areas are constructed, local, native emergent vegetation would be planted. The created marsh areas would be monitored to determine success and identify any corrective action needed.
12.9.3.3.2 Anticipated Construction Schedule
Construction is anticipated to take between 6-12 months for all elements. A full schedule would be dependent on the date funding becomes available, contractor award, and any species-specific restrictions required from reviews pursuant to the Endangered Species Act (ESA) of 1973, as amended (16 U.S.C. §1531 et seq.). Species-specific issues and BMPs are being addressed with NOAA and DOI as part of separate ESA reviews.

12.9.3.3.3 Best Management Practices
The following industry-accepted BMPs are anticipated for the proposed project:

- Anchoring sites would be situated to avoid impacts to seagrass, if found to be in the project area. Access over existing seagrass would also be avoided to the extent practicable to minimize prop-scarring impacts.
- Floating turbidity screens would be deployed during project construction to contain and control turbidity or silt in the project area. Turbidity levels would be monitored during construction. Additional BMPs would be implemented if turbidity levels exceed local and state regulatory/permit levels.

Some temporary shading from workboats during construction periods may occur; however, it is anticipated that no more than 4 barges would be located on the project site at any time during construction. Assuming barge dimensions of 35’x195’, the total shadow effect of the boat/barges is 27,300 sq. ft. In addition to specific measures noted above, the project would adhere to recommendations for Sea Turtle and Smalltooth Sawfish Construction Conditions (2006), U.S. Fish and Wildlife Service (USFWS) Standard Manatee Conditions for In-water Work (2011), NOAA’s Measures for Reducing Entrapment Risk to Protected Species (2012), and any applicable federal and state permit conditions. Any BMPs recommended through the ESA consultation process to avoid impacts to Gulf Sturgeon and other protected species would also be implemented.

12.9.4 Operations and Maintenance

**Anticipated pre and post project monitoring activities:** Monitoring activities would be performed at various times beginning prior to construction and continuing up to seven years post construction. The monitoring activities would include:

- Topographic/bathymetric surveys,
- Vegetation surveys (i.e. species composition and % cover), and
- Biological monitoring (i.e. oyster and invertebrate density and biomass)

Monitoring would ensure project designs are correctly implemented during construction and in a subsequent period, defined by contract, where corrective actions could be taken. Post construction performance monitoring would also be conducted to evaluate the project’s performance over time with respect to the agreed upon Offsets, goals, and objectives. In general, components of this monitoring would evaluate the production and support of organisms on the breakwater for the establishment of reefs (e.g., benthic secondary productivity) and the performance of the created salt marsh habitats.

Components of this monitoring would include collecting information with respect to: the breakwater height and structural integrity; salt marsh coverage; water quality parameters (e.g., salinity, dissolved
oxygen), survival of planted species/vegetated area, bivalve and algal presence, coverage, and composition on the reef.

**Anticipated Maintenance / Adaptive Management Activities:** If the breakwaters are not performing as designed or anticipated, then adaptive management procedures would be used to correct the structures. Adaptive management activities may include adding additional material to the surface of a breakwater, adding additional hardened structure (e.g. riprap), adding additional natural materials (e.g. fossilized oyster shell), and/or replacing warning signs. All monitoring and adaptive management procedures would follow disturbance minimization measures, especially as they relate to vessel use around the project area.

**Anticipated short term maintenance activities:** For the breakwaters, one maintenance activity would take place within the first four years following construction. The maintenance activity would allow for the capping of the breakwaters with riprap and fossilized oyster shell material. The breakwaters are anticipated to experience the greatest consolidation of the subgrade in the first years following construction. The need for additional placement of rock and shell on the breakwater would be assessed based upon the monitoring plan. Maintenance activity construction methods are similar to the breakwater construction process as described in the Construction and Installation section above. Maintenance activities for the created salt marsh habitat may occur within the first 5 years following construction. Maintenance may include additional plantings of native salt marsh habitat to meet project performance criteria.

**Anticipated long term maintenance activities:** No long term operations or maintenance requirements are anticipated.

**12.9.5 Affected Environment and Environmental Consequences**

**12.9.5.1 No Action**

Both OPA and NEPA require consideration of the No Action alternative. For this Phase III ERP proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected resources subsections would prevail. Restoration benefits associated with this project would not be achieved at this time.

**12.9.5.2 Physical Environment**

**12.9.5.2.1 Geology and Substrates**

**Affected Resources**

**Geology**

The Pensacola Bay system is generally shallow with a total surface area greater than 144 square miles. The system is comprised of several embayments of which Pensacola Bay is the largest followed by East Bay, Escambia Bay, Santa Rosa Sound, Blackwater Bay, and Big Lagoon. The estuarine embayments are within the Gulf Coastal Lowlands subdivision. The lowlands are a series of parallel terraces rising from the coast in successively higher levels. They formed during the Pleistocene Epoch (Great Ice Age) when
fluctuating sea levels were associated with the growth and melting of ice caps. Dunes, barrier islands, beach ridges, and other topographical features were stranded inland as seas receded. Land surfaces of the lowlands are generally level and less than 100 ft above sea level. Substantial areas are less than 30 ft above sea level and are characterized by extensive wetlands. Higher elevations are present in the general area of Pensacola, on the west side of Pensacola and Escambia bays (Thorpe et al. 1997).

Soils
The Pensacola Bay area has been sculptured from an alluvial plain underlain by sand, gravel, silt, and clay. The Soil Survey for Escambia County identifies the areas for the proposed project as “Waters of the Gulf of Mexico” and no soils data is provided. The natural bay shoreline is fringed by wide, shallow sand flats between 3 and 5 ft deep.

Environmental Consequences
The geological and substrate resource in the project area would be affected by the proposed actions through the modification of soft bottom bay habitat into a reef and the excavation of fill materials to create salt marsh habitat. In total, the project would have a footprint of approximately 4 acres where fine-grained sediment would be covered with rip rap/fossilized oyster shell. The proposed PGS II would have a footprint of approximately 1.9 acres; however, this footprint may change based on the design process. The proposed Sanders Beach site would have a footprint of up to approximately 3.15 acres; however, this footprint may change based on the design process. Additionally, a total of up to 14 warning signs placed on 12-inch diameter posts would be installed adjacent to the breakwater with appropriate signage for marine traffic.

The excavation area(s) for fill to create 18.8 acres of salt marsh habitat has not been identified, but would be located near the project sites or a land-based borrow site would be used if necessary. Fill material would be tested/certified as appropriate for use at the location. Excavation of fill material within the project site would disturb geologic and substrate resources, including infaunal species, through their direct removal. Excavation of fill material within the project site would result in a short-term disturbance to geologic and substrate resources, including infaunal species, through their direct removal.

The proposed breakwater construction to create a reef would result in long-term, moderate benefits to substrate resources through the creation of benthic habitat associated with hard structure reef materials and the dampening of wave energy resulting in a reduction of shoreline erosion. Benefits would be achieved directly at the proposed projects sites and at immediately adjacent areas.

Finding: There would be long-term, moderate direct impacts to geologic and soil (substrate) resources over the life of the project because the existing sandy substrate would be covered with hard structure breakwater materials. However, the net benefits of the habitat creation and erosion reduction outweigh this direct impact by increasing benthic habitat diversity and creating structural complexity which supports a greater diversity and abundance of marine aquatic species. No long term indirect impacts to geologic and soil resources are anticipated due to the abundance of similar benthic habitat nearby that would be unaffected by the project. Short-term disturbance due to on-site excavation of fill material, if required, would be localized and minor. The excavated sites would recover quickly due to sediment movement and repopulation of infauna from adjacent areas.
Affected Resources

The Pensacola Bay system watershed covers nearly 7,000 square miles in northwest Florida and southern Alabama. It includes a series of interconnected estuaries, including Escambia Bay, Pensacola Bay, Blackwater Bay, East Bay, and Santa Rosa Sound, and three major river systems: the Escambia, Blackwater, and Yellow Rivers. The entire system discharges into the Gulf of Mexico south of Pensacola, Florida. Pensacola Bay borders the City of Pensacola to the north, Escambia Bay to the east, Big Lagoon to the west, and the Gulf Breeze Peninsula and Santa Rosa Island to the south. Pensacola Bay provides the system’s outlet to the Gulf of Mexico through an approximately ½ mile wide pass (Caucas Channel). Sources of water to the bay include the system’s rivers through adjacent bays, the Gulf of Mexico, and several bayou basins, including Bayou Grande and Bayou Chico. Pensacola Bay is the deepest of the component bays of this system, with an average depth of 19.5 ft (Olinger et al. 1975). Pensacola Bay is a micro tidal estuary with a mixed diurnal/semi-diurnal tide, sometimes there are two highs and two lows in a day and other times only one of each. The nearest National Ocean Service tide gage is located at the Port of Pensacola.

Currents

The circulation in the Pensacola Bay is dependent upon factors such as astronomical tides, wind, river flow, bathymetry, and density variations. The Pensacola Bay is located along a section of coast with a low amount of tidal energy to drive currents within the bay system resulting in a relatively weak tidal-driven circulation. Predicted currents within the Bay have a mean ebb velocity of about 3.0 ft per second directed toward the west-southwest diagonally across the main channel. The mean flood velocity is 2.7 ft per second directed east-northeast. Low slack water occurs from 1 to 3 hours after low water with high slack water occurring approximately 3 to 4 hours after high water. Normal currents have been recorded to be between 3.9 and 4.2 ft per second over a two hour period during the strongest ebb tides and 2.8 ft per second during the strongest flood tides (Ketchen and Staley 1979).

The large scale circulation in the Gulf is influenced by the loop current and associated eddies, wind, waves, and density structures of the water column. The general circulation pattern within the inshore region is more strongly influenced by the astronomical tides, local winds, and also by the open Gulf circulation, which act as a forcing mechanism. The combination of local winds and tides are contributors to the nearshore shelf circulation (U.S. ACOE 1985).

Tides

The tides of Pensacola Bay and Gulf of Mexico are mixed and dominated by diurnal components for much of the lunar cycle, although, some semi-diurnal characteristics are evident during neap tide. Mixed tides are common along most of the Gulf coast with varying strengths of semi-diurnal and diurnal components (Lillycrop 1983). The mean tidal range at the Pass entrance is 1.1 ft and 1.6 ft in the upper reaches of the bay system with neap tide ranges averaging 0.5 ft. The long-term predicted tide range at Pensacola varies from being almost negligible to a maximum 2.7 ft.

Water Quality

Pensacola Bay is within an urbanized watershed. It receives nonpoint source pollution via surface runoff and discharges from Bayou Grande, Bayou Chico and Bayou Texar. Pensacola Bay is identified as an impaired water body by FDEP. Total Maximum Daily Loads have been developed for coliform, identified
as the primary source of impairment. Component bayous, formerly centers of productivity in the system, are now among the most anthropogenically stressed. Most act as sinks for nonpoint source pollution and Bayou Chico has also received substantial historic point source discharges.

The Clean Water Act requires that the surface waters of each state be classified according to designated uses. Florida has six classes with associated designated uses, which are arranged in order of degree of protection required. According to 62.302.400, F.A.C., the majority of the project occurs within Class III waters. Therefore, standards to meet the following uses apply to the project area: Fish Consumption, Recreation, Propagation and Maintenance of a Healthy, Well-Balanced Population of Fish and Wildlife. The surface waters of the state are Class III unless described in Florida rule. The Pensacola Bay watershed is also identified as a priority waterbody under the Surface Water Improvement Management (SWIM) Program (Thorpe et al. 1997). The SWIM Program was created by Florida to develop comprehensive plans for at-risk water bodies and direct the work needed to restore damaged ecosystems, prevent pollution from stormwater runoff and other sources, and educate the public.

**Outstanding Florida Waters**
Florida Statutes grant the FDEP authority to establish rules that provide for a special category of waterbodies within the state called Outstanding Florida Waters. Waterbodies with this designation receive special protection because of their natural attributes. There are no waters that are designated as Outstanding Florida Waters located within or adjacent to the project area. A complete listing of Outstanding Florida Waters is provided in Rule 62-302.700 (9), Florida Administrative Code.

**Aquatic Preserves**
In 1975, Florida enacted the Aquatic Preserve Act to protect Florida’s coastline in shallow waters and estuaries. Two aquatic preserves are located in the general area. Ft. Pickens Aquatic Preserve is approximately 4 miles south of the project area. The Yellow River Marsh Aquatic Preserve is located approximately 9 miles to the west. Waters in aquatic preserves and state parks require additional water quality considerations; the State would be consulted to determine any concerns due to proposed project activities.

**Floodplain**
The project is located in FEMA designated Flood Zones according to the Flood Insurance Rate Maps for Escambia County. FIRM No. 12033C0390G Escambia County, (Effective Date September 29, 2006). The project is located in Zone VE with base flood elevation 11ft. VE indicates coastal flood zones with velocity hazards (wave action) with base flood elevations determined. The Pensacola Bay System includes three major river systems: the Escambia, Blackwater, and Yellow Rivers and smaller tributaries of these rivers and embayments.

**Wetlands**
The proposed project would be located in open waters. The proposed project sites do not support upland wetlands.

**Environmental Consequences**

**Hydrology**
Hydrology, including tides and currents, would be unaffected because the proposed project would have a minimal footprint located adjacent to the shoreline.
Water Quality
The project would have short-term minor direct impacts to the water quality in the area. There would be minor, long term benefits to water quality within the immediate project area by the filtering action of the oysters and other shellfish expected to colonize the constructed breakwater. No indirect, long-term impacts to overall water quality are expected in the vicinity of the project sites due to its small footprint.

Turbidity
Minor siltation may be associated with the dredging and placement operations and its re-suspension may result in a slight increase in turbidity. No significant elevation of turbidity is expected. The State of Florida's waters would not be significantly affected and water clarity would return to ambient conditions shortly after sediment placement at the disposal site. No long-term impacts and only minor short-term impacts are expected to result from the placement of the fill material.

Contaminants
Pre-construction sediment sampling would be conducted to select excavation sites that would provide clean dredged material for the creation of salt marsh habitat. Samples would be analyzed for presence of contaminants and only uncontaminated sources of soils would be utilized. Therefore, no impacts due to contaminants are anticipated as a result of the dredging and placement of fill material.

Outstanding Florida Waters
The project area is not directly in an area designated as an Outstanding Florida Waters, and therefore no direct or indirect impacts are anticipated.

Aquatic Preserves
No impacts are anticipated to Aquatic Preserves due to their distance from the project area.

Floodplains
The majority of the project is located below the mean high water level and would not impact floodplains in or near the project area.

Wetlands
The project is not anticipated to adversely impact wetlands. A more detailed description of salt marsh habitat can be found below. The project would benefit salt marsh habitat through the creation of approximately 18.8 acres.

Findings: There would be no direct adverse effect on hydrology expected from the proposed project. Short term, direct impacts due to proposed construction activities would result in a detectable change to water quality, but the change would be expected to be small and localized. These impacts would quickly become undetectable and State water quality standards as required by the Clean Water Act would not be exceeded. There are no expected short or long term indirect adverse impacts to hydrology, water quality, protected waters, floodplains, or wetlands. The proposed project would result in long-term, moderate, beneficial impacts on wetlands from the creation of marsh habitat as well as long-term minor beneficial impacts on water quality from the establishment over time of reefs on constructed breakwaters that would support species such as oysters that filter water. The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army
Corps of Engineers (Corps) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the Corps and final authorization pursuant to CWA/RHA will be completed prior to project implementation.”

12.9.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
The U.S. Environmental Protection Agency (U.S. EPA) has established the 8-hour ground-level ozone standard. Under this standard, U.S. EPA can designate an area as “nonattainment” if it has violated the 8-hour ozone standard. U.S. EPA may also designate an area as “attainment/unclassifiable,” which is an area where monitored air quality data show either that the area has not violated the ozone standard over a three-year period or that there is not enough information to determine the air quality in the area. The entire state of Florida is designated as an attainment area for the 8-hour ozone standard. The current air quality index in the project area is good, with respect to both National Ambient Air Quality Standards (NAAQS) and carbon dioxide (CO₂) emissions.

Greenhouse Gases (GHGs) are chemical compounds found in the Earth’s atmosphere that absorb and trap infrared radiation as heat. Global atmospheric GHG concentrations are a product of continuous emission (release) and removal (storage) of GHGs over time. In the natural environment, this release and storage is largely cyclical. The principal GHGs emitted into the atmosphere through human activities are CO₂, methane, nitrous oxide, and fluorinated gases, such as hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride (USEPA 2010). CO₂ is the major GHG emitted, and the burning of fossil fuels accounts for 81 percent of all U.S. GHG emissions (USEPA 2010). Total GHG emissions in the state of Florida from 1990 to 2007 have increased at an average rate of 2.1% per year. Total GHG emissions in 2007 were 290 million metric tons of CO₂ equivalent (MMTCO₂E). In 2007, 91 percent of GHG emissions in Florida were CO₂ emissions (FDEP 2010).

Environmental Consequences
Air quality would be temporarily and insignificantly affected by the proposed action. Emissions are expected to occur and would result from the operation of the construction equipment, and any other support equipment which may be on or adjacent to the job site. Construction activities are anticipated to be completed within 12 months. The project area is currently in attainment with National Ambient Air Quality Standards parameters. The proposed action would not affect the attainment status of the project area or region. A State Implementation Plan conformity determination (42 United States Code 7506 (c)) is not required since the project area is in attainment for all criteria pollutants.

Finding: There would be only short term, minor direct impacts to air quality by the proposed action. No indirect impacts to air quality are expected. Based on the relatively small amount of construction equipment and short construction timeframe, the project would have short-term minor impacts but no long-term impacts on GHG emissions.

12.9.5.2.4 Noise

Affected Resources
Terrestrial and marine wildlife have a range of sensitivities to noise, which may affect their behavior and ability to utilize areas affected by noise. Unfortunately, specific noise tolerance levels for species and...
their impacts are not well established in the literature. Ambient noise levels in the project area are low to moderate. The major noise producing sources in the proposed project area year round are urbanized areas, adjacent roads, and recreational and port related boating traffic. Ambient noise is comprised of a variety of both natural and man-made sounds. Natural and man-made sources of noise affecting terrestrial areas include wind, wildlife (such as birds), construction, roads, air planes, and other urban sources. Natural sources of underwater sound include: earthquakes, wave action, wind, and rain, as well as sounds produced by marine animals. Major contributors of man-made sources of underwater sound include: commercial ships and recreational watercraft, oil and gas exploration, sonar, marine pile driving, and underwater explosions.

Many species are sensitive to noise levels; for example, nesting birds have been observed to abandon nests due to high levels or prolonged exposure to noise. Marine mammals have evolved an extremely sharp sense of hearing in marine environments where sound is very reliable, especially over long distances. Marine mammals can distinguish biologically important signals among many different underwater sounds; however, some types of sound may disrupt or injure marine mammals. The impacts of noise depend on a variety of factors including the species and behavior of the animal, as well as the frequency, intensity, and duration of the noise. Pile driving construction projects associated with bridge construction have used interim fish injury thresholds in consultation with NMFS of a peak sound pressure level of 208 decibel (dB) and a cumulative sound exposure of 187dB. There is evidence that no injuries to fish occur at cumulative sound exposure levels above 187 dB, therefore these interim levels are considered conservative (FHA 2012).

**Environmental Consequences**

Noise from construction equipment such as the dredge and other associated equipment would be evident in the project area. While this noise would be evident to those workers on the job and any users of the beach in proximity of the project, it would be short-term and insignificant. Normal noise levels would be achieved at the end of each workday and after completion of construction, anticipated to take approximately 10 to 12 months. The project is not anticipated to increase vessel traffic or noise impacts in the long term. Warning signs on posts less than 12-inches in diameter would be installed in sandy substrates; therefore, it is anticipated they would be pushed into the bottom with equipment used during construction (e.g. backhoe). Underwater noise levels, both peak levels and cumulative exposure, are expected to remain below levels that would adversely affect marine species. Marine species such as sea turtles, dolphin, and manatee that may potentially occur within the project area are mobile and have the ability to move away from the proposed project area. In addition, conservation conditions will be implemented during construction to monitor for the occurrence of these species to avoid adverse impacts.

**Finding:** The proposed activities would result in short term, minor impacts to noise due to use of construction equipment. There would be short term indirect impacts due to construction noise to wildlife that may occur within the vicinity of the project. Pre-construction surveys would identify any nesting bird species that may be disturbed by construction noise and BMPs developed in consultation with USFWS would be implemented to minimize this potential disturbance. The Trustees evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ *Sea Turtle and Smalltooth Sawfish Construction Standards*, NMFS’ *Measures for Reducing Entrapment Risk to Protected Species* (2012), *Standard Manatee Conditions for In-Water*
Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

12.9.5.3 Biological Environment
The Pensacola Bay system supports an array of biological communities and species characteristic of a northern Gulf of Mexico estuary. Estuarine habitats include tidal flats, benthic microalgae communities, seagrass beds, oyster beds, tidal marshes, and planktonic and pelagic communities. These resources in the Pensacola Bay system have been subject to sustained anthropogenic stress for some time.

12.9.5.3.1 Living Coastal and Marine Resources

Coastal and Submerged Aquatic Vegetation

Affected Resources
Submerged Aquatic Vegetation (SAV) or seagrasses are rooted vascular plants that grow in fresh, brackish, and saltwater in areas dominated by soft substrates such as sand or mud. Marine species of seagrasses, grow in the littoral (intertidal) and sublittoral (subtidal) zones of oceans. Freshwater and brackish seagrass species are important components of estuary systems and inland waters. In the northern Gulf of Mexico six species of seagrasses are common (Table 12-8).

Table 12-8. Common Seagrass species in the Gulf of Mexico.

<table>
<thead>
<tr>
<th>Species Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manatee grass</td>
<td><em>Syringodium filiforme</em></td>
</tr>
<tr>
<td>Shoal grass</td>
<td><em>Halodule wrightii</em></td>
</tr>
<tr>
<td>Turtle grass</td>
<td><em>Thalassia testudinum</em></td>
</tr>
<tr>
<td>Widgeon grass</td>
<td><em>Ruppia maritima</em></td>
</tr>
<tr>
<td>Paddle grass</td>
<td><em>Halophila decipiens</em></td>
</tr>
<tr>
<td>Star grass</td>
<td><em>Halophila engelmannii</em></td>
</tr>
</tbody>
</table>

The presence and productivity of seagrasses in nearshore environments largely depends upon light availability. Seagrasses are generally restricted to shallow ocean or estuarine waters due to the rapid decline of light with depth (Green and Short 2003). In addition to the availability of light, water temperature, salinity, sediment and water nutrient content, wave fetch (length of open water over which the wind can blow unimpeded), turbidity, and water depth (U.S. Fish and Wildlife Service [USFWS] 1999a; Koch 2001; Merino et al. 2005) affect seagrasses. Seagrasses generally grow in salinities that range from freshwater to 42 parts per thousand (ppt) and can tolerate short-term salinity fluctuations, but most have an optimum salinity range from 24 to 35 ppt.

Seagrasses, as well as freshwater and brackish SAV, provide essential food, shelter, and nursery habitats for commercial- and recreational-fishery species and for the many other organisms such as shrimp that live and feed in seagrass beds or shallow marshes. In addition, seagrass beds can serve as Essential Fish Habitat (EFH) for federally managed species. Besides offering habitat, food, and shelter for many species, seagrasses filter contaminants and sediments, improve water quality, produce and export organic matter, dampen wave energy and currents, and improve the overall ecosystem through landscape-level biodiversity (Dawes et al. 2004).
Seagrasses were formerly abundant in this system but have functionally “disappeared” from the system since the mid-1970s, with the exception of Santa Rosa Sound (Collard 1991a; 1991b). A great deal has been written concerning the loss of seagrasses in the Pensacola Bay system (Hopkins 1973; Rogers and Bisterfield 1975; Olinger et al. 1975; Stith et al. 1984; Reidenauer and Shambaugh 1986). The most current study of seagrass coverage for the Pensacola Bay area was conducted more than 10 years ago by the U.S. Geological Survey National Wetlands Research Center by using natural-color aerial photography taken in 1992 at a 1:24,000 scale as part of the northeastern Gulf of Mexico seagrass mapping project.

Major causes of seagrass loss in Pensacola Bay were sewage and industrial waste discharges, dredge and fill activities, beachfront alteration, and changing watershed and land-use characteristics. According to the U.S. EPA (1975), the disappearance of several small beds near the north end of the Pensacola Bay Bridge was documented in 1951 and was likely attributable to dredging. In 1960, 372 ha (918 acres) of seagrass were mapped. In that same year, the Port of Pensacola was enlarged, which involved extensive dredge and fill activities. Additional dredging was done to the port in 1967. Most beds declined along the southern shore of Pensacola Bay and East Bay and disappeared by 1974. Based on historical data, seagrasses in Pensacola Bay declined from 372 ha (918 acres) in 1960 to 56 ha (137 acres) in 1980. In 1992, seagrass beds had increased to 114 ha (282 acres). Santa Rosa Sound and Big Lagoon are two of the few remaining bodies of water within the Pensacola Bay system that still harbor seagrass beds (Schwenning et al. 2007).

The Project GreenShores initiative included efforts to restore seagrasses. In 2003, the first phase at Project GreenShores at Site I planted 3,900 propagated seedlings of *Ruppia maritima*. Subsequent surveys have shown that of the total of 30 plots of seagrass planted, most were lost due to Hurricane Ivan in 2004. Additional plantings were held at Site 1 to continue efforts to establish seagrasses. From 2004 to 2006 a series of *Ruppia maritima* plots and mats totaling 74.23 m² were planted. In May 2007, surveys by the FDEP found 10,051 m² present from those plantings occurring landward of the created marsh islands. During the 2007 survey, *Ruppia maritima* was the only species found except at one monitoring site, which contained *Halodule wrightii* (50% cover, 1m² plot).

Volunteer plantings of *Ruppia maritima* and *Halodule wrightii* also took place in 2007-2008 at Project GreenShores Site II. Observations since plantings indicate that predominately *Ruppia maritima* has survived within an area called Hawkshaw Lagoon, an artificially created lagoon adjacent to shoreline revetted with a mix of limestone and concrete rubble. At the Project Greenshores Site II, some *Ruppia maritima* and *Halodule wrightii* may be present in the general area as a result of previous restoration attempts (last known planting was in 2008), but seagrasses are not believed to be within or adjacent to the footprint of the proposed breakwater structure or marsh creation areas. Seagrasses are not known to be present in the Sanders Beach project area.

*Environmental Consequences*

The occurrence of seagrasses within or adjacent to construction activities is unlikely due to site conditions such as water depth, wave energy, water quality, and other past disturbance. Therefore, no environmental consequences to seagrass beds are anticipated. Instead, the proposed project is likely to benefit water quality and reduce near-shore wave energy within the project area, which may make conditions more favorable for the re-establishment of seagrasses.
Finding: Due to the either lack of existing seagrass beds or minimal coverage of seagrass in the project area, no direct, adverse impacts from the proposed activities are expected. If determined as necessary, surveys for seagrass would be conducted within the footprint of construction activities. Additionally, best management practices to avoid impacts to seagrass have been incorporated into the construction process including 1) anchoring sites would be situated to avoid impacts to seagrass, if found to be in the project area; 2) access over existing seagrass would be avoided to the extent practicable to minimize prop-scarring impacts; and 3) turbidity levels would be monitored during construction and additional BMPs would be implemented if turbidity levels based upon local and state regulatory/permit levels. No indirect adverse impacts to seagrass beds are expected due to the small footprint of the proposed activities. The project may result in long term indirect benefits to seagrass beds due to the anticipated reduction in wave energy and improvements to water quality within the project area.

12.9.5.4 Salt Marsh

Affected Resources
Most salt marsh habitat in the Pensacola Bay system occurs in the lower portions of river floodplains and tidal creeks (Stith et al. 1984). The proposed project would be located in open waters. Restoration of salt marsh habitat has occurred within Pensacola Bay as part of Project GreenShores efforts; however, salt marsh wetlands do not occur within the Sanders Beach site project area. Project GreenShores included the creation of salt marsh habitat at two sites (Figure 12-10). In 2003, eight acres of salt marsh was created at Site 1 using 35,000 cubic yards of fill and planted with 40,000 Spartina alterniflora plants. In 2007, three intertidal marsh islands were created at Site 2 using 16,000 cubic yards of fill and planted with 30,000 Spartina alterniflora plants. These created marsh areas have suffered losses in area due to storms and other site conditions that resulted in erosion and migration of the intertidal marsh islands.

Environmental Consequences
The proposed project activities would include construction of breakwaters in open water areas that currently do not support salt marsh habitat. The breakwaters would be sited and designed to reduce the wave energy affecting the shoreline within the project area, resulting in long-term beneficial impacts to existing salt marsh habitat. The project goals also include the creation and planting of approximately 18.8 acres of salt marsh habitat. The selection of sites for the excavation of fill to create salt marsh would be based upon additional engineering studies and surveys of the project area. Selected excavation sites, as well as sites for marsh creation, would be chosen to prevent or minimize potential adverse impacts on existing marsh areas within the project area.
Finding: No adverse direct impacts to salt marsh habitats are anticipated due to the selection of open water sites for breakwater construction and dredging activities. Instead, the proposed project would have long-term direct benefits by creating and protecting approximately 18.8 acres of salt marsh through the proposed living shoreline techniques. In addition, the proposed project would have long-term indirect benefits to salt marsh habitat at adjacent locations by reducing the wave energy affecting the shoreline and reducing the potential erosion of existing habitats.

12.9.5.5  Protected Species
The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by both USFWS and NOAA. For consultation with USFWS, the Trustees first reviewed the species list for Escambia County, Florida. Table 12-9 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

---

6 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
### Table 12-9. List of State and Federally Protected Threatened and Endangered Species for Escambia County.

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle; Leatherback turtle, Loggerhead turtle</td>
<td>The main risk to sea turtles during implementation of this project would come from in-water boat/material collisions during construction which could result in harm or mortality. Consultation has been completed with NMFS, the agency that has jurisdiction to review impacts to sea turtles in the estuarine and marine environments. There will be a limited amount of terrestrial work to develop the salt marsh habitat. However, sea turtles are not known to nest on the surrounding beaches. Therefore, no impacts to nesting sea turtles are anticipated. No proposed or designated critical habitat for sea turtles occurs within the action area; therefore, none will be adversely affected or modified.</td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>The county in the project area is not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the project waters (U.S. Department of the Interior, 2011). The main risk to manatees during implementation of this project would come from in-water boat/material collisions which could result in harm or mortality. Measures to avoid these impacts are described below.</td>
</tr>
<tr>
<td>Piping plover and Red knot</td>
<td>Habitat at the project site is not typically used by piping plover or red knot. However, individuals could be present during the wintering period. The main risk to Piping plovers and Red knots is from human disturbance while resting and foraging in habitats adjacent to work areas. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause individuals to move to a nearby area. Because foraging/resting habitats are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable. The proposed project will not result in any changes to shoreline habitats where piping plover could be feeding or resting and is not expected to increase visitor use; therefore, no indirect impacts are expected. Piping plover critical habitat is not designated in or near the action.</td>
</tr>
<tr>
<td>Gulf sturgeon</td>
<td>NMFS is providing consultation for Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon will not be considered in the consultation with the USFWS.</td>
</tr>
</tbody>
</table>

In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species managed by NMFS (status indicated) and their associated critical habitat, if appropriate:

- **Gulf Sturgeon**, *Acipenser oxyrinchus desotoi*, Threatened
- **Smalltooth Sawfish**, *Pristis pectinata*, Endangered
- **Green Sea Turtle**, *Chelonia mydas*, Endangered
- **Loggerhead Sea Turtle**, *Caretta caretta*, Threatened
- **Hawksbill Sea Turtle**, *Eretmochelys imbricata*, Endangered
- **Leatherback Sea Turtle**, *Dermochelys coriacea*, Endangered
- **Kemp’s Ridley Sea Turtle**, *Lepidochelys kempii*, Endangered.
Detailed information for a number of the species considered follows.

**Affected Resources for Protected Species**

**12.9.5.6 Sea Turtles**

There are five species of sea turtles that are found within the Gulf of Mexico: green sea turtle, hawksbill sea turtle, loggerhead sea turtle, Kemp’s ridley sea turtle, and leatherback sea turtle. All five species of sea turtles found in the Gulf of Mexico are listed under the ESA. The Gulf populations of green (breeding populations in Florida), hawksbill, Kemp’s ridley, and leatherback sea turtles are listed as endangered. Loggerhead (northwest Atlantic distinct population segment) and green (except the Florida breeding population) sea turtles are listed as threatened.

Sea turtles in the Gulf (with the exception of the leatherback turtle) have a life history cycle where hatchlings develop in open ocean areas (e.g., continental shelf) and juvenile and adult turtles move landward and inhabit coastal areas. Leatherback turtles spend both the developmental and adult life stages in the open oceanic areas of the Gulf of Mexico (Dow et al. 2012). Sea turtles nest on low and high energy ocean beaches and on sandy beaches in some estuarine areas. Immediately after hatchlings emerge from the nest, they begin a period of frenzied activity. During this active period, hatchlings move from their nest to the surf, swim, and are swept through the surf zone, and continue swimming away from land for up to several days (NOAA 2009a). Once hatching turtles reach the juvenile stage, they move to nearshore coastal areas to forage. As adults, they utilize many of the same nearshore habitats as during the juvenile developmental stage. Sea turtles utilize resources in coral reefs, shallow water habitat (including areas of seagrasses), and areas with rocky bottoms.

All five species of sea turtles are migratory and thus have a wide geographic range (Dow et al. 2012). All five species have been observed within the Gulf Island National Seashore nesting, swimming, or feeding on the Gulf side of Santa Rosa Island or swimming or feeding on seagrass on the bay side of Santa Rosa Island (NPS 2010). Sea turtle nesting does not occur on the bay side of Santa Rosa Island (NPS 2010). The most observed nesting beaches have been found in Florida (primarily used by loggerheads, green, and leatherback sea turtles) (Dow et al. 2012); however, the PGS II does not contain beach habitat and the Sanders Beach site does not contain suitable nesting areas for sea turtles due shoreline armoring, the very small geographic area containing sand, and high recreational use.

**Marine Mammals**

Twenty-two marine mammals are native to the Gulf of Mexico: 21 pelagic species of whales and dolphins, and the West Indian manatee. Three species commonly occur at nearby Gulf Islands National Seashore and may therefore occur in the waters surrounding the proposed project: the bottlenose dolphin, *Tursiops truncatus*, Atlantic spotted dolphin, *Stenella frontalis*, and the West Indian manatee (*Trichechus manatus*). Whales are rare transients in the national seashore waters and would not be expected to use the shallow waters of the proposed project area.

**Dolphin Species**

The bottlenose dolphin, *Tursiops truncatus*, and the Atlantic spotted dolphin, *Stenella frontalis*, are the two most common marine mammals found in the Gulf of Mexico. Both species feed primarily on fish, squid and crustaceans. While the Atlantic spotted dolphin spends the majority of its life offshore, the bottlenose dolphin often travels into coastal bays and inlets for feeding and reproduction. Dolphins are protected under the Marine Mammal Protection Act (MMPA) of 1972, as amended (16 United States
NMFS has classified five U.S. stocks of bottlenose dolphins as "strategic" stocks: Eastern Gulf of Mexico Coastal; Western Gulf of Mexico Coastal; Northern Gulf of Mexico Coastal; Gulf of Mexico Bay, Sound and Estuarine; and Western North Atlantic Coastal.

**West Indian Manatee**
The Florida manatee (*Trichechus manatus latirostrus*), a subspecies of the West Indian manatee, is listed as a federally endangered species protected under the ESA. The main threat to the Florida manatee is increased boat traffic and other accidents associated with the expanding development in Florida. Manatees inhabit both salt and fresh water and can be found in shallow (5 ft to usually <20 ft), slow-moving rivers, estuaries, saltwater bays, canals, and coastal areas throughout their range where they feed on seagrass and other aquatic vegetation such as hydrilla and water lettuce.

The distribution of manatees is well known in Florida through telemetry and other studies over the past 20 years. When ambient water temperatures drop below 20° C (68°F) in autumn and winter, manatees aggregate within the confines of natural and artificial warm-water refuges (U.S. FWS 2010) or move to the southern tip of Florida. On the West coast of Florida, the northernmost natural winter refugia is Crystal River; however, several artificial (power plant warm-water outfalls, boat basins) and minor winter refugia may be used temporarily. As water temperatures rise manatees disperse from winter aggregation areas. While some remain near their winter refuges, others undertake extensive travels along the coast and far up rivers and canals. On the west coast, sightings drop off sharply west of the Suwannee River in Florida (Marine Mammal Commission 1986), although a small number of animals are seen each summer in the Wakulla River at the base of the Florida Panhandle (U.S. FWS 2010).

At nearby Gulf Islands National Seashore manatee sightings are rare but have been documented primarily in the Gulf of Mexico. Some individuals have (less frequently) been documented in Pensacola Bay and likely in the area north of Santa Rosa Island (east of the project area), as well as the Perdido Key area (Perdido Key is also located within the Gulf Islands National Seashore, but is west of the project site), where seagrass beds are present (NPS 2010).

The West Indian Manatee is designated as endangered under the ESA and depleted under the Marine Mammal Protection Act (16 United States Code [U.S.C.] 1361 et seq.). In the Gulf Coast geographic area manatees are divided into two regional management units: the northwest and the southwest regional management units. Each regional unit is composed of individuals that tend to return to the same network of warm water refuges each winter and have similar non-winter distribution patterns (FWC 2007). In addition, Florida enacted the Manatee Sanctuary Act in 1978 and declares the entire State of Florida to be a manatee “refuge and sanctuary” (FWC 2007). The FWC has developed a Florida Manatee Management Plan to provide a framework for conserving and managing manatees in Florida (FWC 2007).

**Gulf Sturgeon**
The NMFS and USFWS listed the Gulf sturgeon (*Acipenser oxyrinchus desotoi*) as a threatened species on September 30, 1991. The Gulf sturgeon, also known as the Gulf of Mexico sturgeon, is a subspecies of the Atlantic sturgeon. Adults are 180 to 240 cm (71-95 inches) in length, with adult females larger than adult males. Adult fish are bottom feeders, eating primarily invertebrates, including brachiopods, insect larvae, mollusks, worms and crustaceans. The Gulf sturgeon is an anadromous fish that migrates from salt water into coastal rivers during the warmer months to spawn. Historically, the Gulf sturgeon
occurred from the Pearl River to Charlotte Harbor, Florida. It still occurs, at least occasionally, throughout this range, but in greatly reduced numbers. River systems where the Gulf sturgeon are known to be viable today include the Mississippi, Pearl, Escambia, Yellow, Choctawhatchee, Apalachicola, and Swannee Rivers, and possibly others. The Gulf sturgeon often stays in the Gulf of Mexico and its estuaries and bays in cooler months (NOAA 2013). Most adult feeding takes place in the Gulf of Mexico and its estuaries. Telemetry data in the Gulf of Mexico usually locate sturgeon in depths of 6 m (19.8 ft) or less (federal notice). The fish return to breed in the river system in which they hatched. Spawning occurs in areas of deeper water with clean (rock and rubble) bottoms. The eggs are sticky and adhere in clumps to snags, outcroppings, or other clean surfaces. Sexual maturity is reached between the ages of 8 and 12 years for females and 7 and 10 years for males. The Gulf sturgeon historically was threatened because of overfishing and then by habitat loss due to construction of water control structures, dredging, groundwater extraction, and flow alterations.

USFWS and NMFS designated critical habitat essential to the conservation of the Gulf sturgeon. In accordance with regulations, critical habitat determinations were based on the best scientific data available for those physical and biological features (Primary Constituent Elements) essential to the conservation of the species. Nearshore waters within one nautical mile of the mainland from Pensacola Pass to Apalachicola Bay and the Perdido Key area and the area north of Santa Rosa Island were designated as critical habitat, as they are believed to be important migratory pathways between Pensacola Bay and the Gulf of Mexico for winter feeding and genetic exchange (DOI 2003). The proposed project area is located in critical habitat Unit 9 (Pensacola Bay), which provides juvenile, subadult, and adult feeding, resting, and passage habitat for Gulf sturgeon from the Escambia River and Blackwater/Yellow River subpopulations.

**Saltmarsh Topminnow**

The saltmarsh topminnow was identified by NMFS as a federal Candidate Species in 1991 (56 FR 26797) and transferred to the Species of Concern list on April 15, 2004 (69 FR 19975). The saltmarsh topminnow is also protected as a State Species of Special Concern by Florida’s Endangered and Threatened Species Rule. The saltmarsh topminnow (*Fundulus jenikins*) ranges from Galveston Bay, Texas to Pensacola/Escambia Bay, Florida. In Florida the range is limited to Perdido Bay and Pensacola/Escambia Bay estuaries (Gilbert and Relyea 1992; Lopez et al. 2010b; Peterson et al. 2003; Thompson 1999; NOAA 2009a). Small, interconnected dendritic intertidal creeks linking the mid and high salt marshes are key components to the survival of the species (Lopez et al. 2010; Lopez et al. 2010b; Thompson 1999). Marsh erosion, low stem density, conversion of marsh to deeper open areas, dredging, hard shoreline structures, and sea level rise are also major factors contributing to the habitat decline in areas used by the saltmarsh topminnow (Lopez et al. 2010b; Peterson et al. 2003; Thompson 1999). The population of saltmarsh topminnows appears to be declining with loss of habitat (NOAA 2007). Patchy populations within the Pensacola Bay system indicate that the species is more prevalent than first believed (Bass et al. 2004).

**Smalltooth Sawfish**

The smalltooth sawfish, *Pristis pectinata*, is federally listed as an endangered species. Formerly common from Texas to North Carolina, its current distribution is mainly restricted to South Florida and the Keys; adults are uncommon in the Florida panhandle (NOAA 2009b). Juveniles inhabit shallow coastal waters, especially shallow mud banks and mangrove habitats. Very few juveniles have been documented in areas north of the current range of mangroves (*i.e.*, north of 29N latitude). Adults are found with
juveniles but also in deeper water habitat (NOAA 2009b). The decline of this species is mainly attributed to mortality as bycatch in commercial and sport fisheries. The current range of this species has contracted to the peninsula of Florida, though smalltooth sawfish are common only in the Everglades region at the southern tip of the state.

Protected Bird Species
The USFWS and FWC have identified several bird species that require special protection status. However, limited habitat availability and quality in the project area is likely to reduce their direct use and occurrence within the project area.

Threatened and Endangered Bird Species
Two Federally listed bird species, the piping plover and the wood stork, and one proposed species, the red knot, are known to occur in the Florida panhandle.

The piping plover is a small North American shorebird that inhabits sandy beaches, sand flats, and mudflats along coastal areas. Piping plovers do not breed in Florida, but spend a large portion of their year wintering in the state. The final rule designating critical habitat for the wintering population of piping plover was published in the Federal Register (Vol. 66, No. 132) on July 10, 2001 (50 C.F.R. Part 17). In Escambia County Florida, designated critical habitats for wintering populations of piping plovers are outside the project area at Big Lagoon State Recreation Area, areas near Big Sabine Point on Santa Rosa Sound, and Navarre Beach.

The red knot, a federal proposed species, uses the state of Florida both for wintering habitat and migration stopover habitat for those that continue to migrate down to specific wintering locations in South America (Niles et al. 2008). Wintering and migrating red knots forage along sandy beaches, tidal mudflats, saltmarshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms, and roost on high sand flats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008).

The U.S. breeding population of wood storks is listed as federally endangered. The wood stork is the largest wading bird breeding in the United States and is a highly colonial species usually nesting in large rookeries and feeding in flocks. Wood storks generally utilize freshwater wetlands as primary habitat; however, during times of drought, depressions in brackish marshes become important habitat components. Colonies in South Florida form late November to early March, while wood storks in Central and North Florida form colonies from February to March. Wood storks move north after breeding. There have been occasional sightings in all States along and east of the Mississippi River.

Bald and Golden Eagle Protection Act
The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles occur most commonly in areas close to coastal areas, bays, rivers, lakes, or other bodies of water that provide concentrations of food sources, including fish, waterfowl, and wading birds. Usually the bald eagle nests in tall trees (mostly live pines) that provide clear views of surrounding area. Bald eagles
feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s Bald Eagle Management Plan guidelines would be followed (FWC 2008). The nearest Bald eagle nest is approximately 4 to 5 miles from the project site.

**Migratory Birds**
The Migratory Bird Treaty Act of 1918 (16 U.S.C. 703-711) decreed that all migratory birds and their parts (including eggs, nests, and feathers) were fully protected. The migratory bird species protected by the Act are listed in 50 C.F.R. 10.13. More than 250 species of birds have been reported as migratory or permanent residents within the Pensacola Bay system, several of which breed there as well. These birds can be grouped generally as (1) species that occur year-round, both nesting and overwintering, (2) species that nest during the warm season and overwinter to the south, (3) species that overwinter and nest further north, and (4) species that pass through during spring migrations to more northern nesting sites and/or during fall migrations to overwintering areas. Different populations of the same species sometimes exhibit more than one type of migratory behavior. Shorebirds include species such as osprey (*Pandion haliaetus*), great blue heron (*Ardea herodias*), great egret (*Casmerodius albus*), stilt (*Himantopus mexicanus*), sandpipers (*Calidris spp.*), gulls (*Lanius spp.*), brown and white pelicans (*Pelecanus spp.*), American oystercatcher (*Haematopus palliatus*), and terns (*Sterna spp.*) (Thorpe et al. 1997).

**Waterfowl**
Waterfowl include swans, geese, and ducks that migrate from summer nesting areas in the northern U.S. and Canada along well-described routes or “flyways” to wintering grounds along the Gulf Coast. In addition to waterfowl, other water-dependent birds of the Gulf region include loons, grebes, northern gannet, pelicans and frigate birds, cormorants and an ally, the anhinga, gulls, terns, and various seabirds.

**Pelagic seabird species**
Pelagic seabird species live most of their lives in open marine waters roosting and feeding at the water surface the entire year; in the breeding season, mature adults return briefly to nesting areas along coastlines. Nesting of pelagic species in the Gulf of Mexico region is very limited and includes only a few locations containing tern colonies. Species regularly observed within the Gulf of Mexico include tropicbirds, boobies, gannets, shearwaters, storm-petrels, jaegers, and phalaropes (Peake and Elwonger 1996). Gull and tern species are also considered pelagic species; however, as colonial nesting species they are discussed with colonial water birds below.

**Raptors**
Raptors that occur along the Gulf Coast include vultures, osprey, kites, hawks, harriers, caracaras, eagles, and falcons. Raptors may be found as year-round resident species, migrants, and wintering species. Year-round resident species include turkey vulture, black vulture, white-tailed kite, red-shouldered hawk, red-tailed hawk, and American kestrel. In addition to these resident raptor species, the crested caracara and white-tailed hawk are resident raptor species with restricted North American ranges and are considered unique to the Gulf Coast region.
Osprey, northern harrier, sharp-shinned hawk, Cooper’s hawk, merlin, and peregrine falcon winter along the Gulf Coast, though some species such as the osprey may also be present as residents in parts of the Gulf Coast (Brinkley 2008).

**Colonial waterbirds**

Colonial waterbirds are birds that nest in social nesting groups (colonies) often containing a mix of species of a similar group, e.g., a wading bird colony may include multiple species of herons and egrets. This guild consists of two principal groups: wading birds (e.g., herons, egrets, ibises) and ground- or beach-nesting species. Ground-nesting species can be further divided into species that feed in pelagic (open water) habitats such as cormorants, gulls, and terns. In addition, brown pelicans may occasionally nest on the ground (FWS 2002).

Colonial waterbirds feed mostly on aquatic organisms, and as a result, nesting colonies are usually concentrated within appropriate coastal habitats. The location and size of nesting colonies depend directly on the presence of suitable nesting habitat and adequate food availability (Duke and Kruczynski 1992). A substantial percentage of the U.S. population of several species nest within the nearshore environment of the Gulf of Mexico: laughing gull; Forster’s, gull-billed, sandwich, least, royal, and Caspian terns; and black skimmer. Florida, Louisiana, and Texas are the primary states in the southern and southeastern U.S. for nesting colony sites and total number of nesting coastal and marine birds (U.S. DOI 2006).

**Wading birds**

Wading birds consist of birds with long legs, long necks, and long bills that facilitate foraging in shallow water, probing or actively capturing fish, frogs, aquatic insects, crustaceans, and other prey (Terres 1991). Wading bird families found along the Gulf Coast include herons and egrets (family Ardeidae), storks (Ciconiidae), ibises and spoonbills (family Threskiornithidae), and cranes (family Gruidae). Typical wading bird species include great blue heron, great egret, snowy egret, little blue heron, and tricolored heron. Reddish egret and roseate spoonbill are two species within the U.S. restricted in range to the Gulf Coast region. Wading bird colonies are also referred to as “rookeries” or “heronries”.

**Shorebirds**

Shorebirds are generally restricted to coastline and inland water margins (beaches, mudflats, etc.). As a group, shorebirds are highly migratory and many of these species stop to rest and forage during migration flights or spend the winter in nearshore habitat along the Gulf Coast. The Gulf Coast contains some of the most important shorebird habitat in North America. For migrating and wintering shorebirds the wetlands and barrier islands of this region represent the first large expanses of suitable habitat between northern breeding grounds and more distant wintering grounds in South America (Withers 2002).

**Marsh birds**

“Marsh bird” is a general term for birds that live in or around marshes and swamps. Passerine species associated with marshes include red-winged blackbird and boat-tailed and great-tailed grackle; however, other marsh species are more secretive. Gulf Coast marshes and freshwater wetlands provide habitat for secretive marsh birds, which are cryptically colored with secretive behaviors and specially adapted to life in the treeless, dense marsh vegetation (FWS 2006).
Along the Gulf Coast, bird species found in salt and freshwater marshes include grebes, bitterns, rails, gallinules, limpkin, and passerines exemplified by marsh wren, sedge wren, and the seaside sparrow species complex. Other marsh bird species with more northern breeding ranges winter in Gulf Coast marshes such as yellow rail, sora, Virginia rail, and Nelson’s sparrow.

**Passerines**

Passerines (e.g., flycatchers, vireos, crows, swallows, chickadees, nuthatches, wrens, thrushes, warblers, sparrows, tanagers, grosbeaks, blackbirds, and finches) and near passerines (e.g., pigeons, doves, cuckoos, owls, nightjars, swifts, hummingbirds, kingfishers, and woodpeckers) encompass the majority of land bird species. Many species are neotropical migrants that use a variety of nesting habitats in North America and winter in the Caribbean, and Central and South America. As with shorebirds, the northern Gulf Coast is an important stopover for migrating passerines and near passerines providing resting and foraging habitat. In addition, some land bird species may overwinter along the Gulf Coast and many species are also year-round residents.

Table 12-10 provides a summary of the different migratory bird groups specifically addressed by the USFWS review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

**Table 12-10. Potential project impacts to different migratory bird groups**

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Seabirds forage in water, rest, or nest in terrestrial habitats, both in the general vicinity of the project area. However, the project will take in-water and most roosting/nesting occurs in the dune habitat. The level of project activity in open water is unlikely to startle nesting or resting birds due to distance from terrestrial habitats and activities will occur during the day only so roosting should not be impacted. Seabirds could be feeding in the area; however, they would likely move from the area of construction due to disturbance.</td>
</tr>
<tr>
<td>Shorebirds (e.g., piping plover, red knot)</td>
<td>Foraging, feeding, resting, nesting</td>
<td>Shorebirds forage, feed, and rest, and in the types of habitats consistent with some of the shoreline areas near the proposed location of the living shoreline breakwaters. As such, they may be impacted locally and temporarily by the project. It is expected that they would be able to move to another nearby location to continue foraging, feeding and resting. No nesting habitat is thought to be present. If any nesting is observed conservation measures will be implemented.</td>
</tr>
</tbody>
</table>

**Essential Fish Habitat**

The 1996 Magnuson-Stevens Act, as amended, requires cooperation among NMFS and federal and state agencies to protect, conserve, and enhance Essential Fish Habitat (EFH). EFH is defined as those waters and substrates necessary to fish for spawning, breeding, feeding, or growth to maturity. The designation and conservation of EFH seek to minimize adverse impacts on habitat caused by fishing and non-fishing activities. NOAA’s Estuarine Living Marine Resources Program developed a database on the distribution, relative abundance, and life history characteristics of ecologically and economically important fishes and invertebrates in the nation’s estuaries. NOAA has designated EFH for more than 30 estuaries in the northern Gulf of Mexico for a number of species of finfish and shellfish. All of Pensacola Bay and waters
surrounding Gulf Island National Seashore are designated as EFH. EFH in Pensacola Bay provides habitat for several species of fish and shellfish (Table 12-11).

The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum brown shrimp, pink shrimp, and white shrimp. The area also provides habitat for prey species (e.g. Gulf menhaden, shad, croaker and spot) that are consumed by larger commercially important species. In addition, the area provides habitat for spotted seatrout, striped mullet, southern flounder, Atlantic croaker, and Gulf menhaden. EFH consists of the following waters and substrate areas in the Gulf of Mexico:

- **Red Drum FMP**: All estuaries; Vermilion Bay, Louisiana, to the eastern edge of Mobile Bay, Alabama, to depths of 25 fathoms; Crystal River to Naples, Florida, between depths of 5 and 10 fathoms; and Cape Sable, Florida, to the boundary between the areas covered by the GMFMC and the South Atlantic Fishery Management Council (SAFMC) between depths of 5 and 10 fathoms.
- **Coastal Migratory Pelagics FMP**: All estuaries; the U.S./Mexico border to the boundary between the areas covered by the GMFMC and the SAFMC, from estuarine waters to depths of 100 fathoms.
- **Shrimp FMP**: All estuaries; the U.S./Mexico border to Fort Walton Beach, Florida, from estuarine waters to depths of 100 fathoms; Grand Isle, Louisiana, to Pensacola Bay, Florida, between depths of 100 and 325 fathoms; Pensacola Bay, Florida, to the boundary between the areas covered by the GMFMC and the SAFMC to depths of 35 fathoms, with the exception of waters extending from Crystal River to Naples, Florida, (GMFMC 2005:15) between depths of 10 and 25 fathoms and in Florida Bay between depths of 5 and 10 fathoms.
- **Reef Fish FMP**: EFH for reef fish consists of Gulf of Mexico waters and substrates extending from the U.S./Mexico border to the boundary between the areas covered by the GMFMC and the SAFMC, from estuarine waters to depths of 100 fathoms.
- **Highly Migratory Species FMP**: Highly migratory species (HMS) are managed by the Secretary of Commerce, NMFS and defined to be tuna species, marlin (*Tetrapturus spp.* and *Makaira spp.*), oceanic sharks, sailfishes (*Istiophorus spp.*), and swordfish (*Xiphias gladius*). HMS may be found in large expanses of the world’s oceans, straddling jurisdictional boundaries. Identifying EFH for tuna, swordfish and many pelagic shark species is challenging because, although some HMS may frequent the neritic waters of the continental shelf as well as inshore areas, they are primarily blue-water (i.e., open-ocean) species. Their distributions are usually not correlated with the areas or features such as bottom sediment type or vegetative density, but are often associated with physiographic structures of the water column. Distribution of juveniles, adults, and especially early life stages (larvae for tuna and swordfish; neonates for sharks) may also be constrained by tolerance of temperature, salinity or oxygen levels. These physicochemical properties may be used to define the boundaries of essential habitat in a broad sense.

EFH occurs for several species of fish and shellfish in and around project area and is identified in Table 12-11 for key species that occur in Pensacola Bay.
Table 12-11. Essential fish habitat for key species that occur in the project area.

<table>
<thead>
<tr>
<th>SPECIES/MANAGEMENT UNIT</th>
<th>LIFESTAGE(S) FOUND AT LOCATION</th>
<th>FISHERY MANAGEMENT PLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandbar Shark</td>
<td>Neonate</td>
<td>Highly Migratory Species</td>
</tr>
<tr>
<td>Red Drum</td>
<td>ALL</td>
<td>Red Drum</td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark</td>
<td>Neonate</td>
<td>Highly Migratory Species</td>
</tr>
<tr>
<td>Tiger Shark</td>
<td>Neonate Juvenile</td>
<td>Highly Migratory Species</td>
</tr>
<tr>
<td>Atlantic Sharpnose Shark</td>
<td>Neonate</td>
<td>Highly Migratory Species</td>
</tr>
<tr>
<td>Shrimp (4 Species)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown shrimp (Farfantepenaeus aztecus)</td>
<td>ALL</td>
<td>Shrimp</td>
</tr>
<tr>
<td>White shrimp (Litopenaeus setiferus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pink shrimp (Farfantepenaeus duorarum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Royal red shrimp (Pleoticus robustus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Migratory Pelagics</td>
<td>ALL</td>
<td>Coastal Migratory Pelagics</td>
</tr>
<tr>
<td>Reef Fish (43 Species)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balistidae - Triggerfishes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray triggerfish (Balistes capriscus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carangidae - Jacks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greater amberjack (Seriola dumerili)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesser amberjack (Seriola fasciata)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Almaco jack (Seriola rivoliana)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banded rudderfish (Seriola zonata)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labridae - Wrasses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hogfish (Lachnolaimus maximus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lutjanidae - Snappers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queen snapper (Etelis oculatus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutton snapper (Lutjanus analis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackfin snapper (Lutjanus buccanella)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red snapper (Lutjanus campechanus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cubera snapper (Lutjanus cyanopterus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray (mangrove) snapper (Lutjanus griseus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane snapper (Lutjanus synagris)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silk snapper (Lutjanus vivanus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellowtail snapper (Ocyurus chrysurus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wenchman (Pristipomoides aquilonaris)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermilion snapper (Rhomboplites aurorubens)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malacanthidae - Tilefishes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goldface tilefish (Caulolatilus chrysops)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blueline tilefish (Caulolatilus microps)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Golden) Tilefish (Lopholatilus chamaeleonticeps)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serranidae - Groupers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speckled hind (Epinephelus drummondayi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellowedge grouper (Epinephelus flavolimbatus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red hind (Epinephelus guttatus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goliath grouper (Epinephelus itajara)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red grouper (Epinephelus mario)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warsaw grouper (Epinephelus nigritus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snowy grouper (Epinephelus niveatus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nassau grouper (Epinephelus striatus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marbled grouper (Epinephelus inermis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black grouper (Mycteroperca bonaci)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellowmouth grouper (Mycteroperca interstitialis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gag (Mycteroperca microlepis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scamp (Mycteroperca phenax)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellowfin grouper (Mycteroperca venenosa)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Environmental Consequences for Protected Species

12.9.5.7  Sea Turtles
Impacts on sea turtles include the risk of harm from construction activities, including physical impacts from construction materials or operating construction machinery. Due to these species’ mobility and the implementation of measures including NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (2006) and Measures for Reducing Entrapment Risk to Protected Species (2012), the risk of impacts from construction would be minimal. Sea turtles may be affected by being temporarily unable to use a project site due to potential avoidance of construction activities and related noise, but these impacts would be short term and minor.

Sea turtles do not nest and are not likely to forage within the project site given the shallow water depths and sand substrate. Due to a lack of seagrasses and other suitable sea turtle foraging habitat, impacts from project installation and short-term turbidity would be short term and minor for sea turtles that may occur within the project area. Additionally, any impacts would be short term and minor given the small footprint and short duration of the proposed project activities in relation to similar adjacent habitats available for foraging.

12.9.5.8  Marine Mammals
Noise and other activity associated with proposed construction may temporarily disturb certain dolphin species in the vicinity of the project area through temporary impacts on prey abundance, water quality (turbidity), and underwater noise, and may temporarily increase the potential for boat collisions with certain species in the project area during construction. West Indian Manatee

West Indian manatees may be occasionally found in the shallow waters of the project area during the warmer months of the year. Given their slow-moving and low visibility nature, it is possible that manatees could wander into proximity of construction activities.

The Trustees evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions, NMFS’ Measures for Reducing Entrapment Risk to Protected Species (2012), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

Gulf Sturgeon
The Gulf sturgeon critical habitat Unit 9 primary constituent elements (PCE's) include: water quality, safe and unobstructed migratory pathways, sediment quality, and abundant prey items. Water quality impacts from project activities are expected to be minimal and temporary because increases in water turbidity would be reduced through the use of BMPs described in the Construction and Installation section. There is no indication of sediment contamination within the project area and the proposed conversion of habitat is not expected to reduce the PCE's ability within Unit 9 to support Gulf sturgeon conservation because of the small overall footprint for breakwater construction (5.05 acres), the rapid recovery of forage species that may be affected due to construction, and the availability of more suitable Gulf sturgeon migratory and foraging areas within Pensacola Bay. Potential adverse impacts on Gulf sturgeon include the risk of harm from construction activities, which would be minimal due to the species’ mobility and the implementation of BMPs including NMFS’ Sea Turtle and Smalltooth Sawfish
Construction Conditions which are protective of Gulf sturgeon. Some sandy bottom habitat would be converted to hard bottom (breakwater construction) as described above and, prey is not expected to be limiting from project implementation.

The creation of a reef may provide an indirect benefit to Gulf sturgeon by enhancing the diversity of prey available to Gulf sturgeon by creating patchwork reefs that, over time, provide more structurally complex habitat for prey species. The use of breakwaters to create reefs, while reducing shoreline erosion, also encourages nektonic production that could lead to greater prey availability in the immediate surroundings for Gulf sturgeon.

There is a risk of direct impacts to Gulf Sturgeon resulting from the proposed dredging activities for marsh creation; however, these would be confined to direct impacts associated with the dredge equipment. To avoid potential impacts to protected species, the proposed project would not use a hopper dredge unless required due to site conditions at the selected source sites. Marsh creation may also benefit Gulf Sturgeon by increasing prey abundance in adjacent areas.

12.9.5.9 Saltmarsh Topminnow
Suitable habitat for saltmarsh topminnow is restricted to salt marshes; the species also spawns in upper marshes during the highest tides. Additionally, saltmarsh topminnow does not disperse widely from suitable habitat. The proposed activities would not impact suitable habitat for saltmarsh topminnow and therefore no impacts are anticipated.

12.9.5.10 Smalltooth Sawfish
Smalltooth sawfish historically were found in and around the project area; however, the current distribution is mainly restricted to South Florida and the Keys. Critical habitat for the smalltooth sawfish lies between Charlotte Harbor and the Florida Everglades, outside and south of this project site; therefore no impacts are anticipated (NOAA 2009c).

12.9.5.11 Protected Bird Species
The upland habitat located within the project area is best described as landscaped parklands. The habitat quality is very low given the high level of human use and the landscaped nature of the vegetation. Additionally, the shorelines are predominately altered through the use of concrete seawalls with granite rip-rap boulders. This limits the available natural shoreline for wading bird foraging habitat.

Potential impacts for birds would include noise and other disturbance from construction activities that may impact birds using open water and nearby shoreline within the project area. These impacts would be minor and short term in scope. A small number of bird species protected under the Migratory Bird Treaty Act may nest near or within the project area; however, bird monitoring by FDEP indicate that the Project Greenshores area is used during migration and as winter habitat. Therefore, disturbance to nesting birds from proposed project activities is not anticipated. Short term minor impacts to prey resources may occur during construction; however these impacts would be local in scope. Potential short term, minor impacts for birds would be outweighed by the expected habitat and water quality benefits of restoration at the project site.

To reduce the risk of impacts to migratory bird species, a pre-construction bird survey would be conducted during the nesting season and within 300 ft of the construction activities. If nests are
observed prior to construction, the USFWS would be contacted to assist with specific conservation measures to avoid impacts. Pre-construction surveys would include bald eagle nests. If a bald eagle nest is located, best management practices provided by the USFWS and State of Florida would be followed to avoid disturbance.

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Error! Reference source not found..

**Table 12-12. Conservation measures to minimize impacts to migratory bird groups**

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care will be taken to minimize noise and physical disruptions (e.g., vibration) near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. Nesting should not be impacted because the project will not occur near nesting habitats.</td>
</tr>
</tbody>
</table>
| Shorebirds (e.g., piping plover, red knot) | If the project will be implemented during shorebird nesting season, areas that could be affected by project noise will be examined for nesting shorebirds or evidence of nesting shorebirds. If nesting or evidence of nesting is observed, the most recent version of the Florida Fish and Wildlife Conservation Commission’s (FWC) standard guidelines to protect against impacts to nesting shorebirds will be obtained and followed. Among other elements these guidelines note that:  
- Driving on the beach for construction shall be limited to the minimum necessary within the designated travel corridor, which will be established just above or just below the primary “wrack” line.  
- Predator-proof trash receptacles shall be installed and maintained during construction at all beach access points used for the project construction to minimize the potential for attracting predators of migratory birds.  
- Workers shall be briefed on the importance of not littering and keeping the project area trash and debris free.  
- Educational signs shall be installed at public access points within the project area with emphasis on the importance of the beach habitat and wrack line for migratory birds.  
- When the project area has a pet or dog regulation, the provisions of the regulation shall be included on the educational signs. |

**12.9.5.12 Essential Fish Habitat (EFH)**

The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. The habitat in the project area includes the lower Pensacola Bay and Gulf of Mexico waters and consists primarily of sandy substrate consistent with sediment along the northern Gulf of Mexico. The proposed construction of a breakwater to create reef and salt marsh will enhance and restore marine habitat in areas that support EFH. Any disturbance to managed species and their prey using these habitats will be minor and very brief and the techniques to be employed will not result in any long-term adverse impacts to other EFH types. The anticipated long-term benefits to EFH, especially red drum, shrimp, and reef fish, include increased feeding, spawning, and nursery habitats and increased prey abundance.

**Findings for Protected Species:** Due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions, NMFS’ Measures for Reducing Entrapment Risk
to Protect Species (2012), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, the risk of injury would be minimal to the protected species discussed above. Sea turtles, Florida manatees, Gulf sturgeon, and a small number of protected bird species may be affected by being temporarily unable to use the site due to avoidance of construction activities and related noise. Therefore, because of the mobility of these protected species, the small footprint for the proposed project, the short-term scope of the constructions activities, and best practices that would be implemented, as described above, the risk of injury or other potential adverse impacts are likely to be minor and short term. In addition, the benefits of habitat protection and restoration from the proposed project will increase benthic habitat diversity and restore salt marsh habitat, which would support a greater diversity and abundance of species.

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006), NMFS’ Measures for Reducing Entrapment Risk to Protected Species (NOAA, 2012), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

Consultations with NMFS for Essential Fish Habitat and the Endangered Species Act have been completed (Fay, 2014). NMFS concurred that negative impacts to Essential Fish Habitat would be minor and brief and the overall project will enhance and restore marine habitats in areas supporting Essential Fish Habitat. Under the Endangered Species Act, NMFS concurred that the proposed project is not likely to adversely affect protected species, including sea turtles, Gulf Sturgeon, and Gulf Sturgeon critical habitat (Crabtree, 2014).

The USFWS reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On February 6, 2014 the review of potential impacts to species managed by USFWS was completed (Reynolds, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect West Indian manatee, piping plover, or red knot (if listed). This review also concurred with the Trustees’ conclusion the project would have no effect on five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead).

Further, bald eagles are not present at the project location so will not be affected. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

12.9.5.13 Marine and Estuarine Resources (benthic organisms, oysters, fish)

Affected Resources
In general, researchers have found relatively low overall biomass of infauna, epibenthic invertebrates, and fishes in the Pensacola Bay system (Livingston 1999). Benthic microalgae, microphytobenthos, periphyton, and biofilms communities in Pensacola Bay are dominated by Bacillariophyceae (Allison, 2000). In many estuaries, light limits production, but this is not the case in Pensacola Bay. Pensacola Bay has low turbidity and high light penetration indicating that primary production occurs through much of the water column and benthos (Murrell 2009). In fact, Allison (2000) found that the average photic
depth of Pensacola Bay is approximately 5 m, meaning that 78% of the bay could potentially support microphytobenthos production. However, Allison (2000) found that Pensacola Bay has relatively low overall productivity coupled with a relatively low benthic respiration rate, which they attribute to the proportionally large area of sandy sediments with low organic levels. Additionally, Collard (1989) suggests, based on his study of the benthic macroinvertebrates in the Pensacola estuarine system, that biological conditions are highly variable.

Oysters
The eastern oyster is the primary oyster species found in the Gulf and is the major commercial species. Oysters are important as both organisms and habitat with an integral role in the functioning of the ecosystem. The eastern oyster lives in shallow, well-mixed estuaries, lagoons, tidal sloughs of barrier islands, and oceanic bays. This species is found from 1 foot above the mean low tide line to 40 ft below the mean low tide line and within the Gulf of Mexico is typically found at depths of 0 to 13 ft (Eastern Oyster Biological Review Team 2007).

The eastern oyster feeds by filtering large quantities of water through their gills and each adult oyster can filter approximately 1.3 gallons of water per hour, effectively contributing to cleaning the water column (Berrigan et al. 1991). Within an oyster reef community, oysters are the dominant species, though over 300 other macrofauna species may be living on an oyster reef (Wells 1961). In addition to enhancing habitat, productivity, and biodiversity, oyster reefs provide benefits to the physical environment. Reefs act as natural breakwaters and attenuate wave energy which can stabilize and protect coastal habitats such as salt marshes and SAV, and prevent shoreline erosion (Grabowski and Peterson 2007; Coen et al. 2007; GSMFC 2012).

Historically, oysters were harvested from Pensacola Bay; landings in oysters peaked about 1970 (Macauley 2005). As much as 90% of the oyster population was lost to disease by 1971, and oyster beds are no longer commercially viable, although an oyster fishery still exists in the Pensacola bay System, accounting for 1.7% of the state’s oyster landings (Livingston 2010). There are no areas classified for oyster harvest in the project area. Oyster reef restoration through Project GreenShores has successfully constructed breakwaters that now support species commonly found on oyster reefs. In 2003, Project GreenShores Phase I created approximately seven acre of oyster reefs adjacent to the proposed PGSII. In 2006, Project GreenShores Phase II constructed two breakwaters within the proposed PGSII; a subsequent survey by FDEP found that the PGSII structures are being colonized by invertebrate species.

Fish
More than 200 species of fish and shellfish have been reported in the estuarine waters of the Pensacola Bay system. Four anadromous fish are known to inhabit the river systems: Gulf sturgeon (A. oxyrhynchos desotoi), Alabama shad (Alosa alabamae), skipjack herring (Alosa chrysocloris), and striped bass (Morone saxatilis). Largemouth bass (Micropterus salmoides) and reed sunfish (Lepomis microlophus), which are tolerant of low salinity levels, often invade the streams and embayments in the river delta marshes. Other species native to the area include spot (Leiostomus xanthurus), bay anchovy (Anchoa mitchilli), Atlantic croaker (Micropogonias undulatus), spotted seatrout (Cynoscion nebulosus), longnose gar (Lepisosteus osseus), Gulf menhaden (Brevoortia patronus), channel catfish (Icthyomyzon punctatus), striped mullet (Mugil cephalus), American eel (Anguilla rostrata), chain pickerel (Esox niger), golden shiner (Notemigonus crysoleucas), coastal shiner (N. petersoni), silver perch (Bairdiella chrysura), clown goby (Microgobius gulosus), darter goby (Gobionellus boleosoma), blue crab (Callinectes sapidus),
ghost crab (*Ocypode quadrata*), American oyster (*Crassotrea virginica*), and Penaeid shrimp (*Penaeus spp.*). The dominant epibenthic macroinvertebrates include brown shrimp (*Penaeus aztecus*) and blue crabs (*Callinectes sapidus*) (Livingston 1999).

Pensacola Bay has been affected by anthropogenic impacts that have exposed fish communities to a variety of contaminants from multiple sources. During the demolition of the I-10 Bridge, fish were collected and samples tested for trace metals, dioxins/furans and poly-carbonated biphenyls (PCB’s) (Mohrherr et al. 2009). Eight of the samples exceeded U.S. EPA standards, with the highest being in mullet (Mohrherr et al. 2009). Additional fish community data were collected by Stevenson (2007) on Pensacola Bay at two study sites in Project Greenshores Sites I and II. Four fish were continually the most abundant: striped mullet (*Mugil cephalus*), tidewater silverside (*Menidia peninsulae*), spot, and pinfish (*Lagodon rhomboids*). Out of 34 species caught, the remaining species made up just 5% of the overall catch (Stevenson 2007).

**Environmental Consequences**
Potential impacts to benthic organisms, oysters, and fish may occur during construction activities; however these impacts would be short term and localized. Disturbance of individual species would occur; however, there would be no change in the diversity or local populations of marine and estuarine species. Any disturbance would not interfere with key behaviors such as feeding and spawning. There would be no restriction of movements daily or seasonally.

**Wildlife and Wildlife Habitat**
Impacts to native species, their habitats (including Essential Fish Habitat), or the natural processes sustaining them may be detectable, but localized and would not measurably alter natural conditions. Infrequent responses to disturbance by some individuals could be expected, but without interference to feeding, reproduction, resting, migrating, or other factors affecting population levels. Small changes to local population numbers, population structure, and other demographic factors are not likely to occur. Sufficient habitat would remain functional at both the local and range-wide scales to maintain the viability of the species. Overall, the net benefits of this habitat protection and restoration project outweigh any minor and temporary impact by increasing benthic habitat diversity, creating structural complexity for benthic habitat, and restoring salt marsh which would support a greater diversity and abundance of marine species.

**Findings for Marine and Estuarine Resources:** The proposed project may result in short-term, minor adverse impacts to oysters and some species of fish within the project area due to construction activities and increased noise. However, due to the small proposed footprint and availability of sufficient habitat within the project area, there would not be long-term adverse impacts to marine and estuarine resources. Long term moderate beneficial impacts are expected due to creation of hard reef structure since the reef structure would increase the abundance of fish, crabs, and shellfish species.

**12.9.5.14 Introduce or Promote Non-native Species**

**Affected Resources**
Non-native invasive species have the ability to alter the existing terrestrial or aquatic ecosystem within, and possible expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and
Chapter 3 described more about the regulations addressing invasive species, pathways, impacts, and prevention.

**Environmental Consequences**
No impacts related to introduced or non-native species are expected due to the proposed project. The project would construct breakwater structures to support oyster settlement and restoration to Pensacola Bay where oysters were historically present. Creation of marsh habitat would also involve the use of native marsh species and follow strict protocol established by the state of Florida to ensure local sources of native species are used to create marsh habitat. Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

**12.9.5.15 Human Uses and Socioeconomics**

**12.9.5.15.1 Socioeconomics and Environmental Justice**

**Affected Resources**
The population of Escambia County is 297,688 (U.S. Census 2010). The project is contained within Census Tracts 3 and 8 in Escambia County. Table 12-13 population/minority data for Census Tract 3, Census Tract 8, Escambia County, and Florida.

**Environmental Justice**
Executive Order 12898, Federal Actions to Address Environmental Justice in Minority and Low-Income Populations, was signed in 1994. The Executive Order and accompanying Presidential Memorandum focus Federal attention on the environmental and human health conditions in minority and low-income communities, enhances efforts to assure nondiscrimination in Federal programs affecting human health and the environment, and promotes meaningful opportunities for access to public information and for public participation in matters relating to minority and low-income communities and their environment.

Based on 2010 Census blockgroup data, the PGS II site is located near communities with a minority population between 10-20% and 16.5% of the population living below poverty (USEPA 2013a). The Sanders Beach site is located near communities with a minority population between 40-100% and 23.6% of the population living below poverty (U.S. EPA 2013a) (Figure 12-11 and Figure 12-12). In direct vicinity of the project site, the submerged lands are owned by the City of Pensacola. Proposed activities will take place within nearshore waters at both PGS II and Sanders Beach sites. Consequently, the proposed action will not directly influence any communities in close proximity to the shoreline.
Environmental Consequences

This project is not designed to create a benefit for any group or individual, but rather benefits on a local and regional basis. There are no indications that the proposed living shoreline project would be contrary to the goals of E.O. 12898, or would create disproportionate, adverse human health or environmental impacts on minority or low income populations of the surrounding community.

Table 12-13. Populations of Florida Escambia County, Census Tract 3, and Census Tract 8.

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>FLORIDA</th>
<th>ESCAMBIA COUNTY</th>
<th>CENSUS TRACT 3</th>
<th>CENSUS TRACT 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 Total Population</td>
<td>18,688,787</td>
<td>297,668</td>
<td>2,466</td>
<td>4,219</td>
</tr>
<tr>
<td>White alone</td>
<td>14,270,053</td>
<td>207,330</td>
<td>1,340</td>
<td>2,927</td>
</tr>
<tr>
<td>Black or African American alone</td>
<td>2,946,899</td>
<td>66,760</td>
<td>909</td>
<td>1,172</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone</td>
<td>58,192</td>
<td>1,731</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Asian alone</td>
<td>455,403</td>
<td>8,198</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander</td>
<td>11,005</td>
<td>547</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Some Other Race alone</td>
<td>564,351</td>
<td>2,125</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Two or More Races:</td>
<td>382,884</td>
<td>10,977</td>
<td>217</td>
<td>97</td>
</tr>
</tbody>
</table>

Figure 12-11. Percent minority population
Findings: It is expected that this project would have a short-term, minor, direct adverse impact through disruption of localized fishing during construction. However, direct, short-term, moderate benefits are expected through the creation of a small number of local construction jobs. Long-term, indirect, moderate benefits would result from increasing fisheries habitat, and recreational and fishing value of the area.

12.9.5.15.2 Cultural Resources

Affected Resources
This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. The Florida Division of Historic Resources is the state agency responsible for cultural and historic resources and Section 106 consultations for project within the state. Previous consultations with the Florida Division of Historic Resources for Project Greenshores Phase II found that no significant archaeological or historical sites are recorded for, or likely to present within, the area of potential effect for the Project GreenShores living shorelines project implementation at Project Greenshores Phase II. There have not yet been similar reviews or cultural resource surveys conducted for the Sanders Beach site. Project information has been submitted to the Department of the Interior for coordination. While the Section 106 reviews process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Environmental Consequences
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.
Finding: The proposed project is anticipated to have no impact on cultural resources in the area. A complete review of this project under Section 106 of the NHPA would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area.

12.9.5.15.3 Infrastructure

Affected Resources
The landward sides of the proposed project areas are developed with a variety of infrastructure that includes shoreline protection, roads, parks, and residential development. The existing infrastructure within the project area is shown below (Figure 12-13, Pensacola Bay Living Shoreline Infrastructure Map from FDOT’s Efficient Transportation Decision Making Environmental Screening Tool).

Environmental Consequences
All the construction activities are anticipated to be performed from water with no or limited activities on the shoreline adjacent to the site.

Findings: The project is anticipated to have no impact on infrastructure in the area.

Figure 12-13. Pensacola Bay Living Shoreline Infrastructure.
12.9.5.15.4 Land and Marine Management

Affected Resources

Land and Marine Uses

The landward side of the proposed project have a variety of land uses that include recreational, commercial, residential land uses as well as publicly owned lands. Much of the land use in the project area is classified as developed. The existing land cover and land use within the project area is shown below (see Figure 12-14).

![Land Cover Classes](image)

Figure 12-14. Pensacola Bay Living Shoreline Land Use Map.

Coastal Zone

The project is located in a coastal area regulated by the federal Coastal Zone Management Act (CZMA) of 1972 and the Florida Coastal Management Act of 1978.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

Environmental Consequences

Because the proposed activities focus on the marine environment, the management of adjacent land uses would not be affected. In addition, the project design will incorporate and accommodate existing marine uses within the area to prevent or minimize any potential impacts. Additionally, boating safety signs would be installed in the marine environment at the project site that would benefit marine management within the project site. Although no direct impacts are anticipated, indirect impacts may
occur within Florida’s designated coastal zone. Therefore, the project would require a determination of whether the project is consistent with the CZMA.

**Finding:** The project is anticipated to have no impact on land use or marine management in the area.

### 12.9.5.15.5 Aesthetics and Visual Resources

**Affected Resources**
The landward side of the proposed project has a variety of land uses that provide access for residents, visitors, and commuters.

**Environmental Consequences**
Aesthetics would be reduced in the project area during the construction operations, due to the physical presence of the equipment used to transport the material as well as the presence of other land-based support equipment. However, these impacts would be minor, direct, temporary impacts. Following construction, the increased habitat would provide for minor, direct improved aesthetics impacts.

**Findings:** The proposed action would result in minor, short term visual impacts while construction equipment is used at the project site. The placement of these navigational signs would result in a direct, long term, minor adverse impact on the aesthetics and visual resources of the area.

### 12.9.5.15.6 Tourism and Recreational Use

**Affected Resources**
The affected recreational resources include the waters along the Pensacola Bay shoreline. These resources are used primarily by local communities for recreational boating, fishing, and bird watching. Veterans Memorial Park and William Bartram Memorial Park, passive recreational use parks, are located adjacent to the shoreline near PGS II. The Sanders Beach-Corinne Jones Community Center and park with a small boat launch are located adjacent to the Sanders Beach site. In addition, the Pensacola Yacht Club, a privately owned marina, is located near the mouth of Bayou Chico adjacent to the Sanders Beach site. Several additional small marinas are found in Bayou Chico.

**Environmental Consequences**
For a short time, the construction process may limit the recreational activities, especially near the construction areas. In addition, there is the potential to affect some forms of recreational boating in shallow water areas near Sanders Beach by the placement of breakwaters. Shallow waters near the shoreline of Sanders Beach are currently used for instructional classes on sailing. The placement of breakwaters would limit the use of waters for this purpose at the placement site. Other shallow water boating uses such as canoeing or kayak would not be limited. The Sanders Beach area contains several shallow water areas; therefore, the overall capacity of this area to support recreational boating would not be significantly reduced. However, the project design process will evaluate potential conflicts with recreational boating uses and design options to minimize those conflicts. Boating safety signage would also be installed during and after the construction process to warn boaters of the breakwater locations. Once completed, the project would result in positive impacts at both Sanders Beach and PGS II by providing greater recreational uses for the project areas, due to improved fish and wildlife habitat.
**Findings:** The proposed project would have a short term, adverse impact to recreational use of the area during construction since the area would be avoided by recreational boaters. There may be long-term minor impacts to recreational boating in shallow waters at Sanders Beach; however, these impacts would be avoided or minimized during the final design process. The action would result in a minor beneficial effect on recreational use due to an anticipated increase fishing use of created reefs. The project would not result in adverse or beneficial long term indirect impacts to recreational use.

**129.5.15.7 Public Health and Safety and Shoreline Protection**

**Affected Resources**
Several areas within Pensacola Bay have experienced past shoreline erosion resulting in protection efforts using hardened structures, especially along urban and suburban areas. The shoreline adjacent to the proposed project sites is predominately hardened with concrete seawalls and granite riprap.

The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act; the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); the Emergency Planning and Community Right-to-Know Act; and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of these materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

A review of the EPA’s EnviroMapper identifies several facilities adjacent to Pensacola Bay that report discharges or hazardous waste generation or disposal to the USEPA and one CERCLA site near the proposed project area, American Creosote Works (USEPA 2013b). The American Creosote Works, Inc. (ACW) Site is an 18 acre site located on 1800 West Gimble Street in a commercial and residential district of Pensacola, Florida. Operators sent process wastewaters to four holding ponds located in the western portion of the site. The ponds overflowed after heavy rains. Prior to 1970, wastewater in these ponds overflowed through a spillway into local streets and storm drains and Bayou Chico and Pensacola Bay. In later years, the company collected and spread liquid wastes on the ground in designated "Spillage Areas" on site. In 1983, EPA listed the site on the NPL. Site investigations found contamination in soil, sediment and ground water that could potentially harm people in the area. Contaminants of concern include volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), PCP and dioxin. EPA leads site investigation and cleanup activities in cooperation with FDEP.

Site investigations and cleanup activities have focused on three areas, which EPA refers to as operable units, or OUs. These areas include OU-1: surface and below-ground soil and sediment; OU-2: ground water; and OU-3: off-site dioxin-impacted soil. EPA has conducted several actions on and off the ACW property since 1983. The OU-1 cleanup is not yet complete. In 2003, EPA moved contaminated soils from surrounding residential areas onto the site and covered the soil with a temporary cap. However, EPA has not installed a final, permanent site-wide cap. A system of ground water monitoring and recovery wells were installed for OU-2. A Focused Feasibility Study report by EPA and FDEP addresses proposed plans for OU-3 to address off-site impacted soil (USEPA 2013c). EPA completed the last Five-Year Review in 2011 and plans to complete the next Five-Year Review in 2016.
EPA has worked with the community and its state partner to develop a long-term cleanup plan for the site, reflecting the Agency’s commitment to safe, healthy communities and environmental protection. Community engagement and public outreach are core components of EPA program activities. EPA has conducted a range of community involvement activities to solicit community input and to make sure the public remains informed about site activities throughout the cleanup process. Outreach efforts have included fact sheets, public notices and information meetings. The site also has a Community Advisory Group. The Community Advisory Group has been meeting since the early 2000s. While the site is currently vacant, the community has developed reuse plans. These plans, updated over time in coordination with the site’s cleanup, call for recreational and other land uses at the site in the future. The community last updated the site’s reuse plan in 2010 (USEPA 2013c).

**Environmental Consequences**

The project is anticipated to have no environmental impacts on public health and safety in the area. Proposed construction activities would not disturb existing contaminated or remediated areas. In addition, sediment testing would be conducted to ensure that suitable, non-contaminated sources for dredge sediments are used during salt marsh creation. The placement of breakwaters and creation of salt marsh habitat at the proposed sites would improve shoreline protection for the area by reducing the energy of waves before they reach the shoreline.

**Findings:** This proposed project would not impact existing hazardous or contaminated sites adjacent to the project area or public health. There would be long term, moderate beneficial impacts to shoreline protection.

**Summary and Next Steps**

The proposed Florida Pensacola Bay Living Shoreline Project is intended to employ living shoreline techniques that utilize natural and/or artificial breakwater material to reduce shoreline erosion and provide habitat at sites within Pensacola Bay, Florida. Combining these objectives, this project would create reefs to reduce wave energy, increase benthic secondary productivity, and create salt marsh habitat. Proposed activities include completing and expanding an existing breakwater at the Project GreenShores Site II, constructing up to approximately 2,400 feet of breakwater at the Sanders Beach site, and creating salt marsh habitat at both sites. In total, approximately 18.8 acres of salt marsh habitat and 4 acres of reefs would be constructed. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would provide long-term benefits by creation of approximately 18.8 acre of salt marsh, and approximately 4 acres of reefs. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.
References


12.10 Florida Seagrass Recovery Project: Project Description

12.10.1 Project Summary
The proposed Florida Seagrass Recovery project will address boat damage to shallow seagrass beds in the Florida panhandle by restoring scars located primarily in turtle grass (Thalassia testudinum) habitats located in St. Joseph Bay Aquatic Preserve in Gulf County, with additional potential sites in Alligator Harbor Aquatic Preserve in Franklin County, and St. Andrews Aquatic Preserve, in Bay County. A boater outreach and education component of the project will install non-regulatory Shallow Seagrass Area signage, update existing signage and buoys where applicable, and install educational signage and provide educational brochures about best practices for protecting seagrass habitats at popular boat ramps in St. Joseph Bay, Alligator Harbor, and St. Andrews Bay. The total estimated cost for this project is $2,691,867.

12.10.2 Background and Project Description
The Trustees propose to address boat damage to shallow seagrass beds in the Florida panhandle by restoring scars located primarily in turtle grass (Thalassia testudinum) habitats. Scars are made when boat propellers cut up roots, stems, and leaves of seagrasses, producing long, narrow furrows devoid of vegetation. Turtle grass is a commonly-found species of submerged aquatic vegetation (SAV) in the panhandle that is particularly slow to rejuvenate naturally when injured. Turtle grass with propeller damage can take many years to rejuvenate, or in severely scarred areas may never completely recover.

The project will primarily be located in St. Joseph Bay Aquatic Preserve in Gulf County, with additional potential sites in Alligator Harbor Aquatic Preserve in Franklin County, and St. Andrews Aquatic Preserve, in Bay County (see Figure 12-15 for project location). These three Aquatic Preserves contain critical turtle grass habitat that, if not restored, will continue to erode and destroy more of the healthy habitat surrounding the injured areas.

The objective of the proposed Florida Seagrass Recovery project is to restore submerged aquatic vegetation by addressing boat scars in aquatic preserves. The restoration work proposed includes surveying and mapping scarring within the seagrass habitats in the three Aquatic Preserves. Additionally, sediment tubes will then be manufactured, filled with local fine grain sediment, and deployed in approximately 2 acres of seagrass propeller scars. The tubes, which are made of biodegradable cotton fabric filled with sediment, would then be placed into propeller scars to enhance seagrass recovery by raising the propeller scar elevation to ambient grade with clean sediment of appropriate grain size, thereby offering suitable habitat for seagrass recruitment. Seagrass planting units would be installed in the sediment tubes after a 90-day curing period if necessary. This restoration would be facilitated by placing bird stakes in the restoration project area. The stakes would attract birds who then would supply natural fertilizer to the restoration area in the form of feces, which are rich in phosphorus and nitrogen.
Finally, a boater outreach and education component of the project would install non-regulatory *Shallow Seagrass Area* signage, update existing signage and buoys where applicable, and install educational signage and provide educational brochures about best practices for protecting seagrass habitats at popular boat ramps in St. Joseph Bay, Alligator Harbor, and St. Andrews Bay.

![Location of envisioned Florida Seagrass Recovery Project](image)

**Figure 12-15. Location of envisioned Florida Seagrass Recovery Project.**

### 12.10.3 Evaluation Criteria

This proposed project satisfies the evaluation criteria for the Framework Agreement and OPA. As a result of the Deepwater Horizon oil spill and associated response activities, submerged aquatic vegetation in the Florida Panhandle suffered adverse physical impacts. The project seeks to restore injured submerged aquatic vegetation. The ecological benefits that would be gained by this restoration project are anticipated to help compensate the public for Spill-related injuries and losses to submerged aquatic vegetation. Thus, nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.
The project is technically feasible and utilizes proven techniques with established methods and documented results. Florida agencies have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Furthermore, the cost estimates are based on similar past projects, therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.10, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.10 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). This project is consistent with all three Aquatic Preserve management plans which are approved by the State of Florida. Therefore, this project is consistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many ecological projects, including ones similar to this project, were submitted as a restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Florida Seagrass Recovery Project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area that deployed boom and was impacted by response and SCAT activities for the Spill.

12.10.4 Performance Criteria, Monitoring and Maintenance
As part of the project costs, monitoring would be conducted to ensure project designs were correctly implemented and to evaluate project effectiveness. Performance criteria would be used to determine project success or the need for corrective actions. The monitoring has been designed around the project objective, which is to restore injured submerged aquatic vegetation. Specific success criteria includes: the creation of new submerged aquatic vegetation in previously scarred areas that meets project design criteria and is sustained for the expected life of the project.

Post construction performance monitoring would initially focus on plant survival and revegetation of the existing scars. This monitoring may include collection of habitat information such as the depth of the scar at different points in time, and percent vegetative cover of the scar. Additional information collected may include utilization and integrity of the bird stakes over time and nature and extent of any subsequent seagrass habitat scaring in areas where the new non-regulatory buoys are placed.

Pre- and post-project monitoring could compare restoration progress in both control and study areas. Changes in the number, length, and cover of propeller scars would be determined in large replicate photograph plots within each study area. Aerial photography may be performed annually, in late summer. Data layers would be created using ArcMap to determine the increase or decrease in scar number, length, and area over time.

Field surveys would be performed biannually in the early spring and late summer to monitor the progress of the restoration activities. Methods designed to measure percent-cover and shoot counts would be used to compare recovery rates of prop scars located within treated and untreated locations.
of the project area. Permanent (fixed) transects would be incorporated into the study in order to monitor changes in the number of untreated prop scars. Underwater photographs and video may also be taken to document site characteristics prior to and following restoration efforts.

The Aquatic Preserve staff at each potential location would be responsible for maintenance of the project after the initial 3 year monitoring of the project.

12.10.5 Offsets
For the purposes of negotiations of Offsets with BP in accordance with the Framework Agreement, the Trustees used Habitat Equivalency Analysis to estimate appropriate Offsets for the Florida Seagrass Recovery Project. Habitat Offsets (expressed in DSAYs) were estimated for seagrass/submerged aquatic vegetation habitat enhanced by this restoration, based on the expected spatial extent, duration and degree of improvements attributable to the project. In estimating DSAYs, the Trustees considered a number of factors, including, but not limited to, benefits of restoring seagrass habitat, the time period that it would take for restored habitat to provide different levels of ecological benefits, and estimated project life. The Trustees and BP agreed that if this restoration is selected for implementation, BP would receive Offsets of 17 DSAYs of submerged aquatic vegetation habitat in Florida, applicable to injuries to submerged aquatic vegetation habitat in Florida, as determined by the Trustees’ total assessment of injury for the Spill.

In the event that the injury determination for submerged aquatic vegetation habitat in Florida is quantified in the Natural Resource Damages Assessment using a metric other than DSAYs of submerged aquatic vegetation habitat in Florida, the Trustees agree to translate the agreed upon NRD Offsets into a currency consistent with the metric used to characterize the injury to submerged aquatic vegetation habitat in Florida. Any necessary translation of the Offsets will rely on the data and methods developed for the assessment and authorized in 15 C.F.R. Sections 990, et seq.

These Offsets are reasonable for this resource and project.

12.10.6 Cost
The total estimated cost to implement this project is $2,691,867. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and potential contingencies.
12.11 Florida Seagrass Recovery Project: Environmental Review
The purpose of this project is to address boat damage to shallow seagrass beds in the Gulf of Mexico on the Florida panhandle by restoring propeller scars located primarily in turtlegrass (*Thalassia testudinum*) habitats. The goal of this project is to provide Early Restoration for seagrass habitat that was injured as a result of the *Deepwater Horizon* accident and oil spill response, as well as other activities. The recovery program and boater outreach would restore approximately 2 acres of propeller-scarred seagrass habitat in three designated Florida Aquatic Preserves.

12.11.1 Introduction and Background
The proposed project would address boat damage to shallow seagrass beds in the coastal Florida panhandle region by restoring propeller scars located in turtlegrass habitats. Scars are made when boat propellers cut up roots, stems, and leaves of seagrasses, producing long, narrow furrows devoid of vegetation. Turtlegrass is a commonly found species of submerged aquatic vegetation (SAV) in the panhandle that is particularly slow to rejuvenate naturally when injured. Turtlegrass with propeller damage can take many years to rejuvenate naturally when injured, or in severely scarred areas may never completely recover. The proposed project would primarily be located in St. Joseph Bay Aquatic Preserve, Gulf County. Two additional potential seagrass restoration sites have been identified in St. Andrews Bay Aquatic Preserve, Bay County, and Alligator Harbor Aquatic Preserve in Franklin County, Florida. These three Aquatic Preserves contain critical turtlegrass habitat that, if not restored, will continue to erode and potentially destroy surrounding healthy SAV habitat. Restoring damage to SAV habitat would enhance vital coastal ecosystems and the commercial and recreational industries dependent on them.

12.11.2 Project Location
The proposed project is located in the Gulf of Mexico coastal bays of the Florida panhandle region. Three specific areas are targeted for seagrass restoration: Primarily, St. Joseph Bay Aquatic Preserve, near Port St. Joe, Gulf County; and two additional sites as necessary: Alligator Harbor Aquatic Preserve, near Alligator Point, Franklin County; and St. Andrews Bay Aquatic Preserve, near Panama City, Bay County. Figure 12-16 and Figure 12-17 depict the proposed project areas.
Figure 12-16. A vicinity map of the proposed project areas in Florida Aquatic Preserves in St. Joseph Bay, St. Andrews Bay, and Alligator Harbor.
Figure 12-17. Aerial map of the proposed project area in Florida Aquatic Preserves in St. Joseph Bay, St. Andrews Bay, and Alligator Harbor.

12.11.3 Construction and Installation
Proposed project construction and installation would involve three specific tasks: seagrass scar restoration, installation of bird stakes, and boater outreach and education programs. Detailed descriptions of each task are provided below.
12.11.3.1  **Task 1: Seagrass Scar Restoration**
Seagrass scarring in the three aquatic preserves would be surveyed and mapped. Sediment tubes would be acquired; filled with clean, local, appropriate sediment; and deployed in approximately 2 acres of seagrass propeller scars. The tubes are made of biodegradable cotton fabric filled with sediment, and would be placed into propeller scars to enhance seagrass recovery. The sediment tubes would raise the propeller scar elevation to ambient grade with clean, compatible sediment of appropriate grain size, thereby offering suitable habitat for natural seagrass recruitment into the damaged area. Sediment samples would be taken from the project area and analyzed prior to filling of the sediment tubes. Sediment that matches the profile of existing sediment would be acquired to fill the tubes. The sediment tubes would be filled on land with both hand-held and mechanical equipment, loaded onto vessels by mechanical equipment, and transported by vessel (such as pontoon boats) to the propeller scar locations in a manner that would avoid and minimize damage to existing seagrass habitat. Planting units would be installed in the sediment tubes if required after a 90-day curing period. Non-regulatory seagrass signs would be placed around the restoration area to prevent re-injury.

12.11.3.2  **Task 2: Installation of Bird Stakes**
Seagrass restoration would be facilitated by placing bird stakes in the restoration project area. The stakes would attract perching birds, which then supply natural fertilizer to the restoration area in the form of seabird feces. Bird feces are rich in phosphorus and nitrogen, which enhance seagrass growth.

The proposed bird stakes would be constructed of 1.5-inch-diameter polyvinyl chloride (PVC) pipe or similar material with wooden perches driven 2 to 3 feet into the sediment via hand-held sledgehammers or fencepost drivers from small, shallow draft vessels in such a way as to minimize bottom disturbance. The perches would remain 20 inches above mean high water elevation in water depths of less than or equal to 60 inches. The bird stakes would be installed as needed parallel to each scar. The stakes would be installed within 30 days of placement of sediment tubes, and would be removed upon successful establishment of the restored propeller scar.

12.11.3.3  **Task 3: Boater Outreach and Education**
The proposed boater outreach and education component of the project includes “shallow water seagrass area” signage (Figure 12-18), updating existing signage and buoys where applicable, and installing educational signage and providing educational brochures (Figure 12-19) about best practices for protecting seagrass habitats at popular boat ramps in St. Joseph Bay, Alligator Harbor, and St. Andrews Bay.
You are entering a shallow water Aquatic Preserve.

Destruction of seagrass in Aquatic Preserves is a violation of Florida Law (Section 253.04(3)(a) F.S.) and carries a penalty of up to $1,000.

Avoid damaging seagrass by knowing your boat’s operating depth and navigating in marked channels. Anchor only in bare sandy bottoms.

If you run aground in shallow water:
reduce your throttle speed  pole your boat to deeper water
Figure 12-19. Example Seagrass buoy brochure.
The restoration technique using sediment tubes has been scientifically reviewed and supported by the National Oceanic and Atmospheric Administration (NOAA), Florida Fish and Wildlife Conservation Commission (FWC), and the U.S. Fish and Wildlife Service (USFWS). Proper marking of the restoration areas would warn boaters of the shallow waters to promote recovery of the areas.

Finally, during in-water work periods, the *Sea Turtle and Smalltooth Sawfish Construction Conditions* (NMFS, 2006) and *Standard Manatee Conditions for In-Water Work* (USFWS 2011) will be implemented to minimize risks/impacts to aquatic species.

### 12.11.4 Operations and Maintenance

From the point of initiation, the project would be expected to take six months to a year to complete, with the exact start and stop dates being uncertain. This project would incorporate a mix of monitoring efforts to ensure project designs were correctly implemented during construction, and, in a subsequent period defined by contract, where corrective actions could be taken.

Postconstruction performance monitoring would initially focus on plant survival and revegetation of the existing scars. This monitoring may include collection of habitat information such as the depth of the scar at different points in time, and percent vegetative cover of the scar. Additional information collected may include utilization and integrity of the bird stakes over time, and nature and extent of any subsequent seagrass habitat scarring in areas where the new non-regulatory buoys are placed.

Pre- and post-project monitoring could compare restoration progress in both control and study areas. Changes in the number, length, and cover of propeller scars would be determined in large replicate photograph plots in each study area. Aerial photography could be performed annually, in late summer. Data layers would be created using ArcMap to determine the increase or decrease in scar number, length, and area over time.

Field surveys would be performed biannually in the early spring and late summer to monitor the progress of the restoration activities. The criteria for choosing both treated and untreated propeller scars for comparison would require that they do not have statistically significant differences in dimension (length and width), and that they are located in areas that contain similar seagrass densities. Methods designed to measure percent-cover and shoot counts would be used to compare recovery rates of propeller scars located within treated and untreated locations of the project area. Permanent (fixed) transects would be incorporated into the study to monitor changes in the number of untreated propeller scars. Underwater photographs and video would also be taken to document site characteristics prior to and following restoration efforts.

The Florida Department of Environmental Protection (FDEP) Aquatic Preserve staff would be responsible for monitoring and maintenance of the proposed project after the initial 3-year monitoring of the project. Pre- and post-project monitoring would compare restoration progress in both control and study areas. In addition, routine maintenance of signs and buoys would be conducted by FDEP throughout the monitoring period.
12.11.5  Affected Environment and Environmental Consequences

12.11.5.1  No Action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected resources subsections would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.11.5.2  Physical Environment

12.11.5.2.1  Geology and Substrates

Affected Resources
The existing geology and bottom sediments of St. Joseph Bay, St. Andrews Bay, and Alligator Harbor are predominantly sand, sand-silt-clay, sandy clay, and silty clay (Scott 2001). Based on surveys of the St. Andrews Bay Aquatic Preserve seagrass damage assessment conducted by the National Oceanic and Atmospheric Administration (NOAA) in 2012, average propeller scar depths (top of substrate to bottom of scar) range between 2.1 to 16.4 inches. Average area of damage (length × width) ranges between 43 and 5,382 square feet (reference FDEP Permit No. 17-0312090-001-EI). Data to support existing submerged substrate conditions of damaged seagrass habitat for St. Joseph Bay and Alligator Harbor Aquatic Preserves are not presently available. However, the extent of propeller scar damage and sediment characterization can be expected to be similar or greater than those of St. Andrews Bay Aquatic Preserve.

Environmental Consequences
The intent of the restoration project is to restore existing propeller scars by deploying sediment tubes and installing them in a manner that would mimic surrounding elevations and substrate contours in order to provide suitable habitat for seagrass recruitment. This project is expected to cause short-term impacts to existing submerged substrate and seagrass habitat surrounding the propeller scars, due to disturbance during placement of the sediment tubes and installation of the bird stakes. However, tidal circulation within the water column is expected to dilute suspended sediments generated from structure installation. In addition, the overall long-term benefit of reestablishing seagrass habitat in the damaged sites would be improved sediment stabilization once seagrass is established in the restoration areas. The proposed project would encourage proliferation of seagrass rhizomes (root structure) generation from adjacent habitat, thereby stabilizing sediment. Therefore, short-term impacts to existing substrates of the restoration sites and adjacent areas as a result of the proposed construction would be expected to be minor. Long-term adverse impacts to existing substrates are not expected as a result of the proposed project.
12.11.5.2.2 Hydrology and Water Quality

Affected Resources
Northwest Florida has seven major watersheds, all of which have been identified as priorities under the Surface Water Management and Improvement (SWIM) program. Water quality protection is the underlying goal of SWIM, along with the preservation and restoration of natural systems and associated public uses and benefits (Northwest Florida Water Management District [NWFWMD] 2011).

St. Joseph Bay is separated from the Gulf of Mexico by St. Joseph Peninsula and is considered the only body of water in the eastern Gulf that is not influenced by freshwater inflows (FDEP 2008). The bay has a surface area of 42,826 acres and connects to the Intracoastal Waterway by the Gulf County Canal (Thorpe 2000).

St. Joseph Bay is part of the St. Andrews Bay watershed system, which includes St. Andrews, West, East, and North Bays; St. Joseph Bay; and Deer Point Reservoir, as well as the respective surface water basins of each of these waterbodies. The waterways are primarily used for transportation, seafood harvesting, recreation, and waste disposal. Broad issues for the St. Andrews Bay system include degradation through point and nonpoint pollution sources, habitat quality that is threatened by and degraded through sedimentation and deposition, and public education and awareness (Thorpe 2000).

These aquatic preserves have good water quality conditions that promote seagrass growth. St. Andrews Bay is an estuary with relatively high salinity due to the low freshwater inflow provided by only a few spring-fed creeks. Alligator Harbor is a shallow estuary and a barrier sand spit lagoon. Because there is little fresh water flowing into the harbor, salinity levels are almost the same as the Gulf of Mexico.

Environmental Consequences
Project installation activities would use best management practices (BMPs) including impact avoidance of existing seagrass habitat through the use of small vessels. The timing of installation would depend on the timing of funding availability and the contract award along with any permit constraints required as a result of listed species considerations. Adverse impacts to hydrology and water quality would be minor, with moderate beneficial impacts expected as a result of restoring seagrass. The intent of the restoration project would be to restore existing propeller scars by deploying sediment tubes and installing them in a manner that would mimic surrounding elevations and substrate contours to provide suitable habitat for seagrass recruitment. Short-term turbidity levels above background could result from sediment tube placement. However, tidal current is expected to dilute suspended sediments. Once planting units are installed and seagrass colonization occurs in the restoration areas, ambient water-quality parameters would be expected to improve by providing enhanced water column filtration and nutrient uptake. Long-term adverse impacts to water quality would not be expected as a result of the proposed project. Short- and long-term adverse impacts to the hydrology of the proposed project areas as a result of sediment tube placement and installation of the bird stakes would be expected to be minor.

In-water work would require authorization from the USACE. The NOAA Restoration Center applied for and secured USACE Permit No. SAJ-2012-01546 (SP-SWA) on January 9, 2013, to construct the project in St. Andrews Bay, as well as other authorized waterbodies. However, USACE Permit No. SAJ-2012-01546 (SP-SWA) does not specifically include St. Joseph Bay and Alligator Harbor as authorized waterbodies for which construction is proposed. Therefore, a permit modification to Permit No. SAJ-2012-01546 or procurement
of a separate USACE permit may be necessary prior to construction to allow the proposed activity in St. Joseph Bay and Alligator Harbor. The existing USACE will expire December 20, 2017. No in-water work would be conducted until all permits, authorizations, or amendments were issued by USACE for the work.

12.11.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
The Clean Air Act (CAA) requires that the Environmental Protection Agency (EPA) set National Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to public health and the environment. NAAQS have been set for six common air pollutants (also known as criteria pollutants), consisting of particle pollution or particulate matter, ozone, carbon monoxide, sulfur dioxide (SO₂), nitrogen dioxide, and lead. Particulate matter is defined as fine particulates with a diameter of 10 micrometers or less (PM₁₀), and fine particulates with a diameter of 2.5 or less (PM₂.₅). When a designated air quality area or airshed in a state exceeds the NAAQS, that area may be designated as a “nonattainment” area. Areas with levels of pollutants below the health-based standard are designated as “attainment” areas. To determine whether an area meets the NAAQS, air monitoring networks have been established and are used to measure ambient air quality. The EPA also regulates 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health impacts. Air quality in the Florida panhandle is in attainment with the NAAQs (EPA 2013).

Greenhouse Gasses
Gases that trap heat in the air are called greenhouse gases (GHGs). The primary GHGs are carbon dioxide (CO₂), methane (CH₄), nitrous oxide (NOₓ), and fluorinated gases. Over the past century, human activities have released large amounts of GHGs into the atmosphere, which are contributing to global warming. Global warming is defined as the ongoing rise in global average temperature near the Earth’s surface and is known to cause changes in climate patterns.

According to the EPA, the average annual temperature in the southeast portion of the United States has increased by approximately 2.0 degree Fahrenheit (°F) since 1970. Winters, in particular, are getting warmer, and the average number of freezing days has decreased by 4 to 7 days per year since the mid-1970s. Most areas are getting wetter; autumn precipitation has increased by 30% since 1901 (EPA 2013b). In many parts of the region, the number of heavy downpours has increased. Despite the increases in fall precipitation, the area affected by moderate and severe drought has increased since the mid-1970s (EPA 2013b).

Average annual temperatures in the region are projected to increase from 4°F to 9°F by 2080. Hurricane-related rainfall is projected to continue to increase. Models suggest that rainfall will arrive in heavier downpours, with increased dry periods between storms. These changes would increase the risk of both flooding and drought. The coasts will likely experience stronger hurricanes and sea level rise. Storm surge could present problems for coastal communities and ecosystems (EPA 2013b).

Total GHG emissions in Florida from 1990 to 2007 have increased at an average rate of 2.1% per year. Total GHG emissions in 2007 were 290 million metric tons of CO₂ equivalent (MMTCO₂E). In 2007, 91% of GHG emissions in Florida were CO₂ emissions (FDEP 2010).

Environmental Consequences
Project implementation would require little use of heavy mechanized equipment, which would lead to temporary air pollution (e.g., criteria pollutants, HAPs, GHGs) due to emissions from the operation of
construction vehicles and equipment. Therefore, any air quality impacts that occurred would be minor due to their localized nature and short-term duration as well as the small size of the project. Available BMPs would be employed to prevent, mitigate, and control potential air pollutants during project implementation. No air quality-related permits would be required.

A boat, truck, and hand tools would be the only construction equipment necessary for the proposed project. The boat and pickup truck would be the only equipment likely to emit GHG emissions; GHG emissions from the remaining equipment would be negligible. Using the operating assumption of 8 hours per day and 5 days per week for 6–7 months, GHG emissions from the boat and pickup truck have been estimated (Table 12-14).

Table 12-14. GHG emissions.

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>NUMBER OF 8-HOUR DAYS</th>
<th>CO₂ (METRIC TONS)²</th>
<th>CH₄ (CO₂E) (METRIC TONS)³</th>
<th>NOₓ (CO₂E) (METRIC TONS)</th>
<th>TOTAL CO₂E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boat</td>
<td>210</td>
<td>1.365</td>
<td>0.042</td>
<td>0.546</td>
<td>1.953</td>
</tr>
<tr>
<td>Pickup Truck</td>
<td>180</td>
<td>1.98</td>
<td>0.63</td>
<td>7.92</td>
<td>10.53</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3.345</td>
<td>0.672</td>
<td>8.466</td>
<td>12.483</td>
<td></td>
</tr>
</tbody>
</table>

¹ Emissions assumptions for all equipment are based on 8 hours of operation.

² CO₂ emissions assumptions for diesel and gasoline engines are based on EPA 2009.

³ CH₄ and NOₓ emissions assumptions and CO₂e calculations are based on EPA 2011.

⁴ Emissions assumptions for an 8-cylinder, 6.2-liter gasoline engine Ford F150 pickup based on DOE 2013 and 18-gallon (half-tank) daily fuel consumption.

At the completion of the project, there may be an increase in recreational activity in the project area waters that would be enhanced as a result of improved fishing and bird-watching opportunities from improved seagrass habitat conditions. Increased exhaust emissions could affect air quality over the long term. However, adverse impacts to air quality are expected to be minor because management actions could be taken to limit boat use.

12.11.5.2.4 Noise

**Affected Resources**

Noise can be defined as unwanted sound and noise levels, and its effects are interpreted in relation to effects on nearby visitors to the recreational areas and wildlife in the project vicinity. The Noise Control Act of 1972 (42 USC 4901–4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale that approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-15 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.
Table 12-15. Common noise levels.

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (DBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawnmower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

*Source: Adapted from U.S. Department of Energy and Bonneville Power Administration (1986).*

Noise levels in the project areas vary depending on the season, time of day, number and types of noise sources, and distance from noise sources. Existing sources of noise in the project areas are mainly from recreational boating, with occasional overhead aircraft or commercial traffic. Ambient natural sounds such as wind, waves, and wildlife also contribute to existing noise levels. Existing ambient noise levels in the three Aquatic Preserves are generally low and predominantly result from daily boating activities.

Noise-sensitive receptors include sensitive land uses as well as individuals and/or wildlife that could be affected by changes in noise sources or levels due to the proposed project. Noise-sensitive receptors in the project vicinities include beach and park recreational use and wildlife. The project areas are, for the most part, remotely located.

**Environmental Consequences**

Instances of increased noise would be expected during the material delivery and construction phases associated with the restoration project. The proposed project would generate construction noise associated with equipment used to fill the sediment tubes, loading the tubes onto watercraft used for transport to restoration sites, navigational transport of sediment tubes to each restoration site, and installation of bird stakes and buoy placement. In the short term, machinery and equipment used during construction to deliver material and construct the sediment tubes would generate noise, which may disturb wildlife and humans using the area. These noise levels would be kept to a minimum via BMPs such as turning boats off during idling, and working only during daylight hours. Noise generated from outboard motors and vessel maneuvering to transport and install the sediment tubes and bird stakes at the restoration sites would be no more than that generated by existing recreational watercraft in the project area. Noise from project installation would be comparable to ambient noise levels at the restoration sites. However, installation of bird stakes using hand-held devices would create noise and/or vibration that may expand the extent of impacts on wildlife. Adverse impacts from noise during the construction phase would be temporary, located in relatively remote areas, and minor relative to anticipated levels and exposure. Once built, the proposed project would not cause long-term noise impacts.
12.11.5.3 Biological Environment

12.11.5.3.1 Living Coastal and Marine Resources

Vegetation

Affected Resources
The three project areas are designated by the State of Florida as Aquatic Preserves for their known natural resources occurrences and regional ecological significance. Seagrass communities characterize the SAV of the three project areas. In addition, the adjacent shorelines in proposed project locations include a mix of saltmarsh and sandy beach habitat.

The seagrass communities of St. Joseph Bay, St. Andrews Bay, and Alligator Harbor are dominated by turtlegrass, which is the target restoration species for the project. Shoal grass (*Halodule wrightii*) and manatee grass (*Syringodium filiforme*) are interspersed in the seagrass communities, depending on the project area.

Seagrass communities are essential breeding, rearing, and feeding grounds for many important recreational and commercial fisheries as well as wildlife, including the endangered West Indian manatee (*Trichechus manatus latirostris*) as well as various species of sea turtles. Shallow seagrass habitat in the three Aquatic Preserves was damaged by watercraft propeller scars during the Deepwater Horizon oil spill response period. Based on previous surveys of the seagrass communities of the project area, approximately 2 acres of propeller scars were reported. The scar areas are located in generally shallow, estuarine/marine waters, approximately 2–6 feet deep, which is a factor in the original scarring and would contribute to the heavy reliance on shallow draft boats and manual placement of the sediment tubes, bird stakes, signage, and buoys for the proposed project.

Environmental Consequences
If not restored, the damaged seagrass habitat would continue to erode and destroy more of the healthy habitat surrounding the injured areas. During installation of the sediment tubes, short-term potential impacts would be expected and would include temporary damage to seagrass surrounding the propeller scars as a result of watercraft access to the restoration sites, placement of the sediment tubes, and trampling during restoration. Every effort would be made to access the restoration sites during periods of high tide using shallow draft vessels to minimize potential adverse impacts to seagrass habitat as a result of navigation. Therefore, impacts to seagrass would be short term and minor. The long-term benefits of the seagrass recovery effort would outweigh potential short-term adverse impacts, and include restoration of this community type, water quality enhancement, protection of the resource using buoy markers to discourage vessel entry, or encourage idle speed, and increased habitat for commercial and recreational fisheries.

The FDEP would require permits and impose reasonable conditions as are necessary to ensure that construction would comply with the provisions of Chapter 62-346.050 (3) of the Florida Administrative Code (FAC), which states in part that dredging and filling in, on, or over surface waters of the state remains subject to the requirements of FAC Chapter 62-312, including the need to obtain a separate permit under that chapter until the effective date of the rules adopted under Section 373.4145(1)(b), Florida Statutes (FS). The FDEP permit also grants state-owned Submerged Lands Authorization from the
On August 17, 2012, the NOAA Restoration Center secured FDEP Environmental Resource Permit No. 17-0312090-001-EI to construct the project in St. Andrews Bay as well as at other authorized waterbodies. However, FDEP Permit No. 17-0312090-001-EI authorizes the proposed activity in St. Andrews Bay and does not specifically include St. Joseph Bay and Alligator Harbor as authorized waterbodies for which construction is proposed and the permit was issued to NOAA. Therefore, a permit modification to FDEP Permit No. 17-0312090-001-EI or a procurement of separate FDEP permit may be necessary to allow the proposed activity in St. Joseph Bay and Alligator Harbor. The existing FDEP permit will expire August 17, 2017.

12.11.5.4 Wildlife Habitat

Affected Resources
The three Aquatic Preserves provide crucial nursery and forage habitat for many commercial and recreational fisheries and wildlife, including marine and estuarine invertebrates, wading birds (herons and egrets), and birds of prey that feed on juvenile and adult fish (FDEP 2008). The most common resident marsh and wading birds are great blue heron (Ardea herodias), little blue heron (Egretta caerulea), white ibis (Eudocimus albus), great egret (Ardea alba), snowy egret (Egretta thula), tricolored egret (Egretta tricolor) yellow-crowned night heron (Nyctanassa violacea), and black-crowned night heron (Nycticorax nycticorax). Urban and open vacant land adjacent to the project area may serve as a refuge and staging area for many passerine birds during migration, and large concentrations of shorebirds are sometimes observed feeding in the mudflats. Protected wildlife (such as sea turtles, porpoises, and manatee, discussed in detail below) also forage on or within seagrass communities at the project sites.

St. Joseph Bay is a designated Important Bird Area of more than 8,500 acres made up of several parcels: Black’s Island, Eglin Air Force Base Test Site, Palm Point, St. Joseph Bay Buffer, T.H. Stone Memorial, and St. Joseph Peninsula State Park and all provide important habitats for breeding and wintering migratory birds. No terrestrial wildlife (non-bird) surveys have been conducted in the project area; however, based on the types of habitat present, and because of its size, elevation, and location, it would be expected that ruderal species such as raccoon (Procyon lotor), opossum (Didelphimorphia), gray squirrel (Sciurus carolinensis), and other non-game mammals may be present in upland areas in the project area.

12.11.5.5 Marine and Estuarine Fauna (Fish, Shell Beds, and Benthic Organisms)

Affected Resources
A number of aquatic species are found in the project area. Fish species are abundant and include sea trout (Salmo trutta), redfish (Sciaenops ocellatus), searobins (Triglidae), flounders (Paralichthys), porgys (Sparidae), and a host of other estuarine and juvenile marine fish (FDEP 2008). Benthic organisms such as bivalves, gastropods and other mollusks, anemones, amphipods, annelids, crustaceans, and echinoderms are also abundant in these waters.

Environmental Consequences
The proposed project would likely result in short-term minor impacts due to placement of the sediment tubes into propeller scars where invertebrates or sessile organisms may have established themselves and be present. Small fish that may seek protection in the scars are highly mobile and would be
displaced to more suitable habitat in the project area. In addition, sessile invertebrates occupying the submerged substrate and fish may be disturbed or displaced in the short term from areas where bird stakes and identification buoys would be placed. However, these species are typically numerous in Gulf of Mexico waters and typically recolonize quickly.

The proposed project would result in long-term benefits to marine and estuarine fauna by providing additional fish habitat, increased benthic productivity, and enhanced recruitment and production of fish and crustaceans. Restoration of the seagrass habitat would benefit numerous aquatic species, including but not limited to blue crab (*Callinectes sapidus*), bay scallop (*Aquipecten irradians*), red drum (*Sciaenops ocellatus*), and speckled sea trout (*Cynoscion nebulosus*). Over the life of the project, the quality of the aquatic habitat would increase. The overall benefits to marine habitats that would result from seagrass restoration would outweigh potential short-term impacts to these species and their habitats.

### 12.11.5.6 Protected Species

**Affected Resources**

Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA). The federally listed threatened and endangered species reported for the three Aquatic Preserve project areas in Bay, Franklin, and Gulf Counties include five species of sea turtles, the West Indian manatee, the piping plover, the proposed red knot, and the Gulf sturgeon (USFWS 2013a).

The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Franklin and Bay counties, Florida. Table 12-16 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

### Table 12-16. Potential Impacts to Species/Critical Habitats managed by USFWS

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle⁷, Hawksbill turtle, Kemp’s ridley turtle; Leatherback turtle, Loggerhead turtle</td>
<td>No work will occur in the terrestrial environment; therefore no impacts will occur to sea turtle species in the terrestrial environment. Consultation has been completed with NMFS, the agency that has jurisdiction to review impacts to sea turtles in the estuarine and marine environments. The main risk to sea turtles during execution of this project would come from boat collisions which could result in harm or mortality. Critical habitat for the green sea turtle has been designated for the waters surrounding Culebra Island, Puerto Rico, and its outlying keys (63 FR 46693). Marine</td>
</tr>
</tbody>
</table>

---

⁷ The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
<table>
<thead>
<tr>
<th>SPECIES/Critical Habitat</th>
<th>SPECIES/Critical Habitat Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>and terrestrial critical habitat for the leatherback sea turtle has been designated at Sandy Point on the western end of the island of St. Croix, U.S. Virgin Islands (44 FR 17710) and critical habitat will be reassessed during the future planned status review (76 FR 47133). Critical habitat for the hawksbill sea turtle has been designated for selected beaches and/or waters of Mona, Monito, Culebrita, and Culebra Islands, Puerto Rico (63 FR 46693). No designated critical habitat for the green, leatherback, or hawksbill sea turtles occurs within the action area. No critical habitat has been designated for the Kemp’s ridley sea turtle; therefore, none will be adversely affected or modified. The project area does not overlap with the currently proposed critical habitat areas in Florida for Northwest Atlantic Distinct Population Segment of the loggerhead sea turtle as these habitats are terrestrial (i.e., beaches and shorelines) (78 FR 18000, Department of the Interior, 2013).</td>
<td></td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>The counties in the project area are not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the project waters and would potentially seek out shallow seagrass areas as they are preferred feeding habitat (U.S. Department of the Interior, 2011). The main risk to manatees during execution of this project would come from boat collisions which could result in harm or mortality. The overall goal of the project is to improve the quantity and quality of the seagrass habitat that manatees prefer.</td>
</tr>
<tr>
<td>Piping plover</td>
<td>The main risk to Piping plovers is from human disturbance while nesting, roosting, foraging in habitats adjacent to marine work areas. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the plovers to move to a nearby area. Because other foraging/nesting habitats are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable. The proposed project will not result in any changes to shoreline habitats where piping plover could be feeding or resting and is not expected to increase visitor use; therefore, no indirect impacts are expected. Piping plover critical habitat is not designated in or near the action area.</td>
</tr>
<tr>
<td>Red knot</td>
<td>The main risk to Red knots is from human disturbance while nesting, roosting, foraging in habitats adjacent to marine work areas. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the plovers to move to a nearby area. Because other foraging/nesting habitats are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable. The proposed project will not result in any changes to shoreline habitats where piping plover could be feeding or resting and is not expected to increase visitor use; therefore, no indirect impacts are expected.</td>
</tr>
<tr>
<td>Gulf sturgeon</td>
<td>NMFS was consulted on Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon was not considered in the consultation with the USFWS.</td>
</tr>
</tbody>
</table>

Based on the Trustees’ reviews of project materials (Spring 2014) in coordination with representatives from NOAA’s Protected Resource Division (PRD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that this project falls outside of NMFS Endangered Species Act (ESA)
jurisdiction, as it does not contain a route of affect to species managed by NMFS. As a result, the project did not require further ESA evaluation from NOAA.

Additional information for some of the species listed above is provided below.

**Sea Turtles and Marine Mammals**

Five species of endangered or threatened sea turtles may occur or have potential to occur in the project areas. These are the green turtle, hawksbill turtle, Kemp’s ridley turtle, leatherback turtle, and loggerhead turtle. Sea turtles forage in the waters of the coastal Florida panhandle region and are likely to occur in the project areas.

The endangered West Indian manatee has the potential to occur in project area waters and seek out shallow seagrass areas as preferred feeding habitat, and it is known to occur in the St. Andrews and St. Joseph Bay aquatic preserves (FDEP 2008, 2012).

**Gulf Sturgeon and Gulf Sturgeon Critical Habitat**

Gulf sturgeon are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Pearl River in Louisiana to the Suwannee River, in Florida (NMFS 2009). Adult fish reside in rivers for 8 to 9 months each year and in estuarine or Gulf of Mexico waters during the 3 to 4 cooler months of each year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993).

Gulf sturgeon critical habitat was jointly designated by the NMFS and USFWS on April 18, 2003 (50 Code of Federal Regulations [C.F.R.] 226.214). The proposed project area is located within the Florida Nearshore Gulf of Mexico Critical Habitat Unit 11, which contains winter feeding and migration habitat for Gulf sturgeon. Critical habitat was designated based on seven primary constituent elements essential for its conservation, as defined in the 2003 Federal Register.

These seven elements are listed below. Within the project area PCEs 1, 5, 6, and 7 are present in the project area.

1. Abundant food items such as detritus, aquatic insects, worms, and/or mollusks, within riverine habitats for larval and juvenile life stages; and abundant prey items such as amphipods, lancelets, polychaetes, gastropods, ghost shrimp, isopods, mollusks and/or crustaceans, within estuarine and marine habitats and substrates for subadult and adult life stages.
2. Riverine spawning sites with substrates suitable for egg deposition and development, such as limestone outcrops and cut limestone banks, bedrock, large gravel or cobble beds, marl, soapstone, or hard clay.
3. Riverine aggregation areas, also referred to as resting, holding, and staging areas, used by adult, subadult, and/or juveniles, and generally but not always located in holes below normal riverbed depths, believed necessary for minimizing energy expenditures during fresh water residency and possibly for osmoregulatory functions.
4. A flow regime (i.e., the magnitude, frequency, duration, seasonality, and rate-of-change of fresh water discharge over time) necessary for normal behavior, growth, and survival of all life stages in the riverine environment, including migration, breeding site selection, courtship, egg fertilization, resting, and staging, and for maintaining spawning sites in suitable condition for egg attachment, egg sheltering, resting, and larval staging.
5. Water quality, including temperature, salinity, pH, hardness, turbidity, oxygen content, and other chemical characteristics necessary for normal behavior, growth, and viability of all life stages.

6. Sediment quality, including texture and chemical characteristics necessary for normal behavior, growth, and viability of all life stages.

7. Safe and unobstructed migratory pathways necessary for passage within and between riverine, estuarine, and marine habitats (e.g., an unobstructed river or a dammed river that still allows for passage).

Figure 12-20 shows Gulf sturgeon critical habitat areas in relation to the potential project locations.

Figure 12-20. Critical habitat.
Essential Fish Habitat (EFH)
EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as "those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse effects on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Based on the Trustees review of project materials (Spring 2014) in coordination with representatives from NOAA’s Habitat Conservation Division (HCD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that this project will not affect EFH because there is no route of affect to EFH in the project area. As a result, the project did not require further EFH evaluation.

Piping Plover
The sandy beaches and shorelines adjacent to the project areas offer suitable foraging and resting habitat for the piping plover during the winter migratory season, and piping plover may forage in the shallow waters of the project area. Natural shorelines in the proposed project vicinity provide suitable winter migration resting habitat for the piping plover. Piping plover wintering habitat includes beaches, mudflats, and sandflats, as well as barrier island beaches and spoil islands (Haig 1992, as cited by USFWS, accessed September 30, 2013). On the Gulf Coast, preferred foraging areas were associated with wider beaches, mudflats, and small inlets (USFWS 2013a). Although no piping plover critical habitat is located in the project areas, critical habitat is located less 2 two miles away from them.

Red Knot
The red knot, a federal proposed species, uses the state of Florida both for wintering habitat and migration stopover habitat for those that continue to migrate down to specific wintering locations in South America (Niles et al. 2008). Wintering and migrating red knots forage along sandy beaches, tidal mudflats, saltmarshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms, and roost on high sand flats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008).

State-Listed Birds, MBTA and BGEPA
There are numerous birds protected by the MBTA and the State of Florida with potential to occur in and around the seagrass restoration sites. These include the Arctic peregrine falcon (Falco peregrinus tundrius), southeastern American kestrel (Falco sparverius paulus), Southeastern/Cuban snowy plover (Charadrius alexandrinus tenuirostris), piping plover (discussed above), and red knot (discussed above). Both the St. Andrews and the St. Joseph Aquatic Preserves species lists indicate numerous state-listed birds as well as bird species of special concern that are known to occur in the project area.

Bald eagles are known to nest in the vicinity of all three preserves. There are seven known bald eagle nests within 1 mile of project activities in the St. Joseph Aquatic Preserve; there are three within 5 miles
of project activities at the Alligator Harbor Aquatic Preserve; and there are 8 bald eagle nests within 1 mile of St. Andrews Aquatic Preserve restoration activities (FWC 2012). The bald eagle feeds on fish and other readily available mammalian and avian species, and is dependent on large, open expanses of water for foraging habitat.

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-17 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

Table 12-17. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Seabirds forage, feed, rest, and roost in the project area. As such, they may be impacted locally and temporarily by the project. It is expected that they would be able to move to another nearby location to continue foraging, feeding and resting. These birds primarily roost in the dunes. Therefore the Trustees do not anticipate impacts.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-18.

Table 12-18. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care will be taken to minimize noise and vibration near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity. Roosting should not be impacted because the project will occur during daylight hours only. Nesting will not be impacted because the project will not occur during nesting season and activity is limited to open water areas.</td>
</tr>
</tbody>
</table>

Environmental Consequences

The proposed project restoration activities would restore seagrass habitat that many protected species rely on for forage, refuge, and nursery areas essential for the marine and estuarine ecosystems of the three Aquatic Preserves and nearby Gulf of Mexico waters. The proposed project has been evaluated for potential short- and long-term impacts to state-listed and federally listed threatened and endangered species that may occur in and adjacent to the project areas, based on available suitable habitat and restoration goals. Descriptions of the evaluation for these species are provided below.
The USFWS reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. October 21, 2013 the review of potential impacts to species managed by USFWS was completed (Fay, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect West Indian manatee, piping plover, and red knot (if listed). The USFWS also concurred with the Trustees’ determination that the project will have no effect on five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead).

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

State-Listed Birds, MBTA and BGEPA
Migratory birds may nest, forage, and/or rest on beaches or mudflats in the vicinity of seagrass restoration activities. If seagrass restoration occurs during the nesting season (February 15 to August 13), these birds could be disturbed by noise generated from in-water construction activities. This would be a short-term minor impact. To avoid this impact, construction within 300 feet of suitable nesting habitat would be avoided during the nesting season. If construction could not avoid the nesting season, a preconstruction survey would be conducted by a qualified biologist, and if nesting birds were identified within 300 feet of project activities, the FWC and USFWS would be contacted regarding the placement of appropriate buffers to ensure no impacts to nesting birds would occur. Contractors would be required to be aware of and comply with applicable laws prohibiting harm to migratory birds and endangered species.

The project is proposed to occur in open water near the shoreline and at popular boat ramps (for outreach signage). Open-water seagrass restoration activities would include in-water work that would disturb seabirds or other wildlife due to turbidity, acoustical vibration, and noise impacts during sediment tube transport by small draft vessels, outboard engine operation, and hammering impacts during installation of the bird stakes or signs. Avoidance and minimization measures to prevent impacts to these migratory birds include minimizing noise and vibration near areas where foraging or resting birds were encountered (USFWS 2013a). All disturbances would be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity, when given the opportunity. Additionally, foraging habitat is abundant in all three of the restoration sites, and the seagrass restoration activities would take place in only a small portion of these areas. Therefore, foraging birds or other wildlife would not be impacted as a result of seagrass restoration activities. Roosting should not be impacted because the project would occur during daylight hours only. Nesting would not be impacted because the project would not occur during nesting season and activity would be limited to open water areas.

Bald eagles are known to nest near the St. Joseph Bay, St. Andrews Bay, and Alligator Harbor project areas. If bald eagle breeding or nesting behaviors are observed, or an active nest is determined to be within the project vicinity, conservation measures from USFWS and FWC will be implemented avoid impacts to breeding and nesting bald eagles (see Chapter 6 for specific measures).
Consultation with the FWC concerning the proposed project and anticipated construction schedule relative to known bald eagle nest sites in the project area and the nesting season in Florida (October 1 to May 15) would be required prior to commencement of restoration activities. To minimize potential for impacts to nesting bald eagle, consultation protection measures may include 1) addressing prescribed nest tree protection zones, and 2) preparation of a bald eagle nest protection plan (including nesting behavior disturbance monitoring). Bald eagles have been known to be tolerable to certain potential disturbances within their breeding territories. Should these conservation measures be implemented for active nest sites adjacent to restoration activities in the St. Joseph Bay and Alligator Harbor project areas, potential impacts to the bald eagle would be short term and minor.

Bald eagles are not present at the proposed project locations within a distance that would require conservation measures so they will not be affected. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

Invasive Species

Affected Resources
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

Environmental Consequences
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.11.5.7 Human Uses and Socioeconomics

12.11.5.7.1 Socioeconomics and Environmental Justice

Affected Resources
According to the 2010 census, the combined population of Bay, Gulf, and Franklin Counties was 196,264 (U.S. Census Bureau 2013) (Table 12-19). Bay County was the most populous of the three counties with 168,852 people, resulting in an average density of 222.6 individuals per square mile. Gulf and Franklin Counties together had a population of 27,412, resulting in an average density of 25 individuals per
square mile. Whites represented the largest group, comprising approximately 80% of the population of all three counties. The second largest group was African American, representing 11% to 19%. Five percent of the population was Hispanic or Latino (U.S. Census Bureau 2013). According to the economic development organization, Enterprise Florida (2013), more individuals worked in industries such as leisure and hospitality; trade, transportation, and utilities; public administration; and education and health services than other industries. Tyndall Air Force Base is located in Bay County.


<table>
<thead>
<tr>
<th>POPULATION</th>
<th>FLORIDA COUNTY</th>
<th>BAY COUNTY</th>
<th>GULF COUNTY</th>
<th>FRANKLIN COUNTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population, 2010</td>
<td>18,801,310</td>
<td>168,852</td>
<td>15,863</td>
<td>11,549</td>
</tr>
<tr>
<td>White alone</td>
<td>14,721,426</td>
<td>139,978</td>
<td>12,405</td>
<td>9,597</td>
</tr>
<tr>
<td></td>
<td>78.3%</td>
<td>82.9%</td>
<td>78.2%</td>
<td>83.1%</td>
</tr>
<tr>
<td>Black or African American</td>
<td>3,121,017</td>
<td>18,743</td>
<td>3,030</td>
<td>1,628</td>
</tr>
<tr>
<td></td>
<td>16.6%</td>
<td>11.1%</td>
<td>19.1%</td>
<td>14.1%</td>
</tr>
<tr>
<td>American Indian and Alaska Native</td>
<td>94,007</td>
<td>1,182</td>
<td>79</td>
<td>81</td>
</tr>
<tr>
<td>alone</td>
<td>0.5%</td>
<td>0.7%</td>
<td>0.5%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Asian alone</td>
<td>507,635</td>
<td>3,715</td>
<td>63</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>2.7%</td>
<td>2.2%</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Native Hawaiian and other Pacific</td>
<td>18,801</td>
<td>169</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Islander alone</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Two or more races</td>
<td>357,225</td>
<td>4,897</td>
<td>286</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>1.9%</td>
<td>2.9%</td>
<td>1.8%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>4,361,904</td>
<td>8,780</td>
<td>730</td>
<td>577</td>
</tr>
<tr>
<td></td>
<td>23.2%</td>
<td>5.2%</td>
<td>4.6%</td>
<td>5.0%</td>
</tr>
<tr>
<td>White alone, not Hispanic or Latino</td>
<td>10,716,747</td>
<td>132,718</td>
<td>11,723</td>
<td>9,078</td>
</tr>
<tr>
<td></td>
<td>57.0%</td>
<td>78.6%</td>
<td>73.9%</td>
<td>78.6%</td>
</tr>
</tbody>
</table>

**Environmental Consequences**

There are no indications that the proposed seagrass enhancement project would be contrary to the goals of Executive Order 12898, or would create disproportionate, adverse human health or environmental impacts on minority or low-income populations of the surrounding community. Therefore, no adverse impacts to the socioeconomics of the regional population in Bay, Gulf, or Franklin Counties would be anticipated as a result of the proposed project.

The proposed restoration of seagrass habitat in the project areas would potentially provide indirect minor beneficial impacts to the local economy due to increased recreational activity in response to fishing and bird-watching opportunities provided by the restoration effort. Restoration of seagrass habitat would benefit numerous aquatic species popular with recreational fisherman, such as blue crab, bay scallop, red drum, and speckled trout.

**12.11.5.7.2 Cultural Resources**

**Affected Resources**

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.
Environmental Consequences
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.11.5.7.3 Land and Marine Management

Affected Resources
Seagrass beds constitute sovereign submerged lands owned and governed by the State of Florida; therefore, any projects undertaken on those lands must receive authorization from the Board of Trustees of the Internal Improvement Trust Fund, pursuant to Article X, Section 11 of the Florida Constitution, Section 253.77, F.S., and Chapter 258, F.S. An Environmental Resource Permit must be attained from FDEP.

Additionally, the St. Joseph Aquatic Preserve Management Plan indicates the importance of seagrass to the overall health and well being of the preserve ecosystems (FDEP 2008). The FDEP also indicates the important of seagrass to the Alligator Harbor Aquatic Preserve (FDEP 2012).

Environmental Consequences
Under the proposed project, no changes would occur to the current land use at the St. Joseph Bay, St. Andrews Bay, and Alligator Harbor Aquatic Preserves. Land use and management authority of the three Aquatic Preserves would remain under the purview of FDEP, and no development at the project sites would occur. The proposed project would be consistent with existing management and plans at the preserves. Ultimately, the proposed project would continue to provide and enhance essential fisheries habitat and sanctuary for wildlife, including threatened and endangered species dependent on seagrass communities for much of their life cycle. The proposed restoration would be conducted and maintained in accordance with state and federal permits previously secured for the project area in Bay County (St. Andrews Bay), or those permits (or amended permits) that may be required for the proposed project in Gulf and Franklin Counties (St. Joseph Bay and Alligator Harbor, respectively). The FDEP Environmental Resource Permit process is being initiated through the Deepwater Horizon Phase III federal liaison process. Therefore, potential adverse impacts to land and marine management resources would not be expected.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).
12.11.5.7.4 Aesthetics and Visual Resources

Affected Resources
The land uses around all three of the proposed project sites are either for state park land, sparsely populated residential areas, or Tyndall Air Force Base. The general visual character of three Aquatic Preserves can be described as undeveloped or open space consisting of native estuarine habitat separated from the Gulf of Mexico by barrier islands. Unobstructed views of open water characterizing the project area exist from these barrier islands at higher elevations on the land.

Environmental Consequences
Temporary impacts to visual resources would result from implementation of the proposed restoration activities. Construction equipment would be temporarily visible to visitors and recreational users at the project access points (i.e., boat ramps and launch areas). These construction-related impacts to visual resources would be minor, since the vessel launch areas are not readily visible from urbanized areas or park systems, and equipment would only be visible to visitors arriving at the boat ramp areas to launch or those boaters arriving dockside from the project waterways to load. Because the seagrass restoration would consist of the manual placement of sediment tubes, protection buoys, and bird stakes from boats in the large expanse of open-water estuarine areas, no impacts to visual resources would be anticipated. Seagrass restoration would be anticipated to result in a long-term, minor visual enhancement to the three Aquatic Preserves, as the project is intended to mimic the natural process associated with estuarine systems. Therefore, the proposed project impacts would be minor and would not be expected to adversely affect current aesthetics or visual resources.

12.11.5.7.5 Tourism and Recreational Use

Affected Resources
According to the economic development organization, Enterprise Florida’s County Profiles for Gulf, Bay, and Franklin Counties (2013), the primary recreational opportunities in these counties are boating, fishing, swimming, diving, snorkeling, and golfing. St. Andrews State Park, St. Joseph Peninsula State Park, and St. George Island State Park are located in this area.

Environmental Consequences
The duration of the proposed project would be relatively short; therefore, negative impacts to recreational experience would be minor as a result of noise and visual disturbances during placement of the sediment bags, protection buoys, and bird stakes. Public access to waters from boat ramps would potentially be restricted during project launching activities. Although temporary inconveniences would result in minor negative impacts to tourism and recreational use, over the long term the project would not result in adverse impacts to tourism and recreational use. Opportunities for recreational activity in the project waters would be enhanced as a result of improved fishing and bird-watching opportunities from improved seagrass habitat conditions. Enhancement of the seagrass beds would provide additional habitat that would be beneficial to recreational activities such as fishing, snorkeling, and diving. Over the long term, the project would result in minor beneficial impacts to tourism and recreational uses.
12.11.5.7.6 Infrastructure

Affected Resources
The Port of St. Joe, which is located on St. Joseph Bay, is one of three state-designated deep-water ports on north Florida’s Gulf Coast. Access to the Gulf of Mexico is accomplished by an approximate 7-mile channel from the port to the north end of the bay. The port has two bulkheads and can accommodate ships with a 27-foot draft. Ships can directly access the Intracoastal Waterway from the port. St. Joseph Peninsula State Park maintains a marina and boat ramp on the west side of St. Joseph Bay. Alligator Point is sparsely populated but has a marina for recreational boaters and fishing charters. The project area in St. Andrews Bay is bordered by St. Andrews State Park, Shell Island, and Tyndall Air Force Base.

St. Joseph Bay, St. Andrews Bay, and Alligator Harbor Aquatic Preserves are relatively remote natural estuarine systems with no services or infrastructure. With the exception of St. Andrews Bay, the project waters are not located within the immediate vicinity of urban service centers. Panama City, an urbanized service center, is located immediately adjacent to St. Andrews Bay Aquatic Preserve. Hathaway Bridge (U.S. Route 98) connects Panama City to Panama City Beach to the west, and Du Pont Bridge (U.S. Route 98) connects to Tyndall Air Force Base to the east.

Environmental Consequences
The Port of St. Joe is located north of the project area. Because the port is outside the proposed project area, traffic from the port would not affect the seagrass enhancement project, nor would construction activities pertaining to the project have any adverse impacts to the port. Any impacts to the infrastructure around St. Andrews Bay and Alligator Point due to staging areas or increased boat ramp use would be short term and minor. Additionally, the proposed project is not expected to impact transportation, utilities, or any other infrastructure.

12.11.5.7.7 Public Health and Safety and Shoreline Protection

Affected Resources
There are no known hazardous waste disposal facilities or active water discharge sites permitted in the project vicinity.

Environmental Consequences
The project would have no impact on public health and safety in the area. Enhancement of the seagrass beds would improve the water quality and habitat in the three Aquatic Preserves.

12.11.6 Summary and Next Steps
The proposed Florida Seagrass Recovery project would include surveying and mapping scarring within the seagrass habitats in the three Aquatic Preserves (St. Joseph Bay Aquatic Preserve, Alligator Harbor Aquatic Preserve, and St. Andrews Aquatic Preserve). Additionally, sediment tubes will then be manufactured, filled with local fine grain sediment, and deployed in approximately 2 acres of seagrass propeller scars. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.
NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would provide long-term benefits by restoring approximately 2 acres of seagrass habitat. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.11.7 References


Gulf of Mexico Fishery Management Council (GMFMC). 2005. FINAL Generic Amendment Number 3 for Addressing Essential Fish Habitat Requirements, Habitat Areas of Particular Concern, and Adverse Effects of Fishing in the following Fishery Management Plans of the Gulf of Mexico:


12.12 Perdido Key State Park Beach Boardwalk Improvements: Project Description

12.12.1 Project Summary
The proposed Perdido Key project would improve a number of existing boardwalks in Perdido Key State Park in Escambia County. The proposed improvements include removing and replacing six existing boardwalks leading to the beach from two public access areas. The total estimated cost for this project is $588,500.

12.12.2 Background and Project Description
The Trustees propose to improve and enhance a number of boardwalks in Perdido Key State Park in Escambia County (see Figure 12-21 for general project locations and Figure 12-22 for a detailed image of the western component of the project). The existing boardwalks need to be replaced after being reconstructed too close to the ground subsequent to Hurricane Ivan in 2004. As a result, the boardwalks are now being constantly covered by sand from the dune system, which is causing access issues.

The objective of the proposed Perdido Key State Park Boardwalk Improvement project is to enhance and/or increase recreational beach use opportunities by improving beach access. The restoration work proposed includes removing and replacing six existing boardwalks that lead to the beach.

12.12.3 Evaluation Criteria
This proposed project meets the evaluation criteria for the Framework Agreement and OPA. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Perdido Key State Park Beach Boardwalk Improvements project is intended to enhance and/or increase recreational beach use opportunities by improving beach access. The project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and utilizes proven techniques with established methods and documented results and can be implemented with minimal delay. Agencies have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.12, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.12 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). This proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.
Figure 12-21. Location of the Perdido Key State Park Boardwalk Project.
Figure 12-22. Detailed image of the Western component of the Perdido Key State Park Boardwalk Project.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Perdido Key State Park Boardwalk Improvements project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area that deployed boom and was impacted by response and SCAT activities for the Spill.

12.12.4 Performance Criteria, Monitoring and Maintenance

As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational beach use opportunities by improving beach access. Performance monitoring will evaluate the removal and replacement of the six existing boardwalks. Specific success criteria include: 1) the completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the boardwalks are available and open.
Long-term monitoring and maintenance of the improved facilities will be completed by staff from the Florida Park Service as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by the Florida Park Service.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the post construction performance monitoring period, the Florida Park Service will monitor the recreational use activity at the site. Florida Park Service staff will monitor the number of visitors at the boardwalks on a routine basis. The visitation numbers will be kept by the Florida Park Service which is part of the Florida Department of Environmental Protection.

12.12.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $1,177,000 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.8

12.12.6 Cost
The total estimated cost to implement this project is $588,500. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for engineering and design, construction, monitoring, and contingencies.

8 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.13  Perdido Key State Park Beach Boardwalk Improvements: Environmental Review

The Florida Park Service (FPS) and the Florida Department of Environmental Protection (FDEP) propose to improve beach access through the installation of improvements to the Perdido Key State Park boardwalks. The proposed Perdido Key project would enhance the existing boardwalks along Perdido Key in Escambia County. The proposed improvements include removing and replacing six existing boardwalks leading to the beach from two public access areas. The total estimated cost for this project is $588,500.

12.13.1  Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is under way. The Framework Agreement is intended to expedite the start of restoration in the Gulf of Mexico in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement, after public review of a draft, the Trustees released a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, NOAA issued a public notice in the Federal Register on behalf of the Trustees, announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP).

The Trustees propose to improve and enhance a number of boardwalks along Perdido Key in Escambia County (see Figure 12-23 for general project locations and Figure 12-24 for a detailed image of the western component of the project). The existing boardwalks need to be replaced after being reconstructed too close to the ground subsequent to Hurricane Ivan in 2004. As a result, the boardwalks are constantly covered by sand from the dune system causing access issues.

The objective of the proposed Perdido Key boardwalk improvement project is to enhance and/or increase recreational beach use opportunities by improving beach access. The restoration work proposed includes removing and replacing six existing boardwalks that lead to the beach. Replacing the boardwalks would improve public access to the beach areas for visitors, especially ADA visitors. The total estimated cost for this project is $588,500. This cost reflects cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for engineering and design, construction, monitoring, and contingencies.
12.13.2 Project Location
The proposed project is located in Escambia County, Florida. The project area is Perdido Key State Park southwest of Pensacola, Florida, and work would be completed on the dunes and beaches facing the Gulf of Mexico (Figure 12-23). Access to the area would primarily be through the parking lot associated with the boardwalks (Figure 12-24).

![Project Location Map, Perdido Key State Park Boardwalks](image)

12.13.3 Construction and Installation
The existing boardwalks would be removed and replaced. The new structures would be higher above the ground surface but the footprint of the new boardwalk would, to the extent possible, fall within the area defined by the existing boardwalks. Some lengthening of the boardwalk may be required to provide the additional height required to avoid sand coverage issues while still maintaining a design that complies with the requirements of the Americans with Disabilities Act (ADA). The extent of any lengthening would be addressed in the final engineering design and plan development. However, efforts would be made to minimize the lengthening to avoid encroachment into areas on the Gulf side of the dunes where sea turtles might nest. Currently, the boardwalks do not extend beyond the old seaward edge of the dunes, so the possibility of lengthening without extending beyond the seaward edge of the dunes exists in order to comply with ADA requirements and to avoid the new seaward edge of the dunes (dunes have migrated seaward in some areas (see Figures C and D). Some pilings may need to be replaced or
upgraded, and new pilings may be required in some locations. A combination of heavy equipment and hand tools would be used to complete project work, depending on specific design elements and needs.

Figure 12-24. Parking lots adjacent to project site.

The project areas would be isolated by construction fencing to prevent incidental access. This fencing material would be erected by hand driving (e.g., with a sledge hammer or post driver) stakes as necessary. These stakes would likely be less than 2 inches in diameter and driven to a depth of 1 foot to 2 feet to secure the fencing. Construction materials would be staged in the parking lot that accesses each of the existing boardwalk complexes (see Figures C and D). Additional materials could be temporarily placed near but not within the dune as needed to support the construction of the boardwalk (e.g., ladders, scaffolding, daily construction materials). Access will occur through existing points only (i.e., no new access points will be created).

Full details on construction methods including total size of the boardwalk, depth of placement and method of placement of pilings would be determined as part of the development of final plans and drawings with the award of the contract and different options could be pursued. The project would not be expected to result in a surplus of excavated materials. Excavated sand would be reincorporated at the site. No lighting is associated with the proposed project.
Construction would begin 7 to 12 months after funding is received and take 4-6 months to complete. Construction would likely occur between October and March, the low visitation season which would also avoid the turtle nesting season.

12.13.4 Operations and Maintenance

State park staff would perform operation and maintenance of the facility, which includes keeping the area clean of debris, routine inspection and repair of the boardwalks (e.g., maintaining or fixing loose boards), and similar tasks. Monitoring would include construction monitoring and enhanced use numbers.

The construction would be intensely monitored to ensure that the boardwalks are built according to plans, specifications, and permits. Once the construction is complete, the boardwalks would be under a 1-year warrantee period. Periodically the facilities would be reviewed for structural integrity and any failures would be required to be repaired by the contractor during the year under warrantee. A final complete warrantee inspection would be performed by the contract manager and state parks personnel. State Park staff would provide maintenance after the warrantee period at the end of the year, and any defects that might be noted and repairs that might be required would be made by the contractor. Once the boardwalks are built, State Park staff would record usage of the boardwalks, through parking lot counts during the off season, and revenue acquired during the high visitation season.

12.13.5 Affected Environment and Environmental Consequences

12.13.5.1 No Action

Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected resources subsections would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.13.5.2 Physical Environment

12.13.5.2.1 Geology and Substrates

Affected Resources

The project area lies within the geographical division known as the West Florida Coast Strip that extends from the mouth of the Ochlockonee River west to Mississippi. Sediments at the proposed project location are primarily sandy. Soil types at the proposed project location are beaches. There are no known minerals of commercial value on Perdido Key State Park (FDEP 2006). The potential for contaminants at the construction site is considered to be extremely low, since the area has already been worked on to install the initial boardwalks.

Environmental Consequences

No adverse impacts to local geology, soils, and sediments associated are anticipated within the project area. This type of construction does not typically require erosion control measures. If erosion control measures are determined necessary, it would be required as a part of the permitting process and would be managed by the construction contractor throughout construction activities and would be monitored
on a daily basis by the contracting authority (FDEP). As a result of the proposed project, impacts to geology and substrates would likely be short-term and negligible.

### 12.13.5.2.2 Hydrology and Water Quality

**Affected Resources**

Perdido Key State Park is located in the northwestern portion of the state, where hydrology is very complex. Deposits are predominantly marine in origin and generally dip toward the south. Although the strata range from Paleozoic to Recent, only those deposited during the past 60 million years are important for groundwater resources (FDEP 2006). The surface waters of the region are a valuable resource and generally support an abundance of wildlife and aquatic life. Water quality problems found in some areas of the region are high concentrations of nutrients and coliform bacteria. Low dissolved oxygen levels occur, but less frequently. Probable causes of these problems are domestic and industrial waste discharges, natural swamp drainage and urban and agricultural runoff.

The Florida Department of Health’s (FDOH) “Florida Healthy Beaches Program” conducts beach water sampling for enterococci and fecal coliform bacteria for 34 coastal Florida counties, including Escambia County, and reporting the results to the public every week. Big Lagoon State Park is the closest water quality testing location to Perdido Key State Park. Based on data collected by the Healthy Beaches Program, Big Lagoon State Park has experienced “good” water quality from September 2012 through September 2013 (FDOH 2013). “Good” water quality is defined as water that has between 0 to 35 colony-forming units of Enterococcus per 100 ml of water. The proposed project is not anticipated to require authorization by the U.S. Army Corps of Engineers pursuant to the Clean Water Act Section 404 and/or Rivers and Harbors Act (CWA/RHA).

**Environmental Consequences**

The project would have a minimal short-term negative impact on hydrology and water quality with the disturbance of sand/soils and minor resulting changes in topography that would be limited to the construction period. All appropriate permits would be obtained prior to begin of construction and all conditions set forth would be followed. After construction is complete, no long-term impacts are anticipated as the project would take place within the existing footprint of structures at the Perdido Key boardwalks. Impacts to hydrology and water quality would be short-term and minor.

### 12.13.5.2.3 Air Quality and Greenhouse Gas Emissions

**Affected Resources**

Air quality and greenhouse gas (GHG) emissions at the site are affected by the nearby Perdido Key Drive, parking areas adjacent to the boardwalks, nearby residential development in the area, and boat traffic in the Gulf of Mexico and Old River. Air quality within the Florida panhandle is in attainment with the National Ambient Air Quality Standards (USEPA 2013). To determine if an area meets the ozone standard in 2012, data from 2009, 2010 and 2011 is needed to determine an area’s attainment status with the 8-hr ozone standard. If the average is higher than 75 parts per billion, the area would not meet the ozone standard. In Escambia County, Florida, the 2012 year-to-date 3 year average is 73 parts per billion, thus meeting attainment status (FDEP 2013).
Environmental Consequences

Construction activities would have a short-term moderate negative impact on air quality and GHG emissions at the site. During construction activities, use of construction equipment, including heavy machinery (including a Bobcat and a tractor trailer) and handheld tools, would likely increase emissions at the project site. However, construction would be relatively short in duration and no long-term impacts to air quality or GHG emissions are expected to result from this project.

The following table (Table 12-20) provides GHG emissions estimates for the Bobcat and tractor trailer, which would likely be the only heavy equipment used for this project. The Bobcat emission total is based on an estimated 480 hours of operation over the life of the project (8 hours a day, five days a week, for 3 months). The tractor trailer emission total is based on 80 hours of operation (based on the estimation that it would be used twice per week, for 5 months). A “minor impact” on air quality can be determined if the contributions to GHG of this project are measurable, but fall below 25,000 metric ton/year of CO2 or its equivalent.

Table 12-20. Estimated greenhouse gas emissions for equipment to be used.

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>CO2 (METRIC TONS)</th>
<th>CH4 (CO2E) (METRIC TONS)</th>
<th>NOX (CO2E) (METRIC TONS)</th>
<th>TOTAL CO2E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bobcat</td>
<td>21</td>
<td>0.012</td>
<td>0.12</td>
<td>21</td>
</tr>
<tr>
<td>Tractor Trailer</td>
<td>3.4</td>
<td>0.002</td>
<td>0.02</td>
<td>3.4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>24.4</td>
<td>0.014</td>
<td>0.14</td>
<td>24.4</td>
</tr>
</tbody>
</table>

Based on Table 12-20, no long-term impact to air quality or GHG emissions would result from this restoration project because contributions to GHGs fall below the 25,000 metric ton/year threshold.

12.13.5.2.4 Noise

Affected Resources

The natural ambient soundscape is the aggregate of all the natural sounds that occur in the Perdido Key State Park area. The natural sounds occurring in the area include those generated by wind, waves, and. Soundscapes in the Perdido Key State Park area also include the sound generated by the nearby residential development, traffic on the nearby Perdido Key Drive, parking areas adjacent to the boardwalks, boat traffic on the Gulf of Mexico and Old River, and by military aircraft operations (Pensacola Naval Air Station) (USFWS 2011).

---

9 Emissions assumptions for all equipment based on 8 hours of operation.
10 CO2 emissions assumptions for diesel and gasoline engines based on USEPA 2009.
11 CH4 and NOx emissions assumptions and CO2e calculations based on USEPA 2011.
12 Construction equipment emission factors based on USEPA NONROAD emission factors for 250 hp pieces of equipment. Data was accessed through the California Environmental Quality Act Roadway Construction Emissions Model.
Environmental Consequences
Construction activities would have moderate negative impacts. Use of construction equipment (Bobcat and tractor trailer) and handheld tools would increase the amount of noise at the site. No long-term impacts to noise are expected after construction work is complete.

12.13.5.3 Biological Environment

12.13.5.3.1 Living Coastal and Marine Resources

Natural Communities

Affected Resources

Beach dune
From a habitat and endangered species perspective, this is by far the most important and sensitive community type on the park. The dunes are fragile and very easily damaged by foot traffic. Unfortunately, many unauthorized trails traverse the dune fields from the highway to the beach all along the 1.4-mile length of the park. Deeply rutted foot trails have grown wide and are subject to wind erosion, fragmenting the habitat. The beach dunes are the main habitat of the Perdido Key beach mouse, one of the most critically endangered mammals on earth. This habitat is currently in fair condition and should improve as protective measures are implemented and enforced (FDEP 2006).

Hurricane Frederick removed a vast amount of beach dune from the area in 1979. Hurricane Opal caused increased damage in 1995. Recent erosion from Hurricane Ivan in 2004 and multiple storms in 2005 further set back dune recovery. The entire primary dune field and the majority of the secondary dunes were lost (FDEP 2006).

Coastal Strand
The coastal strand begins just south of the highway, north to the areas defined as mesic flatwoods. Perhaps calling this community “gulf coastal strand” may be more descriptive and specific to this unique and quickly disappearing community. Beach mice occur in this habitat and populate most all of this habitat type at this park (FDEP 2006).

Marine unconsolidated substrate
This is essentially from the waterline to the toe of the primary dunes. This is an important foraging area for many shorebirds. This is a highly dynamic area and is heavily used by the public for swimming and sunbathing. Most of the use of this park takes place in this area. Loggerhead sea turtles mainly use this portion of the beach for nesting. Hurricane Opal (1995) and Hurricane Ivan (2004) caused severe erosion at this unit. Several feet of beach were lost all across the key.

Environmental Consequences
Construction activities at the site would have a temporary minor negative impact on these natural communities. The presence of construction crews and use of heavy equipment would likely temporarily adversely impact these natural communities, but the long-term impacts would be beneficial. Construction could take up to 6 months to complete, and would likely occur from October through early March.
After work is completed, the project would have a positive impact on these natural communities. The project would be designed to improve the function of the existing boardwalk to reduce the impact of the boardwalk and visitors on the dune habitat, which would benefit dune vegetation and wildlife. Furthermore, the introduction of invasive species is not perceived as a high risk for this project, standard BMPs for construction would be used to prevent the introduction of invasive species.

12.13.5.4 Protected Species

Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

Affected Resources

The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Escambia County, Florida. Table 12-21 present a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

Table 12-21. Potential Impacts to Species/Critical Habitats managed by USFWS

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle; Leatherback turtle, Loggerhead turtle</td>
<td>The main risk to sea turtles during implementation of this project would come should work be conducted during the turtle nesting and hatching season from approximately May through October when turtles, and to a greater extent their nests and hatchlings could be harmed or killed as a result of materials being conveyed along the beach and running over nests or hatchlings. Due to the conservation measures, the Trustees expect impacts to all life stages of sea turtles to be minimized such that disturbance and potential for harm are minimized such that the impacts are insignificant and discountable. Furthermore, it is planned that all boardwalk work (i.e., majority of any heavy equipment use) would occur prior to turtle nesting season, and prior to heavy human use (generally during the late fall, winter, and early spring). No lighting will be installed. No designated critical habitat for the green, leatherback, or hawksbill sea turtles occurs within the action area. No critical habitat has been designated for the Kemp’s ridley sea turtle; therefore, none will be adversely affected or modified. The project area overlaps with the currently proposed critical habitat area LOGG-N-33 encompassing nearshore reproductive habitat in Florida for Northwest Atlantic Distinct Population Segment of the loggerhead sea turtle as these habitats are terrestrial (i.e., beaches and shorelines) ([78 FR 18000 ] Department of the Interior, 2013). Primary Constituent Elements (PCEs) for proposed loggerhead critical habitat include: 1) Suitable nesting beach habitat that: (a) has relatively unimpeded nearshore access from the ocean to the beach for nesting females and from the beach to the ocean for both post-nesting females and hatchlings and (b) is located above mean high water to avoid being inundated frequently by high tides. 2) Sand that: (a)</td>
</tr>
<tr>
<td>Loggerhead proposed critical habitat</td>
<td></td>
</tr>
</tbody>
</table>

13 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
**SPECIES/Critical Habitat** | **SPECIES/Critical Habitat Impacts**
--- | ---
allows for suitable nest construction, (b) is suitable for facilitating gas diffusion conducive to embryo development, and (c) is able to develop and maintain temperatures and moisture content conducive to embryo development. 3) Suitable nesting beach habitat with sufficient darkness to ensure that nesting turtles are not deterred from emerging onto the beach and hatchlings and post-nesting females orient to the sea. Temporary use of heavy equipment to construct walkovers or transport plants during restoration activities could change sand characteristics important to nest construction and embryo development in the immediate area of work. However, conservation measures should minimize impacts such that impacts to the PCE’s in the immediate area are short-term (1 season or less) and wind and storm conditions should restore natural properties with each storm event prior to the next nesting season. Furthermore, the walkovers (i.e., majority of any heavy equipment use) will be constructed prior to the turtle nesting season and prior to the heavy human use period (during the late fall, winter, and early spring) thereby avoiding potential impacts during the nesting season which should allow time for the beach to recover prior to the next nesting season. Though engineering designs are not complete, it is likely that walkovers will be extended further on the beach due to migration of the dunes since the old boardwalks were constructed and to meet ADA standards. These short extensions would not impact nearshore access in the immediate area. No lighting will be installed. In addition, the relative footprint of all driving and construction will be minimized so that PCE’s outside the immediate area of work are unaffected. Dune restoration may enhance beaches for nesting by helping to establish dunes which can block light from adjacent areas. Based upon the implementation of the conservation measures, no adverse modification of proposed loggerhead critical habitat is anticipated.

Perdido Key beach mouse critical habitat | The main risk to the Perdido Key beach mouse is the collapse of burrows during construction which can result in abandonment of the burrow by the adults leading to potential harm or mortality and mortality of any young within the burrow, and increased risk of predation on adults. Visitor use is not expected to increase as a result of the proposed project therefore no indirect impacts from visitor use (increased predation) are expected due to the proposed project. Because of the conservation measures (including those for critical habitat), the Trustees believe impacts to beach mice are insignificant and discountable.

Perdido Key beach mouse critical habitat | The project area overlaps with Perdido Key Beach Mouse Critical Habitat Units 2 (West Perdido Key Unit – 114 acres) and 3 (Perdido Key State Park Unit – 238 acres). PCE’s are: 1) A contiguous mosaic of primary, secondary scrub vegetation, and dune structure, with a balanced level of competition and predation and few or no competitive or predaceous nonnative species present, that collectively provide foraging opportunities, cover, and burrow sites; 2) Primary and secondary dunes, generally dominated by sea oats that, despite occasional temporary impacts and reconfiguration from tropical storms and hurricanes, provide abundant food resources, burrow sites, and protection from predators; 3) Scrub dunes, generally dominated by scrub oaks, that provide food resources and burrow sites, and provide elevated refugia during and after intense flooding due to rainfall and/or hurricane induced storm surge; 4) Functional, unobstructed habitat connections that facilitate genetic exchange, dispersal, natural exploratory movements, and recolonization of locally extirpated areas; and 5) A natural light regime within the coastal dune ecosystem, compatible with the nocturnal activity of beach mice, necessary for normal behavior, growth and viability of all life stages. The proposed project is not expected to negatively impact PCE’s but rather may benefit PCE’s. The existing boardwalks and lack of dunes in the area could be limiting the amount of contiguous habitat, food resources, burrow sites, and the boardwalks may be causing obstructions due to their low height. Dune restoration may contribute to building more functionality in PCE’s 1, 2, 3 and 4: raising of boardwalks should allow for unobstructed movements by mice; and lengthening boardwalks will help prevent dune erosion (pathway “fanning”) from general visitor use thereby reducing changes to burrow sites, food resources, and susceptibility to hurricane/storm impacts. No lighting will be installed as a part of the proposed project. Based upon the implementation of the conservation measures, no adverse modification of critical habitat is anticipated.
### SPECIES/Critical Habitat

<table>
<thead>
<tr>
<th>SPECIES/Critical Habitat</th>
<th>SPECIES/Critical Habitat Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping plover</td>
<td>The main risk to Piping plovers is from human disturbance while resting and foraging in habitats adjacent to work areas. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the plovers to move to a nearby area. Because other foraging/resting habitats are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable. The Trustees do not expect an increase in visitor use from the proposed project; therefore, no indirect impacts are expected. Piping plover critical habitat is not designated in or near the action.</td>
</tr>
<tr>
<td>Red knot</td>
<td>The main risk to Red knots is from human disturbance while resting and foraging in habitats adjacent to work areas. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the red knots to move to a nearby area. Because other foraging/resting habitats are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable. The Trustees do not expect an increase in visitor use from the proposed project; therefore, no indirect impacts are expected.</td>
</tr>
</tbody>
</table>

Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Protected Resource Division (PRD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that this project falls outside of NMFS Endangered Species Act (ESA) jurisdiction, as it does not contain suitable habitat for species managed by NMFS. As a result, the project did not require further ESA evaluation from NOAA.

Additional information on some of the species described above is provided below.

**Perdido Key Beach Mouse**

The Perdido Key beach mouse is one of the rarest mammals in the world. These mice only occur on Perdido Key, within the Johnson Beach unit of Gulf Islands National Seashore and now on Perdido Key State Park. As of March 2006, beach mice numbered less than 50 individuals, which is less than half the number known to exist in September 2002 prior to Hurricane Ivan. The population fluctuates a great deal. In the summer of 2001, only a handful of mice were known to inhabit the park, and only then by the presence of tracks (FDEP 2006).

The continued existence of the beach mouse at this park is threatened by the intermittent presence of a rather high density of feral and free ranging cats. Predation by cats is considered the most significant reason that mice became extirpated here in the early 1980s. Habitat quality has fluctuated throughout 2003 and 2004 (FDEP 2006).

Artificial lighting at night is a problem that is negatively affecting beach mice. The mice prefer dark beaches, and tend to increase surface activity on darker nights, near the new moon. The added light can increase the success predators have catching the mice, and alter the normal behavior of the mice. Trapping data has shown that beach mice generally do not use areas of the park affected most by the artificial lighting. These areas are typically along the east and west boundaries of the park and along the edges of the highway where the lighting is more prevalent (FDEP 2006).

**Sea Turtles**

There are five species of endangered or threatened sea turtles that may occur or have the potential to occur in the project area. These include green turtle, hawksbill turtle, Kemp’s ridley turtle, leatherback turtle, and loggerhead turtle. Sea turtles forage in the waters of the coastal Florida panhandle region.
and have the potential to occur in the waters where in-water work is proposed. The project site contains suitable sea turtle nesting habitat along the sandy beach and loggerheads commonly nest in this area.

**Piping Plover**

The sandy beaches and shorelines adjacent to the project area offer suitable foraging and resting habitat for the piping plover during the winter migratory season, and piping plover may forage in the shallow waters of the project area. Natural shorelines in the proposed project vicinity provide suitable winter migration resting habitat for the piping plover. Piping plover wintering habitat includes beaches, mudflats, and sandflats, as well as barrier island beaches and spoil islands (Haig 1992 as cited by USFWS 2013). On the Gulf Coast, preferred foraging areas are associated with wider beaches, mudflats, and small inlets (USFWS 2013).

**Red Knot**

The red knot, a federal proposed species, uses the state of Florida both for wintering habitat and migration stopover habitat for those that continue to migrate down to specific wintering locations in South America (Niles et al. 2008) and could be present in the project area. Wintering and migrating red knots forage along sandy beaches, tidal mudflats, saltmarshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms, and roost on high sand flats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008).

**Essential Fish Habitat**

Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Habitat Conservation Division (HCD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that this project will not affect EFH because there is no EFH in the project area. As a result, the project did not require further EFH evaluation.

**Migratory Birds**

The Migratory Bird Treaty Act of 1918 (16 U.S.C. 703-711) decreed that all migratory birds and their parts (including eggs, nests, and feathers) were fully protected. The migratory bird species protected by the Act are listed in 50 C.F.R. 10.13. More than 250 species of birds have been reported as migratory or permanent residents within the Florida panhandle, several of which breed there as well. These birds can be grouped generally as (1) species that occur year-round, both nesting and overwintering, (2) species that nest during the warm season and overwinter to the south, (3) species that overwinter and nest further north, and (4) species that pass through during spring migrations to more northern nesting sites and/or during fall migrations to overwintering areas. Different populations of the same species sometimes exhibit more than one type of migratory behavior.

The DOI review also considered potential impacts to migratory birds. A summary of the potential impacts to different migratory bird groups is presented in Table 12-22.
Table 12-22. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>Foraging, feeding, resting, nesting</td>
<td>Shorebirds nest, forage, feed, and rest in the types of habitats consistent with some of the shoreline areas near the proposed project. As such, they may be impacted locally and temporarily by the project.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Resting, roosting, nesting</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats including dunes. Project activity could startle resting birds; however, impacts to roosting birds are not expected because activities will occur during the day.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-23.

Table 12-23. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>The Trustees expect foraging and resting birds would be able to move to another nearby location to continue foraging and resting. If project activities occur during shorebird nesting season (February 15 to August 31), the FWC will be contacted to obtain the most recent guidance to protect nesting shorebirds or rookeries and their recommendations will be implemented. The Panama City Field Office will be contacted regarding dune plantings to balance habitat for listed and migratory birds and beach mouse.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. Nesting should not be impacted because the project will not occur near nesting habitats.</td>
</tr>
</tbody>
</table>

**Bald Eagles**

The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s *Bald Eagle Management Plan* guidelines would be followed (FWC 2008). There are no known bald eagle nests within or near the project site.
Environmental Consequences

Protected Species
Considering the nature of the potential project and the species/critical habitats that could be affected, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-24 below.

Table 12-24. Conservation measures to be implemented in order to minimize impacts to species/critical habitats managed by DOI

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
</table>
| Green turtle, Hawksbill turtle, Kemp’s ridley turtle, Leatherback turtle, Loggerhead turtle | No lighting will be installed on the boardwalks. Should work be undertaken between May 1 and October 31 the following conservation measures will be followed: Work completed outside of this time period should not require these measures.  
- All construction personnel will be notified of the potential presence of sea turtles and reminded of the criminal and civil penalties associated with harassing, harming, or killing sea turtles (all life stages).  
- The local sea turtle nesting surveyor will conduct daily sea turtle nesting surveys will assess the need for the relocation of sea turtle nests that could be affected by the project construction prior to project implementation each day  
- If a sea turtle (either adult or hatchling) is observed, maintain at least 200 feet between the turtle and personnel.  
- All actions shall observe a 10-foot buffer from marked sea turtle nests. Between May 1 and August 31, actions with mechanized equipment or vehicles shall not begin prior to 9:00 am to ensure sea turtle monitoring surveys are completed for the day.  
- If altered, beach topography shall be restored in all areas to the natural beach profile by 20:00 hours each day. Restoring beach topography includes raking of tire ruts, filling pits or holes.  
- Avoid driving over the wrack line or areas of dense seaweed, as these habitats may contain sea turtle hatchings or baby birds that are difficult to see. |

To maintain PCE’s for proposed loggerhead critical habitat, the following measures shall be implemented (regardless of seasonality):  
- All construction personnel will be notified of the presence of proposed critical habitat and reminded to avoid impacting it otherwise additional restoration may be necessary.  
- The nearest, existing staging, access and egress areas, travel corridors, pathways, and roadways shall be used (including those provided by the State, local governments, land managers, trustee, or private property owner, with proper permissions).  
- No new staging areas, access or egress, or travel corridors shall be created.  
- Minimize vegetation removal.  
- If driving equipment or vehicles on the beach, enter at designated access, proceed directly to the hard-packed sand near or below the high tide line and stay below the tide line when driving long distances.  
- Avoid driving on the upper beach whenever possible, and never drive over any dunes or beach vegetation.  
- Use the smallest footprint possible to complete the proposed project.  
- If altered, beach topography shall be restored in all areas to the natural beach profile by 20:00 hours each day. Restoring beach topography includes raking of tire ruts, filling pits or holes. |

14 Turtle nesting season is May 1 to August 31, while turtle hatching continues until October 31. The remaining turtle BMPs will be implemented May 1 through October 31 and BMPs for proposed critical habitat will be implemented all year.
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• No lighting will be installed.</td>
</tr>
<tr>
<td>Perdido Key beach mouse</td>
<td>Conservation measures that will be implemented to avoid impacts to the Perdido Key Beach Mouse include:</td>
</tr>
<tr>
<td></td>
<td>• All construction personnel will be notified of the potential presence of Perdido Key Beach Mice and reminded of the criminal and civil penalties associated with harassing, injuring, or killing Perdido Key Beach Mice.</td>
</tr>
<tr>
<td></td>
<td>• To minimize impacts to Perdido Key beach mice in burrows, a qualified, permitted, biologist will survey the project site before work commences and flag potential burrows and tracks so that they can be avoided.</td>
</tr>
<tr>
<td></td>
<td>• Construction noise will be kept to the minimum feasible.</td>
</tr>
<tr>
<td></td>
<td>• Construction will occur during the day to minimize disturbance to nocturnal patterns.</td>
</tr>
<tr>
<td></td>
<td>• Equipment, vehicles, and project debris will not be stored in a manner or location where it could be colonized by mice.</td>
</tr>
<tr>
<td></td>
<td>o Prior to bringing any equipment (including personal gear, machinery, vehicles or vessels) to the work site, inspect each item for mud or soil, seeds, and vegetation. If present, the equipment, vehicles, or personal gear shall be cleaned until they are free from mud, soil, seeds, and vegetation. This inspection will occur each time equipment, vehicles, and personal gear are being prepared to go to a site or prior to transferring between sites to avoid spreading exotic, nuisance species.</td>
</tr>
<tr>
<td></td>
<td>o Inspect sites periodically to identify and control new colonies/individuals of an invasive species not previously observed prior to construction.</td>
</tr>
<tr>
<td></td>
<td>o Remove trash or anything that would attract nuisance wildlife to work areas daily.</td>
</tr>
<tr>
<td></td>
<td>• Project related trash or debris shall not be allowed to blow into open water, onto beaches or in the dunes.</td>
</tr>
<tr>
<td></td>
<td>• Appropriate waste/trash receptacles will be installed and maintained at boardwalks so that predators are not attracted to the area.</td>
</tr>
<tr>
<td>Perdido Key beach mouse</td>
<td>Conservation measures that will be implemented to avoid impacts to the Perdido Key Beach Mouse critical habitat include:</td>
</tr>
<tr>
<td>critical habitat</td>
<td>• The project will occur in very localized locations for very short periods of time, allowing the mosaic of primary, secondary scrub vegetation and dune structure to remain unchanged or increase after implementation.</td>
</tr>
<tr>
<td></td>
<td>• If native dune plants are destroyed during the project, appropriate native plants will be planted in the same location to minimize impacts to the vegetative composition of the area. The Panama City Field Office will be contacted regarding dune plantings to balance habitat for listed and migratory birds and beach mouse.</td>
</tr>
<tr>
<td></td>
<td>• If necessary (due to food source removal during construction and growing periods for replacement plants), supplemental beach mouse food sources will be provided.</td>
</tr>
<tr>
<td></td>
<td>• Project work will only occur during daylight hours. As such it will not alter the natural light regime of the area.</td>
</tr>
<tr>
<td>Piping plover and red knot</td>
<td>If construction occurs within the period from August to May: shorebird surveys will be conducted in the project area; and within the project area a 300-foot wide buffer zone where either species congregates will be established. Any and all construction will be prohibited in the buffer zone until the individuals move from the area of their own volition.</td>
</tr>
<tr>
<td></td>
<td>The Panama City Field Office will be contacted regarding dune plantings to balance habitat for listed and migratory birds and beach mouse.</td>
</tr>
</tbody>
</table>
Species Conservation Measures to Minimize Impacts

<table>
<thead>
<tr>
<th>Species</th>
<th>Measures</th>
</tr>
</thead>
</table>
| All     | In addition to the identified species specific measures, the new dune walkovers associated with the Perdido Key State Park Beach Boardwalk Improvements action will be constructed in a manner consistent with the recent guidance for such work issued by the USFWS Panama City field office (USFWS, 2013). In addition:  
  - Dune restoration should mimic natural dunes including swales with and without vegetation.  
  - ATVs should stay out of the dunes and as low to the water line as possible. Plants may have to be walked up to the planting area from the ATV travel path.  
  - Construction of the dune walkovers should be consistent with the Trustees’ existing guidelines.  
  - Prior to conducting the restoration, contact PCFO about the dune plantings (especially to avoid least tern nesting areas – this measure is within the mig bird section, but the Trustees did not specifically mention least tern. Least terns will not nest in veg, so the Trustees should not plant their nesting area.) Further, the following items were noted:  
  - It may be necessary to use a fertilizer to jump start plant growth.  
  - If sand fencing is used, it should be moved up regularly as the dune grows and removed as soon as the dune and plants are large enough to capture sand.  
  - Use some larger plants mixed with the typically used smaller plants to help capture sand immediately.  
  - Post and rope should be used and maintained around the entire restoration area to keep people from affecting the restoration. |

The USFWS reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On April 4, 2014 the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect, five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead), Perdido Key beach mouse, piping plover, and red knot (if listed) based upon the successful implementation of the conservation measures in Table 12-24 above. The USFWS also concurred with the Trustees’ determination that the project will not adversely modify or destroy critical habitat for the Perdido Key beach mouse or destroy critical terrestrial habitat for the loggerhead sea turtle (if designated).

**Migratory Birds and Bald Eagle**

Bald eagles are not present at the project location so will not be affected.

At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

**Invasive Species**

**Affected Resources**

Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within, and possible expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound.
Chapter 3 described more about the regulations addressing invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

Environmental Consequences
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.13.5.5 Human Uses and Socioeconomics

12.13.5.5.1 Socioeconomics and Environmental Justice

Affected Resources
Escambia County is located in the extreme northwestern corner of the State of Florida, bordered on the west and north by Alabama; on the east by Santa Rosa County, Florida; and on the south by the Gulf of Mexico. The county encompasses 661 square miles, or 420,480 acres, with an additional 64,000 acres of water area. The population of Escambia County, per U.S. Census data (US Census 2013), is currently estimated at 297,619. Table 12-25 provides a brief demographic overview of Escambia County, Florida.

Leisure and recreational pursuits are on the increase on Perdido Key, along with northwest Florida. The impact of recreation and tourism on the economy continues to expand. Recreational visits to state and national parks grew by an estimated 300,000 visitors from 2003 to 2004. In northwest Florida, visitor days for national parks and state parks were up 5 percent from 2003-2004. Taxable sales of transient facilities outpaced Florida’s growth rate (7.7 % v. 6.3%). Employment and payroll for the tourism industry was also up (0.8 % and 2.4%, respectively) (USFWS 2011).

Environmental Consequences
Improving site access characteristics is likely to improve the experience for those using the facilities in the future. The extent to which the improvements may support new trips to the state park or region, or induce shifts in location for recreation from other local beaches is difficult to quantify.

The proposed project is expected to have short-term, beneficial impacts on socioeconomics for project area and adjacent areas, based on a slight increase in the workforce required to perform the boardwalk improvements. The exact number of persons to be employed by this project is undetermined, but would be estimated to be approximately 12 persons.
12.13.5.2 Cultural Resources

Affected Resources
This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Environmental Consequences
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.13.5.3 Infrastructure

Affected Resources
There is no major infrastructure at the site. The boardwalks are near Perdido Key Drive but are located in Perdido Key State Park, away from developed areas.
Table 12-25. Demographic information for Escambia County, Florida (US Census 2013).

<table>
<thead>
<tr>
<th>U.S. CENSUS DATA QUICKFACTS</th>
<th>ESCAMBIA COUNTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population, percent change, April 1, 2010 to July 1, 2012</td>
<td>1.7%</td>
</tr>
<tr>
<td>Population, 2010</td>
<td>297,619</td>
</tr>
<tr>
<td>Persons under 5 years, percent, 2012</td>
<td>6.2%</td>
</tr>
<tr>
<td>Persons under 18 years, percent, 2012</td>
<td>21.1%</td>
</tr>
<tr>
<td>Persons 65 years and over, percent, 2012</td>
<td>15.2%</td>
</tr>
<tr>
<td>Female persons, percent, 2012</td>
<td>50.5%</td>
</tr>
<tr>
<td>White alone, percent, 2012 (a)</td>
<td>70.1%</td>
</tr>
<tr>
<td>Black or African American alone, percent, 2012 (a)</td>
<td>22.9%</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone, percent, 2012 (a)</td>
<td>0.9%</td>
</tr>
<tr>
<td>Asian alone, percent, 2012 (a)</td>
<td>2.9%</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander alone, percent, 2012 (a)</td>
<td>0.2%</td>
</tr>
<tr>
<td>Two or More Races, percent, 2012</td>
<td>3.0%</td>
</tr>
<tr>
<td>Hispanic or Latino, percent, 2012 (b)</td>
<td>5.1%</td>
</tr>
<tr>
<td>White alone, not Hispanic or Latino, percent, 2012</td>
<td>66.0%</td>
</tr>
<tr>
<td>Living in same house 1 year &amp; over, percent, 2007-2011</td>
<td>80.2%</td>
</tr>
<tr>
<td>Foreign born persons, percent, 2007-2011</td>
<td>5.9%</td>
</tr>
<tr>
<td>Median value of owner-occupied housing units, 2007-2011</td>
<td>$145,000</td>
</tr>
<tr>
<td>Households, 2007-2011</td>
<td>111,928</td>
</tr>
<tr>
<td>Persons per household, 2007-2011</td>
<td>2.47</td>
</tr>
<tr>
<td>Per capita money income in the past 12 months (2011 dollars), 2007-2011</td>
<td>$23,773</td>
</tr>
<tr>
<td>Median household income, 2007-2011</td>
<td>$43,707</td>
</tr>
<tr>
<td>Persons below poverty level, percent, 2007-2011</td>
<td>16.9%</td>
</tr>
</tbody>
</table>

(a) Includes persons reporting only one race.

(b) Hispanics may be of any race, so also are included in applicable race categories.
**Environmental Consequences**
Replacement of the boardwalks at Perdido Key State Park would have no impact on infrastructure. The project includes replacing existing boardwalk structures, within the existing footprint, and no major infrastructure changes would be made.

12.13.5.5.4 Land and Marine Management

**Affected Resources**
The project area is part of the Perdido Key State Park and is not in a developed area. Surrounding land uses include un-improved areas of the park and some small residential areas.

**Environmental Consequences**
Replacement of the boardwalks at Perdido Key State Park is anticipated not to have an impact on land and marine management because changes at the site are limited to replacing and improving existing structures.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

12.13.5.5.5 Aesthetics and Visual Resources

**Affected Resources**
Perdido Key State Park is very scenic, especially when contrasted with the new condominium developments and commercial businesses that are rapidly appearing on Perdido Key. Views from the park offer open vistas of the Gulf of Mexico and Old River, with some intruding views of adjacent development. The aesthetic and visual resources at the site include natural dune, beach, and Gulf of Mexico habitat.

**Environmental Consequences**
Replacement of the boardwalks at Perdido Key State Park would have no negative impact on aesthetics and visual resources because no changes to the viewscape are planned.

Replacement of the boardwalks at Perdido Key State Park would have a long-term beneficial impact on aesthetics and visual resources. The current boardwalks are in a rundown and poorly managed state, which has poor aesthetics in addition to poor functionality. The improved boardwalks would improve the look of the walkways and the natural dune habitat in which they are situated.
12.13.5.5.6 Tourism and Recreational Use

Affected Resources
The project site is currently a tourist and recreational user destination. The dune walkovers provide users with access to the beach and provide opportunities for observing natural dune and beach habitat and wildlife.

Environmental Consequences
The project would have a long-term beneficial impact on tourist and recreational user enjoyment of the site. The project would replace dune walkovers to improve conservation of dune habitat and improve the safety and accessibility of the site structures. The boardwalk improvement would be expected to ease handicap visitor access to the beach, addressing a current limit on who presently can use the resource.

12.13.5.5.7 Public Health and Safety and Shoreline Protection

Affected Resources
Public health and safety and shoreline protection at the site are of high quality. The site is part of the Perdido Key State Park and is managed to maximize health and safety for human use and the environment.

Environmental Consequences
Replacement of the boardwalks at Perdido Key State Park would have a long-term beneficial impact on public health and safety. The work is designed to improve access to the beach by improving the condition of the boardwalk structures. The project would have no impact on shoreline protection, because no work is planned for the shoreline, and current management practices would not be altered by the project.

12.13.6 Summary and Next Steps
The proposed Perdido Key project would improve a number of existing boardwalks in Perdido Key in Escambia County. The proposed improvements include removing and replacing six existing boardwalks leading to the beach from two public access areas. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational beach use opportunities by improving beach access. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.
12.13.7 References

Florida Department of Environmental Protection (FDEP)


2013  Air Quality Monitoring for Wakulla County, Florida. Accessed online at: http://appprod.dep.state.fl.us/air/flags/selectreport.asp


National Marine Fisheries Service (NMFS)


United States Census Bureau (US Census)

2013  State and County Quickfacts for Escambia County, Florida. Access online at: http://quickfacts.census.gov/qfd/states/12/12033.html

U.S. Department of the Interior.


United States Environmental Protection Agency (USEPA)


146
United States Fish and Wildlife Service (USFWS).

12.14  Big Lagoon State Park Boat Ramp Improvement: Project Description

12.14.1  Project Summary

The proposed Big Lagoon State Park project would involve enhancing an existing boat ramp and surrounding facilities in the Big Lagoon State Park in Escambia County. These improvements would include adding an additional lane to the boat ramp, expanding boat trailer parking, improving traffic circulation at the boat ramp, and providing a new restroom facility to connect the park to the Emerald Coast Utility Authority (ECUA) regional sanitary sewer collection system. The total estimated cost for this project is $1,483,020.

12.14.2  Background and Project Description

The Trustees propose to improve and enhance an existing public ramp at Big Lagoon State Park (see Figure 12-25 for project location). The objective of the proposed Big Lagoon State Park Boat Ramp Improvement project is to enhance and/or increase recreational boating and fishing opportunities by improving the existing boat ramp area. The restoration work proposed includes adding an additional lane to the boat ramp, expanding boat trailer parking, improving traffic circulation at the boat ramp, and providing a new restroom facility to connect the park to the ECUA regional sanitary sewer collection system.

Figure 12-25 for project location)
12.14.3 Evaluation Criteria

This proposed project meets the evaluation criteria for the Framework Agreement and OPA. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Big Lagoon State Park Boat Ramp Improvements project is intended to enhance and/or increase recreational boating and fishing opportunities by improving the existing boat ramp area. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and utilizes proven techniques with established methods and documented results and can be implemented with minimal delay. Agencies have successfully implemented projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.14, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration with the exception of infrastructure which would be minor, localized and long term. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.14 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.
Figure 12-25. Location of envisioned Big Lagoon Boat Ramp Project.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Big Lagoon State Park Boat Ramp Improvement project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area that deployed boom and was impacted by response and SCAT activities for the Spill.

12.14.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational boating and fishing opportunities by improving the existing boat ramp area. Performance monitoring will evaluate: 1) the construction of an additional lane to the boat ramp; 2) the expansion of the boat trailer parking; 3) the improvement to the traffic circulation at the boat ramp; and 4) the construction of a new restroom facility that will be connected the park to the Emerald Coast Utility Authority (ECUA) regional sanitary sewer collection system. Specific success criteria include: 1) the completion of the construction as designed and
permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the boat ramp area is open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by Big Lagoon State Park staff as part of their regular public facilities maintenance activities. Corrective actions necessary after completion and signoff of the project will be undertaken by park staff. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by Big Lagoon State Park.

During and following the post-construction performance monitoring period, the State of Florida park staff will monitor the human use activity at the site. Park staff keeps track of visitation and usage at the park and will provide visitation numbers by the month. This use information is kept by the Florida Department of Environmental Protection.

The State of Florida Trustees and the Department of the Interior recognize the need to evaluate the effectiveness of conservation measures designed to avoid or minimize impacts to sensitive species or their habitats. To assess the public’s awareness of the educational signage intended to minimize impacts of use associated with the improved facilities, readers will be invited to take an online survey accessed via a QR code on the sign. The Florida Trustees and DOI will determine the adequacy of this method of assessing public awareness six months after the completion of construction. If the online surveying is insufficient, concurrent with the twice annual performance monitoring, and performed by the same party, a survey will be taken of a sample of recreational users at the project location.

12.14.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $2,966,040 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.\(^{15}\)

12.14.6 Cost
The total estimated cost to implement this project is $1,483,020. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

\(^{15}\) For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.15 Big Lagoon State Park Boat Ramp Improvement: Environmental Review

The proposed project is intended to improve the quantity and quality of recreational boating in Florida's Pensacola Bay system by enhancing Big Lagoon State Park (referred to hereafter as “the Park”) public boat ramp.

12.15.1 Introduction and Background

In April 2011, the Natural Resources Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf of Mexico in advance of the completion of the injury assessment process. Early Restoration is not intended to and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement, the Trustees released a Phase I Early Restoration Plan (ERP) in April 2012, after public review of a draft. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III ERP. This boat ramp project was submitted as an ERP on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and Oil Pollution Act (OPA), the project meets Florida’s criteria that ERPs occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

The Florida State Parks system offers residents and visitors recreation opportunities and scenic beauty. Improved access and facilities at these parks would promote visitation and park use, inspiring a sense of community, improving outdoor experience and education, and contributing to local economies. Roads, parking areas, trails, picnic facilities, and restrooms compose the main infrastructure through which the general public is able to enjoy state parks. Public boat ramps at the state parks provide local boaters with access to public waterways. Boating access is the basis upon which many types of secondary, water-dependent activities may be enjoyed. These activities offer recreational values, and include fishing, scuba diving, water-skiing, swimming, or simply cruising local waterways under power or sail.

The existing two-lane boat ramp in the Park requires maintenance, is congested, and does not meet the current demand. This project would improve the boat ramp area to expand and enhance its use by Park visitors. It would involve adding an additional lane to the boat ramp, improving traffic circulation at the boat ramp, expanding boat trailer parking, and providing a new restroom facility to handle increasing visitor use.
The boat ramp improvement project is part of an ongoing plan by the Florida State Parks system to enhance and improve the ability of the public to use its resources.

### 12.15.2 Project Location

The Park is at 12301 Gulf Beach Highway, approximately 10 miles southwest of the city of Pensacola in Escambia County, Florida. The Park is on the northern shoreline and west end of Big Lagoon, just east of the Gulf Beach Highway (State Highway 292) and south of County Route 292A (see Figure 12-26) (Florida Department of Environmental Protection [FDEP] 2013a). Big Lagoon is part of the Pensacola Bay system.

The Park separates the mainland from Perdido Key and the Gulf of Mexico, and consists of approximately 655 upland acres and two bodies of water (the freshwater Long Pond and the saltwater Grand Lagoon Lake). It contains beaches, shallow bays, open woodlands, an observation tower, boardwalks, nature trails, camping areas, picnic areas, an amphitheater, and the boat ramp that provides easy access to Big Lagoon (FDEP 2013a). The Park preserves a natural area along the north shoreline of Big Lagoon and the Intracoastal Waterway, providing wildlife and plant habitat and preserving large wetland expanses.

The boat ramp is in the west portion of the Park, along West Beach (see Figures 12-27 and 12-28 for general location and detail).

### 12.15.3 Construction and Installation

**12.15.3.1 Construction Design**

Detailed construction methods and plans have not yet been developed and would be subject to the final design and contractor approach. Most of the project would be upland construction. Standard best management practices (BMPs) for this type of construction with limited in-water work would be used to minimize impacts (e.g., fencing in in-water areas).

Expansions to existing facilities would include adding a lane to the boat ramp and expanding boat trailer parking. Traffic circulation at the boat ramp would also be improved by reconfiguring the launch/tow-out area to accommodate two vehicles at once. One new building, a restroom facility, would be constructed. Construction would require connecting the new restroom to the Emerald Coast Utility Authority (ECUA) regional sanitary sewer collection system. Power access may be upgraded and reconfigured during construction based on final design needs and opportunities. Specific square footage is unknown at this time, but impacts are expected to occur over several acres.
Figure 12-26. Vicinity map of Big Lagoon State Park and the project boundary.
12.15.3.2 Construction Methods and Materials

Most of the project would involve upland construction. In addition the existing boat launch ramp would be replaced. Ramp construction would likely require excavation in an area of approximately 500 square meters, of which only a small portion would be in the subtidal area. In general, the construction of a boat ramp can be summarized in terms of executing a number of specific tasks and subtasks including:

Task 1. Site Preparation

a. Prior to beginning any waterward work at the boat ramp site the project area needs to be surveyed and marked. Turbidity curtains are then installed to encapsulate the work area and other erosion control methods are put in place on the landward side of the project (e.g., placement of hay bales) to prevent erosion into the water from equipment movement and any work being performed on the upland areas.

Task 2. Ramp Construction

a. The area for the ramp is surveyed in and marked by stake or pole (typically small diameter 2” or less PVC).

b. A coffer or bladder dam is installed and the water within the dam, between the waterward extent of the ramp and the land, is pumped out to upland storage ponds or run through a filter.
system to remove any sediment in the water before returning it to the receiving waterbody. The work area is kept dry by use of dewater pumps (ground water to be pumped is first sampled and tested for water quality) and disposed of in the same manner as the pumped surface water. This dewatering operation is run continuously throughout the construction of the ramps. Once the ramps are completed the dewatering pumps are shut down and the dams are removed.

c. Construction of the ramps begins once the area is sufficiently dry to remove unsuitable soils, if necessary, and replaced with suitable soil. This soil is then compacted to specification. Then the base material for the ramp is placed, usually a rock material. After placement and compaction of the base the ramp is formed, reinforcing steel placed and then the concrete poured and finished. Once curing of the concrete is complete the forms are removed and the coffer or bladder dams are removed.

Task 3. Monitoring

a. Every day, before the start of construction activities, the turbidity screen is checked and repaired if necessary.

b. The foreman or other designated individual checks the area inside the screen and the screen itself to see if any protected species (manatees, dolphins, small tooth sawfish etc) have gotten trapped within the work area or in the screen. If so then appropriate (FWC) personnel are notified to request removal. No work is begun until the animal, fish or bird is removed.

c. During the work day the work area and area adjacent to the work are is monitored to make sure protected species have not ventured into the area. If so then work is stopped until the animal moves out of the area.

d. At the end of the day the area is checked for debris, sediment and possible spillage and these are properly removed and disposed of before shutting down the site.

e. If a storm is anticipated that might damage the turbidity screen it is removed and stored until the storm event has passed and seas have resided.

All in water work would occur within the bladder/coffer dam work area. For the boat ramp this excavated area would be approximately 100 square meters.

A mix of heavy equipment and specific equipment for various activities would be required (e.g., backhoe/excavator, paving equipment, and compacting equipment).

Construction-related materials such as sand, gravel, and concrete forms may be emplaced on the surface of the site. These materials would be staged on existing paved areas to avoid additional surface disturbance.

Assumed equipment usage and worker needs are detailed in Table 12-26.
Table 12-26. Assumed equipment usage and worker needs.

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>NUMBER OF DAYS USED</th>
<th>NUMBER OF WORKER DAYS</th>
<th>ASSUMPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small barge w/ crane</td>
<td>160</td>
<td>160</td>
<td>1 month use</td>
</tr>
<tr>
<td>Tractor-trailer</td>
<td>27</td>
<td>27</td>
<td>1 trip per week for 6 months; plus 3 extra trips for ramp materials delivery</td>
</tr>
<tr>
<td>Dump truck</td>
<td>10</td>
<td>10</td>
<td>1 week excavation; 1 week paving</td>
</tr>
<tr>
<td>Pickup truck</td>
<td>396</td>
<td>396</td>
<td>Three pickups per day for 6 months</td>
</tr>
<tr>
<td>Concrete truck</td>
<td>5</td>
<td>5</td>
<td>1 week use</td>
</tr>
<tr>
<td>Bobcat</td>
<td>10</td>
<td>10</td>
<td>1 week excavation; 1 week paving</td>
</tr>
<tr>
<td>Grader</td>
<td>5</td>
<td>5</td>
<td>1 week grading</td>
</tr>
<tr>
<td>Paving machine</td>
<td>5</td>
<td>5</td>
<td>1 week paving</td>
</tr>
<tr>
<td>Roller</td>
<td>5</td>
<td>5</td>
<td>1 week paving</td>
</tr>
<tr>
<td>Trackhoe</td>
<td>5</td>
<td>5</td>
<td>1 week excavation</td>
</tr>
<tr>
<td>Dozer</td>
<td>10</td>
<td>10</td>
<td>1 week excavation, 1 week grading</td>
</tr>
<tr>
<td>Forklift</td>
<td>24</td>
<td>24</td>
<td>One delivery per week for 6 months</td>
</tr>
</tbody>
</table>

Note: Although the project may take up to 1 year to complete, this table assumes 6 months of active construction.

Sixteen small power tools (nail guns, saws, drills) would also likely be used, along with one or two generators as power sources.

During all in-water construction activity the conditions and guidelines of the Sea Turtle and Smalltooth Sawfish Construction Conditions (NOAA, 2006) and the Standard Manatee Conditions for In-Water Work (USFWS, 2011) would be implemented and adhered to.

12.15.3.3 Best Management Practices

The following construction BMPs would be followed:

- All construction would be performed in accordance with all local, state, and federal requirements as well as all permit requirements to protect the surrounding vegetation and natural condition.
- The contractor would submit a plan for control of surface water runoff in accordance with all local, state, and federal requirements as well as all permit requirements to protect the surrounding vegetation and natural condition.
- All construction adjacent to open water would be separated and confined by appropriate siltation screens and turbidity barriers to protect the quality of such open water.
- Upon completion of construction, the site would be cleared of all construction materials and restored to its natural state, as shown on the plan drawings.
- The contractor would be responsible for assuring compliance with all permit requirements.

In addition to construction BMPs, the contractor would implement BMPs for adequate erosion control. Erosion control is necessary to prevent damage to adjacent property, natural features, site property, and work in progress. Erosion control measures would be in place prior to any land alteration and would be used throughout the construction process until soils are stabilized. Erosion control BMPs are as follows:

1. To protect against wind and stormwater-runoff erosion, the contactor would place, as appropriate, hay bales and silt fencing with wire fence reinforcement, with sediment to be removed when it reaches approximately one-half of the height of the barrier.
2. Silt fences would be of optimal design and materials for adequate sediment control.
3. Side slopes created during construction would be stabilized at the earliest possible date to avoid erosion with adequate use of compacted soil and staked hay bales.
4. Any disturbed area that would not be paved, sodded, or built upon would have a minimum vegetative cover of 80% and be mature enough to control soil erosion and survive severe weather conditions prior to final inspection.
5. Sod would be sufficiently grown and maintained to secure a dense stand of live grass.

12.15.3.4 Construction Permits and Schedule
The project would require a county building permit from Escambia County; a wetlands permit from the U.S. Army Corps of Engineers (USACE) in consultation with the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (USFWS); a dock and boat ramp permit; an environmental resource permit and sanitary sewer collection system permit from the Florida Department of Environmental Protection (FDEP); and authorization from the Emerald Coast Utilities Authority (ECUA) for a connection permit.

Construction could occur at any time but would ideally take place during the time of year when recreation use is lowest to minimize impacts to boat ramp users. Construction work is expected to take up to 1 year to complete. As of now, completion of the design and permitting is expected to occur through fall and winter 2013. Bidding would take place in spring 2014, and construction would begin in summer 2014.

12.15.4 Operations and Maintenance
As part of the project cost, performance monitoring would be conducted to ensure project plans and designs are correctly implemented.

Park staff would operate, monitor, and maintain the new and expanded facilities under the existing management plan. Maintenance would include tasks such as checking and cleaning restrooms, removing debris and trash from the boat ramp and boat trailer parking areas, and maintaining the parking area over time. Monitoring would include construction monitoring and tracking visitor use.

In addition, the State of Florida Trustees and the Department of the Interior recognize the need to evaluate the effectiveness of conservation measures designed to avoid or minimize impacts to sensitive species or their habitats. To assess the public’s awareness of the educational signage intended to minimize impacts of use associated with the improved facilities, readers will be invited to take an online survey accessed via a QR code on the sign. The Florida Trustees and DOI will determine the adequacy of this method of assessing public awareness six months after the completion of construction. If the online surveying is insufficient, concurrent with the twice annual performance monitoring, and performed by the same party, a survey will be taken of a sample of recreational users at the project location.

12.15.5 Affected Environment and Environmental Consequences

12.15.5.1 No Action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.
Under No Action, the existing conditions described for the project site in the affected resources subsections would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.15.5.2 Physical Environment

12.15.5.2.1 Geology and Substrates

Affected Resources
According to the Geologic Map of Florida, the Park is likely located on the Quaternary system, Pleistocene/Holocene series, Undifferentiated Quaternary Sediments stratigraphic unit. This stratigraphic unit consists of siliciclastics, organics, and freshwater carbonates (Scott et al. 2001). The siliciclastics are light gray, tan, brown to black, unconsolidated to poorly consolidated, clean to clayey, silty, unfossiliferous, variably organic-bearing sands to blue green to olive green, poorly to moderately consolidated, sandy, silty clays. Gravel is occasionally present. Organics occur as plant debris, roots, disseminated organic matrix, and beds of peat. Freshwater carbonates, or marls, are buff-colored to tan, unconsolidated to poorly consolidated, fossiliferous carbonate muds. Sand, silt, and clay may be present in limited quantities, and these carbonates often contain organics. The dominant fossils in the freshwater carbonates are mollusks. Undifferentiated Quaternary Sediments were subdivided during the geologic mapping process according to where they occur. The Park is located on Undifferentiated Quaternary Sediments showing surficial expression in beach ridges and dunes, which primarily consist of sand (Scott 2001).

The Park area lies within the geographical division known as the West Florida Coast Strip, which extends from the mouth of the Ochlockonee River west to Mississippi. This geographic region is characterized by coastal islands and narrow peninsulas. Notable geographic features include the long barrier peninsulas of Santa Rosa Island and Perdido Key (Florida Division of Recreation and Parks 2006).

Topographically, the Park lies in the Coastal Lowlands physiographic region that extends along Florida’s entire Gulf coastline. In recent geologic times, the Coastal Lowlands were marine terraces (sea floors) during at least three successive high-ocean-level periods. The area is a flat region, except where remnant dune ridges occur or where the surface has been modified by erosion or underground solution cavities. The Park topography has been slightly modified by roads, parking lots, and recreational facilities (Florida Division of Recreation and Parks 2006).

General soil map units show broad areas that have a distinctive pattern of soils. In the Park, there are likely two general soil map units, both of which are on coastal lowlands. The Lakeland-Hurricane unit is defined as nearly level to moderately sloping, excessively drained, and somewhat poorly drained soils that are sandy throughout. It consists of soils on broad, low ridges; slopes range from 0% to 8%. The Corolla-Newhan-Duckston unit is nearly level to rolling, somewhat poorly drained, excessively drained, and poorly drained soils that are sandy throughout. It consists of soils on dunes, on flats, and in depressions and swales between dunes. It is adjacent to the coast, and slopes are mostly less than 8% (NRCS 2004).

Five distinct soil types occur in the Park: Lakewood Sand, Leon Sand, Coastal Dune Land and Beach, Tidal Marsh, and Freshwater Swamp (Carlisle). Almost all the Park’s recreational facilities have been developed on the Coastal Dune Land and Beach soil type (Florida Division of Recreation and Parks 2006).
**Environmental Consequences**
Mechanized equipment and hand tools would be used to complete construction of the restroom facility, the boat ramp lane, and expansion of the boat trailer parking. Some excavation of soils would occur; however, adverse impacts to geology and substrates would be minor. Soil, rock, and vegetation may be removed from the area where facilities would be built. Long-term, permanent disturbance would occur where the boat ramp and boat trailer parking is expanded and on the footprint of the restroom. The possible construction of sidewalks and landscaped beds would also be long-term permanent disturbance. Temporary short-term disturbance may occur in other portions of the project area.

Disturbance to geologic features or soils would be detectable, but would be short term, small, and localized. There would be no long-term changes to local geologic features or soil characteristics. Erosion and/or compaction may occur in localized areas, but would be minimized by the erosion-control BMPs specified above.

**12.15.5.2.2 Hydrology and Water Quality**

**Affected Resources**
Northwest Florida has seven major watersheds, all of which have been identified as priorities under the Surface Water Management and Improvement (SWIM) program. Water quality protection is the underlying goal of SWIM, along with the preservation and restoration of natural systems and associated public uses and benefits (Northwest Florida Water Management District [NWFWMD] 2011). Big Lagoon is part of the Pensacola Bay watershed system, which includes Pensacola, Escambia, Blackwater, and East bays, the western portion of Santa Rosa Sound, and numerous rivers and bayous. The waterways are primarily used for transportation, seafood harvesting, recreation, and waste disposal. The total drainage area covers nearly 7,000 square miles, approximately 34% of which is in Florida. The entire system discharges into the Gulf of Mexico, primarily through a narrow pass at the mouth of Pensacola Bay (NWFWMD 2013). Broad issues for the Pensacola Bay system include water and sediment quality degradation through point and nonpoint pollution sources, habitat quality that is threatened by and degraded through sedimentation and deposition, management and coordination between two states and numerous local governments and agencies, and public education and awareness (Thorpe 1997).

Big Lagoon has been classified as an Outstanding Florida Water (OFW) by the State of Florida (Florida Administrative Code 62-302.700). An OFW is water designated worthy of special protection because of its natural attributes (e.g., excellent water quality or exceptional ecological, social, educational, or recreational value). OFWs are protected through more stringent requirements for activities requiring a permit from the FDEP or a water management district. Waters are designated OFW to prevent the lowering of existing water quality and to preserve the exceptional features of the waterbody. Surface waters are also classified as Class III waters by the FDEP (Florida Division of Recreation and Parks 2006). Class III waters have the designated uses of fish consumption, recreation, and propagation and maintenance of a healthy, well-balanced population of fish and wildlife.

Impaired waters are waters that are too polluted or otherwise degraded to meet the water quality standards set by states, territories, or authorized tribes. Big Lagoon has been listed as an impaired waterbody for mercury in fish tissue, and the Park itself has been listed as an impaired waterbody for fish and wildlife propagation; however, total maximum daily loads (TMDLs) have not yet been adopted for either location (Environmental Protection Agency [EPA] 2010).
The typical hydrogeological sequence in the Park region consists of predominantly sandy materials in the uppermost deposits. Underlying these upper sandy deposit are variably thick layers of clayey materials that function as confining beds. Beneath this zone is the Floridian Aquifer, composed of several limestone formations. No known groundwater wells exist in the Park (Florida Division of Recreation and Parks 2006).

Several large ditches occur in the Park with origins or outflows extending beyond Park boundaries.

**Wetlands**
Big Lagoon is designated as an estuarine and marine deep water wetland. The Park contains the following wetlands: freshwater forested and shrub, freshwater emergent wetland, estuarine and marine deep water, estuarine and marine wetland, and freshwater pond (USFWS 2013). Based on the National Wetland Inventory data, the on-land portion of the project in the Park does not appear to overlap any wetlands; however, the in-water portion of the project would take place within Big Lagoon, a designated wetland.

**Floodplains**
Based on Federal Emergency Management Agency (FEMA) flood insurance rate maps (Panel 12033C0508G and 12033C0516G), the project appears to be primarily in Zone X, with the coastal area located in Zone AE. Zone X is defined as other flood areas, consisting of areas with a 0.2% chance of flood, or a 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile, or areas protected by levees from a 1% annual chance flood. Zone AE has defined base flood elevations and is an area of special flood hazard (FEMA 2006).

**Environmental Consequences**
Hydrology would likely be affected only if water is channeled or otherwise controlled around the boat ramp area during construction. Water quality would be impacted during construction by leaks or spills from equipment and disturbance of sediments that affect siltation, turbidity, and the release of chemicals from sediments. If the disturbed sediments are anoxic, the biological oxygen demand in the water column would increase. Erosion from the banks of Big Lagoon would also affect water quality. With required mitigation in place, the effect on hydrology and water quality would be measurable or detectable but small, short term, and localized. Upon project completion, water quality impacts would quickly become undetectable; the area’s hydrology would be only temporarily altered during construction.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (Corps) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the Corps and final authorization pursuant to CWA/RHA will be completed prior to project implementation.

All permit conditions, including mitigation measures for siltation, erosion, turbidity, and release of chemicals, would be strictly followed. During construction, BMPs and boom placement along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts, as well as the damage and loss of wildlife habitats. FDEP permit conditions require erosion and turbidity mitigation measures, which include the following:
• Installation of floating turbidity barriers.
• Installation of erosion control measures along the perimeter of all work areas.
• Stabilization of all filled areas with sod, mats, barriers, or a combination.
• Stoppage of work if turbidity thresholds are exceeded. The soils would then be stabilized, work procedures modified, and the FDEP would be notified.

The FDEP permit also constitutes a Certification of Compliance with State Water Quality Standards under Section 401 of the CWA, which indicates that the project would comply with state water quality standards and other aquatic resource protection requirements.

After construction, increased boat traffic in Big Lagoon could result in minimal impacts to surface water quality. Boat wakes created by additional boat traffic that could increase shoreline erosion would be controlled through no-wake or speed zones to mitigate shoreline erosion on the lagoon.

Impacts from chemicals that could be released from sources such as construction equipment and boats would likely be negligible. Required spill containment measures would be implemented for applicable construction activities. FDEP permit conditions require spill containment protection and mitigation measures as follows:

• Prohibiting boat repair or fueling facilities over the water
• Prohibiting vessels from being removed from the water for maintenance or repair
• Prohibiting activities such as hull cleaning and painting; discharge or release of oils or greases; and related metal-based bottom paints associated with hull scraping, cleaning, and painting (Consolidated Wetland Resource Field Permit and Sovereign Submerged Lands Authorization, FDEP, July 12, 2010).

The project would not be expected to impact groundwater.

Wetlands
A wetlands permit would be required for the project and would stipulate appropriate BMPs and mitigation. Because all permit conditions would be strictly adhered to, the effect on wetlands would be minor and short term, and wetland function would be remain unimpaired or would be replaced through required mitigation.

Floodplains
No appreciable increased risk of flood loss, including impacts to human safety, health, and welfare, is expected to occur because the project would not impact vegetation, slopes, or coastal conditions in a substantial manner.

12.15.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
The Clean Air Act (CAA) requires that the Environmental Protection Agency (EPA) set National Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to public health and the environment. NAAQS have been set for six common air pollutants (also known as criteria pollutants), consisting of particle pollution or particulate matter, ozone, carbon monoxide, sulfur dioxide (SO₂), nitrogen dioxide, and lead. Particulate matter is defined as fine particulates with a diameter of 10 micrometers or less.
(PM$_{10}$), and fine particulates with a diameter of 2.5 micrometers or less (PM$_{2.5}$). When a designated air quality area or airshed in a state exceeds the NAAQS, that area may be designated as a “nonattainment” area. Areas with levels of pollutants below the health-based standard are designated as “attainment” areas. To determine whether an area meets the NAAQS, air monitoring networks have been established and are used to measure ambient air quality. The EPA also regulates 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health impacts.

Air quality in the Florida panhandle is in attainment with the NAAQS (EPA 2013a). The Northwest District Air Program (NDEP) operates two air monitors in Escambia County. The Ellyson Industrial Park monitor in Ferry Pass records ozone, PM$_{2.5}$, and SO$_2$ concentrations. The Naval Air Station monitor records ozone concentrations. Readings at both monitors for the last 3 years show attainment with the NAAQS for ozone and SO$_2$ (FDEP 2013c). PM$_{2.5}$ attainment data were not available (EPA 2013c).

**Greenhouse Gases**

Gases that trap heat in the air are called greenhouse gases (GHGs). The primary GHGs are carbon dioxide (CO$_2$), methane (CH$_4$), nitrous oxide (NO$_x$), and fluorinated gases. Over the past century, human activities have released large amounts of GHGs into the atmosphere, which are contributing to global warming. Global warming is defined as the ongoing rise in global average temperature near the Earth’s surface, and is known to cause changes in climate patterns.

According to the EPA, the average annual temperature in the southeast portion of the United States has increased by approximately 2.0 degree Fahrenheit (°F) since 1970. Winters, in particular, are getting warmer, and the average number of freezing days has decreased by 4–7 days per year since the mid-1970s. Most areas are getting wetter; autumn precipitation has increased by 30% since 1901 (EPA 2013b). In many parts of the region, the number of heavy downpours has increased. Despite the increases in fall precipitation, the area affected by moderate and severe drought has increased since the mid-1970s (EPA 2013b).

Average annual temperatures in the region are projected to increase from 4°F to 9°F by 2080. Hurricane-related rainfall is projected to continue to increase. Models suggest that rainfall would arrive in heavier downpours, with increased dry periods between storms. These changes would increase the risk of both flooding and drought. The coasts would likely experience stronger hurricanes and sea level rise. Storm surge could present problems for coastal communities and ecosystems (EPA 2013b).

Total GHG emissions in Florida from 1990 to 2007 have increased at an average rate of 2.1% per year. Total GHG emissions in 2007 were 290 million metric tons of CO$_2$ equivalent (MMTCO$_2$E). In 2007, 91% of GHG emissions in Florida were CO$_2$ emissions (FDEP 2010).

**Environmental Consequences**

Project implementation would require the use of heavy mechanized equipment, which would lead to temporary emissions (e.g., criteria pollutants, HAPs, GHGs) from the operation of construction vehicles and equipment. Any air quality impacts that occurred would be measurable but minor due to their localized nature and short-term duration as well as the small size of the project. BMPs would be employed to prevent, mitigate, and control potential air pollutants during project implementation, such as following speed limits and prohibiting idling unless necessary to run equipment. No air quality-related permits would be required because of the minimal levels of emissions.
Greenhouse Gases
The major types of construction equipment that would contribute to GHG emissions for this project are listed in Table 12-27, along with their estimated GHG emissions. GHG emissions from the remaining (hand) equipment would be negligible. The emissions estimates are based on the operating assumptions in Table 12-27.

Based on the assumptions detailed in Table 12-27, the project would generate approximately 429 metric tons of GHGs over the duration of all phases. The following mitigation measures have been identified to reduce or eliminate GHG emissions from the project:

- Shut down idling construction equipment, if feasible.
- Locate staging areas as close to construction sites as practicable to minimize driving distances between staging areas and construction sites.
- Encourage the use of the proper equipment size for the job to maximize energy efficiency.
- Encourage the use of alternative fuels for generators at construction sites, such as propane or solar, or use electrical power where practicable.

The project would have short-term minor impacts but no long-term impacts on GHG emissions. Mitigation measures would minimize GHG emissions.

Table 12-27. Greenhouse gas impacts of the proposed project from major construction equipment.

<table>
<thead>
<tr>
<th>EQUIPMENT DESCRIPTION</th>
<th>TOTAL HOURS USED</th>
<th>CO₂ FACTOR-MT/100HRS*</th>
<th>CO₂ (MT)</th>
<th>CH₄ FACTOR-MT/100HRS</th>
<th>CH₄ (MT)</th>
<th>NO₂ FACTOR-MT/100HRS</th>
<th>NO₂ (MT)</th>
<th>TOTAL CO₂ (MT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dump trucks / flatbed trucks</td>
<td>296</td>
<td>1.7</td>
<td>5.0</td>
<td>0.5</td>
<td>1.5</td>
<td>7.2</td>
<td>21.3</td>
<td>27.8</td>
</tr>
<tr>
<td>Pickup trucks</td>
<td>3,168</td>
<td>1.1</td>
<td>34.8</td>
<td>0.35</td>
<td>11.1</td>
<td>4.4</td>
<td>139.4</td>
<td>185.3</td>
</tr>
<tr>
<td>Concrete trucks</td>
<td>40</td>
<td>1.7</td>
<td>0.7</td>
<td>0.5</td>
<td>0.2</td>
<td>7.2</td>
<td>2.88</td>
<td>3.76</td>
</tr>
<tr>
<td>Bobcat (bare and w/ auger mount)</td>
<td>80</td>
<td>2.65</td>
<td>2.1</td>
<td>0.9</td>
<td>0.7</td>
<td>10.6</td>
<td>8.5</td>
<td>11.3</td>
</tr>
<tr>
<td>Moto grader</td>
<td>40</td>
<td>2.25</td>
<td>0.9</td>
<td>0.65</td>
<td>0.3</td>
<td>1.08</td>
<td>0.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Paving machine</td>
<td>40</td>
<td>2</td>
<td>0.8</td>
<td>0.5</td>
<td>0.2</td>
<td>8</td>
<td>3.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Rollers</td>
<td>40</td>
<td>2</td>
<td>0.8</td>
<td>0.5</td>
<td>0.2</td>
<td>8</td>
<td>3.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Trackhoe (w/ bucket/ thumb or vibratory attachments)</td>
<td>40</td>
<td>2.55</td>
<td>1.0</td>
<td>0.85</td>
<td>0.3</td>
<td>10.2</td>
<td>4.1</td>
<td>5.4</td>
</tr>
<tr>
<td>Dozer</td>
<td>80</td>
<td>2.25</td>
<td>1.8</td>
<td>0.65</td>
<td>0.5</td>
<td>1.08</td>
<td>0.9</td>
<td>3.2</td>
</tr>
<tr>
<td>Forklift</td>
<td>192</td>
<td>2.25</td>
<td>4.3</td>
<td>0.65</td>
<td>1.2</td>
<td>1.08</td>
<td>2.1</td>
<td>7.6</td>
</tr>
<tr>
<td>Crane (bare and w/clamshell attachment)</td>
<td>1,280</td>
<td>2.55</td>
<td>32.6</td>
<td>0.85</td>
<td>10.9</td>
<td>10.2</td>
<td>130.6</td>
<td>174.1</td>
</tr>
<tr>
<td>Total</td>
<td>5,296</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>428</td>
</tr>
</tbody>
</table>

*mt = metric tons

At project completion, visitor use (and therefore vehicle and boat use) could increase due to the improved access. Increased exhaust emissions could affect air quality over the long term. However, adverse impacts to air quality are expected to be minor because management actions could be taken if necessary to limit Park visits and boat use, and because these would be negligible in the context of the total miles traveled in the regional airshed.
12.15.5.2.4 Noise

**Affected Resources**

Noise can be defined as unwanted or nuisance sound. The Noise Control Act of 1972 (42 United States Code [USC] 4901–4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. Amplitude is the magnitude of a sound and is usually expressed in decibels (dB), a dimensionless ratio of sound pressure to that of a reference pressure. The A-weighted decibel (dBA) is the adjusted unit of sound used to describe the human response to noise from industrial and transportation sources. The threshold of hearing is 0 dBA. A 3-dBA increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear.

Table 12-28 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.

**Table 12-28. Typical noise levels for common sources.**

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawnmower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

*Source: Adapted from U.S. Department of Energy (1986).*

Noise levels in the project area vary depending on the season, time of day, number and types of noise sources, and the distance of the receptor from noise sources. Existing sources of noise in the project area are from recreational boating, traffic on nearby roads and highways, overhead aircraft, nearby residential activities (such as lawn care), and ambient natural sounds such as wind, waves, and wildlife.

Noise-sensitive receptors include sensitive land uses as well as individuals and/or wildlife that could be affected by changes in noise sources or levels due to the project. Noise-sensitive receptors in the project area include recreational users, nearby residences, and wildlife. No residential properties are directly adjacent to the boat ramp location.

**Environmental Consequences**

Instances of increased noise would occur during the project. Equipment, tools, and vehicles used during the construction of the restroom facility, addition of the boat ramp lane, and expansion of the boat trailer parking would generate noise. Construction equipment noise is known to disturb fish, marine mammals, and nesting shorebirds. Construction noise would also negatively affect the experience of Park visitors in areas near project construction activities. The noise would be temporary and the construction period is not anticipated to last more than 12 months. Because of the temporary nature of the construction noise, negative impacts to the soundscape would be short term and of a level that is likely to attract visitor attention but not cause any changes in visitor or resident activities.
After project completion, the soundscape would return to pre-project levels. The potential for increased vehicle and boat traffic exists due to the improved access to Big Lagoon, which would result in a slight increase in noise levels in the vicinity. Overall, long-term noise impacts from boating and other recreational activities would remain minor.

12.15.5.3 Biological Environment

12.15.5.3.1 Living Coastal and Marine Resources

Vegetation

Affected Resources
A variety of plant communities occur in the Park, from tidal salt marshes to pine flatwoods. Sandpine scrub is present on sandy relic dunes, and slash pines grow throughout the dune “swales,” as well as in wet or water-logged soils among impenetrable thickets (FSP 2010).

The Park contains nine distinct natural communities, in addition to ruderal and developed areas. These communities are mesic flatwoods (23.3 acres), scrub (107.8 acres), scrubby flatwoods (273.6 acres), basin swamp (41.3 acres), baygall (99.0 acres), wet flatwoods (84.3 acres), estuarine seagrass bed (0.7 acre), estuarine tidal marsh (47.6 acres), and estuarine unconsolidated substrate (4.7 acres). Ruderal areas comprise 14.1 acres of the Park; developed areas comprise 36.1 acres. The project area is located partly within ruderal and previously developed areas; undeveloped portions of the project area consist of scrubby flatwoods (Florida Division of Recreation and Parks 2006). A list of state designated threatened, endangered, candidate, and other plant species of concern likely to occur in Escambia County and the Park can be found in Table 12-29.

Although Godfrey’s golden aster (Chrysopsis godfreyi) was not reported as likely to occur in Escambia County, it has been observed in the Park as a relatively small population along the ridgeline near the East Beach use area. According to Florida Natural Areas Inventory (FNAI) rankings, it is imperiled in Florida due to rarity or vulnerability to extinction from some natural or manmade factor. (The FNAI maintains a comprehensive database of the biological resources of Florida.) This plant is endemic to barrier islands and spits from Franklin County to Escambia County, and typically blooms in late October–November (Florida Division of Recreation and Parks 2006).
Table 12-29. State protected threatened, endangered, candidate, and other plant species of concern likely to occur in Big Lagoon State Park.

<table>
<thead>
<tr>
<th>RESOURCE CATEGORY</th>
<th>COMMON NAME</th>
<th>SCIENTIFIC NAME</th>
<th>USFWS STATUS</th>
<th>STATE STATUS</th>
<th>NATURAL COMMUNITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants</td>
<td>Curtiss’ sandgrass</td>
<td>Calamovilfa curtissii</td>
<td>--</td>
<td>T</td>
<td>Palustrine: mesic and wet flatwoods, wet prairie, depression marsh, observed in the Park. Terrestrial: mesic flatwoods</td>
</tr>
<tr>
<td>Plant</td>
<td>Godfrey’s golden aster</td>
<td>Chrysopsis godfreyi</td>
<td>--</td>
<td></td>
<td>Terrestrial: Grassland/herbaceous, Sand/dune, Shrubland/chaparral, observed in the Park.</td>
</tr>
<tr>
<td>Plants</td>
<td>Large-leaved jointweed</td>
<td>Polygonella macrophylla</td>
<td>--</td>
<td>T</td>
<td>Terrestrial: scrub, sand pine/oak scrub ridges Major concentrations occur in the Park in the large ruderal area west of the boat ramp, in scrub north of the campground, and throughout the northern strip of scrub along the Gulf Beach Highway.</td>
</tr>
<tr>
<td>Plants</td>
<td>Red-flowered or sweet pitcher plant</td>
<td>Sarracenia rubra</td>
<td>--</td>
<td>T</td>
<td>Palustrine: bog, wet prairie, seepage slope, wet flatwoods Riverine: seepage stream banks Believed to be extirpated in the Park.</td>
</tr>
<tr>
<td>Plants</td>
<td>White-top pitcher plant</td>
<td>Sarracenia leucophylla</td>
<td>--</td>
<td>E</td>
<td>Palustrine: wet prairie, seepage slope, baygall edges, ditches Believed to be extirpated in the Park.</td>
</tr>
</tbody>
</table>

E = endangered; T = threatened; USFWS = U.S. Fish and Wildlife Service
Source: USFWS Panama City Ecological Services/Fish and Wildlife Conservation Office (2013) and Florida Division of Recreation and Parks (2006).

* All plants listed on the Florida Endangered Plant List, the Threatened Plant List, and the Commercially Exploited Plant List as set forth herein are referred to as regulated. Information concerning scientific name, references, common names, family, and descriptions for these listed plants is available in the Florida Department of Agriculture and Consumer Services, Division of Plant Industry’s “Notes on Florida’s Endangered and Threatened Plants,” (Bureau of Entomology, Nematology and Plant Pathology – Botany Section, Contribution No. 38, 3rd edition – 2000). A copy of the publication is free to Florida residents and may be obtained by writing to the Florida Department of Agriculture and Consumer Services, Division of Plant Industry, P. O. Box 147100, Gainesville, Florida 32614-7100.

The Park provides extensive habitat for the large-leaved joint weed, which has segmented stems and tiny white flowers that bloom in the early fall. These plants grow in the semi-arid sands of scrub-like habitats, and require relative openings in canopy cover. The total number of plant species in the Park is estimated at 500–1,000 (Florida Division of Recreation and Parks 2006).

The two species of pitcher plants listed in Table 12-29 occurred in the Park as recently as the early 1980s. Small colonies of both were reported in a low shrub-dominated wetland in the western portion of the Park. A small colony of white-top pitcher plant was also recorded in the open wet flatwoods just south of the campground. No pitcher plants were found during field surveys in 2001; both species are believed to be extirpated from the Park (Florida Division of Recreation and Parks 2006).

In 2003, 543 acres of seagrass beds were identified in Big Lagoon through mapping from aerial photography. No seagrass beds were identified near the boat ramp area of the Park. Turtle grass (Thalassia testudinum) was the most common species in eastern Big Lagoon, followed by shoal grass.
(Halodule wrightii). Both species were identified during a limited 2010 sampling effort. Currently, acreage of seagrass beds in Big Lagoon is probably stable (Yarbro, L.A. and P.R. Carlson 2011).

**Environmental Consequences**

Construction of the facilities would require the permanent removal of vegetation within the affected areas. The long-term, permanent surface disturbance would occur on ruderal and previously developed areas that may lack vegetation, but could also impact areas of scrubby flatwoods. Expansion of the boat ramp could impact in-water vegetation through permanent removal or short-term disturbance.

In areas of short-term surface disturbance, infrequent and minimal disturbance to individual plants would be expected, and local or range-wide population stability would not be affected. One-time disturbance to locally suitable habitat could occur, but sufficient habitat would remain functional at the local and regional scales to maintain the viability of the species. Where new structures and facilities are placed, the loss of vegetation would be limited to the project footprint but would persist for the life of the facilities (i.e., indefinitely).

The use of equipment and disturbance of soil and existing vegetation would also create a risk of noxious weed or invasive vegetative species introduction. Those undeveloped areas disturbed during construction would be monitored, and exotic species removed. The opportunity for the increased spread of non-native species would be temporary and localized, and would not be anticipated to displace native species populations and distributions.

Due to the prevalence of both weeds and rare plants in the Park, preconstruction vegetation surveys and preconstruction and postconstruction weed treatments would likely be required. The presence of any special status species would be considered during the design phase of the project, and precautions would be taken to avoid them.

Improvements to the Park would likely attract additional visitors. Increased human presence could have a long-term minor effect on vegetation in the Park because of the greater likelihood of trampling, picking, or other vegetative disturbance. This type of impact would probably occur in areas closest to Park facilities.

### 12.15.5.4 Wildlife Habitat

**Affected Resources**

A variety of wildlife can be found in the Park, including reptiles (specifically the diamondback terrapin (Malaclemys terrapin); and Gulf salt marsh snake (Nerodia clarkii clarkii), and other general snakes, turtles, and lizards, including skinks); amphibians (frogs and toads); at least seven butterfly species; beavers (Castor canadensis), opossums (Didelphis virginiana); striped skunks (Mephitis mephitis); white-tailed deer (Odocoileus virginianus); raccoons (Procyon lotor); gray squirrels (Sciurus carolinensis); gray foxes (Urocyon cinereoargenteus); marsh rabbits (Sylvilagus palustris); and big brown bats (Eptesicus fuscus). The Park also hosts a wide variety of resident and migratory birds, especially during spring and fall migrations (Florida Division of Recreation and Parks 2006).

**Environmental Consequences**

Although common wildlife may be disturbed by the noise and activity of construction, the disturbance would be of a temporary and short-term nature (less than 6 months). Additional habitat is present in the Park, which would allow for the movement and dispersal of individual animals away from the
construction area during this time. Permanent habitat loss would occur where new facilities are developed.

### 12.15.5.5 Marine and Estuarine Fauna

**Affected Resources**

Big Lagoon provides habitat for numerous turtles, fishes, and other marine species. Redfish (*Sciaenops ocellatus*), bluefish (*Pomatomus saltatrix*), flounder (*Paralichthys* spp.), sea trout (*Cynoscion nebulosus*), striped mullet (*Mugil cephalus*), and crabs are regularly caught in Big Lagoon (FDEP 2013a). Benthic organisms (including bivalves, gastropods and other mollusks), annelids, and crustaceans may also be present in the waters off the Park.

**Environmental Consequences**

Construction activities would be expected to have a minor, short-term impact on fish because of the small project footprint, the short (up to 1 year) temporal timescale, and adherence to the BMPs listed above. Over the long term, increases in boating and other recreational uses may occur due to the improved access and facilities at the sites. These recreational activities are generally low-impact for fish and would be expected to have a negligible impact on fish populations.

### 12.15.5.6 Protected Species

**Affected Resources**

Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Escambia County, Florida. Table 12-30 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

---

16 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
### Table 12-30. Potential Impacts to Species/Critical Habitats managed by USFWS

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
</table>
| Green turtle<sup>a</sup>, Hawksbill turtle<sup>a</sup>, Kemp’s ridley turtle<sup>a</sup>, Leatherback turtle<sup>a</sup>, Loggerhead turtle | Any potential impacts to in-water sea turtles will be evaluated by National Marine Fisheries Service as this is the agency that has jurisdiction to review impacts to sea turtles in the estuarine and marine environments.  

Sea turtle nesting is not expected in the project area because of its shoreside location within the Big Lagoon portion of Pensacola Bay and lack of suitable nesting habitat. Rather the turtles use the beaches directly along the Gulf Coast for nesting. Therefore, no impacts to sea turtles in terrestrial habitats are expected.  

No proposed or designated critical habitat for sea turtles occurs within the action area; including the limited area of in-water work, therefore, none will be adversely modified or destroyed. |
| West Indian manatee | Escambia county is not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the project waters.  

The main risk to manatees during implementation and use of this project would come from collisions with any vessel/equipment during construction or visitor use. Because of the conservation measures, the Trustees have determined the risk of potential impacts to manatees from the proposed project is insignificant and discountable. |
| Piping plover | The main risk to Piping plovers during construction is from human disturbance while resting or foraging in habitats adjacent to work areas. The proposed project could result in short term increases in noise which could startle nearby individuals, though the Trustees would expect normal activity to resume within minutes or cause the plovers to move to a nearby area. Because other foraging/resting habitats, including critical habitat are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable. In addition conservation measures are expected to minimize the risk of disturbance from visitors boating from the ramp to nearby locations, such as Perdido Key, to the piping plover such that impacts are insignificant and discountable.  

Piping plover critical habitat is not designated in the action area but is approximately 1,600 meters from the action area. If plovers were using the action area during construction, the Trustees would expect them to move to the nearby critical habitat which is more suitable for foraging and resting. The primary constituent elements (PCEs) of wintering piping plover critical habitat include:  

1) Intertidal flats with sand or mud flats (or both) with no or sparse emergent vegetation.  
2) Adjacent unvegetated or sparsely vegetated sand, mud, or algal flats above high tide are also important, especially for roosting piping plovers. Such sites may have debris, detritus, or microtopographic relief (less than 50 cm above substrate surface) offering refuge from high winds and cold weather.  
3) Important components of the beach/dune ecosystem include surf-cast algae, sparsely vegetated back beach and salterns, spits, and washover areas.  
4) Washover areas are broad, unvegetated zones, with little or no topographic relief, that are formed and maintained by the action of hurricanes, storm... |
<table>
<thead>
<tr>
<th>SPECIES/Critical</th>
<th>SPECIES/Critical Habitat Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>surge, or other extreme wave action.</td>
</tr>
<tr>
<td></td>
<td>Project construction will not adversely modify or destroy critical habitat for piping plover because the construction work will not be taking place in any of the habitats listed above nor are temporary construction impacts expected to alter any of the PCE’s.</td>
</tr>
<tr>
<td>Red knot</td>
<td>As of October 2, 2013, no bird observations (ebird.org) have reported from Big Lagoon State Park; however, red knots have been observed using Gulf Islands National Seashore which is approximately 2,000 meters from Big Lagoon (across the lagoon). The main risk to Red knots is from human disturbance while resting and foraging in habitats adjacent to work areas. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the red knots to move to a nearby area. Because other foraging/resting habitats are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable. In addition conservation measures are expected to minimize the risk of disturbance from visitors boating from the ramp to nearby locations, such as Perdido Key, to the red knot such that impacts are insignificant and discountable.</td>
</tr>
<tr>
<td>Perdido Key beach mouse</td>
<td>Neither Perdido Key beach mouse or its critical habitat occurs within Big Lagoon State Park. Rather both occur on Perdido Key across the lagoon from the project site.</td>
</tr>
<tr>
<td>Perdido Key beach mouse critical habitat</td>
<td>Primary constituent elements (PCEs) for the Perdido Key beach mouse critical habitat are: 1) A contiguous mosaic of primary, secondary scrub vegetation, and dune structure, with a balanced level of competition and predation and few or no competitive or predaceous nonnative species present, that collectively provide foraging opportunities, cover, and burrow sites; 2) Primary and secondary dunes, generally dominated by sea oats that, despite occasional temporary impacts and reconfiguration from tropical storms and hurricanes, provide abundant food resources, burrow sites, and protection from predators; 3) Scrub dunes, generally dominated by scrub oaks, that provide food resources and burrow sites, and provide elevated refugia during and after intense flooding due to rainfall and/or hurricane induced storm surge; 4) Functional, unobstructed habitat connections that facilitate genetic exchange, dispersal, natural exploratory movements, and recolonization of locally extirpated areas; and 5) A natural light regime within the coastal dune ecosystem, compatible with the nocturnal activity of beach mice, necessary for normal behavior, growth and viability of all life stages.</td>
</tr>
<tr>
<td></td>
<td>Project construction will not adversely modify or destroy critical habitat for the Perdido Key beach mouse because the construction work will not be taking place in any of the habitats listed above nor are temporary construction impacts expected to alter any of the PCE’s.</td>
</tr>
<tr>
<td>Gulf sturgeon</td>
<td>NMFS was consulted on Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon was not considered in the consultation with the USFWS.</td>
</tr>
</tbody>
</table>
In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered

Additional information on some of these species is provided below.

**Perdido Key Beach Mouse**

Big Lagoon State Park is close to Perdido Key, which forms the southern boundary of the lagoon. This area includes the Gulf Islands National Seashore Unit, a part of Perdido Key containing a portion of the only remaining population of the Perdido Key beach mouse. This species was listed as endangered by the USFWS on June 6, 1985 (*50 Federal Register* 23872). Critical habitat for this species, as shown on Figure 12-28, was designated at the time of listing to include primary and secondary dunes characterized by dense stands of mostly sea oats (*Uniola paniculata*) and blue stem (*Schizachyrium scoparium*) (*71 Federal Register* 197). The project area is not in or adjacent to critical habitat. Habitat loss and fragmentation associated with residential and commercial real estate development are the primary threats contributing to the endangered status of beach mice (Holler 1992a; Humphrey 1992). Artificial lighting alters behavior patterns, causing beach mice to avoid otherwise suitable habitat and decreases the amount of time they are active in those areas (Bird et al. 2004).

**Marine Mammals**

Escambia County is not listed as one of the 36 Florida coastal and inland counties in which manatees (*Trichechus manatus*) regularly occur (USFWS 2011). However, because there are some seagrasses around the project area, manatees are known to migrate through the area, although they are not known to stay for any length of time to forage or rest. Implementation of controls during construction (e.g., the *Standard Manatee Conditions for In-Water Work* (USFWS 2011) along with the installation of the previously described educational signage are expected to minimize impacts to manatees and marine mammals in general.

**Gulf Sturgeon**

The Gulf sturgeon (also known as the Gulf of Mexico sturgeon) is one of seven species of sturgeon in North America. It inhabits both saltwater and freshwater habitats in the fall/winter and spring/summer, respectively. The Gulf sturgeon is a benthic feeder that eats organisms in or on the bottom of the water, including crabs, grass shrimp, lancets, brachiopods, and marine worms. It typically gorges on food during the fall-to-spring period when in brackish and saltwater habitats; however, it appears to fast from spring to fall when in freshwater habitats. Gulf sturgeon usually return to their home freshwater river or stream to spawn (in the spring). Currently, the main threat to Gulf sturgeon is constituted by dams on
Gulf seaboard rivers that prevent connections to historic spawning areas. Habitat destruction is also a threat, especially because the sturgeon lives in areas at risk of dredging, which destroys eggs and affects food sources. Other threats include lethal by-catch and declining water quality (FWC 2013a).

The Gulf sturgeon was federally listed as threatened on September 30, 1991, after stocks were greatly reduced or extirpated throughout much of their historic range by overfishing, dam construction, and habitat degradation. Critical habitat was designated in 14 geographic areas in Gulf of Mexico rivers and tributaries on March 19, 2003 (NOAA FS 2013).

As shown on Figure 12-28, the project is in designated Gulf sturgeon critical habitat (Unit 9). Unit 9 is the Pensacola Bay System in Escambia and Santa Rosa Counties, which includes Big Lagoon. This unit provides winter feeding and migration habitat for Gulf sturgeon from the Escambia and Yellow River subpopulations. Gulf sturgeon collect, or migrate through, during the fall and winter season. Movement is generally along the shoreline area of Pensacola Bay.

**Piping Plover**
The piping plover, a threatened species, typically inhabits sandy beaches, sandflats, and mudflats along coastal areas for wintering (FWC 2013a). Piping plover habitat is located in and around the East Beach use area. This eastern portion of the Park surrounding the observation tower, including the peninsula and mudflats to either side of the tower, has been designated as critical habitat for the plover (see Figure 12-28) (Florida Division of Recreation and Parks 2006). The project area is not in or adjacent to the critical habitat. Threats to this species include loss of habitat by development on beaches. Human and domestic animal disturbance can also lead to nest abandonment. Other threats include predation by raccoons, skunks, and foxes (FWC 2013a).

**Red Knot**
The red knot, a federal proposed species, uses the state of Florida both for wintering habitat and migration stopover habitat for those that continue to migrate down to specific wintering locations in South America (Niles et al. 2008). Wintering and migrating red knots forage along sandy beaches, tidal mudflats, saltmarshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms, and roost on high sand flats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008).
Figure 12-28. Perdido Key beach mouse, Gulf sturgeon, and piping plover critical habitat in and near Big Lagoon State Park.
Figure 12-29. Essential fish habitat adjacent to Big Lagoon State Park.
**Essential Fish Habitat (EFH)**

EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as "those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Table 12-31 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Big Lagoon State Park Boat Ramp Improvement site, Big Lagoon and Perdido Bay (EFH areas near the project are shown in Figure 12-29).

**Table 12-31. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.**

<table>
<thead>
<tr>
<th>EFH CATEGORY</th>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Highly Migratory Species</td>
<td>Atlantic Sharpnose Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Bull Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Sandbar Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Tiger Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Tiger Shark - Neonate</td>
</tr>
<tr>
<td>Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic</td>
<td>Cobia</td>
</tr>
<tr>
<td></td>
<td>King Mackerel</td>
</tr>
<tr>
<td></td>
<td>Spanish Mackerel</td>
</tr>
<tr>
<td>Gulf of Mexico Red Drum</td>
<td>Red Drum</td>
</tr>
<tr>
<td>Gulf of Mexico Shrimp</td>
<td>Brown Shrimp</td>
</tr>
<tr>
<td></td>
<td>Pink Shrimp</td>
</tr>
<tr>
<td></td>
<td>White Shrimp</td>
</tr>
<tr>
<td>Reef Fish Resources of the Gulf of Mexico</td>
<td>Almaco Jack</td>
</tr>
<tr>
<td></td>
<td>Banded Rudderfish</td>
</tr>
<tr>
<td></td>
<td>Black Grouper</td>
</tr>
<tr>
<td></td>
<td>Blackfin Snapper</td>
</tr>
<tr>
<td></td>
<td>Blueline Tilefish</td>
</tr>
<tr>
<td></td>
<td>Cubera Snapper</td>
</tr>
<tr>
<td></td>
<td>Gag</td>
</tr>
</tbody>
</table>
State-Listed Birds, MBTA and BGPEA

The Migratory Bird Treaty Act of 1918 (16 U.S.C. 703-711) decreed that all migratory birds and their parts (including eggs, nests, and feathers) were fully protected. The migratory bird species protected by the Act are listed in 50 C.F.R. 10.13. More than 250 species of birds have been reported as migratory or permanent residents within the Pensacola Bay system, several of which breed there as well. These birds can be grouped generally as (1) species that occur year-round, both nesting and overwintering, (2) species that nest during the warm season and overwinter to the south, (3) species that overwinter and nest further north, and (4) species that pass through during spring migrations to more northern nesting sites and/or during fall migrations to overwintering areas. Different populations of the same species sometimes exhibit more than one type of migratory behavior. There are several State of Florida—listed bird species with potential to occur in and around the Park. These include the eastern brown pelican, little blue heron, southeastern American kestrel, least tern, black skimmer, and piping plover (discussed above).

The nearest known, active bald eagle nest is 4 miles east of the project area. One other active nest is nearly 10 miles northeast in Escambia Bay. There are no known bald eagle nests at the site, but there is potential for nesting in the Park due to the presence of bald eagle habitat such as open water, forests,
clearings, and swamp edges. Bald eagles have been observed flying over the Park (Florida Division of Recreation and Parks 2004).

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-32 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

Table 12-32. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>Loafing/Foraging</td>
<td>Construction noise and increased human disturbance during construction and then during use of the boat ramp may cause birds to temporarily stop foraging or loafing or cause them to temporarily relocate. The Trustees expect that birds using the existing boat ramp are likely habituated to human activity and would not experience more than short-term impacts.</td>
</tr>
<tr>
<td>Seabirds</td>
<td>Resting, roosting, nesting</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats. Any startle effect will likely cause foraging or resting birds to move further down the shoreline within the park. Roosting should not be impacted because all work will occur during the day.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-33.

Table 12-33. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>The Trustees expect foraging and resting birds would be able to move to another nearby location to continue foraging and resting. If project activities occur during shorebird nesting season (February 15 to August 31), the FWC will be contacted to obtain the most recent guidance to protect nesting shorebirds or rookeries and their recommendations will be implemented.</td>
</tr>
<tr>
<td>Seabirds</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. Nesting should not be impacted because the project will not occur near nesting habitats.</td>
</tr>
</tbody>
</table>
Environmental Consequences

Protected Species
The USFWS reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On March 20, 2014 the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect the Perdido Key beach mouse, West Indian manatee, piping plover, and red knot (if listed). The USFWS also concurred with the Trustees’ determination that the project will not adversely modify or destroy critical habitat for the Perdido Key beach mouse or piping plover. Finally, the USFWS review concurred with the Trustees’ conclusion that five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead) would experience no effect as a result of the proposed project.

Initiation of the consultation of potential impacts on protected species managed by NMFS was initiated on February 11, 2014. The Trustees’ review of the potential impacts of the project for protected species managed by NMFS determined the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the project implementation area:

- Gulf Sturgeon - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Smalltooth Sawfish – The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Green Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Loggerhead Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Hawksbill Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Leatherback Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Kemp’s Ridley Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.

A concurrence from NMFS with the Trustees’ conclusions for these species and associated critical habitats is still pending.

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.
Essential Fish Habitat

The proposed marina restoration would take place within the footprint of the existing facility. A very small area of subtidal habitat would be converted and disturbed during construction, however, this would take place within the existing developed boundaries where the habitat is already likely to be significantly disturbed as a result of the current use of the boat launch structure. Disturbance to species would be minor and brief and adjacent and similar habitat would be available for use during construction. As a result, the Trustees’ review of potential impacts from the proposed project concluded it is not likely to adversely affect EFH.

On April 11, 2014 NMFS completed its evaluation of potential EFH impacts and concurred that the project construction is not likely to adversely affect EFH and any disturbance to species will be minor and brief (Fay, 2014).

State-Listed Birds, MBTA and BGEPA

State-listed birds may use habitat near the project area, and all migratory birds are protected under the MBTA. If construction activities were to occur during the nesting season (February 15 to August 13), birds could be disturbed by noise and human activity in the project area. In such circumstances, FWC nesting shorebird avoidance measures will be followed. These measures generally call for surveys within 300 feet and an avoidance buffer of 300 feet for nesting birds.

No bald eagles are known to nest in or adjacent to the Park; therefore, no impacts to bald eagles would be anticipated. However, if a bald eagle nest were observed in the vicinity of the project area, conservation measures provided by the USFWS and FWC would be implemented (see chapter 6 Appendix for specific measures). Consultation with the FWC concerning the proposed project and anticipated construction schedule relative to known bald eagle nest sites near the project area and the nesting season in Florida (October 1 to May 15) would be required prior to commencement of project activities. To minimize potential for impacts to nesting bald agles, the consultation protection measures may include 1) addressing prescribed nest tree protection zones, and 2) preparation of a bald eagle nest protection plan (including nesting behavior disturbance monitoring). Bald eagles have been known to tolerate certain potential disturbances in their breeding territories. Should these conservation measures be implemented for active nest sites adjacent to construction activities in the project area, potential impacts to the bald eagle would be short term and minor.

At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

Invasive Species

Affected Resources

Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within, and possible expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 3 described more about the regulations addressing invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not been fully identified. However, Chinese tallow (Sapium
sebiferum) is considered a significant exotic plant threat at the Park. Cogon grass (Imperata cylindrica) has also been identified around the box culvert flowing into the northwest portion of the Park, along Gulf Beach Highway, and along the main Park drive north of the entrance station.

**Environmental Consequences**
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Developed areas adjacent to the Park are a constant source of exotics. Also, improvements to the Park would likely attract additional visitors. Increased human presence could have a long-term minor effect on vegetation in the Park because of the greater likelihood of trampling, picking, or other vegetative disturbance, including accidental introduction or spread. This type of impact would probably occur in areas closest to Park facilities.

Management measures have been implemented that include efforts to survey and remove invasive plant species (Florida Division of Recreation and Parks 2006). Additionally, preconstruction vegetation surveys and preconstruction and postconstruction weed treatments would likely be required. The use of equipment and disturbance of soil and existing vegetation would also create a risk of noxious weed or invasive vegetative species introduction. Those undeveloped areas disturbed during construction would be monitored, and exotic species removed. The opportunity for the increased spread of non-native species would be temporary and localized, and would not be anticipated to displace native species populations and distributions.

Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

**12.15.5.7 Human Uses and Socioeconomics**
**12.15.5.7.1 Socioeconomics and Environmental Justice**

**Affected Resources**
The proposed project would be in Escambia County, which is Florida’s nineteenth most populous county. Escambia County contains 1.6% of Florida’s population (Florida Office of Economic and Demographic Research [FOEDR] 2013a). Home to approximately 300,000 residents, the county has an annual budget of more than $370 million. Pensacola is the county seat. Escambia County contains the U.S. Navy’s first operating air station and flight school (Escambia County 2013).

According to census data, 87.1% of the county’s residents are high school graduates (or higher), and 23.3% have bachelor’s degrees or higher (compared to 85.5% for high school graduates and 26.0% for bachelor’s degrees in the state of Florida as a whole). The 2012 crime rate (index crimes per population of 100,000) was 4,895.5, which was higher than the state of Florida’s 3,805.8 (FOEDR 2013a).
Census data indicate that 23.6% of Escambia’s residents are employed in the trade, transportation, and utilities industry; 18.7% in professional and business services; 11.7% in education and health services; 11.0% in construction; 10.3% in financial activities; 10.2% in leisure and hospitality; and the remaining population in such industries as natural resources and mining, manufacturing, information, government, and other services. The county unemployment rate in 2012 was 8.4% (8.6% for the state of Florida), with 59.9% of the population in the labor force (FOEDR 2013a).

Data and characteristics of the population of Escambia County are summarized and compared to those for the population of the state as a whole in Table 12-34. Escambia County is in the Pensacola-Ferry Pass-Brent Metropolitan Statistical Area (MSA). Population growth increased 1.3% from 2010 to 2012 and 8.9% from 2000 to 2010 in this MSA. Escambia County is projected to grow to a population of 322,330 by 2040 (FOEDR 2013b). As seen in the table, Escambia County has similar racial and economic/income demographic characteristics as Florida as a whole.

Table 12-34. Population characteristics of Escambia County compared with State of Florida data.

<table>
<thead>
<tr>
<th>PEOPLE QUICK FACTS</th>
<th>ESCAMBIA COUNTY</th>
<th>FLORIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persons under 5 years, 2012</td>
<td>6.2%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Persons under 18 years, 2012</td>
<td>21.1%</td>
<td>20.7%</td>
</tr>
<tr>
<td>Persons 65 years and over, 2012</td>
<td>15.2%</td>
<td>18.2%</td>
</tr>
<tr>
<td>Female persons, 2012</td>
<td>50.5%</td>
<td>51.1%</td>
</tr>
<tr>
<td>White alone, 2012¹</td>
<td>70.1%</td>
<td>78.3%</td>
</tr>
<tr>
<td>Black or African American alone, 2012¹</td>
<td>22.9%</td>
<td>16.6%</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone, 2012¹</td>
<td>0.9%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Asian alone, 2012¹</td>
<td>2.9%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander alone, 2012¹</td>
<td>0.2%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Two or More Races, 2012</td>
<td>3.0%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Hispanic or Latino, 2012²</td>
<td>5.1%</td>
<td>23.2%</td>
</tr>
<tr>
<td>White alone, not Hispanic or Latino, 2012</td>
<td>66.0%</td>
<td>57.0%</td>
</tr>
<tr>
<td>Homeownership rate, 2007–2011</td>
<td>67.3%</td>
<td>69.0%</td>
</tr>
<tr>
<td>Median household income, 2007–2011</td>
<td>$43,707</td>
<td>$47,827</td>
</tr>
<tr>
<td>Persons below poverty level, 2007–2011</td>
<td>16.9%</td>
<td>14.7%</td>
</tr>
<tr>
<td>Manufacturers’ shipments, 2007 ($1,000)</td>
<td>2,117,030</td>
<td>104,832,907</td>
</tr>
<tr>
<td>Merchant wholesaler sales, 2007 ($1,000)</td>
<td>11,838,916</td>
<td>221,641,518</td>
</tr>
<tr>
<td>Retail sales, 2007 ($1,000)</td>
<td>4,055,667</td>
<td>262,341,127</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau State and County (2013).

¹ Includes persons reporting only one race.
² Hispanics may be of any race, so also are included in applicable race categories.

Environmental Consequences

The proposed project would create approximately 662 worker days of employment during construction (see Table 12-26). The improved access to Big Lagoon may result in a minor to moderate increase in visitation to the Park because of the substantial improvement of Park facilities. As a result, the local economy could benefit over the long term through the economic activity generated through fees, new jobs, and purchases from recreational visitors (food, fuel, food, equipment, etc.). This project would not create a benefit for any specific group or individual, but rather would produce benefits realized by the local community and visitors. Overall, only a few individuals, groups, and properties would be affected;
therefore, the overall impact is expected to be minor and would not substantively alter socioeconomic conditions.

Escambia County has similar racial and economic/income demographic characteristics as Florida as a whole. Thus, there are no indications that the Park improvements would be contrary to the goals of Executive Order 12898, or would create disproportionate, adverse human health or environmental impacts on minority or low-income populations of the surrounding community. Therefore, no short-term or long-term environmental justice issues would be anticipated.

12.15.5.7.2 Cultural Resources

Affected Resources
A review of the Florida Master Site File indicates that there are at least three previously recorded prehistoric archaeological sites located within 1 mile of the existing boat ramp (FDHR 2013).

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Environmental Consequences
The lands in the Park have been used by humans for thousands of years. The area is culturally rich and has a diversity of previously recorded archaeological sites that range from prehistoric to modern era.

The proposed construction would involve ground-disturbing activities. Project plans for the Park improvements have not been finalized. Once the project plans are finalized, the area would be subjected to a Phase I cultural resources survey. Based on the results of the survey, project plans would be altered to avoid any historic properties that would be adversely affected by the project work (ground disturbance and construction).

A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.15.5.7.3 Infrastructure

Affected Resources
The following infrastructure currently exists as part of Big Lagoon State Park:

- Park roads (2.6 miles)
- Service roads (3 miles)
- Parking areas
- An amphitheater seating 300 people (with a lighting system and stage)
- Boardwalks
- Observation platforms
- Restrooms
- Playgrounds
- Five miles of hiking and nature trails with interpretive exhibits
- A four-story wooden observation tower at the east beach area
- A boat ramp
- A full-service campground with 75 sites, electricity, picnic tables, fire rings, three restrooms, and a dump station
- A tent camping area accommodating up to 60 people with a group fire ring, water spigots, and a restroom with showers
- Fifteen family-style picnic pavilions, seating 10–150 people
- Picnic tables
- Public showers for day visitors
- An entrance station/administrative office
- A temporary office building
- A ranger residence
- A shop building, a three-bay equipment shelter, and several sheds

Park water is acquired from Escambia County’s municipal water supply. Sewage is disposed of through septic tanks and drain-field systems (Florida Division of Recreation and Parks 2006).

**Environmental Consequences**
Construction of the new restroom would require connection to the ECUA regional sanitary sewer collection system. The impact to the regional system would be long term but minor because it would be localized and within operational capacity. Local water quality should benefit because of the removal of a septic tank system near surface waters. Visitor experience at the Park would be improved with the provision of a new restroom, reducing crowding. A sanitary sewer collection system permit would be obtained from the FDEP.

Other changes to infrastructure (the addition of a lane to the boat ramp, improvement of traffic circulation at the boat ramp, and the expansion of boat trailer parking) would have a beneficial, long-term impact because they would improve the visitor experience. A minor, long-term increase in the pace of the need for maintenance of existing facilities could occur if visitor use increased due to better infrastructure at the Park; minor increases in local daily traffic volumes could also occur, resulting in perceived inconveniences to drivers but no actual disruption of traffic.

**12.15.5.7.4 Land and Marine Management**

**Affected Resources**
The land use surrounding the Park to the west, north, and east is primarily residential with a few recreational facilities and some commercial businesses. Big Lagoon is located to the south, and on the south edge of Big Lagoon is a long, narrow spit of land called Johnson Beach. Perdido Key, an unincorporated community on a barrier island, is located southwest of the Park.

The Park is managed by the FDEP, Florida Division of Recreation and Parks, under the 2006 *Big Lagoon State Park Unit Management Plan*. Under this plan, public outdoor recreation is the designated single use of the property. Major emphasis is placed on maximizing the recreational potential of the area;
however, preservation of resources is also important (Florida Division of Recreation and Parks 2006). The Park has designated the basin swamp, baygall, estuarine tidal marsh, and scrub communities as protected zones, defined as areas of high sensitivity or outstanding character from which most types of development are excluded. Generally, facilities requiring extensive land alteration or more intensive use such as parking lots and camping areas are not allowed in protected zones. Facilities with minimal resource impacts such as trails, interpretive signs, and boardwalks are generally allowed (Florida Division of Recreation and Parks 2006).

The project would be located in a coastal area that is regulated by the federal Coastal Zone Management Act (CZMA) of 1972, and the Florida Coastal Management Act of 1978.

The Park is adjacent to the Fort Pickens Aquatic Preserve. It is also a component of the Florida Greenways and Trails System, a statewide system of greenways and trails.

**Environmental Consequences**

Although the action would require several permits for the short-term construction period, it would not require a variance, zoning change, or amendment to a land use area or comprehensive management plan. The long-term impact of the project would be minor because it would not affect overall use and management beyond the local Park area. It would be consistent with current land use because construction would take place in an already developed area of the Park. It would also be consistent with and support the Big Lagoon State Park Unit Management Plan, which has a recreational goal of expanding parking, improving circulation, and constructing a restroom at the boat ramp area (Florida Division of Recreation and Parks 2006).

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS. The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process.

**12.15.5.7.5 Aesthetics and Visual Resources**

**Affected Resources**

Existing aesthetics and visual resources from the project site are views of a minimally developed area. Views include those of a sandy shoreline, Park vegetation such as trees, Big Lagoon, an access road, and Park facilities (parking lots, boat ramp, and several small structures).

**Environmental Consequences**

Short-term introduction of unnatural elements to the existing visual landscape would occur during construction activities due to the presence of equipment and materials. These impacts would be minor because they would only be visible from a small portion of the Park, would not dominate the viewshed, and would not detract from current visitor activities. Long-term changes to visual resources would occur from the addition of a boat ramp and restroom as well as the expansion of boat trailer parking. These changes would be readily apparent but minor because they are consistent with other state park facilities and would not attract attention, dominate the view, or detract from visitor experiences.
Affected Resources
Park use from January 1, 2012, through December 31, 2012, included 44,734 overnight campers and 80,239 day use visitors for a total of 124,973 Park visitors. The Park sold 644 annual passes. Approximately two-thirds were after-hour use passes for launching boats before or after Park hours. The Park estimates that the minimum number of boat launches had been 10 per day over the 2012 year. On many days, the boat ramp was filled, and boaters were turned away (personal communication between M. Domini and Pearce Barrett on September 26, 2013).

Recreation at the Park currently includes boating, swimming, fishing, canoeing/kayaking, hiking, camping, windsurfing, picnicking, wildlife viewing, and nature appreciation.

Environmental Consequences
During the construction period, visitor recreational experience would be negatively impacted by noise and visual disturbances associated with the use of construction equipment. The impact would be short term and minor because it would only affect some recreationalists in the boat ramp area for a limited period of time (up to 1 year). Users would likely be aware of the construction, but changes in use would be slight. The construction process would also limit recreational activities near construction areas to protect public safety, which would be a minor short-term inconvenience to visitors. Over the long term, minor beneficial impacts to tourism and recreational use would be expected due to the enhancement of recreational opportunities associated with improved facilities and accessibility. Fewer boaters would need to be turned away due to crowding.

Affected Resources
The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act; the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); the Emergency Planning and Community Right-to-Know Act; and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of these materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

A review of the EPA’s EnviroMapper revealed that there are no CERCLA sites on or immediately adjacent to the Park. There are several nearby facilities that produce hazardous waste, including an automotive facility, a pharmacy, and an alloy company. The Park itself is a conditionally exempt small-quantity generator of hazardous waste (EPA 2013c).

The Park’s shoreline is a highly dynamic area subject to both erosion and accretion. Periodic maintenance dredging of the Intracoastal Waterway further influences currents and long shore drift that affect physical changes along the Park’s shoreline. Recent increases in commercial barge traffic and dredge operations have also occasionally impacted the shore. Sand accumulation at the boat ramp is a problem that needs to be addressed (Florida Division of Recreation and Parks 2006). The Big Lagoon State Park Unit Management Plan recommends that additional plantings of emergent vegetation occur
west of the boat ramp, and the plan is working toward a long-term solution to sand accretion at the boat ramp and erosion to the west. The shoreline will be managed by the Florida Division of Recreation and Parks (FDRP) in cooperation and coordination with the Office of Coastal and Aquatic Managed Areas, FDEP Bureau of Beach and Coastal Systems, and the USACE as necessary.

**Environmental Consequences**

Project construction would require mechanical equipment that uses oil, lubricants, and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of construction-related hazardous materials, and to avoid releases and spills. If a release should occur, it would be handled promptly in accordance with all applicable regulations. The period of time during which a release could occur from construction activities would be short term, and any release would be expected to be minor.

The principal impacts of the proposed project on public health and safety would be related to the potential mobilization of hazardous waste from excavation and handling of sediments containing oil, heavy metals, or other materials, which could result in exposure to the environment and workers. Sediment analysis for contaminants at the boat ramp site and potential borrow pits would be completed and analyzed prior to project implementation. If hazardous materials were encountered in the project area during construction activities, appropriate measures for the proper assessment, remediation, management, and disposal of the contamination would be required in accordance with applicable federal, state, and local regulations. The period of time during which mobilization of hazardous waste from sediments could occur from construction activities would be short term. Because sediments analysis would occur and appropriate handling and management measures would be taken, impacts to public health and safety are expected to be minor. All occupational and marine safety regulations and laws would be followed to ensure safety of all workers and monitors.

No impact is expected to the shorelines because of the protective erosion control measures and BMPS that would be used. Shoreline integrity would remain intact, and there would be no increased risk of potential hazards (e.g., increased likelihood of storm surge) to visitors or residents.

**12.15.6 Summary and Next Steps**

The proposed Big Lagoon State Park project would involve enhancing an existing boat ramp and surrounding facilities in the Big Lagoon State Park in Escambia County. These improvements would include adding an additional lane to the boat ramp, expanding boat trailer parking, improving traffic circulation at the boat ramp, and providing a new restroom facility to connect the park to the Emerald Coast Utility Authority (ECUA) regional sanitary sewer collection system. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories may occur, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational boating and fishing opportunities by improving the existing boat ramp area. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.
12.15.7 References


Fay, V. 2014. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for the proposed restoration/improvement work for the Big Lagoon State Park Boat Ramp in Big Lagoon, Escambia County, Florida. April, 11.


12.16 Bob Sikes Pier, Parking and Trail Restoration: Project Description

12.16.1 Project Summary
The proposed Bob Sikes Pier project would improve access to a fishing pier in the Pensacola area in Escambia County as well as enhancing the quality of the experience for its recreational users. The proposed improvements include renovating parking areas, enhancing bicycle/pedestrian access, and aesthetic improvements to the surrounding area. The estimated cost for this project is $1,023,990.

12.16.2 Background and Project Description
The Trustees propose to improve and enhance the Bob Sikes pier (see Figure 12-30 for project location). At 1,800 feet in length, the Bob Sikes Fishing Pier is the longest fishing pier in the Pensacola area as well as the only free fishing pier on Santa Rosa Island. Historically, the Bob Sikes fishing pier has provided an opportunity for the general public to access Santa Rosa Sound for fishing and sightseeing.

The objective of the proposed Bob Sikes Pier Restoration project is to enhance and/or increase recreational fishing and beach use opportunities by improving the access to the existing fishing pier and associated beach access trail. The restoration work proposed includes: 1) adding solar-powered lighting to illuminate dark areas along the pier; 2) completing a series of minor pier and rail modifications to generally improve the pier’s safety; 3) renovating and rehabilitating designated parking areas to improve parking efficiency of visitors and to improve traffic flow leading into and within the pier parking lot; 4) adding a Bob Sikes Pier entrance sign and informational/educational signage for pier users (e.g., proper actions to take if a sea turtle should be hooked while fishing); 5) widening and enhancing half mile section of multipurpose (bicycle/pedestrian) access trail that connects the Bob Sikes Fishing Pier to other recreational and commercial areas on the beach; and 6) aesthetic improvements to the parking area, parking access road and multipurpose trail leading to Bob Sikes Pier. The parking renovations, solar lighting and new signage are needed to enhance and/or increase access to the pier, which will make the public’s recreational fishing and beach use opportunities more accessible, functional or fully utilized.
12.16.3 Evaluation Criteria

This proposed project meets the evaluation criteria for the Framework Agreement and OPA. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Bob Sikes Pier, Parking and Trail Restoration project is intended to enhance and/or increase recreational fishing and beach use opportunities by improving access to the existing fishing pier and the associated beach access trail. The project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and utilizes proven techniques with established methods and documented results and can be implemented with minimal delay. Florida counties have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Furthermore, cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.
A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.16, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.16 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Sections 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Bob Sikes Pier Restoration project also meet the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area that deployed boom and was impacted by response and SCAT activities for the Spill.

### 12.16.4 Performance Criteria, Monitoring and Maintenance

As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational fishing and beach use opportunities by improving access to the existing pier and the associated beach access trail. Performance monitoring will evaluate: 1) the addition of solar-powered lighting; 2) the completion of a series of minor pier and rail modifications; 3) renovation and rehabilitation of designated parking areas; 4) construction of informational/educational signage; 5) enhancement of bicycle/pedestrian access trail; and 6) the completion of the aesthetic improvements to the parking area, parking access road and multipurpose trail leading to Bob Sikes Pier. Specific success criteria include: 1) the completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the pier is open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by Escambia County as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by Escambia County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the post construction performance monitoring period, the Escambia County will monitor the recreational use activity at the site. Escambia County will visit the site twice a year to count the number of users at the fishing pier. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

### 12.16.5 Offsets

The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $2,047,980 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the
Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.\textsuperscript{17}

\subsubsection{12.16.6 Cost}

The total estimated cost to implement this project is $1,023,990. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

\textsuperscript{17} For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.17 Bob Sikes Pier, Parking and Trail Restoration: Environmental Review
The proposed Bob Sikes Pier project would improve access to a fishing pier in the Pensacola area in Escambia County while enhancing the quality of the experience for its recreational users. The proposed improvements include renovating parking areas, enhancing bicycle/pedestrian access, and aesthetic improvements to the surrounding area.

12.17.1 Introduction and Background
In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement), the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This boat ramp project was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

The Trustees propose to improve and enhance the Bob Sikes pier (Figure 12-30). At 1,800 feet in length, the Bob Sikes Fishing Pier is the longest fishing pier in the Pensacola area as well as the only free fishing pier on Santa Rosa Island. Historically, the Bob Sikes fishing pier has provided an opportunity for the general public to access Santa Rosa Sound for fishing and sightseeing.

The proposed restoration would enhance and/or increase the recreational fishing and beach use opportunities by improving the access to the existing fishing pier and associated beach access trail. The restoration work proposed includes: 1) adding solar-powered lighting to illuminate dark areas along the pier; 2) completing a series of minor pier and rail modifications to generally improve the pier’s safety; 3) renovating and rehabilitating designated parking areas to improve parking efficiency of visitors and to improve traffic flow leading into and within the pier parking lot; 4) adding a Bob Sikes Pier entrance sign and informational/educational signage for pier users (e.g., proper actions to take if a sea turtle should be hooked while fishing); 5) widening and enhancing half mile section of multipurpose (bicycle/pedestrian) access trail that connects the Bob Sikes Fishing Pier to other recreational and commercial areas on the beach; and 6) aesthetic improvements to the parking area, parking access road and multipurpose trail leading to the Bob Sikes pier.
The total estimated cost to implement this project is $1,023,990. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

12.17.2 Project Location
The proposed Project is located in the State of Florida, Escambia County. The pier runs parallel to the Pensacola Beach Boulevard Bridge (Highway 399) that spans the Santa Rosa Sound. Figure 12-30 shows project location.

12.17.3 Construction and Installation
Proposed construction and installation associated with restoration of the Bob Sikes Pier includes:

- Installation of solar lighting on the existing pier using appropriate construction equipment.
- Modifications to the pier and rail, designed to improve access for handicap users and improve safety of the pier, will be completed using appropriate construction equipment.
- Improvements to parking lot
  - Demolish and renovate using heavy construction equipment and hand-held tools, as appropriate.
  - Improve handicap parking areas, including replacing signs and striping.
- Improvements to recreational path
  - Widen and enhance path, via removal of old material, re-routing some areas of the path, and paving the repaired area.
  - Reroute road leading to the parking area to improve traffic flow and safety.
  - Remove old road material and replace using heavy equipment to reroute, regrade, and pave the new road surface.

Any improvements would be implemented using heavy equipment and hand held tools, as necessary. Project construction would begin 4 to 6 months after funding is received, with construction scheduled to last from 7 to 12 months.

12.17.4 Operations and Maintenance
Long-term monitoring and maintenance of the improved facilities will be completed by Escambia County as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by Escambia County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the post construction performance monitoring period, the Escambia County will monitor the recreational use activity at the site. Escambia County will visit the site twice a year to count the number of users at the fishing pier. The visitation numbers will then be provided to the Florida Department of Environmental Protection.
12.17.5  Affected Environment and Environmental Consequences

12.17.5.1  No Action

Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected resources subsections would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.17.5.2  Physical Environment

12.17.5.2.1  Geology and Substrates

Affected Resources

The Bob Sikes Pier runs parallel to the Pensacola Beach Boulevard Bridge (Highway 399) that spans the Santa Rosa Sound with proposed project site being located on the northern portion of the Santa Rosa Island. The majority of the project area has previously been developed leaving few areas of undisturbed soils remaining, and for those soils remaining that have not been developed most have been previously impacted through landscaping. Areas remaining void of development primarily consist of sand and are classified by the United States Department of Agriculture Natural Resources Conservation Services (USDA NRCS) as Arents-Urban land, a soil type primarily impacted by development with remaining undeveloped soils having low erosion potential, gradual slopes and that is somewhat poorly drained with some tendency for ponding (USDA NRCS 2013).

Environmental Consequences

Construction and construction activities associated with the widening and enhancement of the multipurpose access trail, the elimination of the directional north bound right turn lane and the enhancement/landscaping around the parking area, access road and trail will expose, modify and compact soils in the project footprints, impacting approximately 1-3 acres. Construction activities would likely include the use of a backhoe or bobcat and construction staging is anticipated to occur in an existing parking lot. Impacts to soils would occur as a result of construction and construction activities and would only occur during the construction period. Specific mitigation measures would be implemented during campground construction. These would include following established best management practices (BMPs) such as the implementation of an erosion control and storm water management plan, the installation of sediment traps prior to commencement of construction activities; and on-going construction monitoring to ensure compliance. Based on previous disturbances to the project area soils, the relatively small area and amount of soils impacted and the nature of construction activities, alterations to soil through fill, compaction, grading, and earth moving activities would result in long and short-term, minor adverse impacts to affected soils.

Given that there would be no substantial change in uses at the project area following implementation of the proposed rehabilitation activities, it is anticipated that there would be no long-term negative impacts to soils as a result of site use.
12.17.5.2.2 Hydrology and Water Quality

Affected Resources
The site is located over Santa Rosa Sound, adjacent to the Pensacola Beach Bridge. The pier extends over open waters of Santa Rosa Sound. Pensacola Bay and the waters surrounding the project area have been impacted by numerous non-point and point source pollution sources resulting in a reduction of natural biodiversity and productivity. Hydrology and water quality are influenced by substantial urban development throughout the area surrounding the project site.

Environmental Consequences
Project Activities are not anticipated to require construction in water however, based on construction activities on-land it is possible that some impacts via turbidity and the potential for increased sediment released into water could occur. It is anticipated that all impacts would be short-term in nature occurring only during construction resulting in short-term, minor, adverse impacts to water quality. BMPs along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts. Impacts to hydrologic and water quality resources are expected to be minimal. The proposed project is not anticipated to require authorization by the U.S. Army Corps of Engineers pursuant to the Clean Water Act Section 404 and/or Rivers and Harbors Act (CWA/RHA).

Long-term, the planned improvements to the parking area, including re-paving and planting native vegetation in appropriate areas, would have a minor beneficial impact on water quality.

12.17.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
The U.S. Environmental Protection Agency (USEPA) defines ambient air in 40 C.F.R. Part 50 as “that portion of the atmosphere, external to buildings, to which the general public has access.” In compliance with the 1970 Clean Air Act (CAA) and the 1977 and 1990 Clean Air Act Amendments (CAA), the USEPA has promulgated National Ambient Air Quality Standards (NAAQS). The NAAQS include primary standards which set limits to protect public health, including the health of "sensitive" populations such as asthmatics, children, and the elderly. To date, the USEPA has issued NAAQS for seven criteria pollutants: carbon monoxide (CO), sulfur dioxide (SO2), particles with a diameter less than or equal to a nominal 10 micrometers (PM10), particles with a diameter less than or equal to a nominal 2.5 micrometers (PM2.5), ozone (O3), nitrogen dioxide (NO2), and lead (Pb). Individual states may promulgate their own ambient air quality standards for these “criteria” pollutants, provided that they are at least as stringent as the federal standards. In Table 12-35, below, both State of Florida and federal primary ambient air quality standards for criteria air pollutants are presented.

The project is located in a developed urban area and is adjacent to a large roadway. The surrounding upland habitat is a developed residential and commercial area. In 2013, Escambia County was in attainment of the NAAQS for all criteria pollutants as designated by the USEPA (USEPA 2010).

The USEPA proposed strengthening the air quality standards for ground-level ozone to 0.075 ppm in 2008. To attain this standard, the three-year average of the fourth-highest daily maximum 8-hour average ozone concentrations measured at each monitor within an area over each year must not exceed 0.075 ppm. The 2006 to 2008 average of the fourth-highest daily maximum 8-hour ozone concentration
for Pensacola was 0.079 ppm, and thus Escambia County would be designated as nonattainment according to the proposed 2008 ozone standard (USEPA 2009a).

Table 12-35. State and Federal ambient standards for criteria air pollutants.

<table>
<thead>
<tr>
<th>POLLUTANT</th>
<th>AVERAGING PERIOD</th>
<th>FEDERAL PRIMARY STANDARD</th>
<th>STATE OF FLORIDA STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone</td>
<td>8-hour</td>
<td>0.075 ppm</td>
<td>Same as Federal</td>
</tr>
<tr>
<td></td>
<td>1-hour (daily max.)</td>
<td>0.12 ppm</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>PM2.5</td>
<td>Annual (arithmetic mean)</td>
<td>15.0 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>35 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>PM10</td>
<td>Annual (arithmetic mean)</td>
<td>NA</td>
<td>50 µg/m³</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>150 µg/m³</td>
<td>150 µg/m³</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>8-hour</td>
<td>9 ppm</td>
<td>9 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>35 ppm</td>
<td>35 ppm</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>Annual (arithmetic mean)</td>
<td>0.053 ppm</td>
<td>0.05 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.100 ppm</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>Annual (arithmetic mean)</td>
<td>0.03 ppm</td>
<td>0.02 ppm</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>0.14 ppm</td>
<td>0.10 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour (per annum)</td>
<td>NA</td>
<td>0.40 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour (per 7 days)</td>
<td>NA</td>
<td>0.25 ppm</td>
</tr>
<tr>
<td></td>
<td>5-minute</td>
<td>NA</td>
<td>0.80 ppm</td>
</tr>
<tr>
<td>Lead</td>
<td>Rolling 3-month average</td>
<td>0.15 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td></td>
<td>Quarterly average</td>
<td>1.5 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>Total Suspended Particulate</td>
<td>Annual (geometric mean)</td>
<td>NA</td>
<td>60 µg/m³</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>NA</td>
<td>150 µg/m³</td>
</tr>
</tbody>
</table>

Greenhouse gases (GHGs) are chemical compounds found in the Earth’s atmosphere that absorb and trap infrared radiation as heat. Global atmospheric GHG concentrations are a product of continuous emission (release) and removal (storage) of GHGs over time. In the natural environment, this release and storage is largely cyclical. For instance, through the process of photosynthesis, plants capture atmospheric carbon as they grow and store it in the form of sugars. Human activities such as deforestation, soil disturbance, and burning of fossil fuels disrupt the natural cycle by increasing the GHG emission rate over the storage rate, which results in a net increase of GHGs in the atmosphere. The principal GHGs emitted into the atmosphere through human activities are CO2, methane, nitrous oxide, and fluorinated gases, such as hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride (USEPA, 2011). CO2 is the major GHG emitted, and the burning of fossil fuels accounts for 81 percent of all U.S. GHG emissions (USEPA 2009b).

Implementation of the proposed project would include transportation and heavy construction equipment which may include a backhoe, bulldozer and a dump truck.
Environmental Consequences
Project implementation would require the use of heavy equipment which would temporarily affect air quality in the project vicinity due to construction vehicle emissions. Excavation activities associated with the construction portions of the project may produce fine particulate matter. Available BMPs would be employed to prevent, mitigate, and control potential air pollutants during Project implementation. Any air quality impacts that would occur would be localized, short in duration and minimal based on the fact that the majority of construction would consist primarily of renovations to existing structures overall impacts to air quality would be short-term and minor. The implementation of solar-powered lighting along the pier as opposed to fossil fuel powered lights would result in a minor beneficial impact on air quality and GHG emissions through the reduction in the amount of fossil fuel used. Long-term, the site may experience some increase in use by the public but the renovations are expected to improve efficiency and changes in air quality and GHG are expected to be minor in the long-term.

The use of gasoline and diesel-powered construction vehicles and equipment, including cars, trucks, bulldozers, dump trucks and backhoes, would contribute to an increase in GHG emissions. The following table describes the likely GHG emission scenario for the implementation of this project.

Based on the assumptions described in Table 12-36, and the small scale and short duration of the construction portion of the proposed project, predicted GHG emissions would be short-term and minor and would not exceed 25,000 metric tons of CO2e per year. Available BMPs would be employed to reduce the release of GHGs during implementation. Based on the small scale and short duration of the project, GHG emissions in the project staging and deployment areas would be minimal. Therefore, any increase in GHG emissions would be short-term and minor.

12.17.5.2.4 Noise

Affected Resources
Noise can be defined as unwanted sound and noise levels, and impacts are interpreted in relationship to its impacts on nearby residents. Noise associated with recreational land uses, such as boating, can be of concern to surrounding communities. Noise also emanates from vehicular traffic associated with new facilities and from Project sites during construction. Ambient noise (the existing background noise environment) can be generated by a number of noise sources, including mobile sources, such as airplanes, automobiles, trucks, and trains; and stationary sources such as construction sites, machinery, or industrial operations.
Table 12-36. Projected project greenhouse gas emissions.

<table>
<thead>
<tr>
<th>VESSEL/CONSTRUCTION EQUIPMENT</th>
<th>NO. OF HOURS OPERATED 18</th>
<th>CO2 (METRIC TONS) 19</th>
<th>CH4 (CO2E) (METRIC TONS) 20</th>
<th>NOX (CO2E) (METRIC TONS)</th>
<th>TOTAL CO2E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grader (1)</td>
<td>320</td>
<td>125</td>
<td>0.10</td>
<td>0.10</td>
<td>125.20</td>
</tr>
<tr>
<td>Barge 21 (1)</td>
<td>640</td>
<td>10,240</td>
<td>19.2</td>
<td>76.8</td>
<td>10,336</td>
</tr>
<tr>
<td>Backhoe 22 (1)</td>
<td>960</td>
<td>336</td>
<td>0.19</td>
<td>0.19</td>
<td>336.38</td>
</tr>
<tr>
<td>Dumptruck 23 (1) 24</td>
<td>48</td>
<td>16</td>
<td>0.01</td>
<td>0.01</td>
<td>16.02</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,813.60</td>
</tr>
</tbody>
</table>

The Noise Control Act of 1972 (42 U.S.C. 4901 to 4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale which approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-37 presents some familiar sounds and their decibel levels.

Table 12-37. Familiar sounds and their decibel levels.

<table>
<thead>
<tr>
<th>SOUND</th>
<th>DECIBEL LEVEL (DB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whisper</td>
<td>30</td>
</tr>
<tr>
<td>Normal Conversation</td>
<td>50-65</td>
</tr>
<tr>
<td>Vacuum cleaner at 10 feet</td>
<td>70</td>
</tr>
<tr>
<td>Midtown Manhattan Traffic Noise</td>
<td>70-85</td>
</tr>
<tr>
<td>Lawnmower</td>
<td>85-90</td>
</tr>
<tr>
<td>Train</td>
<td>100</td>
</tr>
<tr>
<td>Nearby Jet Takeoff</td>
<td>130</td>
</tr>
</tbody>
</table>

Source: Occupational Health and Safety Administration 2012

18 Emissions assumptions for all equipment based on 240 10-hour days of operation per piece of equipment over a 12-month construction period.


20 CH4 and NOx emissions assumptions and CO2e calculations based on U.S. EPA 2011.

21 GHG emission estimates were not available for a barge. In order to present the highest estimate, GHG estimates for a tugboat were used.

22 GHG emission estimates were not available for a Bobcat. In order to present the highest estimate, GHG estimates for a backhoe were used.

23 GHG emission estimates were not available for a tractor trailer. In order to present the highest estimate, GHG estimates for a dumptruck were used.

24 Construction equipment emission factors based on U.S EPA NONROAD emission factors for 250hp pieces of equipment. Data was accessed through the California Environmental Quality Act Roadway Construction Emissions Model.
The primary sources of ambient (background) noise in the project area are operation of vehicles, commercial and recreational vessels, the nearby Pensacola Airport and natural sounds such as wind and wildlife. City noise is mainly from vehicles and also daily and recreational human activities. The levels of noise in the project area varies, depending on the season, and/or the time of day, the number and types of sources of noise, and distance from the sources of noise. Noise levels in the project area are primarily from commercial and recreational vessels, and vehicles on Highway 399. Noise levels fluctuate with highest levels usually occurring during the spring and summer months due to the increased boating and coastal beach activities.

Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the project. Noise-sensitive land uses in the project area include residences and pier recreationists.

Environmental Consequences
Project area visitors and wildlife may be sensitive to changes in noise sources or levels due to the project. Instances of increased noise are expected during construction of the project. The proposed project would generate construction noise associated with equipment during construction. Construction noise can also be a nuisance to residents living near the pier to project construction activities or to visitors.

Mitigation measures that serve to limit noise during construction include: limiting activity at project sites to daytime hours; limiting truck traffic ingress/egress to the site to daytime hours; promoting awareness that producing prominent discrete tones and periodic noises (e.g., excessive dump truck gate banging) should be avoided as much as possible; and requiring that work crews seek pre-approval for any weekend activities, or activities outside of daytime hours. Because construction noise is temporary, any negative impacts to the human environment during construction activities would be short-term and minor.

Once facilities are constructed, noise can be generated from facility operations and the vehicles associated with these facilities. However, these noise levels would be representative of a pier and similar in nature to those currently generated. Overall, long-term noise impacts from recreationists and recreational activities would be minor.

12.17.5.3 Biological Environment

12.17.5.3.1 Living Coastal and Marine Resources

Affected Resources
Coastal and marine resources at the site include open water habitat in Santa Rosa Sound. Nearby areas are mostly developed along the shoreline. Seagrass is present in the area surrounding the Bob Sikes Pier.

Gulf sturgeon, manatees, sawfish, and sea turtles (Kemp’s Ridley, loggerhead, leatherback, and green) may visit the waters of the project location. The project is located in designated Gulf sturgeon critical habitat. Smalltooth sawfish are not likely to be encountered at the project site because their current distribution has contracted to peninsular Florida and, within that area, they can only be found with regularity off the extreme southern portion of the state (NOAA, National Marine Fisheries Service (NMFS) consultation letter, April 2, 2012). In addition, birds addressed through the MBTA and BGEPA
may also be present, at least occasionally, at the Bob Sikes Pier reflecting both the project’s location and
the recreational angling the pier supports.

Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within, and possible
expand out into adjacent areas after the initial introduction. The invasive species threat, once realized,
could result in economic damages. Prevention is ecologically responsible and economically so.
Chapter 3 described more about the regulations addressing invasive species, pathways, impacts, and
prevention. At this time specific invasive species that may be present on the project site or could be
introduced through the project have not yet been identified.

*Environmental Consequences*

Impacts to living coastal and marine resources are expected to be negligible. Because the proposed
project is not anticipated to require any in-water work, or involve the construction of new structures
there will be no additional disturbance or modification of existing habitat. Further, because the project
area is already used by the public for recreation and fishing and is adjacent to an active bridge-highway
that will remain in operation throughout the project, construction activity is anticipated to represent a
marginal source of additional disturbance to species already in the area. Potential impacts would also be
mitigated by the availability of nearby suitable habitat that mobile species, including birds, manatees,
and turtles, could, and presumably would, access for short periods in response to any disturbance
related to project implementation activities.

Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives
from NOAA’s Protected Resource Division (PRD) in the South East Regional Office (SERO), the NOAA
Restoration Center determined that this project falls outside of NMFS Endangered Species Act (ESA)
jurisdiction, as it does not contain suitable habitat for species managed by NMFS. As a result, the project
did not require further ESA evaluation from NOAA.

On January 28, 2014 consultation with USFWS was completed (McClain, 2014). For this, the
Trustees reviewed the species list for Escambia County, Florida and also considered the presence of
bald eagles (*Haliaeetus leucocephalus*) and migratory birds. West Indian manatee (*Trichechus manatus*),
five species of sea turtles (Green sea turtle (*Chelonia mydas*), Hawksbill sea turtle (*Eretmochelys
imbricata*), Kemp’s Ridley sea turtle (*Lepidochelys kempii*), Leatherback sea turtle (*Dermochelys
coriacea*), Loggerhead sea turtle (*Caretta caretta*)), and gulf sturgeon (*Acipenser oxyrinchus desotoi*)
could be present in waters surrounding the project area. As noted, Gulf sturgeon critical habitat
surrounds the project site.

Because all work will be conducted from the terrestrial environment and debris will not be allowed to
enter the water, no impacts to West Indian manatee from implementation of the proposed project are
anticipated. No other listed, proposed, or candidate species known from Escambia County, Florida are
expected to be using terrestrial areas in or near the project site due to a lack of suitable habitat for
these species. Therefore the Trustees made a no effect determination for all listed, proposed, and
candidate species known from Escambia County, Florida (Herod, 2014). No terrestrial critical habitat is

25 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-
based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information
downloaded March 13, 2013.
designated or proposed in or near the action area; therefore, none will be adversely modified or
destroyed.

No bald eagles or migratory birds are known to nest near the project area. However, migratory birds
likely use the area for feeding, loafing, or resting. Because the project area is already used by the public
for recreation and fishing and is adjacent to an active bridge-highway that will remain in operation
throughout the project, construction activity is anticipated to represent a marginal source of additional
disturbance to species already in the area. However, precautions during construction will be used to
protect any migratory birds that may be feeding, loafing, or resting in or near the project area. Such
precautions include minimizing construction noise to the extent practicable, using care to avoid birds
when operating machinery or vehicles near birds, and general contractor awareness of bird presence
should avoid any take of migratory birds. Therefore, no impacts to bald eagles or migratory birds are
anticipated.

Based upon the information presented above, the Trustees have determined the proposed project will
have no effect to listed, proposed, or candidate species and will not result in adverse modification or
destruction of proposed or designated critical habitat under the jurisdiction of the U.S. Fish and Wildlife
Service.

**Essential Fish Habitat**

EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as “those waters
and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation
and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing
activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan
Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud,
sand, shell, and rock substrates, and the estuarine water column.

Based on our reviews of project materials (Spring 2013) in coordination with representatives from
NOAA’s Habitat Conservation Division (HCD) in the South East Regional Office (SERO), the NOAA
Restoration Center determined that this project will not affect EFH because there is no EFH in the
project area. As a result, the project did not require further EFH evaluation.

**12.17.5.3.2 Socioeconomics and Environmental Justice**

**Affected Resources**

The population of Escambia County was 302,715 in 2012 and accounted for 1.6 percent of the state’s
total population. In 2013, median household income in Escambia County was $40,917, which was
approximately 7 percent lower than median household income in the State of Florida (U.S. Census
2013). Escambia County contains both minority and low-income populations; however, no communities
of environmental justice concern are located adjacent to the project area.

**Environmental Consequences**

Based on the relatively small scale of construction activities it is not anticipated that the proposed
project would create jobs nor would it have substantial impacts to the socioeconomic environment as a
result of construction. It is likely that there would be direct beneficial impacts to the local economy as a
result for increased recreational and tourist activity in response to the project components. These
economic benefits would be concentrated to the Park as well as in the service and retail industry
sectors. Beneficial economic impacts would accrue to local recreational supply retailers, restaurants, and hospitality providers. The proposed project would not adversely affect any low income or minority populations. Overall, no adverse impacts would occur to socioeconomics and environmental justice as a result of the proposed project.

12.17.5.3.3 Cultural Resources

Affected Resources
Construction would take place within the existing footprint of the Bob Sikes Pier and it is surrounded by urban development. This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Environmental Consequences
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.17.5.3.4 Infrastructure

Affected Resources
The Bob Sikes Pier is an artificial pier that was designed to support recreational activities. There is currently a recreational path at the site and a parking lot accessed by a roadway. Vehicle use (for both transportation and maintenance) constitutes the primary source of energy consumption in the project area. Other energy uses include electricity consumption at recreational facilities and fuel consumption for landscape management (mowers and gas-powered maintenance equipment). The proposed project would not prevent access to any known energy resources in the project vicinity, such as coal, oil, or natural gas. The project would have no such impacts on the availability of these resources.

Environmental Consequences
Based on the nature of proposed improvements there would be no additional public utility requirements, and all waste generated would be disposed of in an off-site landfill.

Improvements to the Bob Sikes Pier would have a long-term beneficial impact to infrastructure from the renovation of the roadway parking area and recreational path to improve safety and traffic flow.

12.17.5.4 Land and Marine Management

Affected Resources
Surrounding land uses includes recreational facilities and parking, with surrounding land uses being considered developed urban areas. The project area is bordered by Highway 399 to the west and Santa Rosa Sound to the east. The proposed project area is currently used for recreational activities.
Environmental Consequences

Improvements to the Bob Sikes Pier is not anticipated to affect land and marine management because the site is already developed for recreational use; project plans would not change the nature of land use or management but would improve the function of the existing site, resulting in no impacts.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

Aesthetics and Visual Resources

Affected Resources

The general visual character of this region can be described as semi-urban and developed, with the proposed project area and the pier extending into open water on Santa Rosa Sound adjacent to a major roadway (Highway 399). Surrounding areas/development consist primarily of low-density residential interspersed with commercial developments located along major roadways, with some larger areas remaining in agricultural use or as undeveloped open space. There are no designated protected viewsheds or historic resources in the vicinity of either project site.

Environmental Consequences

Temporary impacts to visual resources would result from construction of the proposed project components. Large construction equipment such as backhoes removal would temporarily obstruct the views for visitors and recreational users at the site. These short-term construction-related impacts to visual resources would be minor. Beneficial impacts to viewsheds would occur after improvements to the pier have been made as much of the work is designed to improve the aesthetics of the site.

12.17.5.4.1 Tourism and Recreational Use

The proposed project area is a public facility that provides opportunities for recreation, including use of the recreational path and fishing. Visitation to the pier is currently not monitored.

Environmental Consequences

During the construction period, recreational experience would be impacted from noise and visual disturbances associated with the use of heavy equipment. Access to the site would also be restricted or impacted to some degree during parking and trail enhancements. Improvements to the Bob Sikes Pier would have a moderate positive impact on tourism and recreational use. While these temporary inconveniences would result in minor short term impacts on tourism and recreational use during the construction and rehabilitation activities at the shoreline, over the long term improved access and improved recreational area would result in benefits to tourism and recreational use.

12.17.5.4.2 Public Health and Safety and Shoreline Protection

Affected Resources

No hazardous materials currently exist at the project site where the potential for human exposure to natural or man-made hazards does not present a substantial risk. The project area is situated along an area of stable coastline not prone to significant shoreline erosion under normal conditions, and the
recreation facility as a whole is in good condition with respect to public health. Contaminated soils at the project area are not anticipated, if during construction areas of concern are identified appropriate testing and actions would be taken. The project and its construction are not anticipated to generate hazardous waste or the need for disposal of hazardous waste. All waste generated during construction would be disposed of in the appropriate waste or recycling receptacles on-site would be taken off-site and disproved in an approved waste disposal site by the construction contractor. All occupational and safety regulations would be followed to ensure safety of all workers and the public.

Environmental Consequences
No hazardous wastes would be created during restoration construction. All hazardous materials handled during construction including paints, solvents, chemicals and petroleum products would be contained and appropriate barriers would be in place to ensure the protection of adjacent water resources from potential spills and leaks. In the event of a discharge of oil or release of hazardous substances all spills would be reported to the FDEP and all federal and state regulations would be followed during the cleanup. BMPs in accordance with the Occupational Safety and Health Administration (OSHA) and state and local requirements would be incorporated into construction activities to ensure proper handling, storage, transport and disposal of all hazardous materials. While the majority of project work would take place within the existing footprint of the recreational site and no changes to infrastructure or habitat would occur, soil and sediment stabilization measures would be incorporated into project design as needed in areas where the potential for erosion exists in order to protect resources and public health and safety. No adverse impacts to public health and safety are anticipated as a result of project construction. Project improvements including enhanced lighting, upgraded wheelchair access, minor pier and rail modifications, and trail enhancements are designed to improve public safety, resulting in long-term beneficial impacts.

12.17.6 Summary and Next Steps
The proposed Bob Sikes Pier Restoration project would improve access to a fishing pier in the Pensacola area in Escambia County as well as enhancing the quality of the experience for its recreational users. The proposed improvements include renovating parking areas, enhancing bicycle/pedestrian access, and aesthetic improvements to the surrounding area. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational fishing and beach use opportunities by improving access to the existing fishing pier and the associated beach access trail. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.
12.17.7 References


National Park Service (NPS)

2011 Fort Pickens Pier and Ferry Service Environmental Assessment at Gulf Islands National Seashore. July 2011

Occupational Health and Safety Administration


U.S. Census Bureau

2013 American Factfinder – Escambia County and State of Florida Profile.

U.S. Department of Agriculture – Natural Resources Conservation Service


U.S. Environmental Protection Agency (USEPA)


12.18 Florida Artificial Reef Creation and Restoration: Project Description

12.18.1 Project Summary
The proposed Florida Artificial Reef Creation and Restoration project involves creating artificial reefs in Escambia, Santa Rosa, Okaloosa, Walton, and Bay Counties. These proposed improvements include emplacing artificial reefs in permitted areas. The total estimated cost for this project is $11,463,587.

12.18.2 Background and Project Description
The Trustees propose to place artificial reefs in permitted areas in Escambia, Santa Rosa, Okaloosa, Walton, and Bay Counties (see Figure 12-31 for the location of the potential artificial reef areas). Florida has a state artificial reef program that was created by the legislature in 1980. The program is described in section 379.249, Florida Statutes, and operates under Chapter 68E-9, Florida Administrative Code, with staff under Florida Fish and Wildlife Conservation Commission’s Division of Marine Fisheries Management. Florida’s public artificial reefs are generally placed by commercial marine contractors selected through a competitive bid process and subcontracted by the local coastal government permit holder of the reef area where the artificial reef will be constructed.

The objective of the proposed Florida Artificial Reef Creation and Restoration project is to enhance and/or increase recreational fishing opportunities by increasing the number of artificial reefs in state waters. The restoration work proposed includes emplacing artificial reefs units at different depths across the participating counties (Escambia, Santa Rosa, Okaloosa, Walton, and Bay). The reefs will use different approved designs and will be placed in permitted areas for emplacement of artificial reefs.

12.18.3 Evaluation Criteria
This proposed project meets the evaluation criteria for the Framework Agreement and OPA. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Florida Artificial Reef Creation and Restoration project is intended to enhance and/or increase recreational fishing opportunities by increasing the number of artificial reefs in state waters. The project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and utilizes proven techniques with established methods and documented results and can be implemented with minimal delay. Government agencies have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Furthermore, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.18, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.18 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and
installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). This proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Figure 12-31. Location for potential emplacement of artificial reefs as part of the Florida Artificial Reef Creation and Restoration Project.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Florida Artificial Reef Creation and Restoration project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area that deployed boom and was impacted by response and SCAT activities for the Spill.

12.18.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, both pre-construction and post-construction monitoring will be conducted by the contracted entity (typically a county agency) or their subcontractors to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is enhance and/or increase recreational fishing opportunities by creating artificial reefs in Escambia, Santa Rosa, Okaloosa, Walton, and Bay counties. Specific success criteria include: 1) completion of the construction as designed and permitted, and 2) enhanced and/or
increased access is provided to the natural resources, which will be determined that the reefs are available for public use.

Pre-construction monitoring will primarily be related to siting and determining that there is no hard substrate already present. Post-construction monitoring (typically annually for at least 3 years) is required by permits, and generally includes 1) observations of organisms that populate the structures, and 2) documentation and measurement of physical changes to the reef over time. Additional post-construction monitoring of recreational use will be required by the terms of agreements with the local governments implementing the project and will likely consist of boat or snorkeler diver counts taken at pre-determined intervals for at least 3 years post-construction. The recreational use data will be provided to the Florida Department of Environmental Protection.

12.18.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $22,927,174 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.

12.18.6 Cost
The total estimated cost to implement this project is $11,463,587. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---

26 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.19 Florida Artificial Reef Creation and Restoration: Environmental Review

The proposed Florida Artificial Reef Creation and Restoration project involves creating artificial reefs in Escambia, Santa Rosa, Okaloosa, Walton, and Bay Counties, in areas permitted for reef construction and restoration. The objective of the proposed Florida Artificial Reef Creation and Restoration project is to enhance and increase the public’s use and enjoyment of natural resources by increasing the number of artificial reefs in state waters.

12.19.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf Coast in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not, fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement, the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Final Phase III ERP/PEIS (ERP). This restoration project was submitted as an Early Restoration project on the NOAA website (NOAA 2013) and submitted to the state of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the requirements of the Oil Pollution Act (OPA), the project meets Florida criteria that Early Restoration projects occur in the eight-county panhandle area that deployed boom and was impacted by the spill.

The intent of the proposed project is to provide enhanced or additional long-term recreational opportunities through construction and restoration of artificial reefs. In Florida, the state artificial reef program was legislatively created in 1980. The program is described in Section 379.249 of Florida Statutes and operates under Chapter 68E-9 of the Florida Administrative Code (FAC), with staff located as a subsection within Florida Fish and Wildlife Commission’s (FWC’s) Division of Marine Fisheries Management. Artificial reefs are enjoyed by thousands of visitors and residents of the Florida panhandle each year. Restoring and constructing artificial reefs would be a means to compensate for recreational opportunities that were lost due to the Deepwater Horizon Oil Spill. Artificial reefs support a range of human uses, including: snorkeling, recreational fishing, kayaking, and scuba diving, and provide a location where anglers and divers can access aggregated populations of marine species (Adams et al. 2011).

The proposal consists of projects located in five panhandle counties: Escambia, Santa Rosa, Okaloosa, Walton, and Bay Counties, and includes reef designs that would be constructed at various depths. The project would place artificial reef units at multiple locations permitted by the U.S. Army Corps of Engineers (USACE) and the Florida Department of Environmental Protection (FDEP) for artificial reefs.
12.19.2  Project Location
The proposed project area includes coastal waters with permitted areas for emplacement of artificial reefs in Escambia, Santa Rosa, Okaloosa, Walton, and Bay Counties. The project would place artificial reef units at multiple locations permitted by the USACE and the FDEP for artificial reefs: deeper water “nearshore reefs” would be located within 9 nautical miles of shore, in open water: shallower “snorkeling reefs” would be less than 20 feet deep and within 950 feet of shore. Figure 12-31 identifies potential placement locations for artificial reef structures.

12.19.3  Construction and Installation
Artificial reefs would be constructed in deepwater habitats of the Gulf of Mexico and in shallower water near the shorelines in the Gulf of Mexico waters off of Escambia, Santa Rosa, Okaloosa, Walton, and Bay Counties, Florida within designated areas permitted by the FDEP and U.S. Army Corps of Engineers. The project would place artificial reef units at multiple locations permitted by the USACE and the FDEP for artificial reefs: deeper water “nearshore reefs” would be located within 9 nautical miles of shore, in open water: shallower “snorkeling reefs” would be less than 20 feet deep and within 950 feet of shore. Figure 12-32 provides an aerial overview of the project area. Figure 12-32 and Table 12-38 identify potential placement locations for artificial reef structures.

Construction activities would include placement of linear structures consisting of concrete and stone rubble and pre-fabricated artificial reef modules in permitted areas. These areas are permitted after, among other requirements, completing a bottom survey demonstrating that the location does not have submerged grassbeds, shellfish, other hard bottom communities, or corals within the proposed permit boundaries. Deeper water “nearshore” reefs would likely have a single prefabricated, modular design (see Figure 12-33 for an example of such a design). Shallower “snorkeling” reefs would likely have a layered, piling-mounted design with spacers between the disk shaped layers (see Figure 12-34 for an example).

Figure 12-32. Modular artificial reef unit to be placed in deeper water.
Artificial reefs would be constructed on several sites using a similar process; however, the average water depth and substrate composition of the water bottom at each reef site may differ. A survey would be conducted to determine the placement, alignment, and boundaries of the artificial reefs. All artificial reef installation measures have yet to be finalized, but the following general installation process would likely be used during construction.

Modules would be fabricated and staged at the reef manufacturer’s location and then transported to a contractor’s staging area. For the pyramid type units shown in Figure 12-32 which have open bottoms, a modification would be made prior to deployment, where necessary, that would effectively remove the top of the pyramid so that there would be a minimum 3 foot opening at the top.

The shallower snorkel reef modules, as shown in Figure 12-33, consist of concrete disks into which are imbedded small limestone rocks of various shapes or in some cases oyster shells may also be imbedded. The purpose of the rock and shells is to increase rugosity and microhabitat. The vertical distance between the disks is controlled by spacers, which are collars slipped over the hollow center pipe. These multi-disk modules are also pre-fabricated and assembled on shore prior to deployment with the number of disks on the pilings varying depending on the water depth and design objective.

At the staging location, the reef modules for each deployment would be loaded onto a deployment vessel equipped with a crane for loading/offloading the prefabricated units. Deployment vessels would travel to the reef locations where boundaries would be marked by the county or their designee using a sub-meter accurate global positioning system.
For the deeper water pyramid type modules, each module would be lifted separately, by crane, from the barge deck using a pelican hook and then lowered to the seafloor where the hook would be disengaged, modules will not be indiscriminately dumped. Modules would be deployed on either side of the vessel in a specific order and adjusted so each successive placement would be far enough from the previous one to prevent any two modules from touching. Figure 12-34 shows such a module being deployed in Escambia County.

![Image](image.png)

**Figure 12-34.** Example of a pyramid type reef being deployed.

For the shallower water disk-type reef modules, typical deployment is slightly different. For these, each reef module is deployed from a tripod which is set in place adjacent to a barge which is in a fixed position. The top of the fully constructed disk reef with central piling is suspended by a hydraulic collar. Once the hollow center pipe is placed in position in contact with the sea floor, ambient saltwater is pumped through the center of the hollow pipe and the pipe subsides to the appropriate depth in the sand layer. The pump is then turned off, the positioning of the disk reef is double checked, the piling is held in place by the tripod for a few minutes until the medium-coarse grained sand re-consolidates around the piling, the hydraulic collar and tripod are then removed and the next disk module is similarly deployed. As a note, these disk modules have also been deployed in deeper water (50 ft. or greater) without pilings but with a large diameter concrete disk base plate below the lowest disk to provide some additional ballast. **Figure 12-35** and **Figure 12-36** show a disk-type reef unit being lowered in its tripod and being placed with sea water being pumped through the central pipe respectively.
Figure 12-35. Example of a disk-type reef being deployed while still in its supporting tripod.
Artificial reefs in the different locations would be constructed on several sites using a similar process; however, the average water depth and substrate composition of the water bottom at each reef site may differ. A survey would be conducted to determine the placement, alignment, and boundaries of the artificial reefs. The final engineering and design process would determine material needs for intertidal reef construction. If alternative materials are proposed, their suitability would first be evaluated against criteria in existing guidelines for reef materials (Atlantic and Gulf States Marine Fisheries Commissions, 2004). Equipment would be selected considering its draft and considering the specific project location. This would help avoid/minimize the risk of prop dredging or blowouts or impacts from grounding in shallow water locations. These concerns would not be present with the deeper water locations. The maximum allowable material height varies within and between sites based on ambient depth gradients and navigational clearances in the location, which are determined by the U.S. Coast Guard and referenced in their nautical charts.

Standard best management practices (BMPs) would be followed for emplacing artificial reef units. This includes adhering to the 2006 Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006) and Standard Manatee Conditions for In-Water Work (USFWS, 2011) that rely on boat/barge speed controls and use of observers to help minimize the risk of adverse impacts to manatees during transport and placement activities. Some temporary shading from workboats during construction periods may
occur, but the degree of shading is unknown at this time because it would be a function of the number
and type of equipment (e.g., barges, workboats) used at the time of emplacement. Seagrass generally is
not present in the project areas; however, access over existing seagrass would be avoided to the extent
practicable to minimize prop-scarring impacts. Efforts to reduce turbidity in the shallow water
emplacement areas consistent with existing best practice guidelines would be followed. Turbidity
associated with the placement of these units is generally minimal and dissipates quickly based on
observations from individuals who have observed deployments.
Table 12-38 provides a summary of the proposed potential maximum reef unit deployment activities
that could be undertaken in the various counties along with information on the type and number of
reefs and the location of the reef placement areas.
Table 12-38. Summary of maximum potential reef deployment activity by county.

County
Permit Area Name
Escambia
Nearshore East
Escambia
Nearshore West
Escambia
Casino
Escambia
South East Site
TOTAL FOR ESCAMBIA COUNTY

# of
Permit Area
tetrahedron
Dimesions Center Latitude Center Longitude modules
1 nm x 2 nm
30°17.673' N
87°13.153'W
333
1 nm x 2 nm
30°15.563' N
87°20.702'W
333
.25 nm x .25 nm 30°18.721' N
87°07.324'W
333
1.7 nm x 6 nm
30°11.257' N
87°09.008'W
334
1,333

Total
Module
footprint
# of disc (All modules
modules combined)
0.0
14,419
0.0
14,419
0.0
14,419
0.0
14,462
0.0
57,719

Depth
(feet)
45’‐60’
35’‐50’
50’‐60’
85’‐100’

Distance
center
point is
from
shore
1.52 nm
3.19 nm
1.30 nm
8.27 nm

Santa Rosa SR-26 Reef Site- Gulf Snorkle Reef
Santa Rosa SR-27 Reef Site -Nearshore Reef
TOTAL FOR SANTA ROSA COUNTY

246'x270'
1 nm x 2 nm

30° 22.734’N
30°21.168’N

86° 51.224'W
86°51.665’W

0
703
703

60.0
0.0
60

960
30,440
31,400

12’‐14’
55’‐70’

.10 nm
1.57 nm

Okaloosa
FH-13 Reef Site
Okaloosa
FH-14 Reef Site
Okaloosa
Crystal Beach Snorkel Site
Okaloosa
FH-15 Reef Site
Okaloosa
FH-16 Reef Site
Okaloosa
Okaloosa Island Snorkel Site
TOTAL FOR OKALOOSA COUNTY

1320' x 1320'
1320' x 1320'
200' x 500'
1320' x 1320'
1320' x 1320'
200' x 500'

30° 21.391'N
30° 21.141'N
30° 22.818'N
30° 21.891’N
30° 20.891’N,
30° 23.694'N,

86° 32.876'W
86° 36.874'W
86° 26.100'W
86°42.374’ W
86°42.374’W
86° 37.012'W

200
200
0
200
200
0
800

0
0
52.0
0
0
52.0
104

8,660
8,660
832
8,660
8,660
832
36,304

69’
69’
9’‐17’
70’
70’
9’‐17’

1.40 nm
2.59 nm
.10 nm
1.80 nm
2.40 nm
.10 nm

Walton
Miramar Beach Snorkel Reef
Walton
Topsail Hill Snorkel Reef
Walton
Grayton Beach Snorkel Reef
Walton
Inlet Beach Snorkel Reef
Walton
Miramar Beach Fish/Dive Reef
Walton
Topsail Bluff Fish/Dive Reef
Walton
Fort Panic Fish/Dive Reef
Walton
Ed Walline Fish/Dive Reef
Walton
Blue Mountain Fish/Dive Reef
Walton
Grayton Beach Fish/Dive Reef
Walton
Santa Clara Fish/Dive Reef
Walton
Deer Lake Fish/Dive Reef
Walton
Inlet Beach Fish/Dive Reef
Walton
Miramar Reef Site
Walton
Fish Haven #1
Walton
Fish Haven #2
TOTAL FOR WALTON COUNTY

225' x 900'

30° 22.565' N
30° 21.393' N
30° 19.359' N
30° 16.237' N
30° 21.875' N
30° 21.375' N
30° 20.375' N
30° 19.975' N
30° 19.375' N
30° 18.672' N
30° 18.075' N
30° 17.375' N
30° 15.675' N

86° 23.320 W
86° 16.661 W
86° 09.471 W
86° 00.348 W
86° 23.356' W
86° 19.356' W
86° 15.356' W
86° 13.856' W
86° 12.056' W
86° 09.656' W
86° 07.356' W
86° 04.856' W
86° 00.856' W

0
0
0
0
60
60
60
60
60
60
60
60
60
100
60
60
760

64
64
58
75
0
0
0
0
0
0
0
0
0
0
0
0
261

1,024
1,024
928
1,200
2,598
2,598
2,598
2,598
2,598
2,598
2,598
2,598
2,598
4,330
2,598
2,598
37,084

14‐20’
14‐19’
13-18'
15‐21’
59-61'
59-64'
58-63'
55-58'
52-54'
56-59'
52-56'
50-57'
54-57'
77-83'
70'
80'

.10 nm
.10 nm
.10 nm
.10 nm
0.64 nm
.52 nm
.61 nm
.59 nm
.67 nm
.66 nm
.56 nm
.44 nm
.67 nm
2.85 nm
2.4 nm
4.4 nm

63
63
678
63
63
63
63
63
N/A
1,119

0
0
0
0
0
0
0
0
33.0
33

2,728
2,728
29,357
2,728
2,728
2,728
2,728
2,728
528
48,981

63'
69'
15-30'
64'
60'
64'
75'
69'
15'

3.25 nm
3.16 nm
2.27 nm
3.87 nm
1.58 nm
3.74 nm
4.95 nm
3.18 nm
.10 nm

4,715

458

211,488

Bay
SAARS C
Bay
SAARS D
Bay
Bell Shoals
Bay
SAARS E
Bay
SAARS F
Bay
SAARS G
Bay
SAARS H
Bay
SAARS I
Bay
Snorkel Reef
TOTAL FOR BAY COUNTY

280' x 900'
200' x 900'
200' x 800'
1,519' x 1,519'

30° 19.700' N

86° 22.900' W

1,320' x 1,320'

30° 19.327' N
30° 16.109' N

86° 17.875' W
86° 13.875' W

1,320' x 1,320'

1,519' x 1,519'
1,519' x 1,519'
1 nm x 3 nm
1,519' x 1,519'

30° 08.590’N
30° 10.191’N
29° 55.090’N
30° 08.963’N
30° 09.434’N
30° 07.327’N
30° 00.128’N
30° 01.268’N
30° 13.572’N

TOTAL FOR ALL COUNTIES

219

85° 51.825’W
85° 54.624'W
85° 28.279’W
85° 53.770’W
85° 49.863’W
85° 50.832’W
85° 41.720’W
85° 39.794’W
85° 54.455’W


12.19.4 Operations and Maintenance

12.19.4.1 Anticipated Pre- and Post-project Monitoring Activities
Monitoring activities would be performed at various times, beginning before construction and continuing after construction. Monitoring would ensure project designs are correctly implemented during construction and in a subsequent period, defined by contract, where corrective actions could be taken. Monitoring activities would include the following:

- Topographic/bathymetric surveys
- Public use monitoring

Pre-restoration deployment would be conducted to confirm that no hard substrate is already present in areas where artificial reef structures would be placed.

Construction-related monitoring would consist of having divers observe the placement of the modules and record exact coordinates of placed materials so that existing state databases can be updated.

Post-construction monitoring would be conducted to evaluate the project’s performance over time with respect to the agreed-upon Offsets, goals, and objectives. In general, monitoring would evaluate the production and support of organisms on the living shoreline structure (e.g., secondary production), document and measure physical changes to the reef over time, and possibly provide observations of public use. Components of this monitoring would include collecting information with respect to reef height and structural integrity, water quality parameters (e.g., salinity, dissolved oxygen), bivalve and algal presence, coverage, and composition on the reef.

12.19.4.2 Anticipated Short-term Maintenance Activities
In accordance with the USACE permitting process, fathometer scans would be conducted once per year for all artificial reef sites to verify material location and condition. Yearly monitoring would also include the use of SCUBA to conduct Level 1, 2, 4, and 4a monitoring. Definitions of each monitoring level are provided in the USACE permit.

12.19.4.3 Anticipated Long-term Maintenance Activities
Over the long term, project sites would be incorporated into FWC’s ongoing diver-based artificial reef monitoring survey program, which evaluates the status of emplaced reef modules. In addition, some counties (e.g., Escambia) also have their own independent reef monitoring programs. Once placed, artificial reef units would require little or no maintenance. Over a period of years to decades, the artificial reef structures would degrade gradually or may be covered through a combination of subsidence and sediment transport/accumulation.

12.19.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental effects of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected resources and environmental consequences of the project.
12.19.5.1 No action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.19.5.2 Physical Environment

12.19.5.2.1 Geology and Substrates

Affected Resources
The existing geology and substrates in the project area for artificial reef installation is generally flat or gently sloping. The five counties where restoration is planned are part of the Gulf of Mexico formation.

Sediments
Sediments in the area have been sculptured from alluvial plain underlain by sand, gravel, silt, and clay. The soil surveys for the various counties identify the areas for reef deployment as “waters of the Gulf of Mexico,” and no soils data are provided (NRCS 2013).

Environmental Consequences
As a result of the emplacement, there may be a minor, short-term impact to the geology and substrates associated with the conversion of relatively small areas of similar sandy habitat to areas with hard substrate. There would be no impact over the long term as materials degrade and/or subside or are covered by sand and other sediment. The project would have no net negative impact on geology and substrates.

12.19.5.2.2 Hydrology and Water Quality

Affected Resources
Artificial reef installation would take place in nearshore, open-water habitats and shallower waters closer to shores in the waters of five counties in the panhandle of Florida. Existing hydrology and water quality are affected by shoreline development and management, as well as boat traffic in the bays and Gulf of Mexico.

Water Quality
The CWA requires that the surface waters of each state be classified according to designated uses. Florida has six classes with associated designated uses, which are arranged in order of degree of protection required. According to 62-302.400, Fla. Admin. Code, most of the project occurs within Class III waters. Therefore, standards to meet the following uses apply to the project area: fish consumption, recreation, and propagation and maintenance of a healthy, well-balanced population of fish and wildlife. The surface waters of the state are designated Class III unless otherwise described in Florida rule. Short-term water quality impacts are possible due to sediment disturbance during artificial reef installation at project sites.
Outstanding Florida Waters and Aquatic Preserves

There are no waters that are designated as Outstanding Florida Waters (OFW), wild and scenic rivers, or aquatic preserves located in or immediately adjacent to the project area (FDEP 2013).

In Florida, state aquatic preserves are generally listed as OFWs. Apalachicola Bay, Fort Pickens, St. Joseph Bay, and St. Andrews Aquatic Preserves are located in the general area of several of the proposed shallower snorkeling artificial reef locations. Waters in aquatic preserves and state parks, as OFWs, require additional water quality considerations; the FWC would be consulted to determine any concerns due to proposed project activities. These OFWs are significant distances upstream of the proposed sites and not likely to be affected by the proposed projects. Very short-term impacts, such as increased turbidity, due to reef module placement are possible but pose no long-term threat to water quality. Over time, the accumulation of filter feeding organisms on the reefs, such as oysters, may improve local water quality.

Wetlands

The project is located in open water, and no wetlands are known to be in the project area. Land-based storage areas for artificial reef material would be placed outside of wetland areas (USFWS 2013b).

Environmental Consequences

Artificial reef installation would have no long-term, adverse impact on hydrology and water quality. Some construction would be completed at existing artificial reef locations so no water bottom impacts are expected as reef modules would be placed on natural or artificial materials. There may be short-term impacts during the approximately 1-year period of construction including increased sediment disturbance and turbidity during reef module placement. All required permits would be obtained, and conditions, permit requirements, and best management practices (BMPs) would be followed during construction.

The placement of artificial reef modules would result in short-term, minor, temporary impacts to water quality, specifically short-term elevations in turbidity. BMPs, along with other avoidance and mitigation measures required by state and federal regulatory agencies, would be employed to minimize any water quality and sedimentation impacts. Authorization pursuant to Rivers and Harbors Act Section 10 and Clean Water Act Section 404, and Clean Water Act 401 water quality certification would be required and all permit conditions would be adhered to.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (USACE) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). The required USACE and state permits for designated artificial reef areas associated with this project are in different stages depending on the county. However, coordination with the USACE and final authorization pursuant to CWA/RHA will be completed prior to project implementation.

12.19.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources

The Clean Air Act (CAA) requires the Environmental Protection Agency (EPA) to set National Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to public health and the environment.
NAAQS have been set for six common air pollutants (also known as criteria pollutants)—particle pollution or particulate matter, ozone, carbon monoxide, sulfur dioxide ($SO_2$), nitrogen dioxide, and lead. Particulate matter is defined as fine particulates with a diameter of 10 micrometers or less ($PM_{10}$) and fine particulates with a diameter of 2.5 micrometers or less ($PM_{2.5}$). When a designated air quality area or airshed in a state exceeds a NAAQS, that area may be designated as a “nonattainment” area. Areas with levels of pollutants below the health-based standard are designated as “attainment” areas. To determine whether an area meets the NAAQS, air monitoring networks have been established and are used to measure ambient air quality. The EPA also regulates 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health impacts. Air quality in the Florida panhandle is in attainment with the NAAQs (EPA 2013a).

**Greenhouse Gases**
Gases that trap heat in the air are called greenhouse gases (GHGs). The primary GHGs are carbon dioxide ($CO_2$), methane ($CH_4$), nitrous oxide ($NO_x$), and fluorinated gases. Over the past century, human activities have released large amounts of GHGs into the atmosphere, which are contributing to global warming. Global warming is defined as the ongoing rise in global average temperature near the Earth’s surface and is known to cause changes in climate patterns.

According to the EPA, the average annual temperature in the southeast portion of the United States has increased by approximately 2.0°F (degrees Fahrenheit) since 1970. Winters, in particular, are getting warmer, and the average number of freezing days has decreased by 4 to 7 days per year since the mid-1970s. Most areas are getting wetter; autumn precipitation has increased by 30% since 1901 (EPA 2013b). In many parts of the region, the number of heavy downpours has increased. Despite the increases in fall precipitation, the area affected by moderate and severe drought has increased since the mid-1970s (EPA 2013b).

Average annual temperatures in the region are projected to increase from 4°F to 9°F by 2080. Hurricane-related rainfall is projected to continue to increase. Models suggest that rainfall would arrive in heavier downpours, with increased dry periods between storms. These changes would increase the risk of both flooding and drought. The coasts would likely experience stronger hurricanes and sea level rise. Storm surge could present problems for coastal communities and ecosystems (EPA 2013b).

Total GHG emissions in the state of Florida from 1990 to 2007 have increased at an average rate of 2.1% per year. Total GHG emissions in 2007 were 290 million metric tons of $CO_2$ equivalent (MMTCO$_2$E). In 2007, 91% of GHG emissions in Florida were $CO_2$ emissions (FDEP 2010).

**Environmental Consequences**
Project implementation would require the use of heavy mechanized equipment, which would lead to temporary air pollution (e.g., criteria pollutants, HAPs, GHGs) due to emissions from the operation of construction vehicles and equipment. Any air quality impacts that occur would be minor due to their localized nature, short-term duration, and the small size of the project. Available BMPs would be employed to prevent, mitigate, and control potential air pollutants during project implementation. No air quality–related permits would be required. The project areas are currently in attainment with NAAQS parameters. The proposed action would not affect the attainment status of the project areas or region. A State Implementation Plan conformity determination (42 USC 7506 (c)) is not required since the project areas are in attainment for all criteria pollutants.
Project plans have not been finalized for this project. As such, it is unclear what equipment would be used and the duration of use for that equipment. The following table provides GHG emissions estimates for a variety of construction and transportation equipment that may be used for the placement of reefs. Each of these emissions is based on use of the heavy equipment over an 8-hour day (Table 12-39).

**Table 12-39. Greenhouse gas emissions for mechanized equipment likely to be used.**

<table>
<thead>
<tr>
<th>EQUIPMENT DESCRIPTION(^4,5)</th>
<th>TOTAL HOURS USED</th>
<th>CO(_2) (METRIC TONS)(^2)</th>
<th>CH(_4) (CO(_2)E) (METRIC TONS)(^3)</th>
<th>NO(_x) (CO(_2)E) (METRIC TONS)</th>
<th>TOTAL CO(_2)E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dump Trucks/ Flatbed Trucks</td>
<td>360</td>
<td>6.12</td>
<td>1.8</td>
<td>25.92</td>
<td>33.84</td>
</tr>
<tr>
<td>Crane (bare and with clamshell attachment)</td>
<td>720</td>
<td>18.36</td>
<td>6.12</td>
<td>73.44</td>
<td>97.92</td>
</tr>
<tr>
<td>Tug Boat (8 trips)</td>
<td>720</td>
<td>468</td>
<td>144</td>
<td>1872</td>
<td>2484</td>
</tr>
<tr>
<td>Total</td>
<td>5,040</td>
<td>7813.44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Emissions assumptions for all equipment based on 8 hours of operation.

\(^2\) CO\(_2\) emissions assumptions for diesel and gasoline engines based on EPA (2009).

\(^3\) CH\(_4\) and NO\(_x\) emissions assumptions and CO\(_2\)E calculations based on EPA (2011).

\(^4\) Construction equipment emission factors based on EPA nonroad emission factors for 250-horsepower pieces of equipment. Data were accessed through the California Environmental Quality Act Roadway Construction Emissions Model.

\(^5\) Emissions assumptions are for an 8-cylinder, 6.2-liter gasoline engine Ford F150 pickup and 18 gallon (half-tank) daily fuel consumption (U.S. Department of Energy 2013).

Based on the assumptions described in Table 12-39 above, GHG emissions would not exceed 25,000 metric tons per year. Given the projected construction-phase GHG emissions, the small scale and short duration of the project, and increased project area use, predicted impacts on air quality from GHG emissions would be anticipated to be minor in both the short term and the long term.

Boat use could increase due to subsequent monitoring requirements of the artificial reef expansion/restoration, but monitoring would likely only require a single boat several times a year. This boat use would likely increase exhaust emissions and could affect air quality, but it would occur over a short time period and would be temporary, so adverse impacts to air quality would be expected to be minor because management actions could be taken to limit boat use.

**12.19.5.2.4 Noise**

**Affected Resources**

Noise can be defined as unwanted sound and noise levels, and its effects are interpreted in relation to effects on nearby visitors to the recreational areas and wildlife in the project vicinity. The Noise Control Act of 1972 (42 USC 4901–4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dBA), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale that approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-40 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.
Table 12-40. Common noise levels.

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (DBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawnmower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Adapted from U.S. Department of Energy and Bonneville Power Administration (1986).

Noise levels in the project area vary depending on the season, time of day, number and types of noise sources, and distance from noise sources. Existing sources of noise in the project area are mainly from recreational boating or commercial traffic. Ambient natural sounds such as wind, waves, and wildlife also contribute to existing noise levels. Existing ambient noise levels in the project area are generally low and predominantly result from daily boating activities.

Artificial reef installation would take place in deeper, Gulf of Mexico open-water habitats and shallower, nearshore areas in the Florida panhandle. Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the proposed project. Noise-sensitive receptors in the project vicinities include beach recreational use and wildlife. Existing noise conditions are affected by boat traffic in the Gulf of Mexico and may be somewhat impacted from industrial, commercial, or other human activities both in the Gulf of Mexico and in nearby shoreline areas.

Environmental Consequences

Artificial reef creation would have a minimal, short-term impact on noise. There would be a temporary increase in noise caused by barge engines while reef material is placed. In the short term, barges and machinery and equipment used during artificial reef creation would generate noise, which may disturb wildlife and humans using the area but would be kept to a minimum using BMPs (e.g., state requirement to use appropriately muffled equipment). Long-term, minor noise impacts may result from any increase in motor boat access to the emplacement areas.

12.19.5.3 Biological Environment

12.19.5.3.1 Living Coastal and Marine Resources

Marine and Estuarine Resources (benthic organisms, oysters, fish)

Affected Resources

There are a number of aquatic species found in the project area. More than 200 species of fish and shellfish have been reported in the open and estuarine waters of the northern Gulf of Mexico, specifically the Pensacola and Apalachicola Bay systems. Four anadromous fish are known to inhabit the
river systems: Gulf sturgeon (*Acipenser oxyrhynchus desotoi*), Alabama shad (*Alosa alabamae*), skipjack herring (*Alosa chrysochloris*), and striped bass (*Morone saxatilis*). Other species native to the area include spot (*Leiostomus xanthurus*), bay anchovy (*Anchoa mitchilli*), Atlantic croaker (*Micropogonias undulatus*), spotted seatrout (*Cynoscion nebulosus*), Gulf menhaden (*Brevoortia patronus*), striped mullet (*Mugil cephalus*), American eel (*Anguilla rostrata*), chain pickerel (*Esox niger*), coastal shiner (*Notropis petersoni*), silver perch (*Bairdiella chrysura*), clown goby (*Microgobius gulosus*), darter goby (*Gobionellus boleosoma*), blue crab (*Callinectes sapidus*), ghost crab (*Ocypode quadrata*), American oyster (*Crassotrea virginica*), and Penaeid shrimp (*Penaeus* spp.). The dominant epibenthic macroinvertebrates include brown shrimp (*Penaeus aztecus*) and blue crabs (*Livingston 1999*).

**Environmental Consequences**

The proposed project would likely result in short-term, minor adverse impacts to fish that may be present during the in-water construction as a result of turbidity and noise disturbance during construction of the artificial reefs. Benthic organisms present in the substrate may also be adversely affected during reef construction. However, the proposed project is intended to increase available reef habitat by providing appropriate habitat for species that inhabit reef ecosystems, as well as surface for attachment of sessile organisms, so reef construction impacts would be short term and minor and in the long term would benefit the ecosystem around the artificial reef.

**12.19.5.4 Wildlife**

**Affected Resources**

The project is in open-water estuarine/marine habitats. No impacts to general terrestrial wildlife species are anticipated. Marine wildlife are discussed below in a different section.

**Environmental Consequences**

No impacts to terrestrial wildlife species are anticipated. Marine wildlife are discussed below in different section.

**12.19.5.5 Protected Species**

**Affected Resources**

Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

The federally listed threatened and endangered species that may occur in or near the project area in Escambia, Santa Rosa, Okaloosa, Walton and Bay Counties include five species of sea turtles, West Indian manatee (*Trichechus manatus latirostris*), piping plover (*Charadrius melodus*), and Gulf sturgeon, and one proposed species, red knot (*Calidris canutus rufa*) (*USFWS 2013c*). State-listed threatened species reported to occur in the project area are addressed below, under State-Listed Species.
The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Escambia, Santa Rosa, Okaloosa, Walton and Bay Counties, Florida. Table 12-41 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

Table 12-41. Potential Impacts to Species/Critical Habitats managed by USFWS

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle; Leatherback turtle, Loggerhead turtle</td>
<td>No work will occur in the terrestrial environment; therefore no impacts will occur to sea turtle species in the terrestrial environment. Consultation has been initiated with NMFS, as this is the agency that has jurisdiction to review impacts to sea turtles in the estuarine and marine environments. The main risk to sea turtles during execution of this project would come from boat collisions which could result in harm or mortality. Critical habitat for the green sea turtle has been designated for the waters surrounding Culebra Island, Puerto Rico, and its outlying keys (63 FR 46693). Marine and terrestrial critical habitat for the leatherback sea turtle has been designated at Sandy Point on the western end of the island of St. Croix, U.S. Virgin Islands (44 FR 17710) and critical habitat will be reassessed during the future planned status review (76 FR 47133). Critical habitat for the hawksbill sea turtle has been designated for selected beaches and/or waters of Mona, Monito, Culebrita, and Culebra Islands, Puerto Rico (63 FR 46693). No designated critical habitat for the green, leatherback, or hawksbill sea turtles occurs within the action area. No critical habitat has been designated for the Kemp’s ridley sea turtle; therefore, none will be adversely affected or modified. The project area does not overlap with the currently proposed critical habitat areas in Florida for Northwest Atlantic Distinct Population Segment of the loggerhead sea turtle as these habitats are terrestrial (i.e., beaches and shorelines) (78 FR 18000) Department of the Interior, 2013). Though it is nearby, the proposed project will not result in any changes to shoreline habitats, and no impacts to proposed critical habitat will occur.</td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>The counties in the project area are not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the project waters, though most, if not all, of the proposed reef sites are in deeper waters than manatees could use during transit. The sites for reefs do not support sea grasses for foraging. The main risk to manatees during implementation of this project would come from boat collisions which could result in harm or mortality. Once constructed, artificial reefs would not block or impede any transitory routes used by manatees. Noise, use of vessels, and human presence during recreational use of the artificial reefs could harass manatees, if present. With the minimization recommendations, the Trustees do not expect noise, the use of vessels, and increased human presence either during construction or after implementation to result in any behavioral changes (i.e., feeding, breeding, or sheltering) to any manatee transiting the area.</td>
</tr>
</tbody>
</table>

27 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered

Additional information for some of these species is provided below.

**Sea Turtles and Marine Mammals**

There are five species of endangered or threatened sea turtles that may occur or have potential to occur in the project area. These are the green turtle (*Chelonia mydas*), hawksbill turtle (*Eretmochelys imbricata*), Kemp’s ridley turtle (*Lepidochelys kempii*), leatherback turtle (*Dermochelys coriacea*), and loggerhead turtle (*Caretta caretta*). Sea turtles forage in the waters of the coastal Florida panhandle region and nest on the beaches. Critical habitat has been proposed for the Loggerhead on beaches adjacent to in-water work areas. **PCE’s include:**

1. Suitable nesting beach habitat that: (a) has relatively unimpeded nearshore access from the ocean to the beach for nesting females and from the beach to the ocean for both post-nesting females and hatchlings and (b) is located above mean high water to avoid being inundated frequently by high tides.  
2. Sand that: (a) allows for suitable nest construction, (b) is suitable for facilitating gas diffusion conducive to embryo development, and (c) is able to develop
and maintain temperatures and moisture content conducive to embryo development. 3) Suitable nesting beach habitat with sufficient darkness to ensure that nesting turtles are not deterred from emerging onto the beach and hatchlings and post-nesting females orient to the sea.

The endangered West Indian manatee has the potential to occur in project area waters. Manatees typically seek out shallow seagrass areas as preferred feeding habitat (FWC 2007). Additionally, bottlenose dolphins (Tursiops spp.) populations are known to migrate into bays, estuaries, and river mouths and could be located in the proposed project area (NMFS 2013a). Bottlenose dolphins have been observed entering and leaving Choctawhatchee Bay and on nearshore coastal waters (NMFS 2012).

**Smalltooth Sawfish, Gulf Sturgeon, and Gulf Sturgeon Critical Habitat**

Smalltooth sawfish (Pristis pectinata) do not typically use northern Gulf of Mexico waters (NMFS 2013b). Gulf sturgeon are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Pearl River, Louisiana to the Suwannee River, in Florida (NMFS 2009). Adult fish reside in rivers for 8 to 9 months each year and in estuarine or Gulf of Mexico waters during the 3 to 4 cooler months of each year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993).

Gulf sturgeon critical habitat was jointly designated by the NMFS and the USFWS on April 18, 2003 (50 Code of Federal Regulations [C.F.R.] 226.214). The proposed project site is located within the Florida Nearshore Gulf of Mexico Critical Habitat Unit 10, which contains winter feeding and migration habitat for Gulf sturgeon. Critical habitat was designated based on seven primary constituent elements (PCEs) essential for the species’ conservation, as defined in the 2003 Federal Register and are listed below. PCE’s 1, 5, 6, and 7 are present in the project area.

1. Abundant food items, such as detritus, aquatic insects, worms, and/or mollusks, within riverine habitats for larval and juvenile life stages, and abundant prey items, such as amphipods, lancelets, polychaetes, gastropods, ghost shrimp, isopods, mollusks, and/or crustaceans, within estuarine and marine habitats and substrates for subadult and adult life stages;
2. Riverine spawning sites with substrates suitable for egg deposition and development, such as limestone outcrops and cut limestone banks, bedrock, large gravel or cobble beds, marl, soapstone, or hard clay;
3. Riverine aggregation areas, also referred to as resting, holding, and staging areas, used by adult, subadult, and/or juveniles, generally, but not always, located in holes below normal riverbed depths; these are believed necessary for minimizing energy expenditure during freshwater residency and possibly for osmoregulatory functions;
4. A flow regime (i.e., the magnitude, frequency, duration, seasonality, and rate-of-change of freshwater discharge over time) necessary for normal behavior, growth, and survival of all life stages in the riverine environment, including migration, breeding site selection, courtship, egg fertilization, resting, and staging, and for maintaining spawning sites in suitable condition for egg attachment, egg sheltering, resting, and larval staging;
5. Water quality, including temperature, salinity, pH, hardness, turbidity, oxygen content, and other chemical characteristics necessary for normal behavior, growth, and viability of all life stages;
6. Sediment quality, including texture and chemical characteristics, necessary for normal behavior, growth, and viability of all life stages; and
7. Safe and unobstructed migratory pathways necessary for passage within and between riverine, estuarine, and marine habitats (e.g., an unobstructed river or a dammed river that still allows for passage).

Piping Plover
The sandy beaches and shorelines adjacent to some of the project area offer suitable foraging and resting habitat for the piping plover during the winter migratory season, and piping plover may forage in the shallow waters of the project area. Natural shorelines in the proposed project vicinity provide suitable winter migration resting habitat for the piping plover. Piping plover wintering habitat includes beaches, mudflats, and sandflats, as well as barrier island beaches and spoil islands (Haig 1992 as cited by USFWS 2013d). On the Gulf Coast, preferred foraging areas are associated with wider beaches, mudflats, and small inlets (USFWS 2013d). Critical habitat is designated on several shorelines along the Florida panhandle adjacent to project areas. PCE’s include: 1) Intertidal flats with sand or mud flats (or both) with no or sparse emergent vegetation. 2) Adjacent unvegetated or sparsely vegetated sand, mud, or algal flats above high tide are also important, especially for roosting piping plovers. Such sites may have debris, detritus, or microtopographic relief (less than 50 cm above substrate surface) offering refuge from high winds and cold weather. 3) Important components of the beach/dune ecosystem include surf-cast algae, sparsely vegetated back beach and salterns, spits, and washover areas. 4) Washover areas are broad, unvegetated zones, with little or no topographic relief, that are formed and maintained by the action of hurricanes, storm surge, or other extreme wave action.

Red Knot
The red knot, a federal proposed species, uses the state of Florida both for wintering habitat and migration stopover habitat for those that continue to migrate down to specific wintering locations in South America (Niles et al. 2008). Wintering and migrating red knots forage along sandy beaches, tidal mudflats, salt marshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms, and roost on high sandflats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008).

Essential Fish Habitat
EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as “those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Table 12-42 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Florida Artificial Reef project sites which are located in the coastal waters off of Escambia, Santa Rosa, Okaloosa, Walton and Bay counties and the Gulf of Mexico.
Table 12-2. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.

<table>
<thead>
<tr>
<th>EFH CATEGORY</th>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Highly Migratory Species</td>
<td>Angel Shark Adult and Juvenile</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark Adult</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark Adult</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark Juvenile</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark Neonate</td>
</tr>
<tr>
<td></td>
<td>Bignose Shark Adult</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark Adult</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark Adult</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark Neonate</td>
</tr>
<tr>
<td></td>
<td>Blue Marlin Adult</td>
</tr>
<tr>
<td></td>
<td>Blue Marlin Juvenile</td>
</tr>
<tr>
<td></td>
<td>Bluefin Tuna HAPC area</td>
</tr>
<tr>
<td></td>
<td>Bluefin Tuna Spawning, Eggs, and Larvae</td>
</tr>
<tr>
<td></td>
<td>Bonnethead Shark Adult</td>
</tr>
<tr>
<td></td>
<td>Bonnethead Shark Juvenile</td>
</tr>
<tr>
<td></td>
<td>Bonnethead Shark Neonate</td>
</tr>
<tr>
<td></td>
<td>Bull Shark Adult</td>
</tr>
<tr>
<td></td>
<td>Bull Shark Juvenile</td>
</tr>
<tr>
<td></td>
<td>Dusky Shark Adult Adult</td>
</tr>
<tr>
<td></td>
<td>Finetooth Shark Adult</td>
</tr>
<tr>
<td></td>
<td>Finetooth Shark Neonate</td>
</tr>
<tr>
<td></td>
<td>Great Hammerhead Shark All</td>
</tr>
<tr>
<td></td>
<td>Lemon Shark Adult</td>
</tr>
<tr>
<td></td>
<td>Lemon Shark Juvenile</td>
</tr>
<tr>
<td></td>
<td>Longbill Spearfish Adult and Juvenile</td>
</tr>
<tr>
<td></td>
<td>Longfin Mako Shark All</td>
</tr>
<tr>
<td></td>
<td>Nurse Shark Adult</td>
</tr>
<tr>
<td></td>
<td>Nurse Shark Juvenile</td>
</tr>
<tr>
<td></td>
<td>Oceanic Whitetip Shark All</td>
</tr>
<tr>
<td></td>
<td>Sailfish Juvenile</td>
</tr>
<tr>
<td></td>
<td>Sandbar Shark Adult</td>
</tr>
<tr>
<td></td>
<td>Sandbar Shark Neonate</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark Adult</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark Juvenile</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark Neonate</td>
</tr>
<tr>
<td></td>
<td>Silky Shark All</td>
</tr>
<tr>
<td></td>
<td>Smooth Dogfish</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark Adult</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark Juvenile</td>
</tr>
<tr>
<td></td>
<td>Sandbar Shark Neonate</td>
</tr>
<tr>
<td>EFH CATEGORY</td>
<td>SPECIES</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark Neonate</td>
</tr>
<tr>
<td></td>
<td>Tiger Shark Juvenile</td>
</tr>
<tr>
<td></td>
<td>Tiger Shark Neonate</td>
</tr>
<tr>
<td></td>
<td>Whale Shark All</td>
</tr>
<tr>
<td></td>
<td>White Marlin Adult</td>
</tr>
<tr>
<td></td>
<td>White Marlin Juvenile</td>
</tr>
<tr>
<td>Gulf of Mexico Red Drum</td>
<td>Red Drum</td>
</tr>
<tr>
<td>Gulf of Mexico Shrimp</td>
<td>Brown Shrimp</td>
</tr>
<tr>
<td></td>
<td>Pink Shrimp</td>
</tr>
<tr>
<td></td>
<td>White Shrimp</td>
</tr>
<tr>
<td>Reef Fish Resources of the Gulf of Mexico</td>
<td>Almaco Jack</td>
</tr>
<tr>
<td></td>
<td>Banded Rudderfish</td>
</tr>
<tr>
<td></td>
<td>Black Grouper</td>
</tr>
<tr>
<td></td>
<td>Blackfin Snapper</td>
</tr>
<tr>
<td></td>
<td>Blueline Tilefish</td>
</tr>
<tr>
<td></td>
<td>Cubera Snapper</td>
</tr>
<tr>
<td></td>
<td>Gag</td>
</tr>
<tr>
<td></td>
<td>Goldface Tilefish</td>
</tr>
<tr>
<td></td>
<td>Gray (Mangrove) Snapper</td>
</tr>
<tr>
<td></td>
<td>Gray Triggerfish</td>
</tr>
<tr>
<td></td>
<td>Greater Amberjack</td>
</tr>
<tr>
<td></td>
<td>Hogfish</td>
</tr>
<tr>
<td></td>
<td>Lane Snapper</td>
</tr>
<tr>
<td></td>
<td>Lesser Amberjack</td>
</tr>
<tr>
<td></td>
<td>Mutton Snapper</td>
</tr>
<tr>
<td></td>
<td>Nassau Grouper</td>
</tr>
<tr>
<td></td>
<td>Queen Snapper</td>
</tr>
<tr>
<td></td>
<td>Red Grouper</td>
</tr>
<tr>
<td></td>
<td>Red Snapper</td>
</tr>
<tr>
<td></td>
<td>Scamp</td>
</tr>
<tr>
<td></td>
<td>Silk Snapper</td>
</tr>
<tr>
<td></td>
<td>Snowy Grouper</td>
</tr>
<tr>
<td></td>
<td>Speckled Hind</td>
</tr>
<tr>
<td></td>
<td>Tilefish</td>
</tr>
<tr>
<td></td>
<td>Vermilion Snapper</td>
</tr>
<tr>
<td></td>
<td>Warsaw Grouper</td>
</tr>
<tr>
<td></td>
<td>Wenchman</td>
</tr>
<tr>
<td></td>
<td>Yellowedge Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowmouth Grouper</td>
</tr>
</tbody>
</table>
State-Listed Birds, MBTA and BGEPA

There are numerous state of Florida–listed bird species with potential for occurrence in and around the beaches near the artificial reef construction site. These include Arctic peregrine falcon (*Falco peregrinus tundrius*), least tern (*Sternula antillarum*), southeastern American kestrel (*Falco sparverius paulus*), American oystercatcher (*Haematopus palliates*), southeastern/Cuban snowy plover (*Charadrius alexandrinus tenuirostris*), osprey (*Pandion haliaetus*), black skimmer (*Rynchops niger*), white ibis (*Eudocimus albus*), and little blue heron (*Egretta caerulea*). All migratory bird species are protected under MBTA. The nesting season in Florida is from February 15 to August 13.

The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s *Bald Eagle Management Plan* guidelines would be followed (FWC 2008). According to the FWC Bald Eagle Nest Locator, there are no bald eagle nests within 5 miles of the project site (FWC 2012).

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12.43 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

**Table 12.43. Potential project impacts to different migratory bird groups**

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Seabirds forage in water, res, or nest in terrestrial habitats, both in the general vicinity of the project area. The project will take place nearshore but not near the dune habitat which is where most rooting/nesting occurs. The level of project activity in open water is unlikely to startle nesting or resting birds due to distance from terrestrial habitats. Seabirds could be feeding in the area; however, they would likely move from the area of construction due to disturbance.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12.44.
Table 12-44. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care will be taken to minimize noise and vibration near areas where foraging or resting birds are encountered. All disturbance will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. Nesting should not be impacted because the project will not occur near nesting habitats.</td>
</tr>
</tbody>
</table>

Environmental Consequences

Protected Species
The USFWS reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On January 23, 2014 the review of potential impacts to species managed by USFWS was completed (McClain, 2013). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect West Indian manatee, piping plover, and red knot (if listed). The USFWS also concurred with the Trustees’ determination that the proposed project will have no effect on, five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead).

Initiation of the consultation of potential impacts on protected species managed by NMFS was initiated on January 30, 2014. The Trustees’ review of the potential impacts of the project for protected species managed by NMFS determined the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the project implementation area:

- Gulf Sturgeon - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.
- Gulf Sturgeon Critical Habitat – The project footprint does fall within Gulf sturgeon critical habitat (Unit 11); however, it has been determined that the construction activities associated with this project will not adversely affect designated Gulf sturgeon critical habitat.
- Green Sea Turtle - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.
- Loggerhead Sea Turtle - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.
- Loggerhead Critical Habitat – The project footprint intersects loggerhead critical habitat unit LOGG-N-33. However, none of the PCEs associated with this nearshore reproductive habitat unit will be adversely affected by the project.
- Hawksbill Sea Turtle - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.
- Leatherback Sea Turtle - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.
- Kemp’s Ridley Sea Turtle - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.
A concurrence from NMFS with the Trustees’ conclusions for these species and associated critical habitats is still pending.

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

**Essential Fish Habitat**

The Trustees’ review of the potential impacts to EFH in the proposed locations for the Artificial Reef restoration project determined that while implementing the project would result in a small amount of habitat conversion of one EFH habitat type to another, adjacent habitat would remain unchanged and would be available for use. At the same time, the habitat conversion would be expected to provide a more diverse habitat, which would benefit some species. Therefore, the Trustees determined disturbance to any EFH and species using the habitat in areas adjacent to artificial reef placement would be brief and insignificant, with risks further mitigated by following identified best management practices during construction so no adverse impacts to other EFH types would result from the proposed project.

On March 17, 2014 NMFS completed its evaluation of potential EFH impacts concurred with the Trustees’ determination that permanent impacts to soft bottom EFH will occur; however, the provision of new hard structure in the Gulf may create benefits to some species managed under the Magnuson-Stevens Act by providing foraging habitat, cover, and conditions favorable for encrusting benthic colonization (Fay, 2014).

**State-Listed Birds, MBTA, and BGEPA**

There are no known bald eagle nests within 5 miles of the project site; therefore no impacts to bald eagles are expected. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

**12.19.5.6 Human Uses and Socioeconomics**

**12.19.5.6.1 Socioeconomics and Environmental Justice**

**Affected Resources**

The populations of Escambia, Santa Rosa, Okaloosa, Walton, and Bay Counties equal 853,708 individuals, representing 4.54% of the population of Florida. See Table 12-45 for the populations in each individual county.

This project would have a short-term, minor, direct adverse impact through disruption of localized fishing during construction. Direct, short-term, moderate benefits through local job creation would result from construction activities. Long-term, indirect, moderate benefits would result from increasing fisheries habitat, and recreational and fishing value of the area, since newly created habitat would be able to support a larger, more diverse fish assemblage.
Environmental Consequences
This project is not designed to create a benefit for any group or individual, but rather would provide benefits on a local basis. There are no indications that the proposed artificial reef project would be contrary to the goals of Executive Order 12898 on Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations, or would create disproportionate, adverse human health or environmental impacts on minority or low-income populations of the surrounding community.

Direct, short and long-term, minor economic benefits across the multi-county area of project implementation may be realized through local job creation and support from construction. Long-term, indirect, minor benefits could result from increasing recreational opportunities in the project area.

12.19.5.6.2 Cultural Resources

Affected Resources
This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Environmental Consequences
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.
Table 12-45. Population of Florida and affected counties: Escambia, Santa Rosa, Okaloosa, Walton, and Bay.

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>FLORIDA¹</th>
<th>ESCAMBIA</th>
<th>SANTA ROSA</th>
<th>OKALOOSA</th>
<th>WALTON</th>
<th>BAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 Total Population</td>
<td>18,801,310</td>
<td>297,619</td>
<td>151,372</td>
<td>180,822</td>
<td>55,043</td>
<td>168,852</td>
</tr>
<tr>
<td>White alone</td>
<td>14,721,426</td>
<td>212,203</td>
<td>18,698</td>
<td>180,822</td>
<td>51,593</td>
<td>142,508</td>
</tr>
<tr>
<td>Black or African American alone</td>
<td>3,121,017</td>
<td>69,322</td>
<td>10,303</td>
<td>18,628</td>
<td>3,455</td>
<td>19,081</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone</td>
<td>94,007</td>
<td>2,724</td>
<td>1,427</td>
<td>1,331</td>
<td>518</td>
<td>1,203</td>
</tr>
<tr>
<td>Asian alone</td>
<td>507,635</td>
<td>8,779</td>
<td>3,170</td>
<td>5,893</td>
<td>576</td>
<td>3,782</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander alone</td>
<td>18,801</td>
<td>605</td>
<td>317</td>
<td>380</td>
<td>115</td>
<td>172</td>
</tr>
<tr>
<td>Two or more races</td>
<td>357,225</td>
<td>9,081</td>
<td>4,597</td>
<td>7,223</td>
<td>1,324</td>
<td>4,985</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>4,361,904</td>
<td>15,438</td>
<td>7,767</td>
<td>15,397</td>
<td>3,397</td>
<td>8,939</td>
</tr>
<tr>
<td>White alone, not Hispanic or Latino</td>
<td>10,716,747</td>
<td>199,792</td>
<td>132,199</td>
<td>143,703</td>
<td>48,599</td>
<td>135,116</td>
</tr>
</tbody>
</table>

12.19.5.6.3 Infrastructure

Affected Resources
Artificial reef creation would take place in nearshore and deep, open-water habitats, away from infrastructure. Construction staging areas and access points to Santa Rosa Sound would be located at existing developed areas suitable for such work (e.g., docks, marinas).

Environmental Consequences
There may be a minor, short-term, temporary increase in traffic and slow-moving construction equipment in the adjacent transportation corridors. The action would affect public services or utilities but the impact would be localized and within operational capacities.

Artificial reef creation would occur in open, nearshore and deep water habitats in in five panhandle counties, so there would be no effect on local infrastructure once equipment and materials reach the construction site. Short-term and long-term impacts to public services would be minor due to the project being located outside any public utilities or traffic areas.

Once construction is complete, there would be no effect to infrastructure.

12.19.5.6.4 Land and Marine Management

Affected Resources

Coastal Zone Consistency
Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

Environmental Consequences
Artificial reef restoration would have a moderate to major beneficial impact on marine management in the Florida panhandle by promoting increased diversity and population sizes of aquatic species as a result of enlarged areas of reef habitat. All project work would be completed consistent with any applicable state and federal management plans.

12.19.5.6.5 Aesthetics and Visual Resources

Affected Resources
Aesthetic and visual resources in artificial reef creation areas are characterized by open-water nearshore habitat.
Environmental Consequences
Short-term, minor impacts to the viewshed may occur during periods when barges and equipment are present to place reef materials. In the long term, there would be no impact to visual resources from the shore or on the water surface.

Artificial reef creation would have a long-term, moderate beneficial impact on underwater aesthetics and visual resources for those who dive or snorkel in the project area following reef emplacement.

12.19.5.6.6 Tourism and Recreational Use

Affected Resources
The primary recreational activities in the Florida panhandle are swimming, boating, fishing, diving, snorkeling, and beachcombing. The artificial reefs are intended to attract tourists and other members of the public participating in recreational activities. Locations of the reefs are made publicly available, in part to support increased use.

Environmental Consequences
During the construction, areas may be unavailable to the public, thereby causing minor reduction of the areas available for recreation. After construction, visitor capacity would increase due to the increased habitat available, resulting in a beneficial impact to reef visitation.

12.19.5.6.7 Public Health and Safety and Shoreline Protection

Affected Resources
The project would be conducted at multiple locations throughout the Florida panhandle. The specific public health and safety and shoreline protection conditions at each individual location may vary. Project locations would not be situated in areas with hazardous waste generation or disposal.

Environmental Consequences
Artificial reef creation would have no impact on public health conditions because restoration techniques would follow health and safety guidance and would not take place in areas where public health conditions may be affected. Short-term and long-term impacts would be minor because artificial reef creation would not cause any soil, groundwater, and/or surface water contamination, exposure to contaminated materials, or mobilization and migration of contaminants currently in the soil, groundwater, or surface water that could harm construction workers or the general public. Artificial reefs would be constructed using layered, piling-mounted concrete and stone rubble or prefabricated modular design. All material used in reef creation would be analyzed for presence of contaminants prior to placement.

12.19.6 Summary and Next Steps
The proposed Florida Artificial Reef Creation and Restoration project would place artificial reefs in permitted areas in Escambia, Santa Rosa, Okaloosa, Walton, and Bay Counties. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.
NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational fishing opportunities by increasing the number of artificial reefs in state waters. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.19.7 References


Fay, V. 2014. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review construction of artificial reefs in the Gulf of Mexico offshore of Escambia, Santa Rosa, Okaloosa, Walton, and Bay Counties, Florida. March, 17.


Gulf of Mexico Fishery Management Council (GMFMC). 2005. FINAL Generic Amendment Number 3 for Addressing Essential Fish Habitat Requirements, Habitat Areas of Particular Concern, and Adverse Effects of Fishing in the following Fishery Management Plans of the Gulf of Mexico: Shrimp Fishery of the Gulf of Mexico, United States Waters; Red Drum Fishery of the Gulf of Mexico; Reef Fish Fishery of the Gulf of Mexico; Coastal Migratory Pelagic Resources (Mackerels) in the Gulf of Mexico and South Atlantic Stone Crab Fishery of the Gulf of Mexico; Spiny Lobster in the Gulf of Mexico and South Atlantic; Coral and Coral Reefs of the Gulf of Mexico. Tampa: Gulf of Mexico Fishery Management Council.


12.20 Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center: Project Description

12.20.1 Project Summary
The proposed Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center project would involve constructing and operating a saltwater sportfish hatchery in Pensacola, Florida. This project would enhance recreational fishing opportunities. The total estimated cost for this project is $18,793,500.

12.20.2 Background and Project Description
The Trustees propose to construct and operate a saltwater sportfish hatchery in Pensacola (Escambia County), Florida (see Figure 12-37 for a conceptual design, Figure 12-38 for facility location). The objective of the proposed Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center project is to enhance and/or increase recreational fishing opportunities by producing and releasing highly sought-after sportfish species such as red snapper, red drum, and spotted seatrout. The restoration work proposed includes the construction and operation of a saltwater hatchery. Hatchery production (with a potential for up to 5,000,000 fish released annually) will be based on the use of intensive (i.e., indoor, tank-based) recirculating aquaculture systems that reduce water usage and effluent discharge (i.e., most of the water is re-used). The hatchery fish will be released into high quality inshore habitats throughout the Northern Gulf Coast in Florida. Effluent will flow through a small constructed filtration marsh composed of native coastal wetland plant species to recycle nutrients from the aquaculture facility as plant biomass which can be used to support ongoing regional coastal habitat restoration efforts.

Figure 12-37. Conceptual design for the Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center Project.
12.20.3 Evaluation Criteria

This proposed project meets the evaluation criteria for the Framework Agreement and OPA. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center project is intended to enhance and/or increase recreational fishing opportunities by producing and releasing highly sought-after sportfish species. The project would enhance and/or increase opportunities for the public’s use and enjoyment from the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and utilizes proven techniques with established methods and documented results. The State of Florida has constructed a similar style hatchery on a smaller scale and has been operating it successfully for multiple decades. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Furthermore, the cost estimates are based on the similar past project and therefore the project can be
conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.20, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration with the exception of geology and substrates, noise, and aesthetics and visual resources which would be minor, localized and long term. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.20 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). This proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not in consistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area that deployed boom and was impacted by response and SCAT activities for the Spill.

12.20.4 Performance Criteria, Monitoring and Maintenance
As part of the project costs, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational fishing opportunities by constructing and operating a saltwater sportfish hatchery. Performance monitoring will evaluate the construction and operation of the hatchery. Specific success criteria include: 1) the completion of the construction as designed and permitted; 2) operation of the hatchery as permitted; and 3) enhanced and/or increased public access provided to the natural resources, which will be determined by observation that the hatchery is open and operational.

A detailed project timeline and associated monitoring framework will be developed as the first step in the initial project design phase. Overall project quality control and assurance will be overseen by the Florida Fish and Wildlife Conservation Commission and quarterly progress reports will be prepared to help track the successful implementation, performance, and completion of the various goals and objectives outlined in the scope of work. Existing fisheries monitoring programs will be leveraged to provide information on recreational catch and effort, and abundance of select sportfish species. The project proposal provides for five years of Trustee data collection during which detailed data on fisheries abundance, catch, effort and angler preferences will be collected to define the impact of the project on recreational fishing.

The project proposal also provides for five years of Trustee operation and maintenance which will provide for regular facility maintenance and repair (electrical, plumbing, physical facility, etc.) as well as periodic maintenance and repair of aquaculture systems (including tanks, filtration systems, and
specialized instrumentation). After five years, upkeep and repair of facility buildings as well as maintenance of stormwater and effluent retention ponds, and filtration marsh will be provided by FWC and its governmental, university, or non-profit partners.

12.20.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $37,587,000 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.28

12.20.6 Cost
The total estimated cost to implement this project is $18,793,500. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---

28 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.21 Florida Fish Hatchery: Environmental Review

12.21.1 Introduction and Background
In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf of Mexico in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not, fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement, after public review of a draft, the Trustees released a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees, announcing the development of additional future Early Restoration projects for a Final Phase III ERP/PEIS (ERP). Construction of the Gulf Coast Marine Fisheries Hatchery and Enhancement Center (the hatchery) in Pensacola Bay was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the state of Florida.

The Florida Fish and Wildlife Conservation Commission (FWC) is proposing to construct a saltwater sport fish hatchery in Pensacola (Escambia County), Florida, to supplement the Port Manatee Stock Enhancement Research Facility (SERF)—the lone State-operated saltwater sportfish hatchery operated in Florida. SERF currently produces juvenile redfish for release statewide. The facility uses mating pairs of redfish, caught in the wild, as brood stock to produce hundreds of thousands of eggs that are incubated until they hatch. The fingerlings are transferred to outdoor ponds or raised in tanks and are tagged and released when they reach the targeted size. Since 1988, six million juvenile redfish have been released, with the majority of them released in Tampa and Biscayne Bays (FWC 2013a). With only one hatchery in the state, it is difficult for the FWC to meet the demand from sport and commercial fishing.

The Deepwater Horizon Oil Spill directly affected beaches and estuaries through oil intrusion, which resulted in the closure of state and federal waters for months and had a large impact on Florida’s coastal economy.

The proposed hatchery project would fund construction activities to develop a former industrial site into a saltwater sport fish hatchery and support its operation and maintenance activities for a period of 5 years. The proposed hatchery facility would focus on restoring lost recreational fishing use experienced by resident and visiting anglers in Florida. The facility would release up to five million juvenile sportfish such as red snapper (*Lutjanus campechanus*), red drum (*Sciaenops ocellatus*), and spotted sea trout (*Cynoscion nebulosus*) annually into state waters in the Gulf of Mexico. The hatchery fish will be released into high quality inshore habitats throughout the Northern Gulf Coast in Florida.
This hatchery project would be consistent with FWC's efforts over the past 25 years to develop a statewide series of marine hatcheries to enhance fishing and promote marine conservation. The FWC has been actively pursuing this goal since development of SERF in Manatee County as a response, in part, to the declines in the harvest of popular sport fish species, particularly red drum, earlier in the 1980s. This commitment to incorporating marine hatcheries into FWC's fishery management activities was further recognized in 2006 with the implementation of the Florida Marine Fisheries Enhancement Initiative, or FMFEI (FWC 2013a).

The proposed hatchery would draw on lessons the FWC has learned in the 25 years of operation of SERF, and incorporate the latest technological advances in fish culture. The state-of-the-art facility would be designed to incorporate intensive aquaculture techniques and approaches, including the use of an indoor-tank-based rearing system where approximately 80% of the initial saltwater withdrawals from Pensacola Bay would be reused. In addition, the water that is eventually discharged from the facility would go through a treatment process that focuses on the recycling of nutrients. Effluent from the facility would flow through a small filtration marsh composed of native coastal wetland plant species (to be built as part of the hatchery project); the nutrients would provide fertilizer to support an adjoining nursery. Plants produced at the nursery and in the wetland would be used to support ongoing regional coastal habitat restoration efforts.

Developing the hatchery would help satisfy FMFEI's objectives of increasing recreational fishing opportunities and promoting marine conservation, while providing an economic boost to the Pensacola economy.

This proposed project meets the evaluation criteria of the Framework Agreement and the Oil Pollution Act (OPA). As a result of the Deepwater Horizon Oil Spill and related response actions, the public's access to and enjoyment of the natural resources along Florida’s panhandle was denied or severely restricted. The proposed Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center project is intended to enhance and/or increase recreational fishing opportunities by producing and releasing highly sought-after sportfish species. The project would enhance and/or increase opportunities for the public's use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill.

12.21.2 Project Location
The proposed hatchery project area is located on 10 acres in Escambia County at the southeast corner of Main Street and Clubbs Street in Pensacola, Florida (Figure 12-39 and Figure 12-40). The hatchery facilities and ponds will be constructed on the upland portion of the site. According to the Wetland Sciences, Inc. report (2013), there are three areas immediately adjacent and within the subject property that have been developed as wetland mitigation areas: the Bruce Beach marsh immediately to the south, the City of Pensacola Southern Bulkhead Mitigation Area immediately to the east, and the Community Maritime Park (CMP) wetland mitigation area immediately south of the Bruce Beach marsh (Figure 12-42). Finally, a bulk petroleum storage facility (Transmontaigne Product Services., FDEP Facility ID No. 178508201) is located immediately west of the proposed project site (Figure 12-41).

Records indicate the Bruce Beach marsh was planted in 1991 by the Florida Department of Environmental Protection’s Ecosystem Restoration Section. This mitigation area was formed by the
construction of an L-shaped breakwater and infill of submerged lands of Pensacola Bay. Originally, smooth cordgrass (Spartina alterniflora) was established on one-meter centers throughout the entire created area. Hydrology within the site was established through tidal ebb and flow whose influences are manifested by a gap in the constructed breakwater which effectively connected the mitigation site to Pensacola Bay (Wetland Sciences, Inc. 2013).

The Southern Bulkhead Mitigation Area site was designed to compensate for wetland losses incurred with the construction of the southern bulkhead along the waterfront of what is now the Community Maritime Park. This mitigation site was once a channelized canal formerly used to discharge treated effluent from a now decommissioned wastewater treatment plant. The mitigation site is comprised of a meandering tidal channel and low/high marsh areas planted with smooth coordgrass and marsh hay (Spartina patens) (Wetland Sciences, Inc. 2013).

The Community Maritime Park (CMP) wetland mitigation area was established in 2012 to compensate for loss of wetland functions that were eliminated by the construction of the Pensacola Community Maritime Park. The wetland mitigation plan included the creation of a salt marsh consisting of 0.86 acres of oyster reef habitat/breakwaters, 1.96 acres of planted salt marsh, and 1.72 acres of tidal creeks and pools which serve as a waterward extension of the existing Bruce Beach mitigation area. The mitigation plan also included modifications to the existing Bruce Beach Mitigation Area. These modifications included the re-grading of adjacent uplands to intertidal elevations for additional marsh creation and opening the southern end of the site to enhance tidal exchange between Bruce Beach and the CMP mitigation areas. This mitigation site is protected via a conservation easement recorded in OR Book 6417 Pages 1666- 1680 in the official records of Escambia County (Figure 12-42) (Wetland Sciences, Inc. 2013).

These three mitigation areas will not be affected by the construction activities and should benefit from the improved quality of the water returned to the bay through the hatchery’s treatment processes relative to the uncontrolled nature of the current surface water runoff from the site.
Figure 12-39. Vicinity map of the proposed hatchery project in Pensacola, Florida.
Figure 12-40. Aerial map of proposed hatchery project in Pensacola, Florida.
Figure 12-41. Approximate boundary of the proposed hatchery project location in Pensacola, Florida.
Figure 12-42. Wetland mitigation areas near the proposed hatchery project in Pensacola, Florida.

12.21.3 Construction and Installation

Figure 12-43 provides a conceptual rendering of the proposed hatchery.

Critical indoor project elements identified in Figure 12-43 include:

- Five-Room, Phase 1 Module Building (illustrated in white, adjacent to parking area):
  - **Entrance and offices**: A portion of the main facility building would contain offices for the staff. An entrance located adjacent to the parking lot would be developed for access by staff and visitors. A separate service entrance would be developed for the delivery of hatchery and administrative supplies.
  - **Brood stock rooms (2)**: There would be two rooms where adult fish would be held in 115,000-gallon tanks for spawning. These broodstock fish would produce the fertilized eggs that the hatchery would then grow in the phase I tank rooms (see below) until they are large enough for release.
  - **Phase 1 tank rooms (2)**: There would be two rooms where hatchery-raised fish would complete their grow-out to the Phase 1 size of approximately 1.25 inches in length, at which point they would be ready for release. The Phase 1 tanks would be 95,000-gallon capacity.

**Live feed room (1)**: This room would contain smaller tanks that would grow the food necessary to feed the cultured sport fish. Depending on the species, this could include various species of phytoplankton and zooplankton.
Critical outdoor project elements identified in Figure 12-43 include:

- **Stormwater pond**: A stormwater retention pond would be developed to capture rain water flowing from impervious surfaces on and near the site during storm events. This pond would be used to settle solids and allow for some groundwater recharge. Pond discharge would be integrated into the surface waters being directly returned to Pensacola Bay from the site. The exact size of the pond and conditions and mechanisms of the return flow to Pensacola Bay (e.g., size of pond related to the amount of impervious surface in the final design) would be defined in the final engineering plans.

- **Storage pond**: A lined storage pond up to 1 acre in size would be used to store hatchery fish production effluent. Effluent would be diverted to the pond after initially filtering out solids inside the facility. The pond would allow for additional settling of solids entrained in the hatchery’s fish production water, and the liner would facilitate removal of fish waste and other biological material. Water from the storage pond would flow into the plant production pond.

- **Plant production pond/filtration marsh**: This approximately 2-acre pond or marsh would receive discharge from the storage pond and be planted with native wetland species, including *Spartina alterniflora*, to uptake nutrients that improve water quality before water would be returned to Pensacola Bay as sheet flow. The wetland plants would be harvested to remove nutrients from the marsh and used to support other coastal restoration projects. To the
maximum extent possible, this constructed marsh would be integrated with the existing wetland and marsh mitigation areas that are on and adjacent to the proposed hatchery location.

- **Parking lot:** An on-site lot of approximately 90,000 square feet would be developed to provide parking for hatchery staff and visitors. Access to the lot would be via Clubbs Street, which has minimal traffic and would dead-end at the facility parking lot.

The proposed Pensacola hatchery would draw on lessons the FWC has learned in the 25 years of operation of SERF, combined with technological advances in developing hatcheries. The state-of-the-art facility would be designed to incorporate intensive aquaculture techniques and approaches, including the use of an indoor-tank-based rearing system where approximately 80 percent of the initial saltwater withdrawals from Pensacola Bay would be reused.

To supply the hatchery with seawater, a horizontal bore would be drilled from an upland area located above the mean high water line out into Pensacola Bay under the seafloor for a seawater supply pipe. This pipe would feed into a well placed in an onshore excavation associated with the bore so that pumping of the seawater from the offshore area and from the well to the hatchery could take place using equipment located on shore above the mean high water line. During all drilling activities BMPs designed to control erosion (e.g., use of hay bales) and limit turbidity impacts to the Bay waters would be implemented and actively maintained.

To complete the supply infrastructure the horizontal bore and main supply pipe would proceed to a location in Pensacola Bay where the environmental conditions ensure a consistent supply of sea water with desired characteristics (e.g., salinity, temperature). These characteristics are largely depth dependent. At the desired location, a small riser section of pipe would be connected so that it emerged from the seafloor and would continue until roughly it was located 1-2 feet off the seafloor. This riser section will have a screened opening for the seawater to prevent the impingement and entrainment of sea organisms. Based on the volume of seawater it is expected the hatchery will require, it is expected the supply pipe and intake riser section would not be greater than 8” in diameter.

As part of the supply pipe siting, there would be an assessment of seagrass areas and these habitats would be avoided so that the riser is located in an area characterized by sand/silt sediments that are clear of seagrass in water that is 7-14 feet deep, measured at mean low water, within a “box” whose corners are described below in terms of their latitude and longitude (measured in decimal degrees).

<table>
<thead>
<tr>
<th>Box corner</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northwest</td>
<td>30.40302</td>
<td>87.22223</td>
</tr>
<tr>
<td>Northeast</td>
<td>30.40333</td>
<td>87.22027</td>
</tr>
<tr>
<td>Southeast</td>
<td>30.40049</td>
<td>87.21956</td>
</tr>
<tr>
<td>Southwest</td>
<td>30.40013</td>
<td>87.22152</td>
</tr>
</tbody>
</table>

To minimize potential risks of impingement and entrainment the intake pipe would incorporate that a design and screen that ensures water velocity at the screen is less than 15 cm/second (equivalent to 0.15m/s) when water is being pumped. While a specific device has not been identified or designed at this time there area commercially available options that would meet this requirement.
The cumulative duration of work for establishing this in-water supply source of seawater would be three months. This would include water-based surveys and the construction work associated with attaching the vertical riser pipe to the main supply pipe in the horizontal bore. During attachment of the vertical riser, a small area of the seafloor would be temporarily disturbed to expose the supply pipe and complete the connection. It is expected that this area would be no more than 1600 square feet (40 x 40’). At the end of the connection activity the original grade of the seafloor would be reestablished by returning the sediment so that only the vertical riser remained.

To further reduce risks and potential in-water impacts to protected species, all in-water work would comply with the recommendations contained within the Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006) and the Standard Manatee Construction Conditions for In-Water Work (USFWS, 2011) guidance documents.

The water treatment center for the hatchery may include chlorine or ozone disinfection, a settling tank to remove suspended solids, mechanical filtration, and a water distribution system (valves and plumbing) to direct water to specific areas of the hatchery.

Waste water from the hatchery would pass through an approximately 2-acre constructed marsh or wetland to remove suspended solids and nutrients from the waste stream. The marsh would also serve as a wetland plant supply for restoration projects. The marsh or wetland would be designed to distribute water equally to the marsh wetland plants to facilitate uniform growth of plants and nutrient stripping by the plants from the waste stream. Several species would be planted in the marsh at strategic elevations to provide the appropriate water inundation or exposure to the plants. Discharge from the marsh would be controlled seasonally by means of weir boards into a poly-lined ditch that can then lead directly to an open system such as a natural marsh, open bay, or lead to a culvert pipe that drains into the natural system. An elevated culvert pipe minimizes tidal inundation of bay waters into the drainage system that could lead to colonization of encrusting organisms in the culvert such as barnacles and oysters. Environmental Protection Agency (EPA) permitting requirements for operating a fish hatchery are detailed in 4 C.F.R. 122, in Sections 1(b)(2)(ii), 24, and Appendix C. Hatcheries producing less than 100,000 pounds of warm-water species per year, as would be the case with the proposed facility, are exempt from obtaining a National Pollutants Discharge Elimination System permit. The hatchery project would be required to obtain an Industrial Wastewater Permit from FDEP. An Aquaculture Certification (Section 597.004, Florida Statute [FS]) would also be required from the Florida Department of Agriculture and Consumer Services (FDACS) Division of Aquaculture. Development of the hatchery project would adhere to the FDACS Aquaculture Best Management Practices Rule (Chapter 5L-3, Fla. Admin. Code).

Permitting and construction to complete these hatchery elements would take place over approximately 12 to 18 months. Heavy equipment (e.g., excavators, backhoes, graders) would be needed to clean, excavate, and develop the site. Additional equipment (e.g., lifts, cranes) would be used in the construction of the building and the aquaculture facilities. Assumed equipment use and manpower requirements derived from the conceptual design phase are detailed in Table 12-46.
Table 12-46. Assumed equipment use and worker needs.

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>NO. USED</th>
<th>NO. OF DAYS USED</th>
<th>NO. OF WORKER DAYS</th>
<th>ASSUMPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cranes (pile driving and lifting)</td>
<td>2</td>
<td>180</td>
<td>360</td>
<td>8 hr/day, 5 days/week, 9 months</td>
</tr>
<tr>
<td>Front-end loader</td>
<td>2</td>
<td>120</td>
<td>240</td>
<td>8 hr/day, 5 days/week, 6 months</td>
</tr>
<tr>
<td>Backhoe</td>
<td>1</td>
<td>60</td>
<td>60</td>
<td>8 hr/day, 5 days/week, 3 months</td>
</tr>
<tr>
<td>Triple axel dump trucks</td>
<td>6</td>
<td>75</td>
<td>450</td>
<td>75 trips</td>
</tr>
<tr>
<td>Motorgrader</td>
<td>1</td>
<td>20</td>
<td>20</td>
<td>8 hr/day, 5 days/week, 1 month</td>
</tr>
<tr>
<td>Bulldozer (D-7)</td>
<td>1</td>
<td>60</td>
<td>60</td>
<td>8 hr/day, 5 days/week, 3 months</td>
</tr>
<tr>
<td>Portable pump (dewatering system)</td>
<td>1</td>
<td>56</td>
<td>56</td>
<td>24 hr/day, 7 days/week, 2 months</td>
</tr>
<tr>
<td>Tractor trailer (material delivery)</td>
<td>1</td>
<td>104</td>
<td>104</td>
<td>2 trips/week, 12 months (52 weeks)</td>
</tr>
<tr>
<td>Concrete trucks</td>
<td>4</td>
<td>128</td>
<td>512</td>
<td>2 trips/week, 4 months (16 weeks)</td>
</tr>
<tr>
<td>Generator</td>
<td>2</td>
<td>180</td>
<td>N/A</td>
<td>8 hr/day, 5 days/week, 9 months</td>
</tr>
<tr>
<td>Small power tools (saws, drills, nail guns)</td>
<td>26</td>
<td>180</td>
<td>50 skilled/semi-skilled</td>
<td>8 hr/day, 5 days/week, 9 months</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>-</td>
<td>-</td>
<td><strong>1,912</strong></td>
<td>-</td>
</tr>
</tbody>
</table>

At least 26 small tools (e.g., nail guns, saws, drills) would be needed and would be operated approximately 8 hours per day, 5 days per week, for up to 9 months. A generator would be needed to power the small tools, which would operate for about 8 hours per day, 5 days per week, for up to 9 months. In addition, a pumping station would operate intermittently during the final phases of constructing the facility, and once the facility is running would be operating 24 hours a day for the life of the facility, with the exception of maintenance and other potential shutdowns.

12.21.4 Operations and Maintenance

The proposed hatchery would be operated and maintained by a team of 9 to 15 staff to support the production and release of up to five million marine sport fish (juvenile red snapper, red drum, and spotted sea trout) annually into Florida waters of the Gulf of Mexico. The production of sport fish would be conducted in a manner consistent with the relevant rules and best management practices (BMPs) that have been developed for the release of marine organisms in the state of Florida (FWC 2009a, 2009b, 2009c). These rules and guidance describe conditions under which marine organisms may be collected, as well as considerations to be addressed prior to the release of any marine organisms into the environment (e.g., genetic risk from the release). FDACS regulates aquaculture operations and enforces compliance with relevant regulations. FWC has had a long-term, productive working relationship with FDACS in regard to operations at the current hatchery at Port Manatee, including permitting of effluent discharge according to state aquaculture guidelines. FWC has authority derived from the state constitution to conduct the types of operations associated with the proposed hatchery.

Production of reared fish would take place indoors at the hatchery, rather than in outdoor holding and rearing ponds common to similar facilities. Hatchery fish production would be based on the use of intensive (i.e., indoor, tank-based) recirculating aquaculture systems that reduce water usage and effluent discharge (i.e., most of the water is reused). Effluent would flow through a small constructed filtration marsh composed of native coastal wetland plant species to recycle nutrients from the
aquaculture facility as plant biomass, which can be used to support ongoing regional coastal habitat restoration efforts.

Successful production of fish and hatchery operations would require three general activities:

- Collection of brood stock;
- Rearing of captive spawned sport fish from brood stock eggs; and
- Release of hatchery fish to marine environments.

These steps are further described below.

12.21.4.1 Collection of Brood Stock
Brood stock (adult male and female fish of the targeted species) would be collected from Florida’s state waters under existing research and species collection permits held by FWC. Generally, these adult fish would be collected using standard fishing gear (e.g., baited lines, nets). Once collected, the adult fish would be transported to the hatchery and transferred to the brood stock room tanks. Spawning of these fish would be stimulated by adjusting environmental cues (e.g., day length, water temperature) to simulate natural spawning cycles.

12.21.4.2 Rearing of Captive Spawned Sport Fish
Fertilized eggs in the brood stock tank would be buoyant which facilitates collection from the water surface of the tanks. This collection technique has been used successfully for more than 25 years at SERF and would be modified as needed, based on site-specific conditions at the proposed hatchery. The fertilized eggs would be transferred to incubation chambers and maintained until their yolk sacs are absorbed. At that time they would be transferred to incubation chambers and maintained until their yolk sacs are absorbed. At that time they would be transferred to phase 1 grow-out tanks.

In the grow-out tanks, the fish would be raised on a diet of live feed, phytoplankton and/or zooplankton, which would be produced on-site in the separate live feed room. Growth of hatchery fish would be monitored and graded by size. Fish would be transferred over time to a series of tanks to minimize cannibalism until they reach the desired size for release. The goal for the phase 1 size is approximately 1.25 inches. When the fish reach this size, they would be collected from the tanks and transported by truck and/or boat to release sites identified by FWC staff. These sites would be located in suitable habitat for juvenile fish such as seagrass beds located throughout the northern Gulf of Mexico.

12.21.4.3 Seawater Management
Seawater pumped to the facility would be treated prior to use. The seawater treatment may include disinfection, either through chlorine or ozone, a settling tank to remove suspended solids, mechanical filtration, and a water distribution system (valves and plumbing) to direct water to specific areas of the hatchery.

Water that is not reused would be treated in two phases. The first phase would consist of on-site filtration to remove large solids. The solids would be disposed of by Emerald Coast Utilities Authority. Next, the water would flow to the storage pond to allow the settling of additional solids. The remaining effluent would be transported to the plant production pond or filtration marsh where nutrients would be removed by native plants before the water is returned as sheet flow back to Pensacola Bay.
The marsh or wetland would be designed to distribute water equally to the marsh wetland plants to facilitate uniform growth of plants and nutrient uptake by the plants from the waste stream. Several species would be planted in the marsh at strategic elevations to provide the appropriate water inundation or exposure to the plants. The marsh would serve the additional purpose of supplying wetland plants for restoration projects.

12.21.4.4 Additional Operation Considerations
Additional operational guidelines and programs for the facility would be developed, implemented, and refined over time as needed and based on the FWC’s more than 25 years of experience operating the SERF hatchery in Port Manatee. For example, SERF has a power outage protocol that could be reviewed for relevance and then adopted or modified as needed for the proposed hatchery.

12.21.4.5 Maintenance
The project proposal provides for 5 years of Trustee operation and maintenance, which would provide for regular facility maintenance and repair (electrical, plumbing, physical facility, etc.) as well as periodic maintenance and repair of aquaculture systems (including tanks, filtration systems, and specialized instrumentation). After 5 years, upkeep and repair of facility buildings as well as maintenance of stormwater and effluent retention ponds and filtration marsh would be provided by FWC and its governmental, university, or non-profit partners.

A hatchery maintenance plan would be developed that provides specific plans for short- and long-term equipment inspection, repair, and replacement. Short-term maintenance would include regular facility upkeep (e.g., cleaning) and periodic inspection and repair of aquaculture systems including tanks, filtration systems, specialized instruments, and basic facility systems (e.g., electrical, plumbing). Long-term maintenance would include provisions for upkeep and repair of facility buildings, stormwater pond, storage pond, and the plant production pond or filtration marsh to ensure effective productivity.

12.21.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental effects of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected resources and environmental consequences of the project.

12.21.5.1 No action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.21.5.2 Physical Environment
The proposed location for the hatchery is a roughly 10-acre, human-made parcel that was created in the early 1900s by filling in a portion of Pensacola Bay. Although currently vacant, the site has a history of documented industrial activity since 1910 (Wetland Sciences, Inc. 2013). The site is currently
characterized as “highly disturbed” and extensively covered with construction debris. Three remnant patches containing native and exotic vegetation are present in the hatchery project area, which is bordered by wetland mitigation areas (Wetland Sciences, Inc. 2013).

12.21.5.2.1 Geology and Substrates

Affected Resources

The soil and substrate at the proposed hatchery site have not been surveyed. According to the Natural Resources Conservation Service (2013), local soils are characterized as Lakeland-Hurricane Complex. However, the upland hatchery project area was created by filling in historically coastal areas, which may have been altered over time by industrial activity. The following description assumes local soils were used as fill.

The Lakeland-Hurricane Complex are nearly level to moderately sloping, excessively drained, and somewhat poorly drained soils that are sandy throughout on coastal lowlands. This map unit consists of soils on broad, low ridges in the southern part of the county, primarily in and around the city of Pensacola. The landscape consists of long, smooth slopes and has little relief. Slopes range from 0% to 8%.

Environmental Consequences

Development of the hatchery project would significantly disturb the soils where excavation and regrading for the hatchery building, parking lot, and associated ponds and treatment marsh (see Figure 12-43) is necessary. The hatchery project would result in major, long-term impacts to soils where development occurs. However, since the area was historically filled from off-site soils, it is unclear whether disturbance is occurring to native soils.

12.21.5.2.2 Hydrology and Water Quality

Affected Resources

Northwest Florida has seven major watersheds, all of which have been identified as priorities under the Surface Water Improvement and Management (SWIM) program. Water quality protection is the underlying goal of SWIM, along with the preservation and restoration of natural systems and associated public uses and benefits (Northwest Florida Water Management District [NFWMD] 2011). The hatchery project is located in the Pensacola Bay watershed system, which includes Pensacola, Escambia, Blackwater, and East Bays; the western portion of Santa Rosa Sound; and numerous rivers and bayous. The total drainage area covers nearly 7,000 square miles, about 34% of which is in Florida. The entire system discharges into the Gulf of Mexico, primarily through a narrow pass at the mouth of Pensacola Bay (NFWMD 2013). Broad issues for the Pensacola Bay system include water and sediment quality degradation through point and nonpoint pollution sources; habitat quality, which is threatened by and degraded through sedimentation and deposition; and management and coordination between two states and numerous local governments and agencies (Thorpe et al. 1997).

With regard to groundwater, the principal water-bearing aquifers are the Surficial Aquifer System (which includes the Sand and Gravel Aquifer) and the Floridian Aquifer System. The Sand and Gravel Aquifer supplies most of the public water supply in Escambia County (NFWMD 2011). Based on Federal Emergency Management Agency (FEMA) flood insurance rate maps (see Panel 12033CO390G), the
The hatchery project is located in the coastal area located in Zone AE. Zone AE has defined base flood elevations and is an area of special flood hazard (FEMA 2006).

The presence of concrete and other debris, combined with an assumption of poorly drained soils, would result in surface water flow across the hatchery project area. It is likely that discharge from the site occurs into the adjacent wetland mitigation sites on the eastern and southwestern boundaries of the property (Wetland Sciences, Inc. 2013). These marshes would improve the quality of surface water runoff from the hatchery project site before flow reaches the bay. The property is surrounded by developed land, including a major road, refinery or storage facility, commercial buildings, a former Emerald Coast Utilities Authority wastewater treatment plant, and a recently built ball field and facility. These impermeable surfaces would not facilitate infiltration and aquifer recharge, but would encourage surface runoff.

**Environmental Consequences**

Hydrology of the project site would be affected by the development of the hatchery facility. In the short term, particularly during the period of intensive excavation and grading, there is the potential for increased sediment transport off the construction site during storm events. Incorporation of BMPs for construction (e.g., silt fencing, hay baling sensitive areas) would ensure that these potentially adverse water quality impacts are minimized. Current surface water flows and subsequent discharges to Pensacola Bay are not controlled or actively managed. The development of the stormwater retention area in conjunction with the hatchery development would result in implementation of a coordinated, engineered approach for managing the quality of stormwater, or freshwater flows, or both, and prevent discharge of pollutants into Pensacola Bay.

SERF’s success with capturing and controlling surface water flows and improving water quality sets the precedent for the development of a similar system for the proposed hatchery. Monitoring associated with the SERF industrial wastewater permit improved water quality, resulting in a determination letter from FDEP that the permit was no longer required. Based on this experience and the opportunity to incorporate similar methods and technology, the hatchery project should result in no long-term degradation of water quality. Given the current potential for uncontrolled runoff to the bay, the hatchery project is likely to have short- and long-term benefits to water quality by ensuring discharge to the bay meets strict water-quality criteria for nutrients and other impurities as required by an industrial wastewater permit.

Construction of the stormwater system would ensure that the hatchery project would not affect the performance of the existing wetland mitigation areas. Water quality monitoring would be required by the industrial wastewater permit to ensure there is no water quality impairment resulting from discharges into the bay. All permit conditions, including mitigation measures for siltation, erosion, turbidity, and release of chemicals, would be strictly adhered to. During construction, BMPs along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts. FDEP permit conditions require erosion and turbidity mitigation measures, which include:

- Installation of floating turbidity barriers;
- Installation of erosion control measures along the perimeter of all work areas;
- Stabilization of all filled areas with sod, mats, barriers, or a combination; and
• Stoppage of work if turbidity thresholds are exceeded. The soils would then be stabilized, work procedures would be modified, and the FDEP would be notified.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (USACE) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the USACE and final authorization pursuant to CWA/RHA will be completed prior to project implementation.

There is the potential for short-term, minor adverse impacts to water quality associated with construction activities but these would be minimized by using BMPs. Over the long term, water quality of flows on the site and the saltwater discharges used in production would likely result in a minor benefit with the development of the hatchery.

12.21.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
The Clean Air Act (CAA) requires the EPA to set National Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to public health and the environment. NAAQS have been set for six common air pollutants (also known as criteria pollutants)—particle pollution or particulate matter, ozone, carbon monoxide, sulfur dioxide (SO₂), nitrogen dioxide, and lead. Particulate matter is defined as fine particulates with a diameter of 10 micrometers or less (PM₁₀) and fine particulates with a diameter of 2.5 micrometers or less (PM₂.₅). When a designated air quality area or airshed in a state exceeds a NAAQS, that area may be designated as a nonattainment area. Areas with levels of pollutants below the health-based standard are designated as attainment areas. To determine whether an area meets the NAAQS, air monitoring networks have been established and are used to measure ambient air quality. The EPA also regulates 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health impacts.

Air quality in the Florida panhandle is in attainment with the NAAQS (EPA 2013a). The FDEP operates two monitors in Escambia County. The Ellyson Industrial Park monitor in Ferry Pass records ozone, PM₂.₅, and SO₂ concentrations. The Naval Air Station monitor records ozone concentrations. Readings at both monitors for the last 3 years show attainment with the NAAQS for ozone and SO₂ (FDEP 2013b). PM₂.₅ attainment data were not available (EPA 2013a).

Total greenhouse gas (GHG) emissions in the state of Florida from 1990 to 2007 have increased at an average rate of 2.1% per year. Total GHG emissions in 2007 were 290 million metric tons of carbon dioxide (CO₂) equivalent (MMTCO₂E). In 2007, 91% of GHG emissions in Florida were CO₂ emissions (FDEP 2010). According to the EPA, the average annual temperature in the southeast portion of the United States has increased by approximately 2.0 degrees Fahrenheit (°F) since 1970. Average annual temperatures in the region are projected to increase from 4°F to 9°F by 2080. Hurricane-related rainfall is projected to continue to increase. Models suggest that rainfall would arrive in heavier downpours with increased dry periods between storms. These changes would increase the risk of both flooding and drought. The coasts would likely experience stronger hurricanes and sea level rise. Storm surge could present problems for coastal communities and ecosystems (EPA 2013b).
Environmental Consequences
Project construction would require the use of heavy mechanized equipment, which would lead to temporary air pollution (e.g., criteria pollutants, HAPs, GHGs) due to emissions from the operation of construction vehicles and equipment. Any air quality impacts that occur would be minor due their localized nature, short-term duration, and the small size of the hatchery project. Available BMPs would be employed to prevent, mitigate, and control potential air pollutants during project implementation. No air quality–related permits would be required.

Construction of the hatchery would require use of equipment that would contribute to air quality emissions and GHGs such as CO2. Due to the small area, the exhaust emissions are expected to be minor, with bulldozer, backhoe, and grader being the most likely equipment used to prepare the site to be developed. Any air quality degradation would be very limited to the area immediately around the construction site and would only last during the site preparation period—expected to be less than 6 months. Table 12-47 describes the likely GHG emission scenario for the implementation of this hatchery project.

Table 12-47. Projected greenhouse gas impacts of the proposed project for major construction equipment.

<table>
<thead>
<tr>
<th>EQUIPMENT DESCRIPTION</th>
<th>TOTAL HOURS USED</th>
<th>CO2 FACTOR-MT/100 HRS</th>
<th>CO2 (MT)</th>
<th>CH4 FACTOR-MT/100 HRS</th>
<th>CH4 (MT)</th>
<th>N2O FACTOR-MT/100 HRS</th>
<th>N2O (MT)</th>
<th>TOTAL CO2 (MT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triple axel dump trucks</td>
<td>300</td>
<td>1.7</td>
<td>5.1</td>
<td>0.5</td>
<td>1.5</td>
<td>7.2</td>
<td>21.6</td>
<td>28.2</td>
</tr>
<tr>
<td>Concrete trucks</td>
<td>512</td>
<td>1.7</td>
<td>8.7</td>
<td>0.5</td>
<td>2.6</td>
<td>7.2</td>
<td>36.9</td>
<td>48.1</td>
</tr>
<tr>
<td>Tractor trailer</td>
<td>416</td>
<td>1.25</td>
<td>5.2</td>
<td>0.4</td>
<td>1.7</td>
<td>5.5</td>
<td>22.9</td>
<td>29.7</td>
</tr>
<tr>
<td>Pickup trucks</td>
<td>7,200</td>
<td>1.1</td>
<td>79.2</td>
<td>0.35</td>
<td>25.2</td>
<td>4.4</td>
<td>316.8</td>
<td>421.2</td>
</tr>
<tr>
<td>Motorgrader</td>
<td>160</td>
<td>2.25</td>
<td>3.6</td>
<td>0.65</td>
<td>1.0</td>
<td>1.08</td>
<td>1.7</td>
<td>6.4</td>
</tr>
<tr>
<td>Backhoe</td>
<td>480</td>
<td>2.55</td>
<td>12.2</td>
<td>0.85</td>
<td>4.1</td>
<td>10.2</td>
<td>49.0</td>
<td>65.3</td>
</tr>
<tr>
<td>Bulldozer</td>
<td>480</td>
<td>2.25</td>
<td>10.8</td>
<td>0.65</td>
<td>3.1</td>
<td>1.08</td>
<td>5.2</td>
<td>19.1</td>
</tr>
<tr>
<td>Front-end loader</td>
<td>960</td>
<td>2.25</td>
<td>21.6</td>
<td>0.65</td>
<td>6.2</td>
<td>1.08</td>
<td>10.4</td>
<td>38.2</td>
</tr>
<tr>
<td>Cranes</td>
<td>1,440</td>
<td>2.55</td>
<td>36.7</td>
<td>0.85</td>
<td>12.2</td>
<td>10.2</td>
<td>146.9</td>
<td>195.8</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>11,948</strong></td>
<td><strong>2.55</strong></td>
<td><strong>36.7</strong></td>
<td><strong>0.85</strong></td>
<td><strong>12.2</strong></td>
<td><strong>10.2</strong></td>
<td><strong>146.9</strong></td>
<td><strong>195.8</strong></td>
</tr>
</tbody>
</table>

*mt = metric tons
*CH4 = methane
*N2O = nitrogen dioxide

Based on the assumptions detailed in Table 12-46 and calculations shown in Table 12-47, the project would generate approximately 852 metric tons of GHGs over the duration of the project. The following mitigation measures have been identified to reduce or eliminate GHG emissions from the project.

- Shut down idling construction equipment, if feasible.
- Locate staging areas as close to construction sites as practicable to minimize driving distances between staging areas and construction sites.
- Encourage the use of the proper size of equipment for the job to maximize energy efficiency.
- Encourage the use of alternative fuels for generators at construction sites, such as propane or solar, or use electrical power where practicable.
The project would have short-term, minor impacts but no long-term impacts on GHG emissions. Mitigation measures would minimize GHG emissions.

Air quality in the hatchery project area may also be affected by dust associated with construction. However, incorporating BMPs (e.g., wetting to control fugitive dust, limited idling) during construction would help mitigate these impacts. These BMPs would be incorporated in construction permits. Long-term air quality impacts from the hatchery operation are expected to be minor. The integration of energy efficient equipment and a facility design and construction focused on the use of green technologies (for instance, those incorporated as part of LEED or similar certification) would offset any short-term, minor contributions of GHGs. Energy efficiency would help minimize the hatchery’s net electricity consumption and thereby help minimize emissions of GHGs associated with the electricity used to operate the facility. At the same time, the development of vegetated areas, particularly the plant production pond or filtration marsh, would increase on-site vegetative production and act as a potential minor carbon sink.

12.21.5.2.4 Noise

Affected Resources
Noise can be defined as unwanted or nuisance sound. The Noise Control Act of 1972 (42 USC 4901 to 4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. Amplitude is the magnitude of a sound and is usually expressed in decibels (dB), which is a dimensionless ratio of sound pressure to a reference pressure. The A-weighted decibel (dBA) is the adjusted unit of sound used to describe the human response to noise from industrial and transportation sources. The threshold of hearing is 0 dB. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-48 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.

The hatchery project site is surrounded by a developed, industrial urban environment with a heavily used roadway immediately to the north. A baseball stadium located approximately 0.5 mile west of the project site appears to be the major recreation site in the area. Given the location, the road likely receives considerable industrial traffic including large trucks and periodic heavy pedestrian traffic due to the baseball facility. No residential properties are located in the vicinity. No sensitive wilderness areas or special wildlife use areas are located near the project site.
Table 12-48. Typical noise levels for common sources.

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (DBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawn mower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Adapted from U.S. Department of Energy and Bonneville Power Administration (1986)

**Environmental Consequences**

Construction activities, including use of heavy equipment such as graders and backhoes and smaller handheld tools such as saws and nail guns, would cause an increase in noise during the day for the duration of construction. Standard state contract provisions include restricting work to weekdays, normally from 7 a.m. to 7 p.m., unless in a hospital or strictly residential area. Contractors are normally not allowed to work outside these limits unless it is for safety, traffic, or highly restricted schedules, and then it must be by permission. In addition, state contracts require that all equipment used on-site must be properly muffled and in good repair. As a result, short-term noise impacts are expected to be minor, but would impact at least one local business, Nick’s Boathouse, a restaurant at the adjacent marina, less than 0.25 mile to the east.

Potentially loud equipment would be during various phases of construction. Noise levels would depend on equipment being used and tasks being performed. Therefore, levels of noise would vary from low to moderate during the 12-month construction period.

In the long term, noise impacts would be minor. The main hatchery operations would occur within the building, so contribution to ambient outdoor noise levels would be negligible. Site maintenance would contribute minor and infrequent noise. Vehicle traffic would be mostly confined to staff and visitors, consisting of passenger vehicles and infrequent deliveries by truck. The building noise would consist of heating, ventilation, and air conditioning (HVAC) systems and noises associated with running the hatchery facilities. These long-term noise impacts are expected to be minor given their anticipated low volume. This minor increase in noise is unlikely to be significant amidst the nearby commercial operations and development in the area.
12.21.5.3 Biological Environment

The Gulf of Mexico is one of the nation’s most valuable ecosystems. Florida’s barrier islands, estuaries, coral reefs, beaches, seagrass meadows, coastal wetlands, and mangrove forests are world-renowned natural resources and attractions. These habitats provide a range of ecosystem services including fisheries, wildlife-related activities, food production, energy production, infrastructure protection, and recreational opportunities (Gulf Coast Ecosystem Restoration Task Force [GCERTF] 2011). According to the GCERTF (2012), continued coastal habitat loss and degradation in Gulf and estuarine environments along with overfishing has resulted in a declining trend in fish populations, which can threaten ecosystem diversity and stability through food web disruptions.

12.21.5.3.1 Living Coastal and Marine Resources

12.21.5.4 Vegetation

Affected Resources

A biological survey for the proposed hatchery property was completed in August 2013 (Wetland Sciences Inc., 2013). The survey report confirmed that the site was on human-made land, created in the early 1900s by placing fill in the bay. The 10-acre site is highly disturbed, and is currently covered with excess material including earth fill and limestone riprap that are stockpiled within the property. Additionally, the site is strewn with other historic debris from previous industrial land uses including creosote-treated timber, concrete pilings, concrete culverts, bricks, abandoned rail spur, and other miscellaneous debris. Three patches of semi-native habitat still existed. These areas constitute only about 1 acre and contain canopies of live oak (Quercus virginiana), laurel oak (Quercus laurifolia), and cabbage palm (Sabal palmetto), with a shrub canopy of wax myrtle (Myrica cerifera) and yaupon holly (Ilex vomitoria). A number of invasive species were also present, including Chinese tallow (Triadica sebifera) and chinaberry (Melia azedarach). In addition, the landward side of the mean high water line in the southeast portion of the site contains a fringe wetland consisting of marsh hay (Spartina patens).

The remainder of the site is dominated by species typical of disturbed landscape in Florida such as lantana (Lantana camara), wetland nightshade (Solanum tampicense), and, in the wetter zones near the shoreline, torpedo grass (Panicum repens), a Category I exotic species. Also located in the project area, adjacent to the proposed construction footprint, is a human-made tidal marsh created for mitigation services.

No federally listed plant species occur in the project area and due to the disturbed nature of the proposed hatchery site and their habitat requirements, it is unlikely that any state-listed plants would occur at the site. No state-listed plant species were observed during the 2013 surveys (Wetland Sciences Inc., 2013).

Environmental Consequences

Most of the project area is highly disturbed; therefore, the proposed project would have no negative impacts to vegetation in this area. Construction activities would cause some disturbance to vegetation in the site’s upland habitat. This small area contains remnant native vegetative communities and would be avoided to adhere to city ordinances regarding tree protection. Using construction BMPs to prevent erosion and sediment runoff, disturbance or degradation to these areas would be minimized. Any impacts to native vegetative communities would be short term and minor.
Hatchery development would include a 2-acre plant production and filtration marsh that would enhance the site’s vegetation by planting native wetland species, thus producing more habitat diversity than currently exists at the site. In addition, the project would have beneficial impacts to existing upland native vegetation and newly planted wetland species as a result of the removal of exotic plants at the site. The proposed project would, therefore, have a minor, long-term benefit on vegetation resources at the proposed site.

12.21.5.5 Wildlife Habitat

Affected Resources
The proposed project site is significantly disturbed, having been used as a disposal site for solid waste debris such as concrete pilings, bricks, culverts, creosote logs, and abandoned rail spur. Three small wooded areas are located on the eastern portions of the site that may provide habitat for small urban mammals and birds. Human-made tidal marshes to the south and east of the construction footprint provide habitat for marsh birds, wading birds, and possibly wintering waterfowl. In the southeast portion of the site, a small natural beachfront provides habitat to foraging shorebirds and wading birds. No bird rookeries or other nests were observed during surveys of the site.

Environmental Consequences
Common urban wildlife of the site and their respective habitat would face a short-term, minor impact during construction from noise produced by construction equipment, as well as minor, long-term impacts due to habitat loss where the hatchery facility footprint would be placed. There would be a short-term, minor impact to nearby human-made tidal marshes and beachfront habitat because wildlife using these habitats could experience disturbance during construction due to noise. The proposed project’s plant production and filtration marsh would enhance the site by producing 2 additional acres of marsh habitat in the area, resulting in a long-term, moderate beneficial impact to species that use this type of habitat.

12.21.5.6 Marine and Estuarine Fauna

Affected Resources
More than 200 species of fish and shellfish have been identified in the Pensacola Bay estuary. Common fish and shellfish species are spot (Leiostomus xanthurus), bay anchovy (Anchoa mitchilli), Atlantic croaker (Micropogonias undulates), spotted seatrout, Gulf menhaden (Brevoortia patronus), striped mullet (Mugil cephalus), blue crab (Callinectes sapidus), American oyster (Crassotrea virginica), and Penaeid shrimp (Penaeus spp.). Freshwater fish species that are tolerant of low salinities use embayments and marshes. These include largemouth bass (Micropterus salmoides) and redear sunfish (Lepomis microlophus). Four anadromous fish—gulf sturgeon, Alabama shad (Alosa alabamae), skipjack herring (Alosa hrysochloris), and striped bass (Morone saxatilis)—use the bay and its tributaries (FDEP 2004).

Environmental Consequences
No negative impacts to coastal and marine resources are expected from the development of the proposed hatchery. Assuming accurate analysis of the genetic risks (FWC 2009a), the release of Phase I hatchery fish would have a long-term benefit on estuarine and marine resources by supplementing
native populations of three fish species. The success of the hatchery releases would be determined by an ongoing comprehensive monitoring program. Specific objectives of this monitoring program would be to estimate the short- and long-term survival of stocked fish; the potential long-term impact on wild sport fish populations; and the respective contributions of hatchery fish to local fish populations and recreational catches. Methods that may be implemented as part of a multidisciplinary and integrative monitoring program to evaluate hatchery program success are described below:

1. **Hatchery Production.** Staff at the hatchery would collect and maintain a captive sport fish brood stock; produce hatchling sport fish and rear them to the appropriate size for release; mark larger fish with coded wire tags (CWT); and participate in fish releases.

2. **Fish Health.** Staff would work with a suite of qualified partners to evaluate the health of all hatchery-reared offspring before release. Post-release surveys would also be used assess the survival and health status of hatchery-reared sport fish.

3. **Fisheries-Dependent Monitoring (FDM).** Recreational anglers would be surveyed to monitor fishing effort, catch and other variables such as targeted species. Fin clips from harvested sport fish would also be obtained for genetic testing.

4. **Fisheries-Independent Monitoring (FIM).** Staff would systematically collect sport fish of all sizes from estuarine and coastal waters via stratified random sampling and directed fishing using small mesh seines, trammel nets, and hook-and-line. Fish would be scanned by an onboard detector for the presence of CWTs and fin clips, or other tissue would be collected for genetic testing. Fish collected with CWT would be retained. Other fish would be measured and released; those greater 100 millimeters (standard length) would be fin-clipped.

5. **Angler-based Fin Clip Program (FCP).** Staff would develop a volunteer-based fin-clip program to identify hatchery-released fish. Recreational anglers would be provided with kits to collect fin clips and record collection data.

6. **Radio Telemetry.** A number of larger fish would be tagged with transmitters to identify patterns of movement and habitat preferences of released fish.

### 12.21.5.7 Protected Species

**Affected Resources**

The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Escambia County, Florida²⁹. Table 12-49 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

---

²⁹ The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
Table 12-49. Potential Impacts to Species/Critical Habitats managed by USFWS.

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Indian manatee</td>
<td>The county in the project area is not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). Though manatees are not commonly known from the action area, manatees could be present in the project waters (U.S. Department of the Interior, 2011). The main risk to manatees during execution of this project would come from pier construction and operation of an in-take pipe which could result in harm or mortality.</td>
</tr>
<tr>
<td>Gulf sturgeon</td>
<td>NMFS was consulted on Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon was not considered in the consultation with the USFWS.</td>
</tr>
</tbody>
</table>

In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered

Additional information on some of these species is provided below.

**Sea Turtles and Marine Mammals**

There are five species of endangered or threatened sea turtles that may occur or have the potential to occur in the project area. These include green turtle, hawksbill turtle, Kemp’s ridley turtle, leatherback turtle, and loggerhead turtle. Sea turtles forage in the waters of the coastal Florida panhandle region and have the potential to occur in the waters where in-water work is proposed. The project site does not contain potentially suitable sea turtle nesting habitat.

The endangered West Indian manatee has the potential to occur in the project area waters. Manatees typically seek out shallow seagrass areas as preferred feeding habitat (USFWS 2010). Additionally, bottlenose dolphin (*Tursiops* spp.) populations are known to migrate into bays, estuaries, and river mouths and could be located in the proposed project area (NMFS 2013b).
**Gulf Sturgeon and Gulf Sturgeon Critical Habitat**

Gulf sturgeon are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Pearl River in Louisiana to the Suwannee River in Florida (NMFS 2009). Adult fish reside in rivers for 8 to 9 months each year and in estuarine or Gulf of Mexico waters during the 3 to 4 cooler months of each year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993).

Gulf sturgeon critical habitat was jointly designated by the NMFS and USFWS on April 18, 2003 (50 C.F.R. 226.214). The proposed project site is located within the Florida Nearshore Gulf of Mexico Critical Habitat Unit 9 – Pensacola Bay, which contains winter feeding and migration habitat for Gulf sturgeon. Critical habitat was designated based on seven primary constituent elements (PCEs) essential for its conservation, as defined in the 2003 *Federal Register*. The seven elements of critical habitat are listed below. The project site contains PCE’s 1, 5, 6, and 7.

1. Abundant food items, such as detritus, aquatic insects, worms, and/or mollusks, within riverine habitats for larval and juvenile life stages; and abundant prey items, such as amphipods, lancelets, polychaetes, gastropods, ghost shrimp, isopods, mollusks, and/or crustaceans, within estuarine and marine habitats and substrates for subadult and adult life stages;
2. Riverine spawning sites with substrates suitable for egg deposition and development, such as limestone outcrops and cut limestone banks, bedrock, large gravel or cobble beds, marl, soapstone, or hard clay;
3. Riverine aggregation areas, also referred to as resting, holding, and staging areas, used by adult, subadult, and/or juveniles, generally, but not always, located in holes below normal riverbed depths; these are believed necessary for minimizing energy expenditure during freshwater residency and possibly for osmoregulatory functions;
4. A flow regime (i.e., the magnitude, frequency, duration, seasonality, and rate-of-change of freshwater discharge over time) necessary for normal behavior, growth, and survival of all life stages in the riverine environment, including migration, breeding site selection, courtship, egg fertilization, resting, and staging, and for maintaining spawning sites in suitable condition for egg attachment, egg sheltering, resting, and larval staging;
5. Water quality, including temperature, salinity, pH, hardness, turbidity, oxygen content, and other chemical characteristics necessary for normal behavior, growth, and viability of all life stages;
6. Sediment quality, including texture and chemical characteristics, necessary for normal behavior, growth, and viability of all life stages; and
7. Safe and unobstructed migratory pathways necessary for passage within and between riverine, estuarine, and marine habitats (e.g., an unobstructed river or a dammed river that still allows for passage).

Gulf sturgeon critical habitat in the area of the proposed hatchery is shown in Figure 12-44.
Figure 12-44. Gulf Sturgeon critical habitat in the project area vicinity.
**Essential Fish Habitat**

EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as "those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity." The designation and conservation of EFH seeks to minimize adverse effects on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Table 12-50 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Florida Gulf Coast Marine Fish Hatcheries/Enhancement Center site and Pensacola Bay.

Table 12-50. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.

<table>
<thead>
<tr>
<th>EFH_Category</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Highly Migratory Species</td>
<td>Atlantic Sharpnose Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Sandbar Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Tiger Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Tiger Shark-Neonate</td>
</tr>
<tr>
<td>Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic</td>
<td>Cobia</td>
</tr>
<tr>
<td></td>
<td>King Mackerel</td>
</tr>
<tr>
<td></td>
<td>Spanish Mackerel</td>
</tr>
<tr>
<td>Gulf of Mexico Red Drum</td>
<td>Red Drum</td>
</tr>
<tr>
<td>Gulf of Mexico Shrimp</td>
<td>Brown Shrimp</td>
</tr>
<tr>
<td></td>
<td>Pink Shrimp</td>
</tr>
<tr>
<td></td>
<td>White Shrimp</td>
</tr>
<tr>
<td>Reef Fish Resources of the Gulf of Mexico</td>
<td>Almaco Jack</td>
</tr>
<tr>
<td></td>
<td>Banded Rudderfish</td>
</tr>
<tr>
<td></td>
<td>Black Grouper</td>
</tr>
<tr>
<td></td>
<td>Blackfin Snapper</td>
</tr>
<tr>
<td></td>
<td>Blueline Tilefish</td>
</tr>
<tr>
<td></td>
<td>Cubera Snapper</td>
</tr>
<tr>
<td></td>
<td>Gag</td>
</tr>
<tr>
<td></td>
<td>Goldface Tilefish</td>
</tr>
<tr>
<td></td>
<td>Gray (Mangrove) Snapper</td>
</tr>
<tr>
<td></td>
<td>Gray Triggerfish</td>
</tr>
<tr>
<td></td>
<td>Greater Amberjack</td>
</tr>
<tr>
<td></td>
<td>Hogfish</td>
</tr>
<tr>
<td>EFH_Category</td>
<td>Species</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td>Lane Snapper</td>
</tr>
<tr>
<td></td>
<td>Lesser Amberjack</td>
</tr>
<tr>
<td></td>
<td>Mutton Snapper</td>
</tr>
<tr>
<td></td>
<td>Nassau Grouper</td>
</tr>
<tr>
<td></td>
<td>Queen Snapper</td>
</tr>
<tr>
<td></td>
<td>Red Grouper</td>
</tr>
<tr>
<td></td>
<td>Red Snapper</td>
</tr>
<tr>
<td></td>
<td>Scamp</td>
</tr>
<tr>
<td></td>
<td>Silk Snapper</td>
</tr>
<tr>
<td></td>
<td>Snowy Grouper</td>
</tr>
<tr>
<td></td>
<td>Speckled Hind</td>
</tr>
<tr>
<td></td>
<td>Tilefish</td>
</tr>
<tr>
<td></td>
<td>Vermilion Snapper</td>
</tr>
<tr>
<td></td>
<td>Warsaw Grouper</td>
</tr>
<tr>
<td></td>
<td>Wenchman</td>
</tr>
<tr>
<td></td>
<td>Yellowedge Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowmouth Grouper</td>
</tr>
</tbody>
</table>

**State-Listed Birds, MBTA and BGEPA**

There are more than 400 species of migratory birds, and hundreds of thousands of individuals reside along the Gulf Coast during the winter to forage and rest, while others are present during the summer to breed. All migratory bird species are protected under the MBTA. There are numerous state of Florida–listed bird species with potential for occurrence in and around the proposed hatchery site. These include Arctic peregrine falcon (*Falco peregrinus tundrius*), least tern (*Sterna antillarum*), southeastern American kestrel (*Falco sparverius paulus*), American oystercatcher (*Haematopus palliates*), and southeastern/Cuban snowy plover (*Charadrius alexandrinus tenuirostris*). The nesting season in Florida is from February 15 to August 13. Migratory birds may be foraging and resting in terrestrial or aquatic habitats on site. However nesting is only likely by songbirds in the large trees on site (USFWS 2013a).

The annual statewide survey of known bald eagle nesting territories in Florida conducted between November and March by the FWC indicates that there are 3 eagle nests within Escambia County. Of these, one is approximately 5 miles west of the site and the other two are more than 5 miles from the site (FWC 2013c).

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-51 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential
impacts to these groups and associated habitats that could result from the implementation of this project.

Table 12-51. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Migratory birds may be foraging and resting in terrestrial or aquatic habitats on site. However the only nesting would likely would be songbird nesting in the large trees on site.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-52.

Table 12-52. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nesting songbirds</td>
<td>The large oak and pecan trees on site will be avoided during site grading and project construction.</td>
</tr>
<tr>
<td>Resting and feeding birds</td>
<td>Care will be taken to minimize noise and vibration near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity. Roosting should not be impacted because the project will occur during daylight hours only.</td>
</tr>
</tbody>
</table>

**Environmental Consequences**

The proposed project has been evaluated for potential short- and long-term impacts to state and federally protected species that may occur in and adjacent to the project area based on available suitable habitat and restoration goals. Descriptions of these evaluations are provided below.

**Protected Species**

An initial biological site survey in 2013 (Wetland Sciences, Inc., 2013) concluded that no state or federally listed species or critical habitat are present in the terrestrial habitats of the project area.

The USFWS reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On December 23, 2013 the review of potential impacts to species managed by USFWS was completed (McClain, 2013). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect West Indian manatee.

The consultation of potential impacts on protected species managed by NMFS was initiated on January 30, 2014. The Trustees’ review of the potential impacts of the project for protected species managed by NMFS determined the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the project implementation area:

- Gulf Sturgeon - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
The Trustees evaluated the potential for take of marine mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

**Essential Fish Habitat**

With the development of the seawater withdrawal structure the Trustees determined there could be habitat conversion of EFH on a limited scale. However, the Trustees also determined the hatchery development would likely improve water quality returning to Pensacola Bay relative to current conditions, thereby benefiting EFH.
On April 24, 2014 NMFS completed its evaluation of potential EFH impacts and concurred with the Trustees’ determination that the proposed project could lead to a limited habitat conversion of EFH but that the overall development of the hatchery site, including stormwater management and treatment, would likely improve water quality returning to Pensacola Bay relative to current conditions (Fay, 2014).

**State-Listed Birds, MBTA and BGEPA**

The closest known bald eagle nest is approximately 5 miles from the project site. Based on the distance from proposed project activities, nesting of the known bald eagles would not be impacted. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

12.21.5.8  **Human Uses and Socioeconomics**

12.21.5.8.1  **Socioeconomics and Environmental Justice**

**Affected Resources**

The hatchery would be developed in an urban industrial area within the city of Pensacola, Florida. The proposed hatchery project site is currently undeveloped and does not support any economic activity or human use. The area surrounding the site is industrial. No residential areas that might contain low-income or minority communities are present.

Florida is America’s most popular sport fishing destination, contributing $5 billion annually to the state’s economy (FMFEI 2013). The closures of beaches and fishing access points following the oil spill resulted in declining revenues from license and tackle sales and tourism associated with recreational fishing. Revenue from commercial fishing also declined following the Spill. According to USFWS’s Wildlife & Sport Fish Restoration Program estimates, in 2006 the recreational saltwater fisheries industry in Florida supported an estimated 54,000 jobs with an overall economic impact estimated at $5.7 billion.

Table 12-53 provides a summary of population data and characteristics of the population of Escambia County and compares it to those same measures for the population of the state as a whole.

**Table 12-53. Population characteristics for Escambia County and the State of Florida.**

<table>
<thead>
<tr>
<th>PEOPLE QUICKFACTS</th>
<th>ESCAMBIA COUNTY</th>
<th>FLORIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persons under 5 years, percent, 2012</td>
<td>6.20%</td>
<td>5.50%</td>
</tr>
<tr>
<td>Persons under 18 years, percent, 2012</td>
<td>21.10%</td>
<td>20.70%</td>
</tr>
<tr>
<td>Persons 65 years and over, percent, 2012</td>
<td>15.20%</td>
<td>18.20%</td>
</tr>
<tr>
<td>Female persons, percent, 2012</td>
<td>50.50%</td>
<td>51.10%</td>
</tr>
<tr>
<td>White alone, percent, 2012 (a)</td>
<td>70.10%</td>
<td>78.30%</td>
</tr>
<tr>
<td>Black or African American alone, percent, 2012 (a)</td>
<td>22.90%</td>
<td>16.60%</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone, percent, 2012 (a)</td>
<td>0.90%</td>
<td>0.50%</td>
</tr>
<tr>
<td>Asian alone, percent, 2012 (a)</td>
<td>2.90%</td>
<td>2.70%</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander alone, percent, 2012 (a)</td>
<td>0.20%</td>
<td>0.10%</td>
</tr>
<tr>
<td>Two or more races, percent, 2012</td>
<td>3.00%</td>
<td>1.90%</td>
</tr>
<tr>
<td>Hispanic or Latino, percent, 2012 (b)</td>
<td>5.10%</td>
<td>23.20%</td>
</tr>
<tr>
<td>White alone, not Hispanic or Latino, percent, 2012</td>
<td>66.00%</td>
<td>57.00%</td>
</tr>
<tr>
<td>Homeownership rate, 2007–2011</td>
<td>67.30%</td>
<td>69.00%</td>
</tr>
</tbody>
</table>
Environmental justice refers to the fair and equitable treatment of individuals regardless of race, ethnicity, or income level, in the development and implementation of environmental management policies and actions. In February 1994, President Clinton issued Executive Order 12898, Federal Actions to Address Environmental Justice in Minority and Low Income Populations. The objective of this executive order is to require each federal agency to “make achieving environmental justice part of its mission by identifying and addressing, as appropriate, disproportionately high and adverse human health or environmental impacts of its programs, policies, and activities on minority and low income populations.”

**Environmental Consequences**

The hatchery project would have no negative impacts on the socioeconomic status of the city and Escambia County. The proposed project would not adversely affect any low-income or minority populations.

The proposed project would create approximately 1,912 worker days of employment during construction (Table 12-47). Engineering and design work could employ 20 to 30 federal and state employees and consultants for up to 2 years. The construction crew could consist of 20 to 30 people who would be employed for a period of 9 to 18 months. Maintenance activities may employ up to 10 people for less than 6 months. Minor, short-term, beneficial impacts would occur from increased employment during project construction.

Minor, beneficial economic impacts would accrue to local restaurants and hospitality providers. Operation of the hatchery would result in the hiring of 9 to 15 additional FWC staff. Additional benefits to the local economy would occur from the purchase of local goods and services through the estimated $1 million envisioned for supporting the facility’s annual operations and maintenance budget. Local businesses would benefit from 9 to 15 additional employees and an unknown number of hatchery visitors as potential customers.

Operation of the hatchery would produce nearly 5 million juvenile fish for release in the bay. These fish would contribute to restoring a vibrant saltwater fishery to support expanded fishing interests. The resulting increase in license and tackle sales and tourism dollars would have a long-term, moderate, beneficial effect on the local and statewide economy.

The project would not create a benefit for any specific group or individual, but rather would produce benefits realized by the local community and visitors. There are no indications that the public improvements would be contrary to the goals of Executive Order 12898 or would create
disproportionate, adverse human health or environmental impacts on minority or low-income populations of the surrounding community. Therefore no environmental justice issues would be anticipated in the short term or long term.

12.21.5.8.2 Cultural Resources

Affected Resources
A review of the Florida Master Site files indicates that there are at least 14 previously recorded archaeological sites or historic standing structures located within 1 mile of the project area. These include prehistoric and historic-era sites as well as at least three shipwrecks/ballast dumps in the water surrounding the project area. Sites 8ES1963 (a nineteenth to twentieth century scatter) and 8ES2384 (a Spanish-era fort) are located in the immediate vicinity of the project area. Site 8ES1963 has no determination of eligibility for the National Register of Historic Places (NRHP); site 8ES2384 was recommended as potentially eligible for listing on the NRHP.

In addition, a beach and associated bathhouse were formally located on the site and used by African Americans during segregation in the first part of the 20th century. No existing infrastructure associated with this use remains on the site, however, the project proponents have had extensive discussion with community leaders and plan to develop educational signage documenting this historical use.

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Environmental Consequences
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.21.5.8.3 Infrastructure

Affected Resources
The proposed hatchery site is currently a vacant lot zoned for commercial use within the city of Pensacola. The site is surrounded by commercial and industrial facilities. There are no active utility connections present.

Environmental Consequences
Site development would require utility connections. Permits would be obtained and all associated use conditions would be adhered to. Utility connections are consistent with the nature of the surrounding area and would not be expected to pose service problems for the relevant utilities (e.g., electricity, wastewater, refuse). Specifically, the low volume of biological waste (i.e., fish feces, undigested food) that would be generated from the hatchery operations would be disposed of through a permitted...
wastewater service provided by Emerald Coast Utilities Authority. As a result, no adverse impact to infrastructure would be expected from the development of the hatchery.

12.21.5.8.4 Land and Marine Management

Affected Resources
The proposed hatchery project site is a vacant lot in an urban, industrial area zoned for commercial use in the city of Pensacola. The surrounding properties support industrial and commercial buildings.

Environmental Consequences
The hatchery project would not adversely affect land and marine management in the short or long term and is consistent with existing land use and regional resource management plans. Development of the hatchery would be consistent with the FWC’s existing marine fishery support goals as expressed in the FMFEI and the development of an operation supporting economic activity based on the commercial zoning of the lot.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS. The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process.

12.21.5.8.5 Aesthetics and Visual Resources

Affected Resources
The proposed site is currently a vacant lot in a developed urban area that is filled with debris. Small patches of trees provide some aesthetic value. The lot is located on Main Street and is visible to local motorists. One commercial establishment, Nick’s Boathouse, has outdoor seating, some of which may be oriented toward the project site. However, most of the tables are situated to provide customers with a view of the bay.

Environmental Consequences
Development of the hatchery would have a minor, short-term impact on aesthetics and visual resources during construction when equipment and activity may be seen by passing motorists. A minor, long-term reduction in visual and aesthetic resources is likely for motorists or customers at Nick’s Boathouse with the construction of the hatchery building. However, given the industrial atmosphere surrounding the site, it is unlikely that the aesthetic resources of motorists passing by on Main Street would be affected by the hatchery building. A minor, long-term improvement of visual resources would occur as a result of the removal of the debris currently on-site and the development of additional ponds and wetlands.

12.21.5.8.6 Tourism and Recreational Use

Affected Resources
The site does not currently support any official tourism or recreational use. The adjacent mitigation wetlands may provide bird-watching opportunities.
Environmental Consequences
The development of the hatchery would not negatively affect tourism and recreational use in the area. Some minor long-term benefit would occur through visitation to the facility. In the long term, the ultimate goal of the hatchery project is to release fish that would support recreational fishing activity in Florida. Should the hatchery be successful in supplementing saltwater fish populations, the result would be a long-term, beneficial impact to tourism by anglers who are attracted to Florida by the fishing opportunities.

FWC does not include an evaluation of how the development of the hatchery and subsequent release of hatchery fish affects recreational angling in the state as part of their monitoring program. Anecdotal evidence from the Tampa Bay fishery, which receives fish from SERF’s operations, suggests recreational anglers are aware of hatchery releases and may target their recreation to receiving waters. If the hatchery operations result in maintaining or increasing fish stocks, recreational fishing would receive a minor, long-term benefit.

12.21.5.8.7 Public Health and Safety and Shoreline Protection

Affected Resources
The site is on vacant land in a developed urban and industrial area of Pensacola, Florida. The shoreline in this section of the bay has been extensively modified by past human activity, including armoring, to protect local habitat restoration. The project would be separated from the current shoreline by existing wetland mitigation areas and future stormwater and filtration ponds.

Environmental Consequences
Project development would require use of mechanical equipment that uses oil, lubricants, and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of construction-related hazardous materials such as vehicle fuels, oil, hydraulic fluid, and other vehicle maintenance fluids and to avoid releases and spills. If a release should occur, such releases would be contained and cleaned up promptly in accordance with all applicable regulations. As a result, no impacts associated with construction-related hazardous materials would be anticipated.

The hatchery would not affect public health as long as relevant waste disposal guidelines and regulations are followed. The hatchery would be built in an upland area away from the shoreline and would not require any modifications to the shoreline. It is not clear exactly what the debris currently on the site consists of, but the presence of metals, railway timbers, and concrete could pose a health risk to the local public. Removal of this debris would have a minor, short-term beneficial effect on public health and safety. No short- or long-term negative impacts to public health and safety or shoreline protection would be expected.

12.21.6 Summary and Next Steps
The proposed Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center project would involve constructing and operating a saltwater sportfish hatchery in Pensacola, Florida. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.
NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational fishing opportunities by producing and releasing highly sought-after sportfish species. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.21.7 References


Fay, V. 2014. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for the proposed construction and operation of a saltwater sport fish hatchery in Pensacola Bay, Escambia County, Florida. March, 5.


12.22 Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle: Project Description

12.22.1 Project Summary
The proposed Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle project would involve enhancing local scallop populations in targeted areas in the Florida Panhandle. The proposed improvements include the harvesting and redistribution of naturally-occurring juvenile scallops supplemented with stocking from a commercial scallop hatchery. The total estimated cost for this project is $2,890,250.

12.22.2 Background and Project Description
The Trustees propose to use restoration methods previously developed and implemented by the Florida Fish and Wildlife Conservation Commission to enhance bay scallop (Argopecten irradians) populations in the bays of Florida’s Panhandle (see Figure 12-45 for potential project locations).

In Florida, recreational scalloping has a long cultural heritage that particularly encourages multigenerational family interaction. Recreational harvest is currently legal in the waters of the eastern panhandle through the Big Bend region (from Gulf County through Hernando County). Harvest has been closed in the western Florida Panhandle (Bay County west of the Mexico Beach Canal through Escambia County) since 2002 (commercial harvest has also been prohibited statewide since 1994).

The objective of the proposed Scallop Enhancement project is to enhance and/or increase recreational fishing opportunities by increasing scallop populations. The restoration work proposed includes enhancing local scallop populations in targeted areas through a combination of the harvest and redistribution of naturally-occurring juvenile scallops supplemented with stocking from a commercial scallop hatchery. Implementing this project would increase scallop populations in the targeted locations to self-sustaining levels that would support recreational harvests within 3-5 years in Bay County (St. Andrew Bay system) and within 10 years in Escambia and Santa Rosa Counties (Pensacola Bay / Santa Rosa Sound) and possibly Okaloosa and Walton Counties. Scallop populations in Gulf and Franklin Counties may also be targeted for enhancement if it is deemed appropriate in order to reduce the risk of population collapses in current recreationally harvested areas.

12.22.3 Evaluation Criteria
This proposed project meets the evaluation criteria for the Framework Agreement and OPA. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle project is intended to enhance and/or increase recreational fishing opportunities by increasing scallop populations. The project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses caused by the Spill and related response activities. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.
The project is technically feasible and utilizes proven techniques with established methods and documented results and can be implemented with minimal delay. Government agencies have successfully implemented similar projects in the region. The State of Florida has successfully enhanced scallop populations in other bays in the state. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Furthermore, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.22, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.22 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). This proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Sections 6d of the Framework Agreement.
Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida (http://www.deepwaterhorizonflorida.com).

In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area that deployed boom and was impacted by response and SCAT activities for the Spill.

### 12.22.4 Performance Criteria, Monitoring and Maintenance

As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational fishing opportunities by increasing the local scallop populations in targeted areas. Performance monitoring will evaluate the number of spat per unit area in newly stocked regions of Wakulla, Gulf, Franklin, Walton, Okaloosa, Santa Rosa, and Escambia counties. Specific success criteria include: increased likelihood that the scallop population density is increased to and sustained at recreational harvesting levels.

The monitoring will occur for the life of the project, which is ten years. These assessments will be conducted by FWC under established protocols. Long term maintenance activities include annual procurement of larvae and spat from a commercial shellfish hatchery and monthly harvest and rearing of naturally occurring scallop spat to supplement collapsed or transitional populations.

Recreational use on scallop areas open to harvest will be assessed using both boat counts (aerial or boat-based) and a shore-based survey of scallopers currently used by FWC. This assessment will occur at least once during the three month recreational harvesting season. The recreational use numbers will be provided to the Florida Department of Environmental Protection.

### 12.22.5 Offsets

The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $5,780,500 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.

---

For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.22.6 Cost
The total estimated cost to implement this project is $2,890,250. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for construction, monitoring, and contingencies.
12.23 Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle: Environmental Review

The purpose of this project is to enhance local bay scallop (Argopecten irradians) populations in targeted bays of Florida’s panhandle. As part of the project, scallops could be released to enhance the natural populations in Bay, Escambia, Gulf, Franklin, Okaloosa, Santa Rosa, and Walton Counties. The proposed improvements include the harvesting and redistribution of naturally occurring juvenile scallops supplemented with stocking from a commercial scallop hatchery.

12.23.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf Coast in advance of the completion of the injury assessment process. Early Restoration is not intended to and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement, the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This scallop enhancement project was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the requirements of the Oil Pollution Act (OPA), the project meets Florida criteria that Early Restoration projects occur in the eight-county panhandle area that deployed boom and was impacted by the Spill.

The Trustees propose to use restoration methods previously developed and implemented by the Florida Fish and Wildlife Conservation Commission (FWC) to enhance bay scallop populations in the bays of Florida’s panhandle.

In Florida, recreational scalloping has a long cultural heritage that particularly encourages multigenerational family interaction. Recreational harvest is currently legal in the waters of the eastern panhandle through the Big Bend region (from Gulf County through Hernando County). Harvest has been closed in the western Florida panhandle (Bay County west of the Mexico Beach Canal through Escambia County) since 2002 (commercial harvest has also been prohibited statewide since 1994).

The objective of the proposed Scallop Enhancement project is to enhance and/or increase recreational fishing opportunities by increasing scallop populations.
Implementing this project would increase scallop populations in the targeted locations to self-sustaining levels that would support recreational harvests within 3–5 years in Bay County (St. Andrew Bay system) and within 10 years in Escambia and Santa Rosa Counties (Pensacola Bay/Santa Rosa Sound) and possibly Okaloosa and Walton Counties. Scallop populations in Gulf and Franklin Counties may also be targeted for enhancement if such is deemed appropriate to reduce the risk of population collapses in current recreationally harvested areas.

12.23.2 Project Location
Scallop enhancement actions would be completed in state waters of Escambia, Santa Rosa, Okaloosa, Bay, Gulf, and Franklin Counties. Waterbodies where scallop enhancement activities are planned include Big Lagoon; Santa Rosa Sound, including portions of Fort Pickens Aquatic Preserve; Choctawhatchee Sound (if appropriate habitat can be located); St. Andrews Bay system, including portions of St. Andrews Aquatic Preserve; St. Joseph Bay, including portions of St. Joseph Bay Aquatic Preserve; and coastal Gulf of Mexico, including a portion of Alligator Harbor Aquatic Preserve. The scallop enhancement activities would target any appropriate seagrass habitat where the population does not appear to be self-sustaining, as determined through monitoring activities. Figure 12-46 illustrates the areas where scallop enhancement activities are planned.
Figure 12-46. Areas where bay scallop enhancement actions are planned.
12.23.3 Construction and Installation
The proposed Scallop Enhancement project involves enhancing local scallop populations in targeted areas through a combination of the collection and redistribution of naturally-occurring juvenile scallops, potentially supplemented with the stocking of juvenile scallops obtained from a commercial scallop hatchery if not enough are collected from the environment. This approach incorporates restoration methods previously developed by the Florida Fish and Wildlife Conservation Commission (FWC) to enhance bay scallop (Argopecten irradians) populations in the bays of Florida’s Panhandle.

Specifically, the project would enhance local scallop populations in targeted areas (see Figure 12-46 for potential project locations) through a combination of the collection and redistribution of naturally-occurring juvenile scallops, referred to as spat, supplemented, if needed, with stocking from a commercial scallop hatchery. This collection and redistribution activity would take place year-round, consistent with existing scallop monitoring activities, as the timing of spawning peaks remains largely uncertain.

Figure 12-47 provides an example of a typical spat collection device being deployed. This device is typically constructed out of a collection bag with a float, to keep it near the surface, anchored to a ½ cinderblock by a length of line generally 6-12 ft long. Spat collected using this device would subsequently be released into the targeted bays from small workboats (e.g., similar in size to the one pictured in Figure 12-47) by pouring out a mixture of the spat and seawater into the receiving bay from holding containers (e.g., 5 gallon pails).

To date, with more than 20 years of experience operating these monitoring and collection devices, there is no record of species entanglement. To further reduce risks and help avoid in-water impacts to protected species, the recommendations for in-water work within the Sea Turtle and Smalltooth Sawfish Construction Conditions guidance (NOAA, 2006) would be adhered to.

![Figure 12-47. A typical spat collection device being deployed.](image-url)
Restoration activities would be ongoing more than 10 years. The amount of time spent at each individual project location would be relatively brief—lasting as long as required to release bay scallop spat and collect any necessary monitoring data—but each site would be visited regularly throughout the 10-year project period. Snorkelers and/or scuba divers would swim transects at each site to monitor scallop reestablishment.

12.23.4 Operations and Maintenance
As part of the project, monitoring would be conducted to ensure project plans and designs are correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or improve the public’s use and/or enjoyment of the natural resources by increasing the local scallop populations in targeted areas. Performance monitoring would evaluate the number of spat per unit area in newly stocked regions of the project areas. Specific success criteria include greater likelihood that the scallop population density is increased to and sustained at recreational harvesting levels.

The monitoring would occur for the life of the project, which is 10 years. These assessments would be conducted by the FWC under established protocols. Long-term maintenance activities include annual procurement of larvae and spat from a commercial shellfish hatchery, and monthly harvest and rearing of naturally occurring scallop spat to supplement collapsed or transitional populations.

Recreational use on scallop areas open to harvest would be assessed using both boat counts (aerial or boat-based) and a shore-based survey of scallopers currently used by FWC. This assessment would occur at least once during the 3-month recreational harvesting season. The recreational use numbers would be provided to the Florida Department of Environmental Protection (FDEP).

12.23.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental effects of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected resources and environmental consequences of the project.

12.23.5.1 No action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.23.5.2 Physical Environment

12.23.5.2.1 Geology and Substrates

Affected Resources
The existing geology and substrates in bay scallop enhancement areas are generally flat or gently sloping sandy/silty beaches in an estuarine system. The estuarine embayments are within the Gulf Coastal
Lowlands subdivision. The lowlands are a series of parallel terraces rising from the coast in successively higher levels (Scott 2001). They formed during the Pleistocene Epoch (Great Ice Age) when fluctuating sea levels were associated with the growth and melting of ice caps. Dunes, barrier islands, beach ridges, and other topographical features were stranded inland as seas receded. Currently, land surfaces of the lowlands are generally level and less than 100 feet above sea level. Substantial areas are less than 30 feet above sea level and are characterized by extensive wetlands.

The project area has been sculptured from an alluvial plain underlain by sand, gravel, silt, and clay. Soil surveys for the project area identified the areas for placement of the scallops as “Waters of the Gulf of Mexico,” and no soils data are provided (NRCS 2004). The natural bay shoreline is fringed by wide, shallow sand flats between 3 and 5 feet deep.

Environmental Consequences
Bay scallop enhancement would have no effect on geology or substrates in the proposed project areas because there would be no construction activities that would disturb geology or substrate. Bay scallops would be placed in areas where existing habitat conditions, including naturally occurring geologic features and substrate, are appropriate for bay scallops.

12.23.5.2.2 Hydrology and Water Quality

Affected Resources
Northwest Florida has seven major watersheds, all of which have been identified as priorities under the Surface Water Improvement and Management (SWIM) program. Water quality protection is the underlying goal of SWIM, along with the preservation and restoration of natural systems and associated public uses and benefits (Northwest Florida Water Management District [NWFWMD] 2011). The project areas are located in the following watersheds: Pensacola Bay watershed, Choctawhatchee River and Bay watershed, and St. Andrew Bay watershed.

Big Lagoon, Pensacola Bay, and western and central Santa Rosa Sound are part of the Pensacola Bay watershed system. The waterways in this system are primarily used for transportation, seafood harvesting, recreation, and waste disposal. The total drainage area covers nearly 7,000 square miles, approximately 34% of which is in Florida. The entire system discharges into the Gulf of Mexico, primarily through a narrow pass at the mouth of Pensacola Bay (NWFWMD 2013). Broad issues for the Pensacola Bay system include water and sediment quality degradation through point and nonpoint pollution sources; habitat quality, which is threatened by and degraded through sedimentation and deposition; management and coordination between two states and numerous local governments and agencies; and public education and awareness (Thorpe 1997).

Choctawhatchee Sound and eastern Santa Rosa Sound are part of the Choctawhatchee River and Bay watershed system. The total drainage area of the Choctawhatchee River and Bay watershed system covers nearly 5,350 square miles, approximately 42% of which is in Florida. East Pass, located immediately west of Destin, provides the only direct opening to the Gulf of Mexico. The bay also opens up to Santa Rosa Sound in the west and the Intracoastal Waterway in the east. The Choctawhatchee River and Bay system has long been known for its rich, diverse ecology; economic benefits; and numerous recreational opportunities. Over recent decades, however, many of the area’s water resources have been impacted by population growth, development, and wastewater disposal. Increased coastal development,
in particular, has contributed to displaced habitats; loss of wetlands; and greater amounts of stormwater runoff entering the river, bay, and their tributaries. Stormwater carries contaminants such as dirt, heavy metals, bacteria, nutrients from fertilizer and other sources, and various chemicals.

St. Andrew Bay and St. Joseph Bay are part of the St. Andrew Bay watershed system. The total drainage area of this watershed covers nearly 749,663 acres. The waterways are primarily used for transportation, seafood harvesting, recreation, and waste disposal. Broad issues for the St. Andrew Bay system include degradation through point and nonpoint pollution sources, habitat quality that is threatened by and degraded through sedimentation and deposition, and public education and awareness (Thorpe 2000).

The aquatic preserves in the project area are classified as an Outstanding Florida Water (OFW) by the State of Florida (62-302.700, Fla. Admin. Code). An OFW is a water designated worthy of special protection because of its natural attributes (e.g., excellent water quality or exceptional ecological, social, educational, or recreational value). OFWs are protected through more stringent requirements for activities requiring a permit from the FDEP or a water management district. Waters are designated OFWs to prevent the lowering of existing water quality and to preserve the exceptional features of the waterbody.

Surface waters in the project area are classified as Class II and III waters by the FDEP (FDEP 2013). Class II waters have designated uses of shellfish propagation or harvesting. Class III waters have the designated uses of fish consumption; recreation; and propagation and maintenance of a healthy, well-balanced population of fish and wildlife.

Impaired waters are waters that are too polluted or otherwise degraded to meet the water quality standards set by states, territories, or authorized tribes. Big Lagoon and St. Joseph Bay have been listed as an impaired waterbodies for mercury in fish tissue; however, total maximum daily loads (TMDLs) have not yet been adopted. Pensacola Bay has been listed as an impaired waterbody for mercury in fish tissue, dissolved oxygen, and fecal coliform; however, TMDLs have not yet been adopted. Santa Rosa Sound, Choctawhatchee Bay, and St. Andrew Bay have been listed as an impaired waterbodies for mercury in fish tissue and fecal coliform; however, TMDLs have not yet been adopted (Environmental Protection Agency [EPA] 2010).

**Wetlands**

The proposed project would take place in open water. Based on the National Wetland Inventory data, there are no wetlands identified in the project areas (USFWS 2013b).

**Floodplains**

The proposed project would take place in open-water, and therefore would not be located in a floodplain.

**Environmental Consequences**

Although unlikely, water quality would be potentially impacted during placement of the scallops from equipment leaks or spills or disturbance of sediments that result in siltation, turbidity, and the release of chemicals from sediments. If the disturbed sediments are anoxic, the biological oxygen demand in the water column could temporarily increase. With required mitigation in place, the effect on hydrology and
water quality would be measurable or detectable but small, short term, and localized. Water quality impacts would quickly become undetectable, and the area’s hydrology would be only temporarily altered during construction.

This project would not impact groundwater, wetlands, or floodplains. Should wetlands be impacted, a wetlands permit that stipulates appropriate BMPs and mitigation requirements would be necessary. The proposed project is not anticipated to require authorization by the U.S. Army Corps of Engineers (Corps) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA).

12.23.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
The Clean Air Act (CAA) requires that the Environmental Protection Agency (EPA) set National Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to public health and the environment. NAAQS have been set for six common air pollutants (also known as criteria pollutants)—particle pollution or particulate matter, ozone, carbon monoxide, sulfur dioxide (SO$_2$), nitrogen dioxide, and lead. Particulate matter is defined as fine particulates with a diameter of 10 micrometers or less (PM$_{10}$) and fine particulates with a diameter of 2.5 micrometers or less (PM$_{2.5}$). When a designated air quality area or airshed in a state exceeds the NAAQS, that area may be designated as a “nonattainment” area. Areas with levels of pollutants below the health-based standard are designated as “attainment” areas. To determine whether an area meets the NAAQS, air monitoring networks have been established and are used to measure ambient air quality. The EPA also regulates 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or have other serious health impacts. Air quality in the Florida panhandle is in attainment with the NAAQS (EPA 2013a).

Greenhouse Gases
Gases that trap heat in the air are called greenhouse gases (GHGs). The primary GHGs are carbon dioxide (CO$_2$), methane (CH$_4$), nitrous oxide (NO$_x$), and fluorinated gases. Over the past century, human activities have released large amounts of GHGs into the atmosphere, which are contributing to global warming. Global warming is defined as the ongoing rise in global average temperatures near the Earth’s surface and is known to cause changes in climate patterns.

According to the EPA, the average annual temperature in the southeast portion of the United States has increased by approximately 2.0°F (degrees Fahrenheit) since 1970. Winters, in particular, are getting warmer, and the average number of freezing days has decreased by 4 to 7 days per year since the mid-1970s. Most areas are getting wetter; autumn precipitation has increased by 30% since 1901 (EPA 2013b). In many parts of the region, the number of heavy downpours has increased. Despite the increases in fall precipitation, the area affected by moderate and severe drought has increased since the mid-1970s (EPA 2013b).

Average annual temperatures in the region are projected to increase from 4°F to 9°F by 2080. Hurricane-related rainfall is projected to continue to increase. Models suggest that rainfall would arrive in heavier downpours, with increased dry periods between storms. These changes would increase the risk of both flooding and drought. The coasts would likely experience stronger hurricanes and sea level rise. Storm surge could present problems for coastal communities and ecosystems (EPA 2013b).
Total GHG emissions in Florida from 1990 to 2007 have increased at an average rate of 2.1% per year. Total GHG emissions in 2007 were 290 million metric tons of CO$_2$ equivalent (MMTCO$_2$E). In 2007, 91% of GHG emissions in Florida were CO$_2$ emissions (FDEP 2010).

Environmental Consequences

Project implementation would require the use of outboard motors and tow vehicles, which would lead to temporary air pollution (e.g., criteria pollutants, HAPs, GHGs) due to emissions. Any air quality impacts that occur would be minor due to their localized nature, short-term duration, and the small size of the project. Available BMPs would be employed to prevent, mitigate, and control potential air pollutants during project implementation. No air quality–related permits would be required. The project area is currently in attainment with NAAQS. The proposed action would not affect the attainment status of the project area or region. A State Implementation Plan conformity determination (42 United States Code [USC] 7506 (c)) is not required because the project area is in attainment for all criteria pollutants.

Project plans have not been finalized for this project. While outboard motors and tow vehicles would be used, it is unclear what the duration of use for each type of equipment would be. The following table provides GHG emissions estimates for a variety of construction and transportation equipment types that may be used for the scallop enhancement project. Each of these emissions estimates is based on use of the heavy equipment for an 8-hour day (Table 12-54).

Table 12-54. Greenhouse gas emissions for various types of mechanized equipment.

<table>
<thead>
<tr>
<th>EQUIPMENT DESCRIPTION</th>
<th>TOTAL HOURS USED</th>
<th>CO$_2$ FACTOR- mt/100 hrs</th>
<th>CO$_2$ (mt)</th>
<th>CH$_4$ FACTOR- mt/100 hrs</th>
<th>CH$_4$ (mt)</th>
<th>N$_2$O FACTOR- mt/100 hrs</th>
<th>N$_2$O (mt)</th>
<th>TOTAL CO$_2$ (mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boat (single outboard motor)</td>
<td>3,000</td>
<td>0.65</td>
<td>19.5</td>
<td>0.02</td>
<td>0.6</td>
<td>0.26</td>
<td>7.8</td>
<td>27.9</td>
</tr>
<tr>
<td>Pickup truck$^4$</td>
<td>320</td>
<td>1.1</td>
<td>3.52</td>
<td>0.35</td>
<td>1.12</td>
<td>4.4</td>
<td>14.08</td>
<td>18.72</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>3,320</strong></td>
<td><strong>46.62</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$^*$mt = metric tons  
$^1$ Emissions assumptions for all equipment are based on 8 hours of operation.  
$^2$ CO$_2$ emissions assumptions for diesel and gasoline engines are based on EPA 2009.  
$^3$ CH$_4$ and NO$_x$ emissions assumptions and CO$_2$e calculations are based on EPA 2011.  
$^4$ Emissions assumptions for an 8-cylinder, 6.2-liter gasoline engine Ford F150 pickup are based on Department of Energy 2013 and 18 gallon (half-tank) daily fuel consumption.

Based on the assumptions described in Table 12-54 above, GHG emissions would not exceed 25,000 metric tons per year. Given the projected construction-phase GHG emissions, predicted impacts on air quality from GHG emissions would be anticipated to be minor in both the short term and the long term.
12.23.5.2.4 Noise

Affected Resources
Noise can be defined as unwanted sound and noise levels, and its impacts are interpreted in relation to impacts on nearby visitors to the recreational areas and wildlife in the project vicinity. The Noise Control Act of 1972 (42 USC 4901–4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale that approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-55 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.

Table 12-55. Common noise levels.

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawn mower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Adapted from U.S. Department of Energy and Bonneville Power Administration (1986).

Noise levels in the project area vary depending on the season, time of day, number and types of noise sources, and distance from noise sources. Existing noise in the project area is mainly from recreational boating, with occasional overhead aircraft or commercial traffic. Ambient natural sounds such as wind, waves, and wildlife also contribute to existing noise levels. Existing ambient noise levels in the project area would be generally low and predominantly result from daily boating activities.

Noise-sensitive receptors include sensitive land uses as well as individuals and/or wildlife that could be affected by changes in noise sources or levels due to the proposed project. Noise-sensitive receptors in the project vicinity include beach and park recreational use and wildlife. The shoreline of the project area supports a variety of residential and industrial developed areas, and the Gulf of Mexico supports commercial and recreational boat traffic.

Environmental Consequences
Instances of increased noise would occur during the project. Equipment and vehicles used during the implementation of the project would generate noise. Equipment noise is known to disturb fish, marine mammals, and nesting shorebirds. The noise would be temporary, and would only occur during the
placement of the scallops. Because of the temporary nature of the noise, negative impacts to the soundscape would be short term and of a level not likely to affect current user activities.

After completion of the project, the soundscape would return to pre-project levels. The potential for increased boat traffic exists in the scallop enhancement areas, which would result in a slight increase in noise levels in the vicinity. Overall, long-term noise impacts from boating and other recreational activities would remain minor.

12.23.5.3 Biological Environment

12.23.5.3.1 Living Coastal and Marine Resources

Vegetation

Affected Resources

Portions of the project areas are designated by the State of Florida as aquatic preserves for their known natural resource occurrences and regional ecological significance. Seagrass communities characterize the submerged aquatic vegetation of the three projects in aquatic preserves. In addition, the adjacent shorelines in potential project locations include a mix of saltmarsh and sandy beach habitat.

The seagrass communities of St. Joseph Bay, St. Andrew Bay, and Alligator Harbor are dominated by turtlegrass (*Thalassia testudinum*). Shoal grass (*Halodule wrightii*) and manatee grass (*Syringodium filiforme*) are interspersed in the seagrass communities, depending on the project area.

Seagrass communities are essential breeding, rearing, and feeding grounds for many important recreational and commercial fisheries as well as wildlife including the endangered West Indian manatee (*Trichechus manatus*) and various species of sea turtles.

Environmental Consequences

Project installation activities would use BMPs, including impact avoidance of existing seagrass habitat through the use of small vessels for placement of scallops. Every effort would be made to access the scallop placement sites during periods of high tide using shallow draft vessels to minimize potential adverse impacts to seagrass habitat as a result of navigation. Therefore, impacts to seagrass would be short term and minor. The project would result in minor short-term impacts to vegetation. Impacts may be detectable, but would not alter natural conditions and would be limited to localized areas.

Wildlife Habitat

Affected Resources

The aquatic preserves in the project area provide crucial nursery and forage habitat for many commercial and recreational fisheries and wildlife such as marine and estuarine invertebrates, seabirds, wading birds (herons and egrets), swimmers (cormorants and anhingas), and birds of prey that feed on juvenile and adult fish (FDEP 2008). Common seabirds include terns, gulls, skimmers, double-crested cormorant, American white pelican (*Pelecanus erythrorhynchos*), and brown pelican (*Pelecanus occidentalis*). The most common resident marsh and wading birds are great blue heron (*Ardea herodias*), little blue heron (*Egretta caerulea*), white ibis (*Eudocimus albus*), great egret (*Ardea alba*), snowy egret (*Egretta thula*), tricolored egret (*Egretta tricolor*), yellow-crowned night heron (*Nyctanassa violacea*),
and black-crowned night heron (Nycticorax nycticorax). Urban and open vacant land adjacent to the project area may serve as a refuge and staging area for many passerine birds during migration, and large concentrations of shorebirds are sometimes observed feeding in the mudflats. Protected wildlife (such as sea turtles, porpoises, and manatee, discussed in detail below) also forage on or within seagrass communities at the project sites.

**Environmental Consequences**
The proposed project would take place in open water. Open-water scallop enhancement activities would include in-water work that could disturb foraging, feeding or resting birds or other wildlife due to project activities. This would be a short-term, minor impact, and wildlife or birds would be expected to move away during the disturbance. Additionally, foraging habitat is abundant in the project areas, and the scallop enhancement activities would take place in only a small portion of these areas. Therefore, foraging birds or other wildlife would not be impacted as a result of scallop enhancement activities.

**Marine and Estuarine Fauna (fish, shell beds, and benthic organisms)**

**Affected Resources**
The project area provides habitat for numerous fish and other marine species. The value of marine habitats at the project site has been affected by population growth, development, and wastewater disposal. Increased coastal development, in particular, has contributed to displaced habitats, loss of wetlands, and greater amounts of stormwater runoff entering the river, bay, and their tributaries (NWFWMD 2011). Nonetheless, the marine environment at the project site provides habitat to an array of aquatic species, including ladyfish (Elops saurus), hardhead catfish (Arius felis), gafftopsail catfish (Bagræ marinus), and pigfish (Orthopristis chrysoptera), among others. Benthic organisms such as bivalves, gastropods, and other mollusks; anemones; amphipods; annelids; crustaceans; and echinoderms are also abundant in these waters (FWC 2001).

**Environmental Consequences**
The proposed project would likely result in short-term, minor impacts to fish that may be present during the in-water construction as a result of turbidity and noise disturbance during placement of the scallops. Benthic organisms that may be present in the substrate may also be impacted during scallop placement. However, these impacts would be short term and minor and would not result in a measurable impact to these species. The proposed project would result in long-term benefits to marine and estuarine fauna by providing additional fish habitat, increased benthic productivity, and enhanced recruitment and production of fish and crustaceans. Over the life of the project, the quality of the aquatic habitat would increase.

**Protected Species**

**Affected Resources**
Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).
The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Escambia, Santa Rosa, Okaloosa, Bay, Gulf, and Franklin counties, Florida where the project could be implemented. Table 12-56 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

Table 12-56. Potential Impacts to Species/Critical Habitats managed by USFWS

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
</table>
| Green turtle*, Hawksbill turtle*, Kemp’s ridley turtle; Leatherback turtle*, Loggerhead turtle | No work will occur in the terrestrial environment; therefore no impacts will occur to sea turtle species in the terrestrial environment. Consultation has been completed with NMFS, the agency that has jurisdiction to review impacts to sea turtles in the estuarine and marine environments. The main risk to sea turtles during execution of this project would come from boat collisions which could result in harm or mortality.  
Critical habitat for the green sea turtle has been designated for the waters surrounding Culebra Island, Puerto Rico, and its outlying keys (63 FR 46693). Marine and terrestrial critical habitat for the leatherback sea turtle has been designated at Sandy Point on the western end of the island of St. Croix, U.S. Virgin Islands (44 FR 17710) and critical habitat will be reassessed during the future planned status review (76 FR 47133). Critical habitat for the hawksbill sea turtle has been designated for selected beaches and/or waters of Mona, Monito, Culebrita, and Culebra Islands, Puerto Rico (63 FR 46693). No designated critical habitat for the green, leatherback, or hawksbill sea turtles occurs within the action area. No critical habitat has been designated for the Kemp’s ridley sea turtle; therefore, none will be adversely affected or modified.  
The project area does not overlap with the currently proposed critical habitat areas in Florida for Northwest Atlantic Distinct Population Segment of the loggerhead sea turtle as these habitats are terrestrial (i.e., beaches and shorelines) (78 FR 18000) Department of the Interior, 2013). In addition, the project will not result in any changes to the shoreline habitat; therefore any adjacent critical habitat will not be affected. |
| West Indian manatee                                              | The counties in the project area are not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the project waters and would potentially seek out shallow seagrass areas as they are preferred feeding habitat (U.S. Department of the Interior, 2011).  
The main risk to manatees during execution of this project would come from boat collisions which could result in harm or mortality. Based upon the implementation of the conservation measures the Trustees anticipate effect to manatees from the proposed project will be insignificant and discountable. |

31 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
### SPECIES/Critical Habitat

<table>
<thead>
<tr>
<th>Species/Critical Habitat</th>
<th>Species/Critical Habitat Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Piping plover</strong></td>
<td>The main risk to Piping plovers is from human disturbance while resting, foraging in habitats adjacent to marine work areas. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the plovers to move to a nearby area. Because other foraging/resting habitats are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable. The proposed project will not result in any changes to shoreline habitats where piping plover could be feeding or resting and is not expected to increase visitor use though existing visitors may scallop; therefore, no indirect impacts are expected. The project will not result in any changes to the shoreline habitat; therefore any adjacent critical habitat will not be affected.</td>
</tr>
<tr>
<td><strong>Red knot</strong></td>
<td>The main risk to Red knots is from human disturbance while resting, foraging in habitats adjacent to marine work areas. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the red knots to move to a nearby area. Because other foraging/resting habitats are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable. The proposed project will not result in any changes to shoreline habitats where red knot could be feeding or resting and is not expected to increase visitor use though existing visitors may scallop; therefore, no indirect impacts are expected.</td>
</tr>
<tr>
<td><strong>Gulf sturgeon</strong></td>
<td>NMFS was consulted on Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon was not considered in the consultation with the USFWS.</td>
</tr>
</tbody>
</table>

In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered
- Kemp’s Ridley Sea Turtle, *Lepidochelys kempii*, Endangered

Additional information on some of these species is provided below.

**Sea Turtles and Marine Mammals**

There are five species of endangered or threatened sea turtles that may occur or have potential to occur in the project area. These include green turtle (*Chelonia mydas*), hawksbill turtle (*Eretmochelys imbricata*), Kemp’s ridley turtle (*Lepidochelys kempii*), leatherback turtle (*Dermochelys coriacea*), and loggerhead turtle (*Caretta caretta*). Sea turtles forage in the waters of the coastal Florida panhandle region and have potential to occur in the waters where in-water work is proposed. The project site would be located in open water and therefore does not contain sea turtle nesting habitat.

Manatees could be present in project area waters and would potentially seek out shallow seagrass areas because those are preferred feeding habitat (U.S. Department of the Interior 2011). Additionally, bottlenose dolphin (*Tursiops*) populations are known to migrate into bays, estuaries, and river mouths,
and could be located in the proposed project area (NMFS 2013a). Bottlenose dolphins have been observed entering and leaving Choctawhatchee Bay and in nearshore coastal waters (NMFS 2012).

**Smalltooth Sawfish, Gulf Sturgeon, and Gulf Sturgeon Critical Habitat**

Smalltooth sawfish (*Pristis pectinata*) do not typically use northern Gulf of Mexico waters (NMFS 2013b). Gulf sturgeon are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Pearl River in Louisiana to the Suwannee River, in Florida (NMFS 2009). Adult fish reside in rivers for 8 to 9 months each year and in estuarine or Gulf of Mexico waters during the 3 to 4 cooler months of each year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993).

Gulf sturgeon critical habitat was jointly designated by the NMFS and USFWS on April 18, 2003 (50 Code of Federal Regulations [C.F.R.] 226.214). The proposed project site is located within winter feeding and migration critical habitat for Gulf sturgeon. See Figure 12-48 for a map of critical habitat in the project area. Critical habitat was designated based on seven primary constituent elements (PCEs) essential for the species’ conservation, as defined in the 2003 Federal Register. The seven elements of PCEs are listed below. Critical habitat within the project area contains PCE’s 1, 5, 6, and 7.

1. Abundant food items such as detritus, aquatic insects, worms, and/or mollusks, within riverine habitats for larval and juvenile life stages, and abundant prey items such as amphipods, lancelets, polychaetes, gastropods, ghost shrimp, isopods, mollusks, and/or crustaceans within estuarine and marine habitats and substrates for subadult and adult life stages.

2. Riverine spawning sites with substrates suitable for egg deposition and development, such as limestone outcrops and cut limestone banks, bedrock, large gravel or cobble beds, marl, soapstone, or hard clay.

3. Riverine aggregation areas, also referred to as resting, holding, and staging areas, used by adult, subadult, and/or juveniles, and generally but not always located in holes below normal riverbed depths; these are believed necessary for minimizing energy expenditure during freshwater residency and possibly for osmoregulatory functions.

4. A flow regime (i.e., the magnitude, frequency, duration, seasonality, and rate-of-change of freshwater discharge over time) necessary for normal behavior, growth, and survival of all life stages in the riverine environment, including migration, breeding site selection, courtship, egg fertilization, resting, and staging, and for maintaining spawning sites in suitable condition for egg attachment, egg sheltering, resting, and larval staging.

5. Water quality, including temperature, salinity, pH, hardness, turbidity, oxygen content, and other chemical characteristics necessary for normal behavior, growth, and viability of all life stages.

6. Sediment quality, including texture and chemical characteristics, necessary for normal behavior, growth, and viability of all life stages.

7. Safe and unobstructed migratory pathways necessary for passage within and between riverine, estuarine, and marine habitats (e.g., an unobstructed river or a dammed river that still allows for passage).
Figure 12-48. Critical habitat map.
Piping Plover
The sandy beaches and shorelines adjacent to the project area offer suitable foraging and resting habitat for the piping plover during the winter migratory season, and piping plover may forage in the shallow waters of the project area. Natural shorelines in the proposed project vicinity provide suitable winter migration resting habitat for the piping plover. Piping plover wintering habitat includes beaches, mudflats, and sandflats, as well as barrier island beaches and spoil islands (Haig 1992, as cited by USFWS 2013d). On the Gulf Coast, preferred foraging areas are associated with wider beaches, mudflats, and small inlets (USFWS 2013d).

Red Knot
The red knot, a federal proposed species, uses Florida both for wintering habitat and as a stopover habitat for those migrating down to specific wintering locations in South America (Niles et al. 2008). Wintering and migrating red knots forage along sandy beaches, tidal mudflats, salt marshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms, and roost on high sandflats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008).

Essential Fish Habitat
EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as “those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Table 12-57 provides a list of the species that NMFS manages under the federally implemented fishery management plans in the vicinity of the in St. Joseph Bay Aquatic Preserve in Gulf County, and additional potential sites in Alligator Harbor Aquatic Preserve in Franklin County, and St. Andrews Aquatic Preserve, in Bay County.

Table 12-57. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.

<table>
<thead>
<tr>
<th>EFH CATEGORY</th>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Highly Migratory Species</td>
<td>Atlantic Sharpnose Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark - Juvenile</td>
</tr>
<tr>
<td>EFH CATEGORY</td>
<td>SPECIES</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>Blacknose Shark</td>
<td>Neonate</td>
</tr>
<tr>
<td>Blacktip Shark</td>
<td>Adult</td>
</tr>
<tr>
<td>Blacktip Shark</td>
<td>Juvenile</td>
</tr>
<tr>
<td>Blacktip Shark</td>
<td>Neonate</td>
</tr>
<tr>
<td>Bonnethead Shark</td>
<td>Adult</td>
</tr>
<tr>
<td>Bonnethead Shark</td>
<td>Juvenile</td>
</tr>
<tr>
<td>Bonnethead Shark</td>
<td>Neonate</td>
</tr>
<tr>
<td>Bull Shark</td>
<td>Adult</td>
</tr>
<tr>
<td>Bull Shark</td>
<td>Juvenile</td>
</tr>
<tr>
<td>Finetooth Shark</td>
<td>Adult and Juvenile</td>
</tr>
<tr>
<td>Finetooth Shark</td>
<td>Neonate</td>
</tr>
<tr>
<td>Great Hammerhead Shark</td>
<td>All</td>
</tr>
<tr>
<td>Lemon Shark</td>
<td>Adult</td>
</tr>
<tr>
<td>Lemon Shark</td>
<td>Juvenile</td>
</tr>
<tr>
<td>Lemon Shark</td>
<td>Neonate</td>
</tr>
<tr>
<td>Nurse Shark</td>
<td>Adult</td>
</tr>
<tr>
<td>Nurse Shark</td>
<td>Juvenile</td>
</tr>
<tr>
<td>Sailfish</td>
<td>Juvenile</td>
</tr>
<tr>
<td>Sandbar - Shark</td>
<td>Adult</td>
</tr>
<tr>
<td>Sandbar - Shark</td>
<td>Neonate</td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark</td>
<td>Adult</td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark</td>
<td>Juvenile</td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark</td>
<td>Neonate</td>
</tr>
<tr>
<td>Silky Shark</td>
<td>All</td>
</tr>
<tr>
<td>Spinner Shark</td>
<td>Adult</td>
</tr>
<tr>
<td>Spinner Shark</td>
<td>Juvenile</td>
</tr>
<tr>
<td>Spinner Shark</td>
<td>Neonate</td>
</tr>
<tr>
<td>Tiger Shark</td>
<td>Juvenile</td>
</tr>
<tr>
<td>Tiger Shark</td>
<td>Neonate</td>
</tr>
</tbody>
</table>

**Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic**

<table>
<thead>
<tr>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobia</td>
</tr>
<tr>
<td>King Mackerel</td>
</tr>
<tr>
<td>Spanish Mackerel</td>
</tr>
</tbody>
</table>

**Gulf of Mexico Red Drum**

<table>
<thead>
<tr>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Drum</td>
</tr>
</tbody>
</table>

**Gulf of Mexico Shrimp**

<table>
<thead>
<tr>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown Shrimp</td>
</tr>
<tr>
<td>Pink Shrimp</td>
</tr>
<tr>
<td>Royal Red Shrimp</td>
</tr>
<tr>
<td>White Shrimp</td>
</tr>
</tbody>
</table>

**Reef Fish Resources of the Gulf of Mexico**

<table>
<thead>
<tr>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almaco Jack</td>
</tr>
<tr>
<td>EFH CATEGORY</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

**State-Listed Birds, MBTA and BGEPA**

Migratory bird species are protected under the MBTA. There are also numerous State of Florida–listed bird species with potential to occur in and around the scallop enhancement sites. These include, but are not limited to, the Arctic peregrine falcon (*Falco peregrinus tundrius*), least tern (*Sternula antillarum*), southeastern American kestrel (*Falco sparverius paulus*), Florida sandhill crane (*Grus canadensis pratensis*), American oystercatcher (*Haematopus palliates*), and southeastern/Cuban snowy plover (*Charadrius alexandrinus tenuirostris*). The nesting season in Florida is from February 15 to August 13.

The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on
large, open expanses of water for foraging habitat. According to the FWC Bald Eagle Nest Locator, bald eagles are known to nest on the shorelines surrounding some of the project sites (FWC 2012). In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities.

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-58 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

Table 12-58. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>Seabirds forage, feed, rest, and roost in the project area. As such, they may be impacted locally and temporarily by the project. It is expected that they would be able to move to another nearby location to continue foraging, feeding and resting. These birds primarily roost in the dunes. Therefore the Trustees do not anticipate impacts from the proposed project since activities are all in-water.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-59.

Table 12-59. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care will be taken to minimize noise and vibration near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity. Roosting should not be impacted because the project will occur during daylight hours only. Nesting will not be impacted activity is limited to open water areas.</td>
</tr>
</tbody>
</table>

Environmental Consequences
The proposed project has been evaluated for potential short- and long-term impacts to state and federally listed threatened and endangered species that may occur in and adjacent to the project area based on available suitable habitat and restoration goals. Descriptions of these evaluations are provided below.

Protected Species
The USFWS reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On January 23, 2014 the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may
affect, but is not likely to adversely affect West Indian manatee, piping plover, and red knot (if listed). The USFWS also concurred with the Trustees’ determination that the project will not adversely modify or destroy critical terrestrial habitat for the loggerhead sea turtle if designated and that the project would have no effect on five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead).

The Trustees’ review of the potential impacts of the project for protected species managed by NMFS determined the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the project implementation area:

- **Gulf Sturgeon** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Gulf Sturgeon Critical Habitat** – The project footprint does fall within identified Gulf sturgeon critical habitat units (9, 10, 12, and 13); however, it has been determined that project implementation will not adversely modify designated Gulf sturgeon critical habitat.
- **Smalltooth Sawfish** – The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Green Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Loggerhead Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Hawksbill Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Leatherback Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Kemp’s Ridley Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.

On April 14, 2014 NMFS completed its review and concurred with these conclusions (Crabtree, 2014).

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.
**Essential Fish Habitat**

The Trustees’ review of potential impacts to EFH in the proposed locations for the Seagrass restoration project concluded the project would not result in the creation or conversion of one EFH habitat type to another type, as Seagrass planting is proposed to occur in areas that supported Seagrass prior to propeller scarring. Disturbance to any EFH and species using the Seagrass habitat in areas adjacent to locations where scars would be restored would be minor and short in duration, with risks further mitigated by following identified best management practices during construction. No adverse impacts to other EFH types will result from the proposed restoration techniques. As a result, the Trustees concluded the project is not likely to adversely affect EFH.

On March 17, 2014 NMFS completed its evaluation of potential EFH impacts and concluded adverse impacts to EFH as a result of the proposed project would be brief and insignificant (Fay, 2014).

**State-Listed Birds, MBTA, BGEPA**

State-listed birds such as oystercatchers (*Haematopus* sp.) or least terns may nest on beaches or mudflats in the vicinity of the project area. If project activities occur during the nesting season (February 15 to August 13), these birds could be disturbed by noise generated by in-water activities. In such circumstances, FWC nesting shorebird avoidance measures will be followed. These measures generally call for surveys within 300 feet and an avoidance buffer of 300 feet for nesting birds.

In recent years, the bald eagle has been removed from the endangered species list under the ESA, though they are protected by the BGEPA. In Florida, the FWC protects the bald eagle pursuant to 68A-16, Fla. Admin. Code, and conservation measures to protect active nest sites during the nesting season must be considered to reduce potential disturbances from certain project activities.

Multiple bald eagles nests are known to occur near the shorelines of the project area (FWC 2012). Based on the distance from proposed project activities (greater than 660 feet), nesting of the known occurrence of bald eagle would not be impacted. Consultation with the FWC concerning the proposed project and anticipated implementation schedule relative to known bald eagle nest sites in the project vicinity and the nesting season in Florida (October 1 to May 15) would be required prior to commencement of restoration activities. To minimize potential for impacts to nesting bald eagles, the consultation protection measures may include 1) addressing prescribed nest tree protection zones, and 2) preparation of a bald eagle nest protection plan (including nesting behavior disturbance monitoring). Bald eagles have been known to tolerate certain potential disturbances in their breeding territories. Should these conservation measures be implemented for active nest sites adjacent to enhancement activities in the project area, potential impacts to the bald eagle would be short term and minor.

At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.
Invasive Species

Affected Resources
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within, and possible expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 3 described more about the regulations addressing invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

Environmental Consequences
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.23.5.4 Human Uses and Socioeconomics

12.23.5.4.1 Socioeconomics and Environmental Justice

Affected Resources
The following table (Table 12-60) contains population/minority data for Bay, Escambia, Santa Rosa, Okaloosa, Walton, Gulf, and Franklin Counties and Florida (U.S. Bureau of the Census 2010).

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>FLORIDA</th>
<th>BAY COUNTY</th>
<th>ESCambia COUNTY</th>
<th>SANTA ROSA COUNTY</th>
<th>OKALOOSA COUNTY</th>
<th>WALTON COUNTY</th>
<th>GULF COUNTY</th>
<th>FRANKLIN COUNTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 total population</td>
<td>18,801,310</td>
<td>168,852</td>
<td>297,619</td>
<td>151,372</td>
<td>180,822</td>
<td>55,043</td>
<td>15,863</td>
<td>11,549</td>
</tr>
<tr>
<td>White alone</td>
<td>14,109,162</td>
<td>138,731</td>
<td>204,993</td>
<td>132,920</td>
<td>146,582</td>
<td>48,351</td>
<td>12,578</td>
<td>9,540</td>
</tr>
<tr>
<td>Black or African American alone</td>
<td>2,999,862</td>
<td>18,180</td>
<td>68,282</td>
<td>8,205</td>
<td>16,797</td>
<td>3,178</td>
<td>2,962</td>
<td>1,589</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone</td>
<td>71,458</td>
<td>1,153</td>
<td>2,623</td>
<td>1,306</td>
<td>1,068</td>
<td>488</td>
<td>63</td>
<td>58</td>
</tr>
<tr>
<td>Asian alone</td>
<td>454,821</td>
<td>3,353</td>
<td>8,174</td>
<td>2,759</td>
<td>5,328</td>
<td>499</td>
<td>46</td>
<td>26</td>
</tr>
</tbody>
</table>
### Native Hawaiian and other Pacific Islander alone

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>FLORIDA</th>
<th>BAY COUNTY</th>
<th>ESCAMBIA COUNTY</th>
<th>SANTA ROSA COUNTY</th>
<th>OKALOOSA COUNTY</th>
<th>WALTON COUNTY</th>
<th>GULF COUNTY</th>
<th>FRANKLIN COUNTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native Hawaiian and other Pacific Islander alone</td>
<td>12,286 (0.1%)</td>
<td>161 (0.1%)</td>
<td>430 (0.1%)</td>
<td>217 (0.1%)</td>
<td>354 (0.2%)</td>
<td>58 (0.1%)</td>
<td>4 (0.0%)</td>
<td>7 (0.1%)</td>
</tr>
<tr>
<td>Some other race alone</td>
<td>681,144 (3.6%)</td>
<td>2,039 (1.2%)</td>
<td>3,740 (1.3%)</td>
<td>1,463 (1.0%)</td>
<td>3,592 (2.0%)</td>
<td>1,169 (2.1%)</td>
<td>119 (0.8%)</td>
<td>133 (1.2%)</td>
</tr>
<tr>
<td>Two or more races</td>
<td>472,577 (2.5%)</td>
<td>5,235 (3.1%)</td>
<td>9,377 (3.2%)</td>
<td>4,502 (3.0%)</td>
<td>7,101 (3.9%)</td>
<td>1,300 (2.4%)</td>
<td>285 (1.8%)</td>
<td>196 (1.7%)</td>
</tr>
<tr>
<td>Median household income, 2007–2011</td>
<td>$47,827</td>
<td>$48,225</td>
<td>$43,707</td>
<td>$55,913</td>
<td>$54,140</td>
<td>$46,926</td>
<td>$41,291</td>
<td>$37,017</td>
</tr>
<tr>
<td>Persons below poverty level, percent, 2007–2011</td>
<td>14.7%</td>
<td>12.4%</td>
<td>16.9%</td>
<td>10.8%</td>
<td>11.7%</td>
<td>14.9%</td>
<td>17.5%</td>
<td>24.0%</td>
</tr>
</tbody>
</table>

**Environmental Consequences**

The proposed action would not result in short-term impacts during placement of the scallops. Long-term, indirect, moderate benefits would result from increasing fisheries habitat and recreational and fishing value of the area due to the increased availability of scallop populations.

This project is not designed to create a benefit for any group or individual, but rather would provide benefits on a local and regional basis. Because the project occurs in an area that is not disproportionately minority or low income (see Table 12-60), there are no indications that the proposed project would be contrary to the goals of Executive Order 12898, or would create disproportionate, adverse human health or environmental impacts on minority or low-income populations of the surrounding community.

### 12.23.5.4.2 Cultural Resources

**Affected Resources**

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has identified the presence of two historic properties (the Perdido Key Historic District and Naval Live Oaks Reservation) within the project area.

**Environmental Consequences**

A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.
12.23.5.4.3 Land and Marine Management

Affected Resources
Bay scallop population enhancement would take place in open-water habitat in bays and nearshore Gulf of Mexico in Florida.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS. The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process.

Environmental Consequences
The project would not require a variance, zoning change, or amendment to a land-use area or comprehensive management plan. The project’s long-term impact would be minor because it would not affect overall use and management beyond the local project area. It would be consistent with current land use.

12.23.5.4.4 Tourism and Recreational Use
Tourism and recreation are common activities throughout the Florida panhandle region. Bay scallop enhancement would be completed at open-water locations throughout the panhandle, and may take place in some areas where tourism and recreation are common.

Environmental Consequences
Bay scallop population enhancement activities would have either no impact or a minor, long-term beneficial impact on tourism and recreational use. If successful, the project may provide increased opportunities for bay scallop harvesting, a popular recreational activity in Florida.

12.23.5.4.5 Aesthetics and Visual Resources

Affected Resources
Aesthetic and visual resources in bay scallop population enhancement areas are characterized by open-water nearshore habitat.

Environmental Consequences
Bay scallop population enhancement activities would have no impact on surface aesthetics, and visual resources and would not affect the viewscape or aesthetics of the surface environment because project areas are all underwater.

Bay scallop population enhancement may have a minor, long-term beneficial impact on underwater aesthetics and visual resources, particularly for snorkelers or scuba divers in or near restored areas.
12.23.5.4.6 Infrastructure

Affected Resources
Bay scallop enhancement actions would take place in open-water habitats, away from infrastructure, and would not include any activities that could affect infrastructure if it were present.

Environmental Consequences
Bay scallop population enhancement would not affect infrastructure because project work would take place in open-water habitat, away from existing infrastructure.

12.23.5.4.7 Public Health and Safety and Shoreline Protection

Affected Resources
The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act (RCRA); the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); the Emergency Planning and Community Right-to-Know Act; and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of hazardous materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

The project would be conducted at multiple open-water locations throughout the Florida panhandle. Project locations would not be situated in areas with hazardous waste generation or disposal. A review of the Environmental Protection Agency’s EnviroMapper revealed several sites located on the shorelines of the project areas (EPA 2013c).

Environmental Consequences
The project would require mechanical equipment that uses oil, lubricants, and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of construction-related hazardous materials such as vehicle fuels, oil, hydraulic fluid, and other vehicle maintenance fluids, and to avoid releases and spills.

12.23.6 Summary and Next Steps
The proposed Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle project would involve enhancing local scallop populations in targeted areas in the Florida Panhandle. The proposed improvements include the harvesting and redistribution of naturally-occurring juvenile scallops supplemented with stocking from a commercial scallop hatchery. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational fishing opportunities by increasing scallop
populations. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.23.7 References


Fay, V. 2014. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for the proposed Florida panhandle scallop enhancement project by the Florida Fish and Wildlife Conservation Commission (FWCC). March, 17.


Gulf of Mexico Fishery Management Council (GMFMC). 2005. FINAL Generic Amendment Number 3 for Addressing Essential Fish Habitat Requirements, Habitat Areas of Particular Concern, and Adverse Effects of Fishing in the following Fishery Management Plans of the Gulf of Mexico: Shrimp Fishery of the Gulf of Mexico, United States Waters; Red Drum Fishery of the Gulf of Mexico; Reef Fish Fishery of the Gulf of Mexico; Coastal Migratory Pelagic Resources (Mackerels) in the Gulf of Mexico and South Atlantic; Stone Crab Fishery of the Gulf of Mexico; Spiny Lobster in the Gulf of Mexico and South Atlantic; Coral and Coral Reefs of the Gulf of Mexico. Tampa, FL: Gulf of Mexico Fishery Management Council.


National Oceanic and Atmospheric Administration (NOAA). 2009. Amendment 1 to the Consolidated Atlantic Highly Migratory Species Fishery Management Plan Essential Fish Habitat and EIS.


**12.24 Shell Point Beach Nourishment: Project Description**

**12.24.1 Project Summary**
The proposed Shell Point Beach Nourishment project would involve the renourishment of Shell Point Beach in Wakulla County. The proposed improvements include the placement of approximately 15,000 cubic yards of sand on the county owned section of the beach from an approved upland borrow area to restore the width and historic slope/profile of this beach. The total estimated cost for this project is $882,750.

**12.24.2 Background and Project Description**
The Trustees propose to improve and enhance the beach at Shell Point in Wakulla County (see Figure 12-49 for proposed project nourishment areas). The State Legislature adopted the Florida Beach and Shore Preservation Act in 2003 (section 161.011-161.242 and section 161.25-161.45, Florida Statutes) to preserve and manage Florida’s valuable beach system. Beach nourishment, the placing of dredged sand from approved borrow areas, is one important management technique for maintaining these beach systems that is specifically endorsed as part of the suite of management actions identified in this act (section 161.091, Florida Statutes).

The objective of the proposed project is to enhance and/or increase recreational beach use opportunities by improving the county owned section of the beach. The restoration work proposed involves the placement of approximately 15,000 cubic yards of sand on the county owned section of the beach from an approved upland borrow area to restore the width and historic slope/profile of this beach. The length of beach overall, including county and privately owned lands, is approximately 1 mile, with an approximate overall area of about 4.5 acres.
Figure 12-49. Proposed Location for the Shell Point Beach Nourishment Project (county owned lands defining the project renourishment area are in green).

12.24.3 Evaluation Criteria

This proposed project meets the evaluation criteria for the Framework Agreement and OPA. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Shell Point Beach Nourishment project is intended to enhance and/or increase recreational beach use opportunities by improving the county owned section of the beach. The project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and utilizes proven techniques with established methods and documented results and can be implemented with minimal delay. Florida agencies have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Furthermore, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.
A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.24, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.24 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). This proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Shell Point Beach Nourishment project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area that deployed boom and was impacted by response and SCAT activities for the Spill.

12.24.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational beach use opportunities by improving the county owned section of the beach. Performance monitoring will evaluate the renourishment of the beach. Specific success criteria include: 1) the completion of the renourishment as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the beach is open and available.

Long-term monitoring will be completed by Wakulla County. Funding for monitoring is not included in the previously provided value for the project cost and will be accomplished by Wakulla County.

Wakulla County will monitor the recreational use activity at the site. Wakulla County will visit the site twice a year to count the number of users at the beach. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.24.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $1,765,500 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.32

---

32 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
12.24.6 Cost
The total estimated cost to implement this project is $882,750. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.25   Shell Point Beach Nourishment: Environmental Review
The proposed Shell Point Beach nourishment project includes the placement of approximately 15,000 cubic yards of sand on the county owned section of the beach from an approved upland borrow area to restore the width and historic slope/profile of this beach.

12.25.1   Introduction and Background
In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement), the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This boat ramp project was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

The Trustees propose to improve and enhance the beach at Shell Point in Wakulla County. The Florida State legislature adopted the Florida Beach and Shore Preservation Act in 2003 (section 161.011-161.242 and section 161.25-161.45, Florida Statutes) to preserve and manage Florida’s valuable beach system. Beach nourishment, the placing of dredged sand from approved borrow areas, is one important management technique for maintaining these beach systems that is specifically endorsed as part of the suite of management actions identified in this act (section 161.091, Florida Statutes). The objective of the proposed project is to enhance and/or increase recreational beach use opportunities by improving the county owned section of the beach. The restoration work proposed involves the placement of approximately 15,000 cubic yards of sand on the county owned section of the beach from an approved upland borrow area to restore the width and historic slope/profile of this beach.

The proposed project would enhance people’s beach visits, the quality and quantity of which were diminished during the Deepwater Horizon (DWH) oil spill and response operations. The project would enhance the quality of human recreational activity in the restored areas. Benefits to recreational activity would commence immediately following construction and slowly diminish over the life of the project, concurrent with expected levels of beach erosion. The proposed project is expected to cost $882,750.
This cost reflects current cost estimates developed from information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

12.25.2 Project Location
The proposed project area is identified in Figure 12-50. The project area is located at Shell Point in Wakulla County. The length of the entire beach, including county and privately owned lands, is approximately 1 mile, with an approximate total area of about 4.5 acres.

![Figure 12-50. Location of the Shell Point Beach, proposed project area is highlighted green.](image)

12.25.3 Construction and Installation
Restoration would include placement of sand along approximately 1 mile of Shell Point Beach. Sand would be removed from existing permitted and licensed commercial upland borrow site(s) in Gadsden County, Florida, using appropriate heavy equipment (e.g., dump trucks). The borrow sites are located approximately 45 miles northwest of Shell Point Beach project site. The proposed borrow sources are currently owned and operated by Roberts Sand Company and Anderson-Columbia Construction. Figure 12-51 shows the location of the borrow pits, the proposed transport route, and the location of the project site. The sand mines or borrow pits are permitted by the Florida Department of Environmental Protection (FDEP) Bureau of Mines and licensed by the Florida Department of Business and Professional Regulation.
Sand used as part of this project would comply with requirements set forth in Florida DEP (DEP Rule 62B-41.007). The rule requires that any material placed on a Florida beach “maintains the general character and functionality of the material occurring on the beach and in the adjacent dune and coastal system” (62B-41.007(2)(j)). Sand placed at Shell Point would comply with all Florida DEP regulations, and Florida DEP would be consulted to ensure that the sand source is acceptable and all guidelines are properly adhered to.

The sand would be transported by tri-axle dump trucks with a carrying capacity of 18 to 19 cubic yards. All of the trucks would transport the sand along existing paved State or County maintained highways (Figure 12-51). All roadways and bridges traversed are permitted for the weight loads of the full trucks. The majority of the route is through rural lightly populated areas of Gadsden, Leon, and Wakulla counties and the Apalachicola National Forest (Leon and Wakulla County). Total number of trips is estimated at 790, and estimated average round trip time from loading, travel, discharge, and return is 2.5 hours. All transport of materials would be during normal daylight hours.

**Figure 12-51. Location of Upland Borrow Site(s).**

Once the sand has been transported to the project site, the sand would then be placed on Shell Point Beach using bulldozers and/or frontend loaders. Best management practices (BMPs) for shoreline and beach work would be employed to ensure that natural resources are minimally disturbed during restoration activities. The berm width would range between 25 and 50 feet at a constant elevation of +4.0 feet, NAVD 1988 and be graded to the landward edge of the mean high water line at varying slopes (Figure 12-52). Based on this beach fill shape, the potential for the direct impact of sea grasses would be avoided.
After appropriate permits are issued, restoration actions would be completed within approximately 18 months (Spring 2015).

To the extent possible, on-site project activity will be scheduled for between May 15 and July 15 to minimize impacts to sensitive species such as piping plover and red knot.

Figure 12-52. Typical cross section of proposed beach nourishment.

12.25.4 Operations and Maintenance

Operation and maintenance for this project would include pre- and post-restoration monitoring and long- and short-term maintenance. Pre-restoration monitoring would focus on reconnaissance to identify tar balls at the proposed project area. Pre-restoration monitoring would also include monitoring for threatened, endangered, and special status species, both floral and faunal.

Post-restoration monitoring would evaluate renourishment of the beach. Specific success criteria include: 1) the completion of renourishment as designed and permitted; and 2) enhanced and/or increased access to natural resources, which would be determined by observation that the beach is open and available.
Long-term monitoring would be completed by Wakulla County. Funding for monitoring would not be included in the previously provided value for the project cost and would be accomplished by Wakulla County. Wakulla County would monitor the recreational use activity at the site. Wakulla County would visit the site twice a year to count the number of users at the beach. The visitation numbers would be provided to the FDEP.

Short-term maintenance activities would be conducted as required by permits (which have not yet been pursued because design plans have not been finalized).

Long-term maintenance would include adding more sand to the site as necessary.

12.25.5  Affected Environment and Environmental Consequences

12.25.5.1  No Action

Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected resources subsections would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.25.5.2  Physical Environment

12.25.5.2.1  Geology and Substrates

Affected Resources

The Apalachicola Bay coastal area is characterized by an irregular shoreline surrounded by low intertidal wetlands overlain on sand and mud substrate, and bisected by a number of tidal creeks (USACE 1965). Shell Point is a southward projecting peninsula located along the center portion of the Wakulla County and Apalachicola Bay shoreline (DEP 2006), and is surrounded by an extensive wetland system. The southern gulf front is fronted by a narrow sandy beach. A number of coastal protection structures have been constructed along the Shell Point shoreline over the recent years to slow erosion and provide a level of storm protection. A shallow broad shoal is present to the south of Shell Point with elevations of less than -3 feet, NAVD 1988.

Environmental Consequences

The proposed project provides a cleaner and more attractive shoreline for beach users and visitors. However, this alternative does not increase the beach’s ability to reduce storm damage, mitigate for current erosion trends, or provide upland protection from storm induced tidal surge. The storm surge elevation for the project area for a 10-year return interval is +8.6 feet, NAVD 1988. The typical berm elevation along this shoreline is less than +5 feet, NAVD 1988 and therefore the beach would be typically over-topped by a 10-year or greater storm event potentially causing sediment to be overwashed into upland areas. As a result, local, long-term, beneficial impacts are expected, even though a 10-year or greater storm event could potentially cause sediment to be overwashed into upland areas.
12.25.5.2.2 Hydrology and Water Quality

Affected Resources
Hydrology at Shell Point Beach is characterized by the natural beach habitat and residential development present in the uplands immediately adjacent to the beach. Water quality is similarly influenced by the adjacent residential development. Water quality may still be compromised as a result of tar that is occasionally deposited on the beach.

The Florida Department of Health’s (FDOH’s) “Florida Healthy Beaches Program” is responsible for conducting beach water sampling for enterococci and fecal coliform bacteria for 34 coastal Florida counties, including Wakulla County, and reporting the results to the public every week. Based on data collected by the Healthy Beaches Program, Shell Point Beach has experienced “good” water quality from September 2012 through September 2013 (FDOH 2013). “Good” water quality is defined as water that has between 0 and 35 colony-forming units of Enterococcus per 100 ml of water.

Environmental Consequences
Restoration of Shell Point Beach would have minimal beneficial impacts on hydrology and water quality. The project would be designed to restore natural beach habitat, reversing the impacts of erosion. All appropriate permits would be obtained and work would adhere to conditions, permit requirements, and BMPs to ensure that any potential adverse impacts are minimized. The project would not be expected to have an adverse impact on water quality because work would take place in the uplands, and no in-water work is planned. The proposed project is not anticipated to require authorization by the U.S. Army Corps of Engineers (Corps) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA).

12.25.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
Air quality at Shell Point Beach is characterized by the adjacent residential development and boat traffic in Apalachee Bay and the Gulf of Mexico. Generally, air quality in the area is good and is consistent with that developed residential area. Air quality within the Florida panhandle is in attainment with the National Ambient Air Quality Standards (USEPA 2013). To determine if an area meets the ozone standard in 2012, data from 2009, 2010 and 2011 are needed to determine an area's attainment status with the 8-hr ozone standard. If the average is higher than 75 parts per billion, the area would not meet the ozone standard. In Wakulla County, Florida, the 2012 year-to-date 3 year average is 65 parts per billion, thus meeting attainment status (FDEP 2013).

Greenhouse gases (GHGs) are chemical compounds found in the Earth’s atmosphere that absorb and trap infrared radiation as heat. Global atmospheric GHG concentrations are a product of continuous emission (release) and removal (storage) of GHGs over time. In the natural environment, this release and storage is largely cyclical. For instance, through the process of photosynthesis, plants capture atmospheric carbon as they grow and store it in the form of sugars. Human activities such as deforestation, soil disturbance, and burning of fossil fuels disrupt the natural cycle by increasing the GHG emission rate over the storage rate, which results in a net increase of GHGs in the atmosphere. The principal GHGs emitted into the atmosphere through human activities are CO2, methane, nitrous oxide,
and fluorinated gases, such as hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride (USEPA 2010). CO2 is the major GHG emitted, and the burning of fossil fuels accounts for 81 percent of all U.S. GHG emissions (USEPA 2010). Source of GHG are typical for this part of Florida with emissions from vehicles, construction, and industrial activities, in addition to natural sources.

**Environmental Consequences**

Restoration of Shell Point Beach would have a short-term, minor adverse impact on air quality and GHG emissions during construction activities. Use of heavy equipment (dump trucks and bulldozers) to place sand on the beach would result in a temporary increase in emissions contributing to the area’s air quality. However, the project would not result in a change in air quality status or exceed air quality criteria pollutant levels thereby resulting in a short term adverse impact.

The total number of trips used by dump trucks to transport the sand from the upland borrow area is estimated at 790 trips, and estimated average round trip time from loading, travel, discharge and return is 2.5 hours (resulting in 1,975 total hours). The following table (Table 12-61) provides GHG emissions estimates for dump trucks and bulldozers, which would likely be the only heavy equipment used for this project. The dump truck emission total is based on an estimated 1,975 hours of operation over the life of the project. The bulldozer emission total is based on 640 hours of operation (based on the estimation that it would take up to 4 months with a 5-day work week). A “minor impact” on air quality can be determined if the contributions to GHGs of this project are measurable, but fall below 25,000 metric ton/year of CO2 or its equivalent.

**Table 12-61. Estimated greenhouse gas emissions for equipment to be used.**

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>CO2 (METRIC TONS)</th>
<th>CH4 (CO2E) (METRIC TONS)</th>
<th>NOX (CO2E) (METRIC TONS)</th>
<th>TOTAL CO2E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dump Truck</td>
<td>83.94</td>
<td>0.05</td>
<td>0.50</td>
<td>83.94</td>
</tr>
<tr>
<td>Bulldozer</td>
<td>30.4</td>
<td>0.02</td>
<td>0.16</td>
<td>30.4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>114.34</td>
<td>0.07</td>
<td>0.66</td>
<td>114.34</td>
</tr>
</tbody>
</table>

Based on the assumptions described in Table 12-61 above, and the small scale and short duration of the construction portion of the project, predicted GHG emissions would be short-term and minor and would not exceed 25,000 metric tons per year. The impacts would be lessened over the long term as maintenance activities would be limited.

12.25.5.2.4 Noise

**Affected Resources**

The natural ambient noise level is the aggregate of all the natural sounds that occur in the Shell Point Beach area. The natural sounds occurring in the Shell Point Beach area include those generated by wind,

---

33 Emissions assumptions for all equipment based on 8 hours of operation.

34 CO₂ emissions assumptions for diesel and gasoline engines based on USEPA 2009.

35 CH₄ and NOₓ emissions assumptions and CO₂e calculations based on USEPA 2011.

36 Construction equipment emission factors based on USEPA NONROAD emission factors for 250hp pieces of equipment. Data were accessed through the California Environmental Quality Act Roadway Construction Emissions Model.
waves, and the residential community. Noise in the Shell Point Beach area also includes the sound generated by barge and boat traffic, and vehicles in the area. Overall, the existing ambient noise in the project area is consistent with a coastal residential area.

**Environmental Consequences**

Restoration of Shell Point Beach would have short-term, minor adverse impacts on noise during construction. Placing sand would require the use of heavy trucks and equipment, which would increase the amount of noise at and near the beach for the duration of restoration work. The noise associated with construction equipment would attract attention but would not dominate adjacent areas, though some user activities could be affected as a result of increased noise. Shell Point is predominantly a residential area, with some vehicle traffic noise caused by both cars and boats. The beach nourishment project would make use of heavy equipment, such as dump trucks and bulldozers, which would be nosier than vehicles that typically frequent the area. Thus, the noise caused by construction may be somewhat disruptive to beach users and nearby residents. BMPs would be followed to ensure that noise disturbance is minimized, such as only performing nourishment activities during normal daylight hours.

The project would not have long-term adverse impacts to noise because the project scope is limited to placing new sand on the beach area. Noise impacts related to maintenance would be minimal.

12.25.5.3 Biological Environment

12.25.5.3.1 Living Coastal and Marine Resources

**Affected Resources**

Shell Point Beach is a sandy beach on Apalachee Bay on the Gulf of Mexico. The upland area immediately adjacent to the beach is a residential development. The project area includes some areas of fairly common vegetation such as smooth cord grass. There are no nesting bird colonies at the site; nor are solitary birds known to nest in the area. However, wintering piping plovers, red knots, and migratory birds may occasionally visit the site to rest and forage. Additional state-listed species may also occur in the area. Sea turtles are not known to nest on this beach.

**Protected Species**

The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Wakulla County, Florida. Table 12-62 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

---

37 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
Table 12-62. Potential Impacts to Species/Critical Habitats managed by USFWS

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle, Leatherback turtle, Loggerhead turtle</td>
<td>Sea turtles are not known and have not been documented to nest on this beach; according to information available from the Florida Sea Turtle Nesting Beach Monitoring Program (see <a href="http://ocean.floridamarine.org/SeaTurtle/nesting/FlexViewer/">http://ocean.floridamarine.org/SeaTurtle/nesting/FlexViewer/</a>). Therefore no impacts to any sea turtle species are anticipated. No designated or proposed critical habitat for sea turtles occurs within the action area; therefore, none will be adversely affected or modified.</td>
</tr>
<tr>
<td>Piping plover</td>
<td>In 2009, observations of at least one piping plover were reported within or near the action area (eBird.org as of October 4, 2013). The main risk to Piping plovers is from human disturbance while resting or foraging in habitats within the action area. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the plovers to move to a nearby area and resume normal behaviors. Because other foraging/resting habitats are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable. The proposed project will bury existing shoreline habitats where piping plover could be feeding or resting. Burying of the habitat will make it temporarily unsuitable for foraging as it may take 6 months to two years for infauna prey items to return to pre-project levels. Habitat should be available for resting upon the completion of the project. Piping plover critical habitat is not designated in or near the action area.</td>
</tr>
<tr>
<td>Red knot</td>
<td>There are no documented records of red knot using the project area (eBird.org as of October 4, 2013). This likely reflects the highly manipulated nature of the habitat on this beach associated with the development of the community and the presence of nearby habitats. However, potential wintering/migration foraging and resting habitat are present in nearshore habitats (sand bars/mudflats), generally within a half mile of the project location. The main risk to Red knots is from human disturbance while resting and foraging in nearshore habitats close to work areas. The proposed project could result in short term increases in noise which could startle nearby individuals, though the Trustees would expect normal activity to resume within minutes or cause the red knots to move to a nearby area. Because other foraging/resting habitats are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable. The proposed project will not result in any changes to habitats where red knot could be feeding or resting.</td>
</tr>
</tbody>
</table>

Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Protected Resource Division (PRD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that this project falls outside of NMFS Endangered Species Act (ESA) jurisdiction, as it does not contain suitable habitat for species managed by NMFS. As a result, the project did not require further ESA evaluation from NOAA.

**Migratory Birds and Bald Eagles**

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-63 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.
Table 12-63. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds/seabirds</td>
<td>Foraging, feeding, resting</td>
<td>Shorebirds forage, feed, and rest, and in the types of habitats consistent with the project area. As such, they may be impacted locally and temporarily by the project. It is expected that they would be able to move to another nearby location to continue foraging, feeding and resting. Nesting is not known in the project area. Therefore the Trustees do not anticipate impacts.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-64.

Table 12-64. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds/sea birds</td>
<td>To avoid impacts to any foraging or resting migratory birds, the following measures will be implemented:</td>
</tr>
<tr>
<td></td>
<td>- Driving on the beach for construction shall be limited to the minimum necessary within the designated travel corridor, which will be established just above or just below the primary “wrack” line.</td>
</tr>
<tr>
<td></td>
<td>- Predator-proof trash receptacles shall be installed and maintained during construction at all beach access points used for the project construction to minimize the potential for attracting predators of migratory birds.</td>
</tr>
<tr>
<td></td>
<td>- Workers shall be briefed on the importance of not littering and keeping the project area trash and debris free.</td>
</tr>
<tr>
<td></td>
<td>- Educational signs shall be installed at public access points within the project area with emphasis on the importance of the beach habitat and wrack line for migratory birds.</td>
</tr>
<tr>
<td></td>
<td>- When the project area has a pet or dog regulation, the provisions of the regulation shall be included on the educational signs.</td>
</tr>
</tbody>
</table>

**Essential Fish Habitat**

EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as “those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse effects on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Habitat Conservation Division (HCD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that this project will not affect EFH because there is no EFH in the project area. As a result, the project did not require further EFH evaluation.
**Environmental Consequences**

**Protected Species**
The USFWS reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On February 6, 2014 the review of potential impacts to species managed by USFWS was completed (Reynolds, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect piping plover and red knot (if listed). The USFWS review also concurred with the Trustees’ determination that the proposed project would have no effect on five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead).

**Migratory Birds and Bald Eagles**
Bald eagles are not present at the project location so will not be affected. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

**Invasive Species**

**Affected Resources**
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within, and possible expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 3 described more about the regulations addressing invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

**Environmental Consequences**
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

**12.25.5.4 Human Uses and Socioeconomics**

**12.25.5.4.1 Socioeconomics and Environmental Justice**

**Affected Resources**
Wakulla County is the fourth fastest growing county in the state of Florida. Wakulla County has experienced a 60% increase in population over the past decade compared to the state’s average growth
rate of 24%. In 1990, the population of Wakulla County was approximately 14,000. The estimated population in 2002 was 24,338 and in 2004 it is estimated to be over 26,000 (Wakulla County Health Department 2004).

U.S. Census data from 2000 estimates reported 11,035 Wakulla County residents over the age of 16 employed in the labor force with 5,839 being males and 5,196 females. It is estimated that nearly two-thirds of all parents work outside the home. In 2000, Wakulla County’s unemployment rate was 3.9%, below both the state and national rate. The unemployment rate in the late 1990s was lower at 2.9%. Wakulla’s current unemployment rate is 3.4% while the national unemployment rate is 5.5% (Wakulla County Health Department 2004).

Environmental Consequences
The proposed project would be expected to have short-term, beneficial impact on socioeconomics for the project area and adjacent areas, based on a slight increase in the workforce required to perform the beach nourishment project. The exact number of persons to be employed by this project is undetermined, but would be expected to be low. Additionally, the project would be expected to have long-term beneficial impacts to socioeconomics in the region, due to expected increases in tourism to the area. With the improvements made by the proposed project, it is expected that more people will visit the area, thus directly benefiting the local economy. The proposed project would not adversely affect any low income or minority populations.

12.25.5.4.2 Cultural Resources

Affected Resources
This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Environmental Consequences
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.25.5.4.3 Infrastructure

Affected Resources
No infrastructure is present at Shell Point Beach. The upland area is a residential development with paved roads and defined lots. The total number of trips used by dump trucks to transport the sand from the upland borrow area is estimated at 790 trips. The dump trucks would travel primarily through rural lightly populated areas of Gadsden, Leon, and Wakulla counties and the Apalachicola National Forest.
Environmental Consequences
Renourishment of Shell Point Beach would not impact infrastructure associated with the project area, only natural beach areas would be restored and equipment used to complete restoration would access the site via existing roadways. There would likely be short-term minor adverse impacts related to the transport of sands to the project site, as traffic would increase, though no additional traffic delays would occur. These impacts would cease after all materials are delivered to the project area.

12.25.5.4.4 Land and Marine Management

Affected Resources
Shell Point Beach is managed by the Wakulla County Department of Parks and Recreation. The project area is zoned as a “public beach area.” Upland of the project area is a residential community, zoned as R1 – Single family residential. In addition, the Florida Beach and Shore Preservation Act guides beach management activities.

Environmental Consequences
Renourishment of Shell Point Beach is consistent with local zoning and the Florida Beach and Shore Preservation Act and would result in long-term beneficial impacts on land and marine management. Beach restoration is designed to improve the ecologic condition of the beach habitat, which would benefit biota and resource managed by public agencies. Further, the improvements to the beach are expected to improve the recreational value of the site, which would benefit Wakulla County’s management of the site.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

12.25.5.4.5 Aesthetics and Visual Resources

Affected Resources
The existing aesthetic and visual resources include the natural beach and Gulf of Mexico habitat. These resources are enjoyed by residents in the adjacent community and tourists or recreationists who visit the beach.

Environmental Consequences
Project construction activities would have short term moderate adverse impacts on associated visual resources as the presence of bulldozers and dump trucks would attract attention and would detract the experience of current users, especially those residents accustomed to the views. Nourishment of Shell Point Beach would have a long-term beneficial impact on aesthetic and visual resources at the project area. The project is designed to restore the beach habitat and would reverse damage done by erosion and sand removal following the DWH oil spill.
12.25.5.4.6 Tourism and Recreational Use
The site is currently used by local residents and tourists for recreation. Many residents access the beach from their property, and other users may access the beach from public areas. The main access to the project area is via Shell Point Road, which runs North/South perpendicular to the beach.

Environmental Consequences
Nourishment of Shell Point Beach would have a long-term beneficial impact on tourism and recreational use. Restoration of the beach would improve the recreational experience by restoring the beach to its historic condition. Users would experience short-term minor to moderate adverse impacts during the construction period, as visitors would be prohibited from entering certain areas or the project area in its entirety. However, beach nourishment would result in long-term enhanced opportunities for future use.

12.25.5.4.7 Public Health and Safety and Shoreline Protection

Affected Resources
There are no existing hazardous waste or disposal facilities at or near Shell Point Beach. The beach has been affected by the DWH oil spill, and occasionally tar balls are observed on the beach.

Environmental Consequences
Nourishment of Shell Point Beach would have no impact on public health and safety or shoreline protection. The project would replace sand that has been lost over time but cannot prevent the occurrence of tar balls that reach the beach from the Gulf of Mexico and would not otherwise change the site in a way that affects public health and safety or shoreline protection activities.

Sediment would be evaluated prior to placement. Excavation is not involved so no new contaminated areas should be uncovered during work. If areas of concern are identified during the construction they would be evaluated and the response will be determined based on any testing results and the options those results define. Once permits are issued, specific permit conditions should be included that set the sediment controls for each project such as geotechnical parameters of the sand, grain size, color spectrum, silt content.

Standard conditions in state contracts for addressing hazardous and toxic materials include:

1. All paints, solvents, chemicals and petroleum products used stored on site would be contained so that any leakage or spills that may occur do not run off into surrounding properties or waterways. All leaks or spills would be promptly cleaned up, and all absorbent materials used would be promptly removed from the site and properly disposed to an appropriate facility. Any spills would be reported to the FDEP.
2. The contractor would have sufficient number and size of waste container(s) on site for the proper disposal of all waste material generated during construction activities. The contractor would remove or have waste containers emptied and waste material disposed to a properly licensed facility when full and all containers must be removed at the conclusion of construction.
3. If during the course of performing the work the Contractor uncovers unsuitable or contaminated material he shall cease work in that area and notify the FDEP. A site assessment report and remedial action plan would be prepared and approved by the FDEP before any further activity or construction in the affected area is resumed.
Temporary signage and other access controls may be placed to indicate the beach is effectively the site of an active construction project where heavy equipment is being operated, which would mitigate risks to human safety during construction.

12.25.6 Summary and Next Steps
The proposed Florida Shell Point Beach Nourishment project would involve the renourishment of Shell Point Beach in Wakulla County. The proposed improvements include the placement of approximately 15,000 cubic yards of sand on the beach from an approved upland borrow area to restore the width and historic slope/profile of this beach. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

Draft NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational beach use opportunities by improving the county owned section of the beach. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.25.7 References

Florida Department of Environmental Protection (FDEP)


2013 Air Quality Monitoring for Wakulla County, Florida. Accessed online at: http://appprod.dep.state.fl.us/air/flags/selectreport.asp

Florida Department of Health (FDOH)

2013 Florida Healthy Beach Program. Water quality monitoring for Shell Point Beach, FL. Accessed online at: http://www.myfloridaeh.com/beach_sampling/dpBeach_Data_Summary_Detail_MashUp7.html?County=Wakulla&SPLocation=HELL%20POINT&SPNo=&SPLat=30.05765875&SPLong=-84.29045457&appSession=675276987600166&RecordID=&PageID=2&PrevPageID=&cpi page=1&CPISortType=&CPIorderBy=


U.S. Army Corps of Engineers (USACE)

1965  *Appraisal Report on Beach Conditions in Florida.*

United States Environmental Protection Agency (USEPA)

2013  Status of SIP Requirements for Designated Areas. Accessed online at:  
http://www.epa.gov/airquality/urbanair/sipstatus/reports/fl_areabypoll.html

Wakulla County Health Department

2004  Wakulla County Profile. Healthy People 2010 Report Card and County Health Department Strategic Plan. Accessed online at:  
12.26  Perdido Key Dune Restoration Project: Project Description

12.26.1  Summary Project Information
The proposed Perdido Key Dune Restoration project will restore appropriate dune vegetation to approximately 20 acres of degraded beach dune habitat in Perdido Key, Florida, including habitat used by the federally endangered Perdido Key Beach Mouse. The project will consist of planting appropriate dune vegetation (e.g., sea oats, panic grasses, cord grasses, sea purslane, beach elder) approximately 20 – 60' seaward of the existing primary dune to provide a buffer to the primary dune and enhance dune habitats. In addition, gaps in existing dunes within the project area will be re-vegetated to provide a continuous dune structure. The total estimated cost for this project is $611,234.

12.26.2  Background and Project Description
The Trustees propose to restore dune habitat in Perdido Key in an area that begins approximately 2.2 miles east of Perdido Pass at the Florida/Alabama state line and extends approximately 6 miles to the east (see Figure 12-53 for additional detail). Perdido Key is located primarily in Escambia County, is approximately 15 miles long, and extends from Pensacola Pass in the east to Perdido Pass in the west.

The objective of the Perdido Key Dune Restoration project is to restore and enhance dune habitat by planting dune vegetation. The restoration work proposed includes planting appropriate dune vegetation (e.g., sea oats, panic grasses, cord grasses, sea purslane, beach elder) approximately 20 – 60' seaward of the existing primary dune to provide a buffer to the primary dune and enhance dune habitats. In addition, gaps in existing dunes within the project area would be re-vegetated to provide a continuous dune structure. All plants would be grown from seeds or cuttings from the Alabama or North Florida coast to ensure appropriate genetic stocks are used in the project. Ultimately, the project would restore appropriate dune vegetation to approximately 20 acres of degraded beach dune habitat including some habitat used by the federally endangered Perdido Key Beach Mouse. Remaining habitat utilized in this area by the beach mouse is typically within areas that are undeveloped or in public ownership. The restoration methods proposed here are established methods for this type of restoration activity.

12.26.3  Selection Criteria
This proposed project meets the evaluation criteria for the Framework Agreement and OPA. As a result of the Deepwater Horizon oil spill and related response activities, dune habitat in Florida’s Panhandle was adversely impacted. This proposed project seeks to restore injured dune habitat by planting new dune vegetation. The ecological benefits that would be gained by this restoration project are anticipated to help compensate the public for Spill-related injuries and losses to the dune habitat. Thus, nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.
The project is technically feasible and utilizes proven techniques with established methods and documented results. Florida agencies have successfully implemented similar projects in the region, including a project in the first phase of Early Restoration (Pensacola Beach Dune Restoration). For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.26, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.26 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). This project came from a list of beach re-nourishment and dune re-vegetation projects put together by the Florida Beaches and Coastal Systems program, which is part of the Florida Department of Environmental Protection. Therefore, this project is consistent with the long term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.
Many ecological projects, including ones similar to this project, were submitted as a restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Perdido Key Dune Restoration Project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area that deployed boom and was impacted by response and SCAT activities for the Spill.

12.26.4 Performance Criteria, Monitoring and Maintenance
As part of the project costs, monitoring will be conducted to ensure project designs were correctly implemented and to evaluate project effectiveness. Performance criteria will be used to determine project success or the need for corrective actions. The monitoring has been designed around the project objective, which is to restore and enhance injured dune habitat. Specific success criteria include: the construction of dune habitat that meet project design criteria, achieves the designed percent cover by native vegetation, and is sustained for the expected life of the project.

Post construction performance monitoring will initially focus on plant survival. Plants that do not survive to 90 days post-planting will be replaced. At least 80% of plants must survive after 6 months or replanting will occur. There is approximately $30,000 set aside for monitoring of the results of the project and plant survival. Sand fencing will be installed to protect the plants, and it will have a one year warranty period. Topographic surveys will not be necessary due to the lack of physical movement of sand, but species survival and cover will be monitored as part of this project.

Escambia County will take over maintenance of the project once survival of the plants is accomplished. Additional performance monitoring may include collection of information such as the utilization of the habitat by the Perdido Key Beach Mouse to assist with future habitat enhancement and restoration efforts focused on benefitting this species.

12.26.5 Offsets
For the purposes of negotiations of Offsets with BP in accordance with the Framework Agreement, the Trustees used Habitat Equivalency Analysis to estimate appropriate habitat Offsets for the Perdido Key Dune Restoration Project. Habitat Offsets (expressed in DSAYs) were estimated for primary vegetated dune habitat enhanced by this restoration, based on the expected spatial extent, duration and degree of improvements attributable to the project in estimating DSAYs, the Trustees considered a number of factors, including, but not limited to, benefits of re-vegetating primary dune habitat, the time period that it would take for re-vegetated habitat to provide different levels of ecological benefits, estimated project life span and the potential impact of hurricanes and drought. The Trustees and BP agreed that if this restoration is selected for implementation, BP would receive Offsets of 34.9 DSAYs of Primary Vegetated Dune Habitat A in Florida, applicable to injuries to Primary Vegetated Dune Habitat A in Florida, as determined by the Trustees’ total assessment of injury for the Spill and 67.3 DSAYs of Primary Vegetated Dune Habitat B in Florida, applicable to injuries to Primary Vegetated Dune Habitat B in Florida, as determined by the Trustees’ total assessment of injury for the Spill.

38 Primary Vegetated Dune Habitat “A” is utilized by the Perdido Key Beach Mouse, a federally listed endangered species.

39 Primary Vegetated Dune Habitat “B” is not utilized by the Perdido Key Beach Mouse.
Further, in the event that the injury determination for Primary Vegetated Dune Habitat A in Florida and/or Primary Vegetated Dune Habitat B in Florida is quantified in the Natural Resource Damages Assessment using a metric other than DSAYs of Primary Vegetated Dune Habitat A in Florida and/or Primary Vegetated Dune Habitat B in Florida, the Trustees agree to translate the agreed upon NRD Offsets into a currency consistent with the metric used to characterize the injury to Primary Vegetated Dune Habitat A in Florida and/or Primary Vegetated Dune Habitat B in Florida. Any necessary translation of the Offsets will rely on the data and methods developed for the assessment and authorized in 15 C.F.R. Sections 990, et seq.

These Offsets are reasonable for this resource and project.

12.26.6 Cost
The total estimated cost to implement this project is $611,234. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and potential contingencies.
12.27 Perdido Key Dune Restoration Project: Environmental Review

The proposed project would restore approximately 20 acres of degraded vegetated dune habitat to its natural state along Perdido Key, Florida. The project would consist of planting appropriate dune vegetation (e.g., sea oats, panic grasses, cord grasses, sea purslane, and beach elder) and installing sand fencing to enhance dune establishment.

12.27.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is under way. The Framework Agreement is intended to expedite the start of restoration in the Gulf of Mexico in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement, after public review of a draft, the Trustees released a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, NOAA issued a public notice in the Federal Register on behalf of the Trustees, announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP).

The Trustees propose to restore dune habitat in Perdido Key in an area that begins 2.2 miles east of Perdido Pass at the Florida/Alabama state line and extends approximately 6 miles to the east (Figure 12-54 for additional detail). Perdido Key is located primarily in Escambia County, is approximately 15 miles long, and extends from Pensacola Pass in the east to Perdido Pass in the west.

The objective of the Perdido Key Dune Restoration project is to restore and enhance dune habitat by planting dune vegetation. The restoration work proposed includes planting appropriate dune vegetation (e.g., sea oats, panic grasses, cord grasses, sea purslane, beach elder) approximately 20 – 60' seaward of the existing primary dune to provide a buffer to the primary dune and enhance dune habitats. In addition, gaps in existing dunes within the project area would be re-vegetated to provide a continuous dune structure. All plants would be grown from seeds or cuttings from the Alabama or North Florida coast to ensure appropriate genetic stocks are used in the project. Ultimately, the project would restore appropriate dune vegetation to approximately 20 acres of degraded beach dune habitat including some habitat used by the federally endangered Perdido Key Beach Mouse. Remaining habitat utilized in this area by the beach mouse is typically within areas that are undeveloped or in public ownership. The restoration methods proposed here are established methods for this type of restoration activity.
There is a long history of state-supported actions to restore dunes in this area (including another Early Restoration approved Phase I project, nearby at Pensacola Beach to the east). Dune restoration in Perdido Key was suggested as a restoration measure during NOAA’s public scoping meetings for the Deepwater Horizon Programmatic EIS in Florida and was submitted as a restoration project to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Perdido Key Dune Restoration Project meets Florida’s additional criteria that Early Restoration projects occur in the eight-county Panhandle area that deployed boom and was impacted by response and SCAT activities for the Deepwater Horizon oil spill.

The total estimated cost to implement this project is $611,234. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and potential contingencies.

12.27.2 Project Location
The proposed project is located in the Gulf of Mexico, in Perdido Key, Florida (Figure 12-54). Perdido Key is located primarily in Escambia County and extends approximately 15 miles from Pensacola Pass in the east to Perdido Pass in the west. The project would restore dune habitat in Perdido Key in an area that
begins approximately 2.2 miles east of Perdido Pass at the Florida/Alabama state line and extends approximately 6 miles to the east (see Figure 12-54 for additional detail).

12.27.3 Construction and Installation

The proposed Perdido Key Dune Restoration project will restore appropriate dune vegetation to approximately 20 acres of degraded beach dune habitat in Perdido Key, Florida, including habitat used by the federally endangered Perdido Key Beach Mouse. This project will maximize the habitat quality of non-developed areas, within the Perdido Key State Park, and connect the habitats by landscaping with native dune plants. The landscaping plan will be reviewed and approved as appropriate for trust resource protection by the U.S. Fish and Wildlife Service prior to implementation.

The restoration project would consist of planting appropriate dune vegetation (e.g., sea oats, panic grasses, cord grasses, sea purslane, beach elder) approximately 20 to 60 feet seaward of the existing primary dune to provide a buffer to the primary dune and enhance dune habitats. Gaps in existing dunes within the project area will be revegetated to provide a continuous dune structure. The planting shall be patterned after the species composition in native communities adjacent to a project site, if possible. This vegetation would be planted using hand tools to excavate cavities where the root ball from the planting container can be placed and secured with the excavated sand/soil.

No movement of sand is envisioned for the project, but sand fencing will be installed to trap and retain wind-blown sediments and protect the plants for dune restoration purposes. Sand fencing shall be placed in a sea turtle compatible design and be made of biodegradable material. Appropriate signs to designate and indicate the purpose of the conservation area may be used if necessary. If dune vegetation is impacted during the implementation activities in some areas within the proposed project, these areas shall be restored by planting the appropriate vegetation in those areas with the same survival performance measures as the other proposed planted areas.

In accordance with Rule 62B-41.007(2)(l), Fla. Admin. Code, all vegetation used for the restoration would be native salt-resistant vegetation suitable for beach and dune stabilization, and grown from seeds or cuttings from the Alabama coast or North Florida to ensure appropriate genetic stocks are used in the project. The seedlings to be planted shall be at least 1 inch by 1 inch with a 2.5-inch pot. Vegetation shall be planted with an appropriate amount of fertilizer and anti-desiccant material, as appropriate, for the plant size. Planting will generally be on 18-inch centers throughout the created dune; however, 24-inch centers may be acceptable depending on the area to be planted. No material is planned for removal. Sand/soil removed for plantings would be packed around the planted unit to support regrowth. Only the excavated sand/soil removed to make room for the plantings would be placed on the site and it would be used to anchor the planted vegetation. Incidental trash encountered during project activities will be removed. No irrigation lines or pipes will be installed. Post construction performance monitoring will initially focus on plant survival. Plants that do not survive to 90 days post-planting will be replaced. At least 80% of plants must survive after 6 months or replanting will occur.

The proposed restoration activities are minimally disruptive and would occur over a relatively limited time period (2 months). To protect the dune habitat, most of the proposed work would be done by hand with ATVs potentially used to shuttle plants and other materials to sites of active replanting. Access to the dunes would be established through existing emergency vehicle paths and rights-of-way. Staging
areas would be established in existing parking lots. Access to the areas would be primarily through continuous beach access along Perdido Key Drive (Rt 292), which runs adjacent to the length of the project area to the north. This form of construction equipment would have minimal impact on dune resources.

The project would be constructed over a maximum 2 month period and would operate 7 days a week for 8 to 10 hours a day, during daylight hours only. No storage of equipment or materials will occur on the beach or dunes throughout the proposed project. No activity, except as needed to plant and monitor vegetation shall occur on existing dunes during any time of the year.

12.27.4 Operations and Maintenance
State Park staff and Escambia County staff would perform operation and maintenance of the dunes, which includes keeping the area clean of debris, routine inspection and repair of sand fencing, and similar tasks.

This project would incorporate a mix of monitoring efforts to ensure project designs are correctly implemented during construction and in a subsequent period, defined by contract, where corrective actions could be taken. Monitoring would include construction monitoring and restoration success.

The number of acres restored, number of dune plants installed, and survivorship of installed dune plants would be reported. Short-term maintenance activities would include periodic watering of dune plants by selected contractor, if needed, and replanting where dune plants have not survived. Specific criteria for evaluating revegetation success would be accomplished through implementation of standard state guidelines.

Post construction performance monitoring would initially focus on plant survival. Plants that do not survive to 90 days post-planting would be replaced. At least 80 percent of plants must survive after 6 months or replanting would occur. Approximately $30,000 in funding has been set aside for monitoring the results of the project and plant survival. No movement of sand would be envisioned for the project, but sand fencing would be installed to protect the plants. The sand fencing would have a one year warranty period. Topographic surveys would not be necessary due to the lack of physical movement of sand, but species survival and cover would be monitored as part of this project.

Escambia County would take over maintenance of the project once survival of the plants is accomplished. Additional performance monitoring could include collection of information such as the utilization of the habitat by the endangered Perdido Key beach mouse to assist with future habitat enhancement and restoration efforts focused on benefitting this species. This information collected as part of this monitoring effort would help evaluate the project’s performance over time with respect to the proposed project Offsets.

12.27.5 Affected Environment and Environmental Consequences

12.27.5.1 No Action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.
Under No Action, the existing conditions described for the project site in the affected resources subsections would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.27.5.2 Physical Environment
The physical environment describes the geology and substrate, hydrology and water quality, air quality and noise characteristics of the Gulf of Mexico, including the upland, nearshore, and offshore environments, both freshwater and saltwater. The nearshore environment comprises the coastline and the inner continental shelf. Specifically, nearshore environments extend from inland tidally influenced freshwater ecosystems, including coastal sand dune habitats, to 600 feet in depth off the Gulf Coast.

12.27.5.2.1 Geology and Substrates

Affected Resources
The existing geology and substrates of Perdido Key consist of gently sloping sandy beaches along a barrier island shoreline. The geologic setting of Perdido Key is more similar to the coastal areas of neighboring Alabama and Mississippi to the west rather than the majority of the Florida carbonate platform to the east (Olsen 2006). Perdido Key lies within the East Gulf Coastal Plain physiographic region (USGS 2008) and is within the Florida Coastal Lowlands ecoregion (USFS 2008). The predominant landform is a flat, weakly dissected alluvial plain formed by deposition of continental sediments onto a submerged, shallow continental shelf. This shelf was later exposed by sea level subsidence. Along the coast, fluvial deposition and shore zone processes are active in developing and maintaining beaches, swamps, and mud flats. Elevations within the Florida Coastal Lowlands ecoregion range from 0 to 80 feet (USFS 2008) and are noted to range between 0 to 25 feet on Perdido Key.

Perdido Key is predominantly a flat barrier island feature, containing old dune ridges with areas exhibiting surface modification by erosion and underground solution. The majority of the Gulf of Mexico coastlines in northwest Florida (similar to Perdido Key) include barrier islands, mainland beaches, and peninsulas. These dynamic ecosystems are subjected to diverse coastal processes including: climate, geomorphology, sediment deposition, littoral drift in ocean currents, tides, wind, saltwater and spray, erosion, and tropical storms. As described above, Perdido Key is a barrier island with limited elevation and relatively narrow width.

The soils of beach dunes are composed primarily of deep siliceous or calcareous sands which drain rapidly and create xeric conditions. Four distinct soil types occur within the Perdido Key project vicinity; Beaches (found south of Perdido Key Drive), and Newhan-Corolla complex, Dirego muck, and Corolla-Duckston sands (found north of Perdido Key Drive). The existing, native sands of Perdido Key are fine to medium grained sands that are very well sorted. Beach dunes are subject to drastic topographic alterations during winter and tropical storms which have resulted in overwash from the beaches along the Key and direct loss of dune vegetation and habitat.

Environmental Consequences
The project would have a no adverse impact on geology since all restoration work would be confined the dune area and no additional fill or excavation would be necessary to accomplish the goal of the restoration. Typically, this type of construction does not require erosion control measures beyond the proposed sand fencing. However, if it is determined that erosion control measures are warranted, it
would be required as a part of any permitting process and would be maintained by the construction contractor throughout construction activities and would be monitored by the contracting authority (the Florida DEP). Native plants would be installed using hand tools, which would not cause short-term or long-term adverse impacts to geology and substrates. Revegetation and sand fencing would have major beneficial short- and long-term impacts by reducing erosion of the dune habitat and encouraging future dune development. All appropriate permits would be obtained prior to begin of construction and all BMPs and conditions set forth would be followed. After restoration is complete, no long-term impacts would be anticipated as the project would take place within the exiting footprint of the original dunes. As a result of the proposed project, impacts to geology and substrates would likely be short-term and negligible.

12.27.5.2.2 Hydrology and Water Quality

Affected Resources
The hydrology of northwestern Florida is very complex. Deposits are predominantly marine in origin and generally dip toward the south. Although the strata range from Paleozoic to Recent, only those deposited during the past 60 million years are important for groundwater resources (DEP 2006). The typical hydrogeologic sequence in this area consists of predominantly sandy materials in the uppermost deposits. These geologic units contain the Sand and Gravel Aquifer. Underlying these upper sandy deposits are variable thickness of generally clayey materials that function primarily as confining beds. Beneath this zone is the Floridan Aquifer, which is composed of several massive formations of carbonate rocks that exhibit highly variable water-bearing characteristics.

Hydrology at the project site is predominantly natural and water quality is good. The surface waters of the region are a valuable resource and generally support an abundance of wildlife and aquatic life. Water quality problems found in some areas of the region are high concentrations of nutrients and coliform bacteria likely caused by domestic and industrial waste discharges, natural swamp drainage and urban and agricultural runoff.

Perdido Key is located at the mouth of the Perdido River, a designated Outstanding Florida Waters river under authority of Section 403.061 (27), Florida Statutes as worthy of special protection because of its natural attributes.

Environmental Consequences
The restoration project would have little to no adverse impact on hydrology and water quality since all work would be confined the dune area and no additional fill or excavation would be necessary to accomplish the goal of the restoration. All appropriate permits would be obtained prior to begin of construction and all BMPs and conditions set forth will be followed. After restoration is complete, no long-term impacts are anticipated as the project will take place within the exiting footprint of the original dunes. Impacts to hydrology and water quality would be short-term and would have little to no adverse impact. The proposed project is not anticipated to require authorization by the U.S. Army Corps of Engineers (USACE) pursuant to the Clean Water Act Section 404 and/or Rivers and Harbors Act (CWA/RHA).
Air Quality and Greenhouse Gas Emissions

Affected Resources
Air quality and greenhouse gas (GHG) emissions at the site are primarily affected by the nearby Perdido Key Drive, parking areas adjacent to the dunes, nearby residential development in the area, and boat traffic in the Gulf of Mexico and Old River. Air quality within the Florida panhandle is in attainment with the National Ambient Air Quality Standards (EPA 2013). To determine if an area meets the ozone standard in 2012, data from 2009, 2010 and 2011 is needed to determine an area’s attainment status with the 8-hr ozone standard. If the average is higher than 75 parts per billion, the area would not meet the ozone standard. In Escambia County, Florida, the 2012 year-to-date 3 year average is 73 parts per billion, thus meeting attainment status (DEP 2013).

Vehicle emissions directly associated with construction would only come from the use of ATVs to shuttle vegetation and hand tools to the dune restoration sites. A pick-up truck with a trailer, a tractor trailer for initial material delivery, and a bobcat with auger are considered limited duration equipment and will only be used on site for transitory use. No other emission sources are expected as construction will not require constant use of heavy equipment.

Environmental Consequences
Negative impacts to overall air quality would not occur because the installation of plants and sand fencing will be short in duration and will use hand tools. Construction activities would have a short-term negligible negative impact on air quality and GHG emissions at the site as the GHG emission calculation for the construction and transportation equipment (11.4 metric tons/year) fell well below the 25,000 metric ton/year of CO$_2$ threshold (Table 12-65). During construction activities, use of ATVs and handheld tools would not likely increase emissions at the project site. Construction will be relatively short in duration and no long-term impacts to air quality or GHG emissions would be expected to result from this project. Dune plantings will have a moderate beneficial impact to air quality. Based on Table 12-65, no long-term impact to air quality or GHG emissions would result from this restoration project because contributions to GHGs fall below the 25,000 metric ton/year threshold.

Project implementation would not require the regular use of heavy equipment; therefore, air pollution due to equipment exhaust would not be an issue. Available BMPs would be employed to prevent, mitigate, and control potential minor air pollutants during project implementation. Any minor pollution that does occur would be localized and short in duration. No air quality related permits would be required. Adverse impacts to air quality would be minor to negligible.
Table 12-65. Estimated greenhouse gas emissions for equipment to be used.

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>CO2 (METRIC TONS)</th>
<th>CH4 (CO2E) (METRIC TONS)</th>
<th>NOX (CO2E) (METRIC TONS)</th>
<th>TOTAL CO2E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bobcat</td>
<td>5.32</td>
<td>0.0028</td>
<td>0.028</td>
<td>5.32</td>
</tr>
<tr>
<td>Tractor Trailer</td>
<td>0.085</td>
<td>0.00005</td>
<td>0.0005</td>
<td>0.085</td>
</tr>
<tr>
<td>Pickup truck</td>
<td>1.2</td>
<td>0.00075</td>
<td>0.0075</td>
<td>1.2</td>
</tr>
<tr>
<td>ATV (assume similar to pickup)</td>
<td>4.8</td>
<td>0.003</td>
<td>0.03</td>
<td>4.8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11.405</td>
<td>0.0066</td>
<td>0.066</td>
<td>11.405</td>
</tr>
</tbody>
</table>

12.27.5.2.4 Noise

Affected Resources
Existing ambient noise levels along the shoreline at Perdido Key are low and predominantly result from the nearby Perdido Key Drive, parking areas adjacent to the dunes, nearby residential development, military aircraft operations (Pensacola Naval Air Station), and boat traffic on the Gulf of Mexico and Old River (USFWS 2011). Residential construction is increasing on the Key where temporary noise may become an issue, especially at the developments located in or near beachfront areas during the tourist season. There are no timing/dBA level restrictions from natural resource agency recommendations for the project area.

Environmental Consequences
Human presence and use of ATVs and hand tools employed during construction would not generate a noticeable change in the level of ambient noise in the general area. However, human presence and the use of ATVs may disturb wildlife in the immediate area. As such, noise would be kept to a minimum using best management practices. The level of noise is unlikely to affect resources. Timing considerations will be made to address species needs/concerns raised in the biological review process. Adverse impacts from noise during the construction phase would be minor and short in duration. However, no long-term impacts to noise from the proposed project are expected after construction work is complete.

40 Emissions assumptions for all equipment based on 8 hours of operation.
41 CO₂ emissions assumptions for diesel and gasoline engines based on USEPA 2009.
42 CH₄ and NOx emissions assumptions and CO₂e calculations based on USEPA 2011.
12.27.5.3 Biological Environment

12.27.5.3.1 Living Coastal and Marine Resources

Protected Species

Affected Resources
The Gulf Coast has a variety of shoreline types including sandy beaches, barrier islands, SAV, forested swamps, marshes, tidal mud flats, salt pans, cheniers and coastal forests, and estuarine systems. The beach and dune system of the Perdido Key area is a dynamic environment subject to extensive change as a result of wind, waves, tides and storms. Native salt-resistant vegetation is essential to the beach and dune system as it both accumulates and stabilizes sand. Vegetation traps wind-blown sand which collects around the plant and builds up the dune in a process known as “accretion.” As the plants become buried, new roots develop on the recently buried stems while new stems emerge from the sand. A dense stand of sea oats, and other primary vegetation in the foredune can significantly minimize erosion during high tides and storms.

Habitat surrounding the Perdido Key dune restoration project area is characterized as natural beach and dune habitat, with some development in the immediate vicinity behind the dunes. This habitat is located along seaward, foredunes, and typically contains a mixture of open sandy areas, grasses and forbs. The vegetative community is typically dominated by plants such as sea oats, panic grass, beach morning-glory, and seashore elder. Vegetation in this project area, however, has been degraded due to storms and flooding.

Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Escambia County, Florida\textsuperscript{43}. Table 12-66 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

\textsuperscript{43} The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle; Leatherback turtle, Loggerhead turtle</td>
<td>The main risk to sea turtles during implementation of this project would come should work be conducted during the turtle nesting and hatching season from approximately May through October when turtles, and to a greater extent their nests and hatchlings could be harmed or killed as a result of materials being conveyed along the beach and running over nests or hatchlings. Due to the conservation measures, the Trustees expect impacts to all life stages of sea turtles to be minimized such that disturbance and potential for harm are minimized such that the impacts are insignificant and discountable. Furthermore, it is planned that all boardwalk work (i.e., majority of any heavy equipment use) would occur prior to turtle nesting season, and prior to heavy human use (generally during the late fall, winter, and early spring). No lighting will be installed. No designated critical habitat for the green, leatherback, or hawksbill sea turtles occurs within the action area. No critical habitat has been designated for the Kemp’s ridley sea turtle; therefore, none will be adversely affected or modified. The project area overlaps with the currently proposed critical habitat area LOGG-N-33 encompassing nearshore reproductive habitat in Florida for Northwest Atlantic Distinct Population Segment of the loggerhead sea turtle as these habitats are terrestrial (i.e., beaches and shorelines) ((78 FR 18000 ) Department of the Interior, 2013). Primary Constituent Elements (PCEs) for proposed loggerhead critical habitat include: 1) Suitable nesting beach habitat that: (a) has relatively unimpeded nearshore access from the ocean to the beach for nesting females and from the beach to the ocean for both post-nesting females and hatchlings and (b) is located above mean high water to avoid being inundated frequently by high tides. 2) Sand that: (a) allows for suitable nest construction, (b) is suitable for facilitating gas diffusion conducive to embryo development, and (c) is able to develop and maintain temperatures and moisture content conducive to embryo development. 3) Suitable nesting beach habitat with sufficient darkness to ensure that nesting turtles are not deterred from emerging onto the beach and hatchlings and post-nesting females orient to the sea. Temporary use of heavy equipment to construct walkovers or transport plants during restoration activities could change sand characteristics important to nest construction and embryo development in the immediate area of work. However, conservation measures should minimize impacts such that impacts to the PCE’s in the immediate area are short-term (1 season or less) and wind and storm conditions should restore natural properties with each storm event prior to the next nesting season. Furthermore, the walkovers (i.e., majority of any heavy equipment use) will be constructed prior to the turtle nesting season and prior to the heavy human use period (during the late fall, winter, and early spring) thereby avoiding potential impacts during the nesting season which should allow time for the beach to recover prior to the next nesting season. Though engineering designs are not complete, it is likely that walkovers will be extended further on the beach due to migration of the dunes since the old boardwalks were constructed and to meet ADA standards. These short extensions would not impact nearshore access in the immediate area. No lighting will be installed. In addition, the relative footprint of all driving and construction will be minimized so that PCE’s outside the immediate area of work are unaffected. Dune restoration may enhance beaches for nesting by helping to establish dunes which can block light from adjacent areas. Based upon the implementation of the conservation measures, no adverse modification of proposed loggerhead critical habitat is anticipated.</td>
</tr>
</tbody>
</table>
| Perdido Key beach mouse                      | The main risk to the Perdido Key beach mouse is the collapse of burrows during construction which can result in abandonment of the burrow by the adults leading to potential harm or mortality and mortality of any young within the burrow, and increased risk of predation on adults. Visitor use is not expected to increase as a result of the proposed project therefore no indirect impacts from visitor use (increased predation) are expected due to the proposed project. Because of the conservation measures (including those for critical habitat), the Trustees believe impacts to beach mice are insignificant and discountable. The project area overlaps with Perdido Key Beach Mouse Critical Habitat Units 2 (West Perdido
<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Unit – 114 acres) and 3 (Perdido Key State Park Unit – 238 acres). PCE’s are: 1) A contiguous mosaic of primary, secondary scrub vegetation, and dune structure, with a balanced level of competition and predation and few or no competitive or predaceous nonnative species present, that collectively provide foraging opportunities, cover, and burrow sites; 2) Primary and secondary dunes, generally dominated by sea oats that, despite occasional temporary impacts and reconfiguration from tropical storms and hurricanes, provide abundant food resources, burrow sites, and protection from predators; 3) Scrub dunes, generally dominated by scrub oaks, that provide food resources and burrow sites, and provide elevated refugia during and after intense flooding due to rainfall and/or hurricane induced storm surge; 4) Functional, unobstructed habitat connections that facilitate genetic exchange, dispersal, natural exploratory movements, and recolonization of locally extirpated areas; and 5) A natural light regime within the coastal dune ecosystem, compatible with the nocturnal activity of beach mice, necessary for normal behavior, growth and viability of all life stages. The proposed project is not expected to negatively impact PCE’s but rather may benefit PCE’s. The existing boardwalks and lack of dunes in the area could be limiting the amount of contiguous habitat, food resources, burrow sites, and the boardwalks may be causing obstructions due to their low height. Dune restoration may contribute to building more functionality in PCE’s 1, 2, 3 and 4: raising of boardwalks should allow for unobstructed movements by mice; and lengthening boardwalks will help prevent dune erosion (“pathway “fanning”) from general visitor use thereby reducing changes to burrow sites, food resources, and susceptibility to hurricane/storm impacts. No lighting will be installed as a part of the proposed project. Based upon the implementation of the conservation measures, no adverse modification of critical habitat is anticipated.</td>
<td></td>
</tr>
</tbody>
</table>

Piping plover

The main risk to Piping plovers is from human disturbance while resting and foraging in habitats adjacent to work areas. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the plovers to move to a nearby area. Because other foraging/resting habitats are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable. The Trustees do not expect an increase in visitor use from the proposed project; therefore, no indirect impacts are expected. Piping plover critical habitat is not designated in or near the action.

Red knot

The main risk to Red knots is from human disturbance while resting and foraging in habitats adjacent to work areas. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the red knots to move to a nearby area. Because other foraging/resting habitats are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable. The Trustees do not expect an increase in visitor use from the proposed project; therefore, no indirect impacts are expected.

Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Protected Resource Division (PRD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that this project falls outside of NMFS Endangered Species Act (ESA) jurisdiction, as it does not contain suitable habitat for species managed by NMFS. As a result, the project did not require further ESA evaluation from NOAA.

Additional information on some of the species described above is provided below.

**Perdido Key Beach Mouse**

The Perdido Key Beach Mouse (PKBM) is endemic to Perdido Key in Alabama and Florida (Humphrey 1992). The historic range of the PKBM included coastal dunes extending from Gulf State Park-Florida Point in Baldwin County, Alabama, to the eastern terminus of Gulf Islands National Seashore-Johnson’s Beach in Escambia County. The USFWS originally identified three areas of critical habitat for the mouse, including areas within Perdido Key State Park and adjacent privately owned lands. PCE’s for critical
habitat are: 1) A contiguous mosaic of primary, secondary scrub vegetation, and dune structure, with a balanced level of competition and predation and few or no competitive or predaceous nonnative species present, that collectively provide foraging opportunities, cover, and burrow sites; 2) Primary and secondary dunes, generally dominated by sea oats that, despite occasional temporary impacts and reconfiguration from tropical storms and hurricanes, provide abundant food resources, burrow sites, and protection from predators; 3) Scrub dunes, generally dominated by scrub oaks, that provide food resources and burrow sites, and provide elevated refugia during and after intense flooding due to rainfall and/or hurricane induced storm surge; 4) Functional, unobstructed habitat connections that facilitate genetic exchange, dispersal, natural exploratory movements, and recolonization of locally extirpated areas; and 5) A natural light regime within the coastal dune ecosystem, compatible with the nocturnal activity of beach mice, necessary for normal behavior, growth and viability of all life stages.

Sea Turtles
There are five species of endangered or threatened sea turtles that may occur or have the potential to occur in the project area. These include green turtle, hawksbill turtle, Kemp’s ridley turtle, leatherback turtle, and loggerhead turtle. Sea turtles forage in the waters of the coastal Florida panhandle region and occur in the waters adjacent to the project area. The project site contains suitable sea turtle nesting habitat along the sandy beach.

Piping Plover
The sandy beaches and shorelines within the project area offer suitable foraging and resting habitat for the piping plover during the winter migratory season, and piping plover may forage in the shallow waters of the project area. Natural shorelines in the proposed project vicinity provide suitable winter migration resting habitat for the piping plover. Piping plover wintering habitat includes beaches, mudflats, and sandflats, as well as barrier island beaches and spoil islands (Haig 1992 as cited by USFWS 2013). On the Gulf Coast, preferred foraging areas are associated with wider beaches, mudflats, and small inlets (USFWS 2013).

Red Knot
The red knot, a federal proposed species, uses the state of Florida both for wintering habitat and migration stopover habitat for those that continue to migrate down to specific wintering locations in South America (Niles et al. 2008) and could be present in the project area. Wintering and migrating red knots forage along sandy beaches, tidal mudflats, saltmarshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms, and roost on high sand flats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008).

Migratory Birds and Bald Eagles
The snowy plover (Charadrius alexandrinus) is a small whitish light colored shorebird with a dark, thin bill and dark legs. Snowy plovers are solitary nesters and require open dry sand near dunes for breeding. Nesting can occur in early February but typically the nesting season is March to September in Florida. Nests are an open scrape, sometimes lined with shell matter, within sight of the Gulf of Mexico and near the frontal dune line. Snowy plover nesting has been well documented at Gulf Islands National Park and
recent nesting attempts were documented at nearby Perdido Key State Park. All nesting locations have been on State or Federal lands. Suitable nesting habitat does not usually exist in the privately owned lands in the area. However, resting and feeding habitat may occur in the area.

There are no wading bird rookeries at the site. Due to the lack of wooded areas surrounding the site, there is little potential for bald eagle nesting in the area and none are currently present in the action area. If bald eagles would be found nesting within 660 feet of the construction area, then activities would need to occur outside of nesting season, or avoidance measures would need to be followed.

The DOI review also considered potential impacts to migratory birds. A summary of the potential impacts to different migratory bird groups is presented in Table 12-67.

Table 12-67. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>Foraging, feeding, resting, nesting</td>
<td>Shorebirds nest, forage, feed, and rest in the types of habitats consistent with some of the shoreline areas near the proposed project. As such, they may be impacted locally and temporarily by the project.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Resting, roosting, nesting</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats including dunes. Project activity could startle resting birds; however, impacts to roosting birds are not expected because activities will occur during the day.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-68.

Table 12-68. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>The Trustees expect foraging and resting birds would be able to move to another nearby location to continue foraging and resting. If project activities occur during shorebird nesting season (February 15 to August 31), the FWC will be contacted to obtain the most recent guidance to protect nesting shorebirds or rookeries and their recommendations will be implemented. The Panama City Field Office will be contacted regarding dune plantings to balance habitat for listed and migratory birds and beach mouse.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. Nesting should not be impacted because the project will not occur near nesting habitats.</td>
</tr>
</tbody>
</table>
Essential Fish Habitat
Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Habitat Conservation Division (HCD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that this project will not affect EFH because there is no EFH in the project area. As a result, the project did not require further EFH evaluation.

Environmental Consequences

Protected Species
Considering the nature of the potential project and the species/critical habitats that could be affected, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-69 below.

Table 12-69. Conservation measures to be implemented in order to minimize impacts to species/critical habitats managed by DOI

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle, Leatherback turtle, Loggerhead turtle</td>
<td>No lighting will be installed on the boardwalks. Should work be undertaken between May 1 and October 31 the following conservation measures will be followed: Work completed outside of this time period should not require these measures.</td>
</tr>
<tr>
<td></td>
<td>• All construction personnel will be notified of the potential presence of sea turtles and reminded of the criminal and civil penalties associated with harassing, harming, or killing sea turtles (all life stages).</td>
</tr>
<tr>
<td></td>
<td>• The local sea turtle nesting surveyor will conduct daily sea turtle nesting surveys to assess the need for the relocation of sea turtle nests that could be affected by the project construction prior to project implementation each day.</td>
</tr>
<tr>
<td></td>
<td>• If a sea turtle (either adult or hatchling) is observed, maintain at least 200 feet between the turtle and personnel.</td>
</tr>
<tr>
<td></td>
<td>• All actions shall observe a 10-foot buffer from marked sea turtle nests. Between May 1 and August 31 actions with mechanized equipment or vehicles shall not begin prior to 9:00 am to ensure sea turtle monitoring surveys are completed for the day.</td>
</tr>
<tr>
<td></td>
<td>• If altered, beach topography shall be restored in all areas to the natural beach profile by 20:00 hours each day. Restoring beach topography includes raking of tire ruts, filling pits or holes.</td>
</tr>
<tr>
<td></td>
<td>• Avoid driving over the wrack line or areas of dense seaweed, as these habitats may contain sea turtle hatchlings or baby birds that are difficult to see.</td>
</tr>
<tr>
<td>Loggerhead proposed critical habitat</td>
<td>To maintain PCE’s for proposed loggerhead critical habitat, the following measures shall be implemented (regardless of seasonality):</td>
</tr>
<tr>
<td></td>
<td>• All construction personnel will be notified of the presence of proposed critical habitat and reminded to avoid impacting it otherwise additional restoration may be necessary.</td>
</tr>
<tr>
<td></td>
<td>• The nearest, existing staging, access and egress areas, travel corridors, pathways, and roadways shall be used (including those provided by the State, local governments, land managers, trustee, or private property owner, with proper permissions).</td>
</tr>
<tr>
<td></td>
<td>• No new staging areas, access or egress, or travel corridors shall be created.</td>
</tr>
<tr>
<td></td>
<td>• Minimize vegetation removal.</td>
</tr>
</tbody>
</table>

44 Turtle nesting season is May 1 to August 31, while turtle hatching continues until October 31. The remaining turtle BMPs will be implemented May 1 through October 31 and BMPs for proposed critical habitat will be implemented all year.
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perdido Key beach mouse</td>
<td>conservation measures that will be implemented to avoid impacts to the Perdido Key Beach Mouse include:</td>
</tr>
<tr>
<td></td>
<td>- All construction personnel will be notified of the potential presence of Perdido Key Beach Mice and reminded of the criminal and civil penalties associated with harassing, injuring, or killing Perdido Key Beach Mice.</td>
</tr>
<tr>
<td></td>
<td>- To minimize impacts to Perdido Key beach mice in burrows, a qualified, permitted, biologist will survey the project site before work commences and flag potential burrows and tracks so that they can be avoided.</td>
</tr>
<tr>
<td></td>
<td>- Construction noise will be kept to the minimum feasible.</td>
</tr>
<tr>
<td></td>
<td>- Construction will occur during the day to minimize disturbance to nocturnal patterns.</td>
</tr>
<tr>
<td></td>
<td>- Equipment, vehicles, and project debris will not be stored in a manner or location where it could be colonized by mice.</td>
</tr>
<tr>
<td></td>
<td>- Prior to bringing any equipment (including personal gear, machinery, vehicles or vessels) to the work site, inspect each item for mud or soil, seeds, and vegetation. If present, the equipment, vehicles, or personal gear shall be cleaned until they are free from mud, soil, seeds, and vegetation. This inspection will occur each time equipment, vehicles, and personal gear are being prepared to go to a site or prior to transferring between sites to avoid spreading exotic, nuisance species.</td>
</tr>
<tr>
<td></td>
<td>- Inspect sites periodically to identify and control new colonies/individuals of an invasive species not previously observed prior to construction.</td>
</tr>
<tr>
<td></td>
<td>- Remove trash or anything that would attract nuisance wildlife to work areas daily.</td>
</tr>
<tr>
<td></td>
<td>- Project related trash or debris shall not be allowed to blow into open water, onto beaches or in the dunes.</td>
</tr>
<tr>
<td></td>
<td>- Appropriate waste/trash receptacles will be installed and maintained at boardwalks so that predators are not attracted to the area.</td>
</tr>
<tr>
<td>Perdido Key beach mouse</td>
<td>Conservation measures that will be implemented to avoid impacts to the Perdido Key Beach Mouse critical habitat include:</td>
</tr>
<tr>
<td>critical habitat</td>
<td>- The project will occur in very localized locations for very short periods of time, allowing the mosaic of primary, secondary scrub vegetation and dune structure to remain unchanged or increase after implementation.</td>
</tr>
<tr>
<td></td>
<td>- If native dune plants are destroyed during the project, appropriate native plants will be planted in the same location to minimize impacts to the vegetative composition of the area. The Panama City Field Office will be contacted regarding dune plantings to balance habitat for listed and migratory birds and beach mouse.</td>
</tr>
<tr>
<td></td>
<td>- If necessary (due to food source removal during construction and growing periods for replacement plants), supplemental beach mouse food sources will be provided.</td>
</tr>
<tr>
<td></td>
<td>- Project work will only occur during daylight hours. As such it will not alter the natural light regime of the area.</td>
</tr>
<tr>
<td>SPECIES</td>
<td>CONSERVATION MEASURES TO MINIMIZE IMPACTS</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Piping plover and red knot</td>
<td>If construction occurs within the period from August to May: shorebird surveys will be conducted in the project area; and within the project area a 300-foot wide buffer zone where either species congregates will be established. Any and all construction will be prohibited in the buffer zone until the individuals move from the area of their own volition. The Panama City Field Office will be contacted regarding dune plantings to balance habitat for listed and migratory birds and beach mouse.</td>
</tr>
</tbody>
</table>
| All                           | In addition to the species specific measures that have been identified, the new dune walkovers associated with the Perdido Key State Park Beach Boardwalk Improvements action will be constructed in a manner consistent with the recent guidance for such work issued by the USFWS Panama City field office (USFWS, 2013). In addition:  
  - Dune restoration should mimic natural dunes including swales with and without vegetation.  
  - ATVs should stay out of the dunes and as low to the water line as possible. Plants may have to be walked up to the planting area from the ATV travel path.  
  - Construction of the dune walkovers should be consistent with existing guidelines.  
  - Prior to conducting the restoration, contact PCFO about the dune plantings (especially to avoid least tern nesting areas – this measure is within the mig bird section, but the Trustees did not specifically mention least tern. Least terns will not nest in veg, so the Trustees should not plant their nesting area.).  
Further, the following items were noted:  
  - It may be necessary to use a fertilizer to jump start plant growth.  
  - If sand fencing is used, it should be moved up regularly as the dune grows and removed as soon as the dune and plants are large enough to capture sand.  
  - Use some larger plants mixed with the typically used smaller plants to help capture sand immediately.  
  - Post and rope should be used and maintained around the entire restoration area to keep people from affecting the restoration. |

The USFWS reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On April 4, 2014 the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the Trustees’determination that the proposed project may affect, but is not likely to adversely affect, five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead), Perdido Key beach mouse, piping plover, and red knot (if listed) based upon the successful implementation of the conservation measures in Table 12-69 above. The USFWS also concurred with the Trustees’determination that the project will not adversely modify or destroy critical habitat for the Perdido Key beach mouse or destroy critical terrestrial habitat for the loggerhead sea turtle (if designated).

**Migratory Birds and Bald Eagle**

Bald eagles are not present at the project location so will not be affected. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.
Invasive Species

Affected Resources
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within, and possible expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 3 described more about the regulations addressing invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

Environmental Consequences
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.27.5.4 Human Uses and Socioeconomics

12.27.5.4.1 Socioeconomics and Environmental Justice

Affected Resources
The Gulf is among the nation’s most valuable and important ecosystems. The Gulf Coast and its natural resources are key components of the U.S. economy, producing 30 percent of the nation’s gross domestic product in 2009 (NOAA 2011, as cited in GCERTF 2011). The region provides more than 90 percent of the nation’s offshore oil and natural gas production (USEIA n.d., as cited in GCERTF 2011); 33 percent of the nation’s seafood (Mabus, 2010, as cited in GCERTF 2011); 13 of the top 20 ports by tonnage in the United States in 2009 (USACE 2010, as cited in GCERTF 2011); as well as regionally and nationally important tourism and recreational activities such as fishing, boating, beachcombing, and bird watching. These activities support more than 800,000 jobs (Mabus 2010, as cited in GCERTF 2011) across the region, providing a substantial economic input to Gulf communities and the nation. All of these industries depend on a healthy and resilient Gulf. The five U.S. Gulf Coast States, if considered an individual country, would rank seventh in global gross domestic product (NOAA 2011, as cited in GCERTF 2011).

The Perdido Key dune restoration project is located within Escambia County which encompasses 661 square miles, or 420,480 acres, with an additional 64,000 acres of water area. The population of Escambia County is currently estimated at 302,715. Data and characteristics on the population of Escambia County are summarized and compared to those same measures for the population of the state as a whole (Table 12-70).
Environmental Consequences

The proposed project would create jobs in the short-term during construction and planting. The improved beach access and dune restoration would result in a minor increase in visitation to the site, which could benefit the local economy for multiple years. This project would not create a benefit for any specific group or individual, but rather would produce benefits realized by the local community and visitors. There are no indications that the dune improvements would be contrary to the goals of E.O. 12898, or would create disproportionate, adverse human health or environmental impacts on minority or low income populations of the surrounding community. Therefore no environmental justice issues would be anticipated in the short-term or long-term.

The proposed project would be expected to have short-term, beneficial impacts on socioeconomics for project area and adjacent areas, based on a very slight increase in the workforce, required to perform the restoration. The exact number of person to be employed by this project is undetermined, but is estimated to be approximately eight persons.

Table 12-70. Population characteristics of Escambia County compared with State of Florida data.

<table>
<thead>
<tr>
<th>U.S. CENSUS DATA QUICKFACTS BY COUNTY</th>
<th>ESCAMBIA</th>
<th>FLORIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persons under 5 years, percent, 2012</td>
<td>6.2%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Persons under 18 years, percent, 2012</td>
<td>21.1%</td>
<td>20.7%</td>
</tr>
<tr>
<td>Persons 65 years and over, percent, 2012</td>
<td>15.2%</td>
<td>18.2%</td>
</tr>
<tr>
<td>Female persons, percent, 2012</td>
<td>50.5%</td>
<td>51.1%</td>
</tr>
<tr>
<td>White alone, percent, 2012 (a)</td>
<td>70.1%</td>
<td>78.3%</td>
</tr>
<tr>
<td>Black or African American alone, percent, 2012 (a)</td>
<td>22.9%</td>
<td>16.6%</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone, percent, 2012 (a)</td>
<td>0.9%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Asian alone, percent, 2012 (a)</td>
<td>2.9%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander alone, percent, 2012 (a)</td>
<td>0.2%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Two or More Races, percent, 2012</td>
<td>3.0%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Hispanic or Latino, percent, 2012 (b)</td>
<td>5.1%</td>
<td>23.2%</td>
</tr>
<tr>
<td>White alone, not Hispanic or Latino, percent, 2012</td>
<td>66.0%</td>
<td>57.0%</td>
</tr>
<tr>
<td>Homeownership rate, 2007-2011</td>
<td>67.3%</td>
<td>69.0%</td>
</tr>
<tr>
<td>Median household income, 2007-2011</td>
<td>$43,707</td>
<td>$47,827</td>
</tr>
<tr>
<td>Persons below poverty level, percent, 2007-2011</td>
<td>16.9%</td>
<td>14.7%</td>
</tr>
<tr>
<td>Manufacturer shipments, 2007 ($1000)</td>
<td>2,117,030</td>
<td>104,832,907</td>
</tr>
<tr>
<td>Merchant wholesaler sales, 2007 ($1000)</td>
<td>1,838,916</td>
<td>221,641,518</td>
</tr>
</tbody>
</table>

(a) Includes persons reporting only one race.
(b) Hispanics may be of any race, so also are included in applicable race categories.
Source: US Census Bureau State & County QuickFacts 2012
12.27.5.4.2 Cultural Resources

Affected Resources
This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Environmental Consequences
Restoration of the dunes at Perdido Key is not anticipated to have any impact on cultural resources because none are known to be present and the work would take place within the existing footprint of the site. Nonetheless, a complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.27.5.4.3 Infrastructure

Affected Resources
There is no major infrastructure at the site; however, there are condos and residences adjacent to the project outside of the state park. The dunes are near Perdido Key Drive but are located in Perdido Key State Park, away from developed areas.

Environmental Consequences
Restoration of the dunes at Perdido Key would have no impact on infrastructure; the project includes dune restoration within the existing footprint so no major infrastructure changes would be made.

12.27.5.4.4 Land and Marine Management

Affected Resources
The project area includes part of the Perdido Key State Park and is adjacent to developed area. Surrounding land uses include un-improved areas of the park and some small residential areas. The majority of development is located on the eastern part of the Key between the bridge and River Road and the west end of Perdido Key Drive near the Alabama border. Approximately 16 percent of the land may be developed in resort/tourism related uses and in small scale commercial uses. Site-specific densities are pursuant to the requirements of the zoning districts where a site is located. Each zoning district has its own height and building footprint limitations, which vary from one zoning district to the next. Density units may not be transferred to parcels south of SR 292 (Perdido Key Drive) (USFWS 2011).

Environmental Consequences
Restoration of the dunes at Perdido Key is not anticipated to have an impact on land and marine management because changes at the site would be limited to dune resources.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The
Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

12.27.5.4.5 Aesthetics and Visual Resources

Affected Resources
The existing aesthetic and visual resources at the site include natural dune, beach, and Gulf of Mexico habitat. Residential housing and development is limited to the areas immediately adjacent to Perdido Key Drive. There is minimal development, other than a few parking lots, to obstruct the viewshed of the dune restoration project area.

Environmental Consequences
Impacts to visual resources would be limited to the restoration time frame. Beneficial impacts on aesthetics and visual resources would be expected following the restoration as a result of enhanced quality of dune habitat and viewshed. The improved habitat would enhance the look of the natural dune habitat.

Aesthetics would be reduced in the project area during construction due to the presence of equipment and materials. However, these impacts would be minor, temporary changes to visual resources. Following construction and planting the project would provide moderate long-term beneficial aesthetic impacts to the dune habitat and visitor access areas.

12.27.5.4.6 Tourism and Recreational Use
The project site is currently a tourist and recreational user destination. Some dune walkovers provide users with access to the beach and provide opportunities for observing natural dune and beach habitat and wildlife. Leisure and recreational pursuits are on the increase on Perdido Key, along with northwest Florida. The impact of recreation and tourism on the economy continues to expand. Recreational visits to state and national parks grew by an estimated 300,000 visitors from 2003 to 2004 and taxable sales of transient facilities outpaced Florida’s growth rate (7.7 % v. 6.3%). Employment and payroll for the tourism industry was also up (0.8 % and 2.4%, respectively) (USFWS 2011).

Recreation opportunities on Perdido Key revolve around the mild climate and water related activities typical of the Gulf coast. Recreational swimming and sun bathing provide seasonal enjoyment for residents and tourists, and fishing, both on Old River and the Gulf provide year round opportunities. Approximately half of Perdido Key is public land that provides significant recreational opportunities.

Environmental Consequences
For a short time, the construction process would limit recreational activities near the restoration areas. Access to the restored areas would be restricted during vegetation establishment. However, once the restoration project is implemented, an increase in visitation for the life of the project is anticipated. Moderate beneficial impacts to tourism and recreational use would be expected through enhanced habitat and visual quality of the restored dune habitat. There would be no long-term adverse impacts to tourism or recreational use. The project would have a moderate positive impact on recreational user
enjoyment of the site. The project would improve conservation of dune habitat and improve the overall habitat quality and function of the site.

12.27.5.4.7 Public Health and Safety and Shoreline Protection

Affected Resources
Public health and safety and shoreline protection at the site are of high quality. Part of the site includes the Perdido Key State Park and is managed to maximize health and safety for human use and the environment. There are no known hazardous waste generation or disposal sites in the vicinity of the project. Erosion at the proposed project site is typical of a barrier island shoreline.

Environmental Consequences
Restoration of the dunes at Perdido Key would have a major beneficial impact on public health and safety. The project would have no impact on existing shoreline protection, no work is planned for the shoreline and current management practices will not be altered by the project.

Planting native dune vegetation would support the natural control of shoreline erosion. Overall, the project would have a moderate beneficial impact on public health and safety and shoreline protection, and would have no negative impacts on these resources.

12.27.6 Summary and Next Steps
The proposed Florida Perdido Key Dune Restoration project would restore appropriate dune vegetation to approximately 20 acres of degraded beach dune habitat in Perdido Key, Florida, including habitat used by the federally endangered Perdido Key Beach Mouse. The project would consist of planting appropriate dune vegetation (e.g., sea oats, panic grasses, cord grasses, sea purslane, beach elder) approximately 20 – 60’ seaward of the existing primary dune to provide a buffer to the primary dune and enhance dune habitats. In addition, gaps in existing dunes within the project area will be re-vegetated to provide a continuous dune structure. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts areanticipated to result. The project would provide long-term benefits by restoring and enhancing approximately 20 acres of degraded dune habitat. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.27.7 References
Deepwater Horizon Natural Resource Trustees (Trustees)

2012 Deepwater Horizon Oil Spill Phase II Early Restoration Plan and Environmental Assessment. 161 pp.

Gulf Coast Ecosystem Restoration Task Force (GCERTF)

2011 Gulf of Mexico regional ecosystem restoration strategy. 104 pp.

Hopkins, S.R. and J.I. Richardson (editors)


Mabus, R.

2010 America’s Gulf coast: a long term recovery plan after the Deepwater Horizon spill. 130 pp.


National Oceanic and Atmospheric Administration (NOAA).


Olsen Associates, Inc.


United States Census Bureau (US Census)

2013 State and County Quickfacts for Escambia County, Florida. Access online at: http://quickfacts.census.gov/qfd/states/12/12033.html

U.S. Department of the Interior.

U.S. Energy Information Administration (USEIA)


U.S. Environmental Protection Agency (USEPA)


U.S. Fish and Wildlife Service (USFWS)


U.S. Geological Survey (USGS)

Website accessed September 23, 2013.
12.28 Florida Oyster Cultch Placement Project: Project Description

12.28.1 Project Summary
The proposed Florida Oyster Cultch project would enhance and improve the oyster populations in Pensacola Bay, Andrew Bay and Apalachicola Bay. The proposed improvements include the placement of a total of 42,000 cubic yards of suitable cultch material over 210 acres of previously constructed oyster bars for the settling of native oyster larvae and oyster colonization in three Florida Bays. The total estimated cost for this project is $5,370,596.

12.28.2 Background and Project Description
The Trustees propose to enhance and improve the oyster populations in three Florida Bays (see Figure 12-55 for envisioned project locations). The objective of the proposed Florida Oyster Cultch project is promote reef development for oysters by restoring existing oyster reef habitat. The restoration work proposed includes the placement of suitable cultch material on existing or previously constructed oyster bars for the settling of native oyster larvae and oyster colonization.

Based on preliminary evaluation of the conditions of existing oyster bars, it is anticipated that restoration work will include:

- Placing approximately 12,000 cubic yards of cultch on debilitated oyster reefs over an approximately 60-acre area in the Pensacola Bay system in Escambia and Santa Rosa Counties;
- Placing approximately 12,000 cubic yards of cultch on debilitated oyster reefs over an approximately 60-acre area in the St. Andrew Bay system in Bay County; and
- Placing approximately 18,000 cubic yards of cultch on debilitated oyster reefs over an approximately 90-acre area in the Apalachicola Bay system in Franklin County.

The final size and locations for cultch placement will be based on environmental conditions within each bay system prior to deployment. Project designs, locations, and the timing of cultch deployment will be selected to maximize successful oyster spat settlement and survival. Environmental conditions such as salinity levels and productivity or recruitment rates at adjacent oyster bars will be considered in the selection of restoration sites within each bay. Therefore, the amount of cultch and the number of acres restored within each bay system may vary from the estimate above to reach the overall project goal of restoring over 210 acres of existing or previously constructed oyster bars.

Cultch material to be placed will consist of combinations of oyster shells, either mined from existing sources or from active oyster shell collection sources, and/or limestone approved for use in these projects by Florida’s Department of Agriculture and Consumer Services (DACS). The cultch placement generally involves offloading material from barges mechanically using either spray cannons or large excavator type equipment. The new cultch material will be placed on top of existing oyster bars created and managed by DACS because these bars are depleted of shell material or have reached the end of their productive life. Placing substrate or "cultch" in bays where natural reproduction occurs, is the most effective technique used throughout the GOM to 1) create three-dimensional reef structure, 2) stimulate spat setting, 3) sustain oyster fisheries, 4) enhance community functions, 5) increase natural productivity and 6) accelerate the recovery process. Florida DACS has been involved in rehabilitating oyster reefs for more than sixty years and provides a multi-dimensional approach built on decades of
experience. The restoration methods proposed here are established methods for this type of restoration project.

![Figure 12-55. General Location of envisioned Florida Oyster Cultch Restoration Project.](image)

### 12.28.3 Evaluation Criteria

This proposed project meets the evaluation criteria for the Framework Agreement and OPA. As a result of the Deepwater Horizon oil spill and associated response actions, oyster secondary productivity along the north central Gulf coast suffered adverse impacts. This project seeks to foster reef development, which would help compensate the public for Spill-related injuries and losses to oyster secondary productivity. Thus, nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and utilizes proven techniques with established methods and documented results. Florida agencies have successfully implemented similar projects in the region. These projects were designed by DACS following established methods and techniques utilized by them, other states, and private contractors to restore oyster bars. In addition, DACS has a Programmatic General Permit SAJ-99 (SAJ-2007-03138) issued to them from the US Army Corps of Engineers to accomplish oyster restoration utilizing these techniques. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement.
Furthermore, the cost estimates are based on similar past projects executed by DACS in the envisioned project areas and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.28, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.28 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). These projects are part of DACS’s Division of Aquaculture Shellfish Program and are therefore consistent with the long term restoration needs of the State. See Section 6d of the Early Restoration Framework Agreement.

Many ecological projects, including ones similar to this project, were submitted as a restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Florida Oyster Cultch Project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area that deployed boom and was impacted by response and SCAT activities for the Spill.

12.28.4 Performance Criteria, Monitoring and Maintenance

As part of the project costs, monitoring will be conducted to ensure project designs were correctly implemented and to evaluate project effectiveness. Performance criteria will be used to determine project success or the need for corrective actions. The monitoring has been designed around the project objective. The project objective is to promote reef development for oysters by restoring existing oyster reef habitat. Specific success criteria include: construction of reefs that meet project design criteria, support oyster secondary productivity, and are sustained for the expected life of the project.

Post construction performance monitoring will focus on the recruitment and growth of oysters on the new cultch placements. Restored reefs may become productive in as few as 3 to 6 months under optimal conditions, with oyster reaching market size in 12 to 18 months. However, since recruitment and survival can be highly variable, some reefs may not become productive for 2-5 years. It has been shown that restored reefs can remain productive for more than 10 years with little additional maintenance (dragging to re-expose shell material and substrate enhancement). However, if poor recruitment to restored reefs is observed, management and maintenance activities to improve spat settlement and growth will be investigated; additional management activities will be conducted as necessary and as funding allows. Based on the expected longevity of the restored reefs, a monitoring program will assess oyster population parameters for ten years.

DACS will be responsible for effectively assessing or providing guidance on the status of oyster resources on reefs that are restored during this project. Specific metrics to delineate reef locations and reef area, measure population parameters, and estimate production potential will be accomplished.

The monitoring will include collecting samples following project completion on all restored reefs and establishing a sampling schedule based on expected recruitments cycles. All restored reefs will be sampled twice a year from year-one through year-five and once a year from year-six through year-ten.
Sampling intervals may be modified to assess significant events which may affect oyster population dynamics. A total of sixteen sampling trips are planned for each restored reef.

The monitoring program will establish and describe the parameters and metrics required to accurately assess oyster reef habitat and populations on restored reefs. Reefs will be measured and delineated to determine the surface area and reef boundaries, and estimate the coverage forming available reef habitat. The Standard Oyster Resource Management Protocol utilized by the state of Florida will be used to establish baseline and serial oyster population data to measure and report changes in oyster populations and oyster population dynamics.

The Standard Oyster Resource Management Protocol is based on collecting oyster samples from quadrats established at specific sampling locations on restored reefs. Samples are collected by divers using current standard procedures and returned to the laboratory for analyses. Live oysters collected during replicated samples are individually measured, dead oysters and recent boxes are counted, predators are identified and counted, and the general condition of the reef is recorded. The numbers and size of live oysters are converted to size frequency distributions that are used to develop population parameters, such as density, production levels, recruitment, growth, and survival, which in turn, can be applied to predict population trends and identify adverse impacts from events such as hurricanes, floods, and drought.

The Standard Oyster Resource Management Protocol provides that estimated production exceeding 400 bags of oysters per acre indicates healthy oyster reefs capable of sustaining commercial harvesting. Accordingly, oyster populations are 1) capable of supporting limited commercial harvesting when stocks exceed 200 bags/acre, 2) below levels necessary to support commercial harvesting when stocks fall below 200 bags/acre, and 3) considered depleted when marketable stocks are below 100 bags/acre (Berrigan, 1990). Generally, the protocol has been an accurate indicator of oyster production in Florida.

12.28.5 Offsets
For the purposes of negotiations of Offsets with BP in accordance with the Framework Agreement, the Trustees used Resource Equivalency Analysis to estimate appropriate Offsets for the Florida Oyster Cultch Project. Oyster Secondary Productivity Offsets (expressed in ash-free-dry-weight DKg-Ys) were estimated for expected increases in oyster biomass (tissue) attributable to the project. In estimating DKg-Ys, the Trustees considered a number of factors, including, but not necessarily limited to, typical productivity in the project area, estimated project lifespan and project size. The Trustees and BP agreed that if this restoration is selected for implementation, BP would receive Offsets of 425,000 DKg-Ys of oyster Secondary Productivity in Florida, applicable to oyster Secondary Productivity injuries in Florida, as determined by the Trustees’ total assessment of injury for the Spill. If the Offsets exceed the oyster Secondary Productivity injury in Florida, the Trustees and BP will apply “excess” Offsets to injuries to benthic Secondary Productivity (defined to include the net production of mobile and sessile invertebrate infauna and epifauna associated with hard bottom substrate) in Florida. These Offset types and amounts are reasonable for this project.
12.28.6 Cost
The total estimated cost to implement this project is $5,370,596. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and potential contingencies.
12.29 Florida Oyster Cultch Placement Project: Environmental Review

The proposed project involves oyster reef restoration for oyster beds that have reached their productive lifespan. The proposed project goals would be to improve and restore existing oyster beds managed by the Florida Department of Agriculture and Consumer Services (DACS). All of the areas are publicly owned and managed by DACS.

The project proponent is relying on existing Programmatic Section Rivers and Harbors Act Section 10 and Clean Water Act Section 404 Programmatic General Permit for Live Rock and Marine Bivalve Placement SAJ-99 (SAJ-2007-03138) issued to DACS. The Programmatic General Permit is intended for DACS activities. The Florida Department of Environmental Protection (FDEP) is relying on the Programmatic General Permit for Rivers and Harbors Act Section 10 and Clean Water Act Section 404 coverage of the proposed project.

12.29.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP), entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf of Mexico, in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not, fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement, the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees, announcing the development of additional future Early Restoration projects for a Phase III Early Restoration Plan (ERP). This project, in various locations spanning Pensacola Bay in Escambia and Santa Rosa Counties, St. Andrews Bay in Bay County, and Apalachicola Bay in Franklin County, was submitted as an Early Restoration project on the NOAA website and submitted to the state of Florida. In addition to meeting the evaluation criteria of the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida criteria that Early Restoration projects occur in the eight-county panhandle area that was impacted by the Spill.

This oyster reef restoration project is designed to help support natural oyster populations without requiring construction of new facilities or developing new approaches to pursuing the project objectives. The proposed project involves placing suitable cultch material, typically oyster shell but sometimes limestone or other rock/hard materials, depending on availability, on previously constructed oyster bars to allow settling of native oyster larvae and encourage oyster colonization in three Florida bays (see Figure 12-56 through Figure 12-58 for the proposed locations in each bay). Oyster shells would be added in areas where they are part of the natural marine ecosystem.
The overall likelihood of success is good, in the short and long term. There is a risk of sedimentation of the oyster cultch, which would prevent successful attachment of spat and cause the destruction of reefs during extreme weather events (e.g., hurricanes). However, the state of Florida has extensive experience restoring and creating oyster reefs in estuaries for over 50 years, and thus, these projects are anticipated to have a high likelihood of success.

12.29.2 Project Location
The proposed project is located in the state of Florida and would be completed at multiple offshore and nearshore locations in Escambia, Santa Rosa, Bay, and Franklin Counties. Appropriate project locations in Pensacola Bay, St. Andrews Bay, and Apalachicola Bay have been selected. Figure 12-53 through Figure 12-55 illustrates the proposed project locations within each of these bays respectively. The total area from all proposed project locations is approximately 210 acres.

12.29.3 Construction and Installation
This proposed project would place a total of 42,000 cubic yards of suitable cultch material over 210 acres of existing or previously constructed, commercially harvested oyster bars for the settling of native oyster larvae and oyster colonization in three Florida Bays (Pensacola Bay, St. Andrews Bay, and Apalachicola Bay).

Based on preliminary evaluation of the conditions of existing oyster bars, it is anticipated that restoration work will include:

- Placing approximately 12,000 cubic yards of cultch on debilitated oyster reefs over an approximately 60-acre area in the Pensacola Bay system in Escambia and Santa Rosa Counties;
- Placing approximately 12,000 cubic yards of cultch on debilitated oyster reefs over an approximately 60-acre area in the St. Andrews Bay system in Bay County; and
- Placing approximately 18,000 cubic yards of cultch on debilitated oyster reefs over an approximately 90-acre area in the Apalachicola Bay system in Franklin County.

The final size and locations for cultch placement will be based on environmental conditions within each bay system prior to deployment. Project designs, locations, and the timing of cultch deployment will be selected to maximize successful oyster spat settlement and survival. Environmental conditions such as salinity levels and productivity or recruitment rates at adjacent oyster bars will be considered in the selection of restoration sites within each bay. Therefore, the amount of cultch and the number of acres restored within each bay system may vary from the estimate above to reach the overall project goal of restoring over 210 acres of existing or previously constructed oyster bars.
Figure 12-56. Potential Oyster reef restoration locations in Pensacola Bay.
Figure 12-57. Potential oyster reef restoration locations in St. Andrew Bay.
Cultch material to be placed will consist of combinations of oyster shells, either mined from existing sources or from active oyster shell collection sources, and/or limestone approved for use in these projects by Florida’s Department of Agriculture and Consumer Services (DACS). The cultch placement generally involves offloading material from barges mechanically using either spray cannons or large excavator type equipment. The new cultch material will be placed on top of existing oyster bars created and managed by DACS because these bars are depleted of shell material or have reached the end of their productive life. Placing substrate or “cultch” in bays where natural reproduction occurs is the most effective technique used throughout the Gulf of Mexico to 1) create three-dimensional reef structure, 2) stimulate spat setting, 3) sustain oyster fisheries, 4) enhance community functions, 5) increase natural productivity and 6) accelerate the recovery process. Florida DACS has been involved in rehabilitating oyster reefs for more than sixty years and provides a multi-dimensional approach built on decades of experience. The restoration methods proposed here are established methods for this type of restoration project.

Cultch material to be placed would consist of combinations of oyster shells, either mined from existing, permitted sources or from active oyster shell collection sources, and/or limestone approved for use in these project areas by DACS. Fossil shell and lime rock are commonly mined from quarries in the Gulf
Coast region and may be used if oyster shell is not available. Processed oyster shell is preferred for cultch material to restore oyster reefs where the shell is available and can be efficiently transported to reef sites.

The Department operates a work crew, with dump trucks and front-end loader tractors, to meet scheduling needs. Processed shell is collected from 2-5 days per week, depending upon the availability of shell and the time of year. Processed oyster shell is collected and transported to the stockpile areas where it is stored. The storage period provides for a process called "seasoning" which lasts for at least two weeks that removes bacterial film from the shell and provides a cleaner substrate for larval attachment. The Department maintains a shell stockpile in Apalachicola.

Seasoned shell is removed from the stockpile, placed on deck barges, and transported to reefs sites, where it is washed overboard using high pressure water jets which are never pointed directly into the seafloor (See Figure 12-59 for images of this sequence of events). Similarly, fossil shell or lime rock is transported by deck barge to the reef sites, where it is washed overboard using a high pressure water stream, or deposited using a crane and bucket. The method for deposition is determined by the material used and the configuration and elevation of the reef to be restored. Fossil shell and lime rock are products commonly mined from quarries in the Gulf Coast region. Depending upon availability, this cultch material can also be utilized. Resource managers consider this calcium carbonate-based material to be a suitable alternative cultch material for constructing oyster reef habitat. This material is also used to construct oyster reefs in areas where processed oyster shell is not readily available.

Reef locations and specific deposition sites are delineated and marked by staff prior to depositing cultch materials. The Department currently operates most of the equipment required to collect, transport and deposit the cultch material, including dump trucks, tractors, tug boat, and deck barges. Transport of the cultch to the oyster reefs for this project will occur in designated shipping channels and known deep water areas. The equipment (e.g., shallow draft barges) selected for the delivery of the cultch is made in these project to avoid potential prop dredging or scraping of bottom areas in order to avoid adversely impacting important habitats such as submerged aquatic vegetation beds. In shallower locations where such concerns exist different placement methods, such as the use of oyster boats to relay the cultch material, are incorporated to prevent impacts to these sensitive habitats. Once onsite at the reef, cultch is deposited at a rate of 100 - 300 cubic yards per acre; the amount of material deposited is determined by the condition of the reef to be restored. In cases where the physical integrity of the reef has been severely damaged, up to 300 cubic yards may be required.

For Apalachicola Bay cultch deposition, loading would occur on one day and, based on the proximity to the in-water staging area, planting would be accomplished on the following day. For all estuaries west of Apalachicola Bay, loading would be accomplished in 2 or 3 days, and travel time to and from a given estuary (2 to 9 days) would yield a maximum project duration of 12 days to accomplish the restoration work at each individual site within an estuary.

Potential impacts from boat activity associated with the placement of cultch material may be avoided with compliance during all in-water activities with the *Sea turtle and Smalltooth Sawfish Construction Guidelines* (NOAA, 2006) and *Standard Manatee Conditions for In-water Work* (USFWS, 2011).
Oyster reef restoration activities are expected to be completed within 1 year after work begins.

12.29.4 Operations and Maintenance
Project work is expected to commence 7 to 12 months after funding is received.

Cultching activities have been historically conducted from February to November. Ideally, cultching activities are conducted prior to a spat fall event; however, cultching activities are similar to crop rotation in that many oyster reef complexes require routine maintenance in the form of cultching. DACS rotates which reefs receive the required attention based on commercial harvesting seasons, availability of material, and severity of reef conditions. Post construction performance monitoring would focus on the recruitment and growth of oysters on the new cultch placements. Restored reefs may become productive in as few as 3 to 6 months under optimal conditions, with oysters reaching market size in 12 to 18 months. However, since recruitment and survival can be highly variable, some reefs may not become productive for 2 to 5 years. It has been shown that restored reefs can remain productive for more than 10 years with little additional maintenance. However, if poor recruitment to restored reefs is observed, management and maintenance activities to improve spat settlement and growth will be investigated; additional management activities will be conducted as necessary and as funding allows. Based on the expected longevity of the restored reefs, a monitoring program would assess oyster population parameters for 10 years.
Figure 12-59. Examples of culch loading and transportation (right images) and offloading using water cannon (left images).
Post construction performance monitoring would focus on the recruitment and growth of oysters on the new culch placements. Restored reefs may become productive in as few as 3 to 6 months under optimal conditions, with oysters reaching market size in 12 to 18 months. However, since recruitment and survival can be highly variable, some reefs may not become productive for 2 to 5 years. It has been shown that restored reefs can remain productive for more than 10 years with little additional maintenance. Based on the expected longevity of the restored reefs, a monitoring program would assess oyster population parameters for 10 years.

DACS would be responsible for effectively assessing the status of oyster resources on reefs that are restored during this project and would collect information on a number of metrics in order to delineate reef locations and reef area, measure population parameters, and estimate production potential. The monitoring would include collecting oyster samples following project completion on all restored reefs and establishing a sampling schedule based on expected recruitments cycles. All restored reefs would be sampled twice a year from year 1 through year 5 and once a year from year 6 through year 10. Sampling intervals may be modified to assess significant events, which may affect oyster population dynamics. A total of 16 sampling trips are planned for each restored reef that would involve the use execution of the Standard Oyster Resource Management Protocol (Florida Administrative Code 2012).

12.29.5  Affected Environment and Environmental Consequences

12.29.5.1  No Action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected resources subsections would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.29.5.2  Physical Environment

12.29.5.2.1  Geology and Substrates

Affected Resources

Geology
The existing geology and substrates in project areas for oyster reef restoration is generally flat or gently sloping. The three bays where restoration is planned are part of the Gulf of Mexico formation. Each proposed project location supports existing oyster reef structures.

In general, the estuarine embayments are within the Gulf Coast Lowlands subdivision of the Gulf Coastal Plain. The lowlands constitute a series of parallel terraces rising from the coast in successively higher levels. They formed during the Pleistocene epoch, when fluctuating sea levels were associated with the growth and melting of ice caps. Dunes, barrier islands, beach ridges, and other topographical features
were stranded inland as seas receded. Land surfaces of the lowlands are generally level and less than 100 feet above mean sea level (AMSL). Substantial areas are less than 30 feet AMSL and are characterized by excessive wetlands.

**Soils**
Soils in the area have been sculptured from alluvial plain underlain by sand, gravel, silt, and clay. The soil surveys for the various counties identify the areas for cultch placement as “waters of the Gulf of Mexico,” and no soils data are provided (Natural Resources Conservation Service [NRCS] 2013).

**Environmental Consequences**
Oyster reef restoration would have no adverse impacts on geology or substrates in the proposed project locations. Oyster cultch material would be placed on existing oyster reef structures and, therefore, would not alter the geology or substrates.

12.29.5.2.2  *Hydrology and Water Quality*

**Affected Resources**
Oyster cultch restoration would take place in nearshore, open-water habitats in three Florida bays. Existing hydrology and water quality are affected by shoreline development and management, as well as boat traffic in the bays and the Gulf of Mexico.

**Water Quality**
The CWA requires that the surface waters of each state be classified according to designated uses. Florida has six classes with associated designated uses, which are arranged in order of degree of protection required. According to 62.302-400, Fla. Admin. Code, all of the project occurs within Class II waters (Shellfish Propagation or Harvesting). Stricter standards for water quality are required for Class II Shellfish Harvesting Waters. The surface waters of the state are designated Class III unless described in Florida rule. The Pensacola Bay watershed and Apalachicola Bay is also identified as a priority waterbody under Florida’s Surface Water Improvement Management (SWIM) Program, which develops comprehensive plans for at-risk waterbodies and directs the work needed to restore damaged ecosystems, prevent pollution from stormwater runoff and other sources, and educate the public. Additional oyster populations created by the proposed project would effectively increase water quality due to their filter feeding. Short-term water quality impacts are possible due to sediment disturbance and cultch deposition.

**Outstanding Florida Waters**
The Apalachicola River and Apalachicola Bay are listed as OFW’s (FDEP 2013c).

**Aquatic Preserves**
In Florida, state aquatic preserves are listed as OFWs. Specifically, Apalachicola Bay, Fort Pickens, Yellow River Marsh, St. Joseph Bay, Alligator Harbor, and St. Andrews Aquatic Preserves are located in the general area of the proposed cultch placements. Waters in aquatic preserves and state parks, as OFWs, require additional water quality considerations; the Florida Fish and Wildlife Conservation Commission (FWC) would be consulted to determine any concerns due to proposed project activities. Short-term impacts due to cultch placement are possible but would be negligible when considering the water quality improvements made by oyster filtering.
Floodplain
The entirety of the project area is within the Florida panhandle floodplain, and waters where the work
would be done are effectively the drainage holding areas for the floodplain areas to the north. The
actual floodplain would not be impacted by any of the proposed activities as they would occur in open-
water areas.

Wetlands
The project is located in open water, and no wetlands are known to be in the project area. Land-based
storage areas for cultch material would be placed outside of wetland areas.

Environmental Consequences
Oyster cultch restoration would have no long-term adverse impact on hydrology and water quality.
Restoration would be completed at existing oyster reef locations so no water bottom impacts are
expected as restoration cultch would be placed on natural cultch materials. There may be short-term
impacts during the approximately 1-year-long period of construction. This would include increased
sediment disturbance and turbidity during cultch placement. All required permits would be obtained,
and conditions, permit requirements, and best management practices (BMPs) would be followed during
construction.

The restoration would have a minor, beneficial impact on water quality in the immediate vicinity of the
newly placed cultch material.

The placement of cultch for the submerged oyster reefs would result in short-term, minor, temporary
impacts to water quality, specifically short-term elevations in turbidity. BMPs, along with other
avoidance and mitigation measures required by state and federal regulatory agencies, would be
employed to minimize any water quality and sedimentation impacts. Authorization pursuant to Rivers
and Harbors Act Section 10 and Clean Water Act Section 404, and Clean Water Act Section 401 water
quality certification would be required and all permit conditions would be adhered to.

12.29.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
The Clean Air Act (CAA) requires the Environmental Protection Agency (EPA) to set National Ambient Air
Quality Standards (NAAQS) for pollutants considered harmful to public health and the environment.
NAAQS have been set for six common air pollutants (also known as criteria pollutants)—particle
pollution or particulate matter, ozone, carbon monoxide, sulfur dioxide, nitrogen dioxide, and lead.
Particulate matter is defined as fine particulates with a diameter of 10 micrometers or less (PM$_{10}$) and
fine particulates with a diameter of 2.5 micrometers or less (PM$_{2.5}$). When a designated air quality area
or airshed in a state exceeds a NAAQS, that area may be designated as a “nonattainment” area. Areas
with levels of pollutants below the health-based standard are designated as “attainment” areas. To
determine whether an area meets the NAAQS, air monitoring networks have been established and are
used to measure ambient air quality. The EPA also regulates 187 hazardous air pollutants (HAPs) that are
known or suspected to cause cancer or other serious health impacts.
Air quality in the Florida panhandle is in attainment with the NAAQS (EPA 2013a). The FDEP Northwest District currently operates two air monitors near the proposed project areas, one in Santa Rosa County (Woodlawn Beach Middle School) and one in Bay County (St. Andrews State Park). The Woodlawn Beach Middle School monitor in Gulf Breeze records ozone and PM\textsubscript{2.5} concentrations, and the St. Andrews State Park monitor in Panama City records ozone and PM\textsubscript{2.5} concentrations. Readings at these monitors for the last 3 years show attainment with the NAAQS for ozone and PM\textsubscript{2.5} (FDEP 2013a). Sulfur dioxide attainment data were not available for these areas (EPA 2013b).

**Greenhouse Gases**
Gases that trap heat in the air are called greenhouse gases (GHGs). The primary GHGs are carbon dioxide (CO\textsubscript{2}), methane (CH\textsubscript{4}), nitrous oxide (NO\textsubscript{x}), and fluorinated gases. Over the past century, human activities have released large amounts of GHGs into the atmosphere, which are contributing to global warming. Global warming is defined as the ongoing rise in global average temperature near the Earth’s surface and is known to cause changes in climate patterns.

According to the EPA, the average annual temperature in the southeastern portion of the United States has increased by approximately 2.0 degrees Fahrenheit (°F) since 1970. Winters, in particular, are getting warmer, and the average number of freezing days has decreased by 4 to 7 days per year since the mid-1970s. Most areas are getting wetter; autumn precipitation has increased by 30% since 1901 (EPA 2013c). In many parts of the region, the number of heavy downpours has increased. Despite the increases in fall precipitation, the area affected by moderate and severe drought has increased since the mid-1970s (EPA 2013c).

Average annual temperatures in the region are projected to increase from 4°F to 9°F by 2080. Hurricane-related rainfall is projected to continue to increase. Models suggest that rainfall will arrive in heavier downpours, with increased dry periods between storms. These changes would increase the risk of both flooding and drought. The coasts will likely experience stronger hurricanes and sea level rise. Storm surges could present problems for coastal communities and ecosystems (EPA 2013c).

Total GHG emissions in the state of Florida from 1990 to 2007 have increased at an average rate of 2.1% per year. Total GHG emissions in 2007 were 290 million metric tons of CO\textsubscript{2} equivalent (CO\textsubscript{2}e). In 2007, 91% of GHG emissions in Florida were CO\textsubscript{2} emissions (FDEP 2010).

**Environmental Consequences**
Oyster cultch restoration would take place in nearshore, open-water habitats in three Florida bays. Existing air quality and GHGs are affected by shoreline development and management, as well as boat traffic in the bays and Gulf of Mexico. Air quality within the Florida panhandle is in attainment with the NAAQS.

Project implementation would require the use of heavy equipment, which would temporarily affect air quality in the project vicinity due to construction vehicle emissions. Fine particulate matter associated with the oyster cultch placement may become airborne during materials transfers and the deployment process. Available BMPs would be employed to prevent, mitigate, and control potential air pollutants during project implementation. No air quality–related permits would be required. Any air quality impacts that would occur would be localized and short in duration. Therefore, impacts to air quality would not be considered significant.
In terms of construction equipment, the barge, dump truck, and front-end loader would likely contribute most of the GHG emissions; GHG emissions from remaining equipment would be negligible. GHG emissions from the barge have been estimated using the operating assumption of 8 hours per day and 192 days of use for cultch loading, transportation, and offloading, and GHG emissions from the dump truck and front-end loader have been estimated using the operating assumption of 8 hours per day and 54 days of use for cultch loading. These estimates represent maximum usage based on proposed construction plans. Based on the estimated 300 days of combined equipment operation, the project would be estimated to contribute approximately 912.72 metric tons of total CO$_2$e emissions (Table 12-71), well below the EPA threshold of 25,000 metric tons per year for GHG emissions. Therefore, the proposed project would result in a minor impact to ambient air quality.


<table>
<thead>
<tr>
<th>CONSTRUCTION EQUIPMENT</th>
<th>NO. OF DAYS OPERATED$^1$</th>
<th>CO$_2$ (METRIC TONS)$^2$</th>
<th>CH$_4$(CO$_2$e) (METRIC TONS)$^3$</th>
<th>NO$_x$(CO$_2$e) (METRIC TONS)</th>
<th>Total CO$_2$e (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barge</td>
<td>192</td>
<td>864.0</td>
<td>1.92</td>
<td>7.68</td>
<td>873.6</td>
</tr>
<tr>
<td>Dump truck</td>
<td>54</td>
<td>18.36</td>
<td>0.01</td>
<td>0.11</td>
<td>18.48</td>
</tr>
<tr>
<td>Front end loader</td>
<td>54</td>
<td>20.52</td>
<td>0.01</td>
<td>0.11</td>
<td>20.64</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>912.72</td>
</tr>
</tbody>
</table>

$^1$ Emissions assumptions for all equipment based on 8-hour days of operation per piece of equipment.

$^2$ CO$_2$ emissions assumptions for diesel and gasoline engines based on EPA (2009).

$^3$ CH$_4$ and NOx emissions assumptions and CO$_2$e calculations based on EPA (2011).

12.29.5.2.4 Noise

Affected Resources

Noise can be defined as unwanted or nuisance sound. The Noise Control Act of 1972 (42 USC 4901–4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. Amplitude is the magnitude of a sound and is usually expressed in decibels (dB), a dimensionless ratio of sound pressure to a reference pressure. The A-weighted decibel (dBA) is the adjusted unit of sound used to describe the human response to noise from industrial and transportation sources. The threshold of hearing is 0 dB. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear.

Table 12-72 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.

Ambient noise levels in the project area are moderate. The major noise-producing source of the area year-round is related to urbanized areas and commercial, industrial, and residential boating. The waterways are typical of this part of Florida, with significant boat traffic and associated noise, especially on weekends.
Table 12-72. Typical noise levels for common sources.

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawn mower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Adapted from U.S. Department of Energy and Bonneville Power Administration (1986).

Environmental Consequences
The proposed project would generate most of its associated construction noise from cultch loading and offloading, with minor noise during cultch transportation. While this noise would be evident to those workers on the job and the immediate area, the project would not significantly add to existing ambient noise levels. Normal noise levels would be achieved at the end of each workday and after completion of the job. Short-term impacts associated with construction would be minor, and no long-term adverse impacts would occur.

12.29.5.3 Biological Environment
12.29.5.3.1 Living Coastal and Marine Resources

Coastal and Submerged Aquatic Vegetation

Affected Resources
The presence and productivity of seagrasses in nearshore environments largely depends upon light availability. Although seagrasses have been recorded at 230-foot depths in clear waters, they are more generally restricted to shallow ocean or estuarine waters due to the rapid decline of light with depth (Green and Short 2003). In addition to the availability of light, a number of other factors also affect seagrasses. These include water temperature, salinity, sediment and water nutrient content, wave fetch (length of open water over which the wind can blow unimpeded), turbidity, and water depth (Koch 2001; Merino et al. 2005; USFWS 1999). Seagrasses generally grow in salinities that range from fresh water to 42 parts per thousand (ppt) and can tolerate short-term salinity fluctuations, but most have an optimum salinity range from 24 to 35 ppt.

Environmental Consequences
The occurrence of seagrasses at the project site is not likely, due to the water quality and other past disturbance to the project areas. Past surveys, discussed above, also indicate that there are no seagrass beds in the vicinity of the project areas in Pensacola Bay, St. Andrew Bay or Apalachicola Bay. Therefore
no environmental consequences to seagrass beds are anticipated. Instead, the proposed project would likely benefit water quality in the three bay systems.

Due to the lack of existing seagrass beds or minimal coverage of seagrass in the project area, no adverse impacts from the proposed activities would be expected. Additionally, BMPs to avoid impacts to seagrass have been incorporated into the construction plan, including 1) situating anchoring sites to avoid impacts to seagrass, if found to be in the project area; 2) avoiding access over existing seagrass to the extent practicable to minimize prop-scarring impacts; and 3) monitoring turbidity levels during construction and implementing additional BMPs if turbidity levels rise too high based on local and state regulatory/permit levels.

**Marine and Estuarine Fauna (fish, shell beds, and benthic organisms)**

**Affected Resources**
The project areas in Bay, Escambia, Franklin, and Santa Rosa Counties provide habitat for numerous fish and other marine species. The value of marine habitats at the proposed project area has been affected by population growth, urban development, and water contamination from runoff and wastewater disposal. Increased coastal development, in particular, has contributed to displaced habitats, loss of wetlands, and greater amounts of stormwater runoff entering rivers, bays, and their tributaries (Northwest Florida Water Management District [NFWMD] 2011). Nonetheless, the marine environment at the project sites provides habitat to an array of aquatic species, including ladyfish (*Elops saurus*), hardhead catfish (*Arius felis*), gafftopsail catfish (*Bagre marinus*), and pigfish (*Orthopristis chrysoptera*), among others. Benthic organisms, such as bivalves, gastropods and other mollusks, anemones, amphipods, annelids, crustaceans, and echinoderms, can also be abundant in these waters (FWC 2001).

**Environmental Consequences**
No adverse impacts to fish, shell beds, and benthic organisms would be anticipated as a result of project implementation. Oyster shells would be added in areas where they are already part of the natural marine ecosystem; therefore, short- and long-term, moderate benefits would be likely to occur.

**Protected Species**

**Affected Resources**
Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Escambia, Santa Rosa, Bay, and Franklin counties, Florida where the project could be implemented^{45}. Table 12-73 presents

---

^{45} The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information
a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

**Table 12-73. Potential Impacts to Species/Critical Habitats managed by USFWS**

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle(^a), Hawksbill turtle(^a), Kemp’s ridley turtle; Leatherback turtle(^a), Loggerhead turtle</td>
<td>No work will occur in the terrestrial environment; therefore no impacts will occur to sea turtle species in the terrestrial environment. Consultation has been completed with NMFS, the agency that has jurisdiction to review impacts to sea turtles in the estuarine and marine environments. The main risk to sea turtles during implementation of this project would come from boat collisions which could result in harm or mortality. Critical habitat for the green sea turtle has been designated for the waters surrounding Culebra Island, Puerto Rico, and its outlying keys (63 FR 46693). Marine and terrestrial critical habitat for the leatherback sea turtle has been designated at Sandy Point on the western end of the island of St. Croix, U.S. Virgin Islands (44 FR 17710) and critical habitat will be reassessed during the future planned status review (76 FR 47133). Critical habitat for the hawksbill sea turtle has been designated for selected beaches and/or waters of Mona, Monito, Culebrita, and Culebra Islands, Puerto Rico (63 FR 46693). No designated critical habitat for the green, leatherback, or hawksbill sea turtles occurs within the action area. No critical habitat has been designated for the Kemp’s ridley sea turtle; therefore, none will be adversely affected or modified. The project area is all in-water and does not overlap with the currently proposed critical habitat areas in Florida for Northwest Atlantic Distinct Population Segment of the loggerhead sea turtle as these habitats are terrestrial (i.e., beaches and shorelines) (78 FR 18000)Department of the Interior, 2013). The proposed project will not result in any changes to shoreline habitats that could alter adjacent beaches with proposed critical habitat; therefore no impacts are expected.</td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>The counties in the project area are not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the project waters. The main risk to manatees during implementation of this project would come from boat collisions which could result in harm or mortality. These risks will be minimized to an insignificant or discountable level or avoided through the implementation of conservation measures.</td>
</tr>
<tr>
<td>Piping plover</td>
<td>The main risk to Piping plovers is from human disturbance while resting, foraging in habitats adjacent to marine work areas. The proposed project implementation including, eventual harvest, could result in short term increases in noise which could startle individuals, though due to the distance from the shore, startling seems unlikely. In the event of startling, the Trustees would expect normal activity to resume within minutes and do not expect any temporary displacement. The Trustees consider these impacts insignificant and discountable. The proposed project will not result in any changes to shoreline habitats where piping plover could be feeding or resting and is not expected to increase visitor use; therefore, no indirect impacts are expected. The proposed project will not result in any changes to shoreline habitats, including nearby critical habitat where piping plover could be feeding or resting therefore, no impacts are expected.</td>
</tr>
<tr>
<td>Red knot</td>
<td>The main risk to Red knots is from human disturbance while resting, foraging in habitats adjacent to marine work areas. The proposed project implementation including, eventual harvest, could result in short term increases in noise which could startle individuals, though due to the distance from the shore, startling seems unlikely. In the event of startling, the Trustees would expect normal activity to resume within minutes and do not expect any temporary displacement. The Trustees consider these impacts insignificant and discountable. The proposed project will not result in any changes to shoreline habitats where red knot could feed or rest.</td>
</tr>
</tbody>
</table>

downloaded March 13, 2013.
In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered

Additional information on some of these species is presented below.

**Sea Turtles and Marine Mammals**

There are five species of endangered or threatened sea turtles that may occur or have the potential to occur in the project area. These include green turtle, hawksbill turtle, Kemp’s ridley turtle, leatherback turtle, and loggerhead turtle. Sea turtles forage in the waters of the coastal Florida panhandle region and have the potential to occur in the waters where in-water work is proposed. The project site contains potentially suitable sea turtle nesting habitat along the sandy beach, but the site is on the bay side where nesting is uncommon.

Twenty-two marine mammals are native to the Gulf of Mexico: 21 pelagic species of whales and dolphins, and the West Indian manatee (see Chapter 3). Of these species, the endangered West Indian manatee has the potential to occur in the project area waters. Manatee typically seek out shallow seagrass areas as preferred feeding habitat. Additionally, bottlenose dolphin (*Tursiops*) populations are known to migrate into bays, estuaries, and river mouths and could be located in the proposed project area (NMFS 2013a). Bottlenose dolphins have been observed entering and leaving nearshore coastal waters (NMFS 2012).

**Gulf Sturgeon**

Gulf sturgeon are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Pearl River in Louisiana to the Suwannee River, in Florida (NMFS 2009). Adult fish reside in rivers for 8 to 9 months each year and in estuarine or Gulf of Mexico waters during the 3 to 4 cooler months of each year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993). Gulf sturgeon critical habitat was jointly designated by the NMFS and USFWS on April 18, 2003 (50 Code of Federal Regulations [C.F.R.] 226.214). Two of the three project sites are located within gulf sturgeon designated critical habitat. The Escambia County project site is located in Pensacola Bay Critical Habitat Unit 9 and the Franklin County project site is located in
Apalachicola Bay Critical Habitat Unit 13. Critical habitat was designated based on seven primary constituent elements (PCEs) essential for the species’ conservation, as defined in the 2003 Federal Register notice for gulf sturgeon critical habitat (Federal Register 2003).

According to the 2003 Federal Register notice for gulf sturgeon critical habitat, the Pensacola Bay system provides winter feeding and migration habitat for gulf sturgeon from the Escambia River and Yellow River subpopulations. Over the past 4 years, FDEP researchers have conducted tracking studies in the Pensacola Bay system to observe gulf sturgeon winter migrations and have identified specific areas in the bays where Escambia River and Yellow River gulf sturgeon collect, or migrate through, during the fall and winter season. These studies also identified two main habitat types where gulf sturgeon concentrate during winter months. Movement is generally along the shoreline area of Pensacola Bay. Gulf sturgeon showed a preference for several areas in the bay, including Redfish Point, Fort Pickens, and Escribano Point, near Catfish Basin (Craft et al. 2001:32; NMFS 1998). Sandy shoal areas, located along the south and east sides of Garcon Point, the south shore of East Bay (Redfish Point area), and near Fair Point, appear to be commonly used, especially in the fall and early spring. During midwinter, sturgeon are commonly found in deep holes located north of the barrier island at Fort Pickens, south of the Pensacola Naval Air Station, and at the entrance of Pensacola Pass. The depth in these areas ranges from 6 to 12.1 meters (20–40 feet). Other areas where tagged fish were frequently located include Escribano Point, near Catfish Basin, and at the mouth of the Yellow River. Previous incidental captures of gulf sturgeon have been recorded in Pensacola Bay, Big Lagoon, and Bayou Grande (Lorio 2000; Reynolds 1993).

The 2003 Federal Register provides further information for the Apalachicola Bay system; it states that Apalachicola Bay provides winter feeding migration habitat for the Apalachicola River gulf sturgeon subpopulation. Gulf sturgeon have been documented by sightings, incidental captures, and telemetry studies throughout Apalachicola Bay, East Bay, St. George Sound, St. Vincent Sound, and Indian Lagoon (Odenkirk 1989; Swift et al. 1977; Wooley and Crateau 1985). Gulf sturgeon have also been documented in Indian Pass, West Pass, East Pass, and just north of Dog Island (Odenkirk 1989; Wooley and Crateau 1985). Substantial weight gain and the presence of suitable habitat for prey items indicate that gulf sturgeon are feeding while in these bodies of water (Odenkirk 1989; Wooley and Crateau 1985). These areas are also used for accessing adjacent marine and estuarine feeding areas proposed in Unit 11. Gulf sturgeon are believed to migrate from Apalachicola Bay into the Gulf of Mexico, following prevailing currents and exiting primarily through the two westernmost passes (Indian and West) (Odenkirk 1989). No gulf sturgeon have been documented using Sike’s Cut, a human-made opening established in the 1950s that bisects Little St. George Island and St. George Island; therefore, Sike’s Cut is excluded from the Trustees’ proposed designation. See Figure 12-60 for critical habitat areas for gulf sturgeon.
Figure 12-60. Critical habitat map for oyster cultch restoration project locations.
**Piping Plover**
The sandy beaches and shorelines adjacent to the project area offer suitable foraging and resting habitat for the piping plover during the winter migratory season, and piping plover may forage in the shallow waters of the project area. Natural shorelines in the proposed project vicinity provide suitable winter migration resting habitat for the piping plover. Piping plover wintering habitat includes beaches, mudflats, and sandflats, as well as barrier island beaches and spoil islands (Haig 1992 as cited by USFWS 2013). On the Gulf Coast, preferred foraging areas are associated with wider beaches, mudflats, and small inlets (USFWS 2013).

**Red Knot**
The red knot, a federal proposed species, uses the state of Florida both for wintering habitat and migration stopover habitat for those that continue to migrate down to specific wintering locations in South America (Niles et al. 2008) and could be present in the project area. Wintering and migrating red knots forage along sandy beaches, tidal mudflats, saltmarshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms, and roost on high sand flats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008).

**Essential Fish Habitat**
EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as "those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity." The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Table 12-74 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of Pensacola, Andrew and Apalachicola Bays.

*Table 12-74. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.*

<table>
<thead>
<tr>
<th>EFH_CATEGORY</th>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Highly Migratory Species</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark - Neonate</td>
</tr>
<tr>
<td>EFHCATEGORY</td>
<td>SPECIES</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Blacktip Shark</td>
<td>Adult</td>
</tr>
<tr>
<td>Blacktip Shark</td>
<td>Juvenile</td>
</tr>
<tr>
<td>Blacktip Shark</td>
<td>Neonate</td>
</tr>
<tr>
<td>Bonnethead Shark</td>
<td>Adult</td>
</tr>
<tr>
<td>Bonnethead Shark</td>
<td>Juvenile</td>
</tr>
<tr>
<td>Bonnethead Shark</td>
<td>Neonate</td>
</tr>
<tr>
<td>Bull Shark</td>
<td>Adult</td>
</tr>
<tr>
<td>Bull Shark</td>
<td>Juvenile</td>
</tr>
<tr>
<td>Bull Shark</td>
<td>Neonate</td>
</tr>
<tr>
<td>Finetooth Shark</td>
<td>Adult and Juvenile</td>
</tr>
<tr>
<td>Great Hammerhead Shark</td>
<td>All</td>
</tr>
<tr>
<td>Lemon Shark</td>
<td>Adult</td>
</tr>
<tr>
<td>Nurse Shark</td>
<td>Adult</td>
</tr>
<tr>
<td>Nurse Shark</td>
<td>Juvenile</td>
</tr>
<tr>
<td>Sandbar Shark</td>
<td>Adult</td>
</tr>
<tr>
<td>Sandbar Shark</td>
<td>Neonate</td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark</td>
<td>Adult</td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark</td>
<td>Juvenile</td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark</td>
<td>Neonate</td>
</tr>
<tr>
<td>Spinner Shark</td>
<td>Adult</td>
</tr>
<tr>
<td>Spinner Shark</td>
<td>Juvenile</td>
</tr>
<tr>
<td>Spinner Shark</td>
<td>Neonate</td>
</tr>
<tr>
<td>Tiger Shark</td>
<td>Juvenile</td>
</tr>
</tbody>
</table>

**Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic**

- Cobia
- King Mackerel
- Spanish Mackerel

**Gulf of Mexico Red Drum**

- Red Drum

**Gulf of Mexico Shrimp**

- Brown Shrimp
- Pink Shrimp
- White Shrimp

**Reef Fish Resources of the Gulf of Mexico**

- Almaco Jack
- Banded Rudderfish
- Black Grouper
- Blackfin Snapper
- Blueline Tilefish
- Cubera Snapper
- Gag
- Goldface Tilefish

392
### EFH CATEGORY | SPECIES
---|---
| Gray (Mangrove) Snapper |
| Gray Triggerfish |
| Greater Amberjack |
| Hogfish |
| Lane Snapper |
| Lesser Amberjack |
| Mutton Snapper |
| Nassau Grouper |
| Queen Snapper |
| Red Grouper |
| Red Snapper |
| Scamp |
| Silk Snapper |
| Snowy Grouper |
| Speckled Hind |
| Tilefish |
| Vermilion Snapper |
| Warsaw Grouper |
| Wenchman |
| Yellowedge Grouper |
| Yellowfin Grouper |
| Yellowmouth Grouper |

**State-listed Birds, MBTA, and BGEPA**

Migratory birds are protected under the MBTA. In Florida, the nesting season is from March 1 through August 1. However, raptors such as osprey and kites typically begin nesting behavior in late February or early March. Bald eagles are protected under the BGEPA. The bald eagle nesting season in Florida is from October 1 to May 15. The nearest bald eagle nest from activities proposed in Escambia Bay is approximately 3 miles north. There are several bald eagle nests throughout the St. Andrews Bay system, ranging from approximately 2 to 5 miles from proposed activities. There are numerous bald eagle nests within the Apalachicola Bay system, due in part to the more rural nature of this part of Florida; the nests are mainly located on St. Vincent Island and St. George Island. Some of the proposed oyster cultch placement in Apalachicola Bay are within a mile of eagle nests on St Vincent and St. George Islands (FWC 2013).

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-75 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.
Table 12-75. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Foraging, feeding, resting, roosting, nesting</td>
<td>While seabirds forage, rest, or nest in the general vicinity of the project area, the project will take place at least a half mile offshore and most roosting/nesting occurs in the dune habitat. The level of project activity in open water could startle birds; however, is not expected to disrupt feeding, resting, or nesting.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-76.

Table 12-76. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care will be taken to minimize noise and vibration near areas where foraging or resting birds are encountered. All disturbance will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity. Roosting should not be impacted because the project will occur during daylight hours only. Nesting should not be impacted because the project will not occur in nesting habitats and activity is limited to open water areas.</td>
</tr>
</tbody>
</table>

*Environmental Consequences*

Protected Species

The USFWS reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On January 23, 2014 the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the Trustees’determination that the proposed project may affect, but is not likely to adversely affect, West Indian manatee, piping plover, and red knot (if listed). In addition, The USFWS also concurred with the Trustees’determination that the project will have no effect on five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead).

NMFS similarly completed its review of the proposed project on April 4, 2014 (Croom, 2014). Their review similarly concurred with the Trustees’determination that the proposed project is not likely to adversely affect green, hawksbill, Kemp’s ridley, leatherback, and loggerhead sea turtles, smalltooth sawfish, and Gulf sturgeon. The NMFS review also concurred that the proposed project’s impacts on Gulf sturgeon critical habitat would be discountable.

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006), Standard Manatee Conditions for In-Water Work (USFWS 2011),
and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

**Essential Fish Habitat**

In the Trustees’ review of the proposed project’s potential impacts on EFH the Trustees determined it is unlikely that the placement and use of oyster cultch would have any adverse effect to federally managed species or designated EFH, since any initial disturbance would be very brief, would not interfere with EFH used for migration, spawning or refuge areas, and would eventually be likely to benefit many federally managed species. Additionally, the habitat in the proposed location is already managed for use consistent with the restoration project and there should not be any significant habitat conversion as a result of the placement. Placement of the cultch can occur relatively quickly and any disturbance would be brief. Movement of HMS would not be impeded by the oyster cultch. The possibility for oyster bars interfering with vessel navigation is also low, as cultch would be placed in locations where oyster reefs are already located and maintained by DACS.

It is anticipated that offloading cultch material from barges using spray cannons or large excavator type equipment would have only brief and minor impacts to any federally managed species or designated EFH. The duration and extent of disturbance would not significantly interfere with species migration, nesting or refuge areas, since adjacent areas of similar habitat would be available and undisturbed, and most organisms could easily move away from the temporary disturbance activity to undisturbed areas when it occurs. Best management practices for construction would be followed to minimize impacts.

The project would have a relatively small spatial impact relative to the Gulf of Mexico management area. Finally, the lack of adverse impacts is a reflection of the net impact of the project which is focused on restoring a habitat critical to native oysters, which would not be suitable if the bars were not restored. It is anticipated that the proposed project would provide a net benefit to the communities present, to the habitat services they provide, and to biological resources that depend on them.

As a result, the Trustees determined that the proposed project is not likely to adversely affect EFH. Implementing the project would not result in the creation or conversion of one EFH habitat type to another type as cultch placement is only proposed to occur in areas that previously supported oyster bars. Disturbance to any EFH and species using the habitat in areas adjacent to locations where bars would be restored would be brief and insignificant with risks further mitigated by following identified best management practices during construction. No adverse impacts to other EFH types would result from the proposed restoration techniques.

On March 17, 2014 NMFS completed its evaluation of potential EFH impacts and concurred with the Trustees’ determination that the proposed project is unlikely to adversely affect EFH since implementing the project would not result in the creation or conversion of one EFH habitat type to another (Fay, 2014).

**State-listed Birds, MBTA, and BGAPA**

Bald eagles are not present at the project location so will not be affected. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.
Invasive Species

Affected Resources
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within, and possible expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 3 described more about the regulations addressing invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

Environmental Consequences
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.29.5.4 Human Uses and Socioeconomics

12.29.5.4.1 Socioeconomics and Environmental Justice

Affected Resources
The proposed project area spans four counties; these include Bay, Escambia, Franklin, and Santa Rosa Counties. Census information for these counties is listed in Table 12-77 (U.S. Census Bureau 2013).

Table 12-77. Census Data for Bay, Escambia, Franklin, and Santa Rosa Counties.

<table>
<thead>
<tr>
<th>POPULATION</th>
<th>FLORIDA</th>
<th>BAY COUNTY</th>
<th>ESCAMBIA COUNTY</th>
<th>FRANKLIN COUNTY</th>
<th>SANTA ROSA COUNTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population, 2010</td>
<td>18,801,310</td>
<td>168,852</td>
<td>302,715</td>
<td>11,549</td>
<td>158,512</td>
</tr>
<tr>
<td>White alone</td>
<td>14,721,426</td>
<td>78.3%</td>
<td>139,978</td>
<td>82.9%</td>
<td>212,203</td>
</tr>
<tr>
<td>Black or African American</td>
<td>3,121,017</td>
<td>16.6%</td>
<td>18,743</td>
<td>11.1%</td>
<td>69,321</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone</td>
<td>94,007</td>
<td>0.5%</td>
<td>1,182</td>
<td>0.7%</td>
<td>2,724</td>
</tr>
<tr>
<td>Asian alone</td>
<td>507,635</td>
<td>2.7%</td>
<td>3,715</td>
<td>2.2%</td>
<td>8,779</td>
</tr>
<tr>
<td>Native Hawaiian and other Pacific Islander alone</td>
<td>18,801</td>
<td>0.1%</td>
<td>169</td>
<td>0.1%</td>
<td>605</td>
</tr>
</tbody>
</table>
### Environmental Consequences

This project would have short-term, minor, direct adverse impacts on socioeconomic resources through the disruption of localized fishing during construction. Direct, short-term, moderate benefits through local job creation would result from construction activities. Long-term, indirect moderate benefits would result from increasing fisheries habitat along with the recreational and fishing values of the area.

This project is not designed to create a benefit for any group or individual, but rather would provide benefits on a local and regional basis. There are no indications that the proposed oyster reef restoration would be contrary to the goals of Executive Order 12898 or would create disproportionate, adverse human health or environmental impact on minority or low-income populations of the surrounding community.

#### 12.29.5.4.2 Cultural Resources

**Affected Resources**

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

**Environmental Consequences**

A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

#### 12.29.5.4.3 Infrastructure

**Affected Resources**

Oyster reef restoration would take place in open-water habitats, away from any and all infrastructure.

**Environmental Consequences**

Oyster reef restoration would have no effect on infrastructure because the project work would take place in open-water habitat, away from existing infrastructure.
12.29.5.4.4 Land and Marine Management

Affected Resources
Oyster reef restoration would take place in open-water habitat in three Florida bays. There are existing management plans adjacent to oyster cultch placement in Escambia County, Gulf Islands National Seashore and Fort Pickens Aquatic Preserve; however, activities would occur outside the park and preserve boundaries. A management plan does cover the area where oyster cultch activities would occur in Franklin County. The Apalachicola National Estuarine Research Reserve (NERR) covers all of Apalachicola Bay (FDEP 2013b).

Environmental Consequences
Oyster reef restoration would have a moderate to major beneficial impact on marine management in the Florida panhandle. The project is expected to increase the amount of oyster reef present and lead to an increase in oyster populations throughout the Florida panhandle. All project work would be completed consistent with state and federal management plans.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

12.29.5.4.5 Aesthetics and Visual Resources

Affected Resources
The environment to be affected by the proposed project consists of open water at three locations in western Florida: (1) Pensacola Bay located in Escambia and Santa Rosa Counties, (2) St. Andrews Bay in Bay County, and (3) Apalachicola Bay in Franklin County. The three viewsheds consist of open bay waters that are visible from adjacent shorelines.

Environmental Consequences
Temporary impacts to visual resources would result from construction activity associated with enhancing existing oyster reefs. Placement of barges with cranes for lowering oyster cultch material would temporarily obstruct views of residents and visitors along the adjacent shoreline. However, the time needed for the cultch deployment is short, and, therefore, visual and aesthetic impacts would be for a short duration. The vertical profile of the deployed oyster cultch is designed to be below the water surface, and should not be visible from above the water. Overall, impacts to visual resources would be short term and minor.
12.29.5.4.6 Tourism and Recreational Use

Affected Resources
Tourism and recreation are common throughout the Florida panhandle region. Oyster reef restoration would be completed at locations throughout the panhandle and may take place in some areas where tourism and recreation are common.

Environmental Consequences
Oyster reef restoration would have either no impact or a beneficial impact on tourism and recreational use. If successful, the project may provide increased opportunities for oyster harvesting by recreational oyster fishermen.

12.29.5.4.7 Public Health and Safety and Shoreline Protection

Affected Resources
The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act; the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); the Emergency Planning and Community Right-to-Know Act; and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of these materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

A review of the EPA’s EnviroMapper revealed that there are no CERCLA sites on or immediately adjacent to the proposed project area (EPA 2013b). The project would be conducted at multiple locations throughout the Florida panhandle. The specific public health and safety and shoreline protection conditions at each individual location may vary. Project locations would not be situated in areas with hazardous waste generation or disposal.

Environmental Consequences
Oyster reef restoration would have no impact on public health conditions because restoration techniques would follow health and safety guidance and would not take place in areas where public health conditions may be affected.

12.29.6 Summary and Next Steps
The proposed Florida Oyster Cultch project would enhance and improve the oyster populations in Pensacola Bay, Andrew Bay and Apalachicola Bay. The proposed improvements include the placement of a total of 42,000 cubic yards of suitable cultch material over 210 acres of previously constructed oyster bars for the settling of native oyster larvae and oyster colonization in three Florida Bays. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.
NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would provide long-term benefits by promoting reef development for oysters by restoring approximately 210 acres of existing oyster reef habitat. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.29.7 References


Fay, V. 2014. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for the proposed Florida Oyster Cultch restoration project for Pensacola Bay, Andrew Bay, and Apalachicola Bay. March, 17.


402


CHAPTER 12: PROPOSED PHASE III EARLY RESTORATION PROJECTS: FLORIDA (continued)

12.30 Strategically Provided Boat Access along Florida’s Gulf Coast: Project Description A
(City of Mexico Beach Marina Project) ............................................................................. 1
  12.30.1 Project Summary........................................................................................................ 1
  12.30.2 Background and Project Description........................................................................... 1
  12.30.3 Evaluation Criteria..................................................................................................... 2
  12.30.4 Performance Criteria, Monitoring and Maintenance ................................................. 3
  12.30.5 Offsets....................................................................................................................... 4
  12.30.6 Costs........................................................................................................................ 4

12.31 Strategically Provided Boat Access along Florida’s Gulf Coast: Environmental Review A
(City of Mexico Beach Marina Project) ................................................................................. 5
  12.31.1 Introduction and Background .................................................................................... 5
  12.31.2 Project Location......................................................................................................... 6
  12.31.3 Construction and Installation.................................................................................... 6
  12.31.4 Operations and Maintenance .................................................................................... 6
  12.31.5 Affected Environment and Environmental Consequences .................................. 9
  12.31.6 Summary and Next Steps........................................................................................ 9
  12.31.7 References............................................................................................................... 28

12.32 Strategically Provided Boat Access along Florida’s Gulf Coast: Project Description B
(Panama City St. Andrews Marina Docking Facility Expansions) ........................................ 32
  12.32.1 Project Summary....................................................................................................... 32
  12.32.2 Background and Project Description........................................................................ 32
  12.32.3 Evaluation Criteria................................................................................................... 32
  12.32.4 Performance Criteria, Monitoring and Maintenance .............................................. 34
  12.32.5 Offsets...................................................................................................................... 34
  12.32.6 Costs....................................................................................................................... 35

12.33 Strategically Provided Boat Access along Florida’s Gulf Coast: Environmental Review B
(Panama City St. Andrews Marina Docking Facility Expansions) ......................................... 36
  12.33.1 Introduction and Background .................................................................................. 36
  12.33.2 Project Location....................................................................................................... 37
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.44.3</td>
<td>Evaluation Criteria</td>
<td>160</td>
</tr>
<tr>
<td>12.44.4</td>
<td>Performance Criteria, Monitoring and Maintenance</td>
<td>162</td>
</tr>
<tr>
<td>12.44.5</td>
<td>Offsets</td>
<td>162</td>
</tr>
<tr>
<td>12.44.6</td>
<td>Costs</td>
<td>162</td>
</tr>
<tr>
<td>12.45</td>
<td>Strategically Provided Boat Access along Florida's Gulf Coast: Environmental Review F (Walton County, Lafayette Creek Boat Dock Improvements)</td>
<td>163</td>
</tr>
<tr>
<td>12.45.1</td>
<td>Introduction and Background</td>
<td>163</td>
</tr>
<tr>
<td>12.45.2</td>
<td>Project Location</td>
<td>164</td>
</tr>
<tr>
<td>12.45.3</td>
<td>Construction and Installation</td>
<td>165</td>
</tr>
<tr>
<td>12.45.4</td>
<td>Operations and Maintenance</td>
<td>167</td>
</tr>
<tr>
<td>12.45.5</td>
<td>Affected Environment and Environmental Consequences</td>
<td>167</td>
</tr>
<tr>
<td>12.45.6</td>
<td>Summary and Next Steps</td>
<td>185</td>
</tr>
<tr>
<td>12.45.7</td>
<td>References</td>
<td>185</td>
</tr>
</tbody>
</table>
12.30 Strategically Provided Boat Access along Florida’s Gulf Coast: Project Description A (City of Mexico Beach Marina Project)

12.30.1 Project Summary
The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (City of Mexico Beach Marina) project would improve the existing Mexico Beach Canal Park boat ramp in the City of Mexico Beach. The proposed improvements include replacing the boardwalk dock with a concrete surface and increasing the width, removing and replacing eighteen existing finger piers, and replacement of the existing retaining wall. The total estimated cost of the project is $1,763,554.

12.30.2 Background and Project Description
The Trustees propose to improve and enhance an existing boat ramp at the Mexico Beach Canal Park, the City of Mexico Beach (see Figure 12-1 for general project location). This project builds on an ongoing effort initiated by the FWC through its Florida Boating Improvement Program which, in part, is used to fund applications from local governments in a competitive grant process for boat access improvement projects in remote areas, small towns and cities, and coastal counties (for more information on the program see http://myfwc.com/boating/grant-programs/fbip/).
The objective of the City of Mexico Beach Marina project is to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. The restoration work proposed includes replacing the boardwalk dock with a concrete surface and increasing the width, removing and replacing eighteen existing finger piers, and replacement of the existing retaining wall.
12.30.3 Evaluation Criteria

This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (City of Mexico Beach Marina) project is intended to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented result. Further, the project can be implemented with minimal delay. Agencies have successfully completed projects of similar scope throughout Florida over many years, including similar types of actions in earlier phases of the Deepwater Horizon Early Restoration. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement.
Agreement. Furthermore, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.30, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.30 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Florida FWC Strategic Boat Access: City of Mexico Beach Marina project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.30.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational boating and fishing opportunities by improving the existing marina. Performance monitoring will evaluate: 1) the repair of the existing retaining wall; 2) the replacement of a number of the existing finger piers; and 3) the improvement of the existing boardwalk. Specific success criteria include: 1) the completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the marina is open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by the City of Mexico Beach as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by the City of Mexico Beach.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, the City of Mexico Beach will monitor the recreational use activity at the site. City of Mexico Beach staff will visit the site twice a year to count the number of users at the boat ramp. The visitation numbers will then be provided to the Florida Department of Environmental Protection.
12.30.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Strategically Provided Boating Access along Florida’s Gulf Coast project, of which this is a component, are $6,496,680 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.¹

12.30.6 Costs
The total estimated cost to implement this project is $1,763,554. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of publication of the Final Phase III ERP/PEIS. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

¹ For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.31  Strategically Provided Boat Access along Florida’s Gulf Coast: Environmental Review A (City of Mexico Beach Marina Project)

The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (City of Mexico Beach Marina Project) would improve the existing Mexico Beach Canal Park boat ramp in the City of Mexico Beach. The proposed improvements include replacing the boardwalk dock with a concrete surface and increasing the width, removing and replacing eighteen existing finger piers, and replacement of the existing retaining wall.

12.31.1  Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement), the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This boat ramp project was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

The existing Mexico Beach City Marina is the only public marina that is located within the coastal community of Mexico Beach. The other marinas that are located within a ten mile radius of the proposed project are classified as private marinas. These private marinas require ownership of residential property at the facility in order to obtain a boat slip. This creates issues for residents and visitors of Mexico Beach when trying to obtain a boat slip for rental. During the peak season of the year and during special events that the City of Mexico Beach holds, such as fishing tournaments and major holidays, the existing marina operates at full capacity and has to turn away customers due to the lack of available boat slips.

The existing marina is equipped with fifty-five total usable boat slips, and five-foot wide boardwalk docks that are attached to finger piers for boat access. As part of the canal improvements, 18 of these narrow finger piers would be removed and replaced with 3’ wide piers. This would enhance 36 of the
existing slips. Also included in the proposed improvements is the replacement of the boardwalk dock with a concrete surface and an increase in width to 6' wide.

The City of Mexico Beach is a rapidly growing tourist city which receives around 10,000 visitors annually. Many of these visitors bring their boats with them on vacation but are faced with a lack of docking facilities throughout the city. With the improvement of this facility, there would be an increase in accessibility and convenience for the visitors whether they decide to house their boat at the marina while in town or leave it for the year when they travel back home.

With the addition of these boat slips and added docks, boater safety on the canal would also be improved. Boat slips would be constructed with the added safety precaution of reflector markers located on the end of each finger pier. This would enhance the visibility of the boat slips when entering the canal. In addition to enhancing safety, the proposed improvements would provide an environmental benefit by replacing an existing retaining wall that currently leaks sand into the canal.

The total estimated cost to implement this project is $1,763,554. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

12.31.2 Project Location

The project is located at Canal Drive on the west side of U.S. Highway 98, along the north and west boundaries of the Mexico Beach Canal in Mexico Beach, Bay County, Florida, in Section 22, Township S, Range 12-W, at Latitude: 290 57’ 11.60” North and Longitude: -850 25’ 42.86” West. The activities to occur along the northern and western side of the Mexico Beach Canal from U.S. Highway 98 to the mouth of the canal. The Mexico Beach Canal is located north of Saint Joseph Bay and has direct access to the Gulf of Mexico.
Construction and Installation

The proposed City of Mexico Beach Marina project consists of constructing a 1,700 LF steel sheet pile retaining wall approximately 2 feet in front of the existing wooden retaining wall on the northern and western side of the canal. It is anticipated that the sheet pile wall will be driven in place. The new sheet pile wall will be placed waterward of the existing timber wall and will therefore involve in-water work including some mix of workboats for positioning and during the driving. However, the plans do not specify the means of construction and whether the equipment used for the driving of the sheet pile will be in-water or positioned in the adjacent upland area although the expectation is most of this work will take place from upland areas given the canal’s relatively narrow width.
After placement of the retaining wall, approximately 440 cubic yards of clean fill material (free of vegetative material, trash, garbage, toxic or hazardous waste or any other unsuitable materials) would be used to fill the space between this new retaining wall and the shore. This retaining wall work would address the leaking of sand from behind the current retaining wall into the canal. As part of this work, the existing boardwalk dock running along the current retaining wall would be removed and replaced with a concrete sidewalk located behind the proposed new steel sheet pile retaining wall. This would allow for an increase in the boardwalk width to 6’.

The project would also include replacing 18 existing finger piers and creating 8 new finger piers that would be located along the northern and western edge of the canal. The existing 18 piers that would be replaced would be 16 feet long and 3 feet wide with a terminal piling being installed 19.5 feet from the canal edge. The boat slips would be 35.5 feet long. This would enhance 36 of the existing 55 boat slips in the marina. As part of this work up to 70 wood pilings 8” in diameter and as many as 250 12” in diameter wood pilings are to be placed. These pilings will be placed by water jetting or impact driving. All of the 12” diameter wood pilings will be replacing existing pilings. As a result, there will be up to 270 piles that will be removed and replaced as part of the project. These pilings will be removed using heavy equipment (e.g., cranes/excavators) most likely based on upland areas. All removed pilings will be appropriately disposed of.
During construction, turbidity barriers would be installed with weighted skirts that extend to within one foot of the bottom around all work areas that are in, or adjacent to, surface waters. These turbidity barriers would remain in place and be maintained until the authorized work has been completed and all erodible materials have been stabilized. Similarly, best management practices for erosion control would be implemented and maintained in upland areas at all times during construction to prevent siltation and turbid discharges into surface waters. Methods for this control would include but are not limited to the use of staked hay bales, staked filter cloth, sodding, seeding, and mulching; and staged construction. The erosion control measures would remain in place and be maintained until all authorized work is completed and the site has been stabilized.

Development of final plans will also incorporate the guidance and requirements set forth in the Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat (U.S. Army Corps of Engineers/National Marine Fisheries Service, 2001) should an SAV survey indicate sea grasses are located in the project area for the proposed pier work. Among other impacts, implementing these guidelines would require pilings for the dock expansion be placed a minimum of 10 feet apart.

During all in-water work, including transit to the project site, the measures within the Vessel Strike Avoidance Measures and Reporting for Mariners relevant for this project would be implemented. These measures, addressing vessel strike avoidance and reporting injured or dead animals, include:

**Vessel Strike Avoidance**

In order to avoid causing injury or death to marine mammals and sea turtles the following measures should be taken when consistent with safe navigation:

1. Vessel operators and crews shall maintain a vigilant watch for marine mammals and sea turtles to avoid striking sighted protected species.
2. When whales are sighted, maintain a distance of 100 yards or greater between the whale and the vessel.
3. When sea turtles or small cetaceans are sighted, attempt to maintain a distance of 50 yards or greater between the animal and the vessel whenever possible.
4. When small cetaceans are sighted while a vessel is underway (e.g., bow-riding), attempt to remain parallel to the animal’s course. Avoid excessive speed or abrupt changes in direction until the cetacean has left the area.
5. Reduce vessel speed to 10 knots or less when mother/calf pairs, groups, or large assemblages of cetaceans are observed near an underway vessel, when safety permits. A single cetacean at the surface may indicate the presence of submerged animals in the vicinity; therefore, prudent precautionary measures should always be exercised. The vessel shall attempt to route around the animals, maintaining a minimum distance of 100 yards whenever possible. NMFS Southeast Region Vessel Strike Avoidance Measures and Reporting for Mariners; revised February 2008.
6. Whales may surface in unpredictable locations or approach slowly moving vessels. When an animal is sighted in the vessel’s path or in close proximity to a moving vessel and when safety permits, reduce speed and shift the engine to neutral. Do not engage the engines until the animals are clear of the area.
Injured or Dead Protected Species Reporting

Vessel crews shall report sightings of any injured or dead protected species immediately, regardless of whether the injury or death is caused by your vessel.

Report marine mammals to the Southeast U.S. Stranding Hotline: 877-433-8299

Report sea turtles to the NMFS Southeast Regional Office: 727-824-5312

If the injury or death of a marine mammal was caused by a collision with your vessel, responsible parties shall remain available to assist the respective salvage and stranding network as needed. NMFS’ Southeast Regional Office shall be immediately notified of the strike by email (takereport.nmfsser@noaa.gov) using the attached vessel strike reporting form.

In addition, the best management practices identified within the Sea Turtle and Smalltooth Sawfish Construction Conditions (NOAA, 2006) will be implemented during periods of in-water work.

In addition, beach areas adjacent to the project site will be avoided during construction as these are designated critical habitat areas for the St. Andrews beach mouse. Specifically, no staging will occur on the beach or within the dunes, including critical habitat. Fencing/signage/barriers will be used to ensure no equipment or material is inadvertently placed/stored in the dune area during the project implementation period. Finally, while no lighting is proposed, if it becomes necessary, it will comply with the latest edition of the FWC Technical Lighting Manual.

The project is anticipated to be completed within two years of its start with up to a year of in-water work.

12.31.4 Operations and Maintenance

Long-term monitoring and maintenance of the improved facilities would be completed by the City of Mexico Beach as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by the City of Mexico Beach.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager would go out twice to the site to record the number of users. Following the one year construction performance monitoring period, the City of Mexico Beach would monitor the recreational use activity at the site. City of Mexico Beach staff would visit the site twice a year to count the number of users at the boat ramp. The visitation numbers would then be provided to the Florida Department of Environmental Protection.

12.31.5 Affected Environment and Environmental Consequences

Under the National Environmental Policy Act, federal agencies must consider environmental effects of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.
12.31.5.1 No Action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.31.5.2 Physical Environment

12.31.5.2.1 Geology and Substrates

Affected Resources
The project lies in the Gulf coastal lowlands physiographic province (Allen and Main 2005). The landscape of this region is comprised of a relatively flat terrain, ranging in elevation from 0 to about 50 feet above mean sea level. Soils in the coastal panhandle of Florida consist predominately of medium to fine grain sands and silts associated with recent Pleistocene formations (Schmidt et. al. 1980).

The soils in the project area have been identified and mapped by the U.S. Department of Agriculture Natural Resource Conservation Service (NRCS). The NRCS data identified Arents, 0 to 5 percent slopes as the only soil unit mapped within the project area (NRCS 2013). The Arents soils consist of manmade land mixed by earth-moving operations, including cutting, leveling, dredging, or filling activities or any combination of these operations (USDA 1984). Slopes are smooth. These soils are a mixture of different soils types and fill. Depth to water table is variable in these soils. Permeability is variable. Natural fertility is generally low.

Environmental Consequences
No adverse impacts to local geology, soils, and sediments associated with the project would be anticipated. The majority of the project would take place over water and appropriate erosion control and mitigation measures would be implemented prior to construction. Impacts to geology and substrates would be minor. Overall, the project’s impacts related to soil compaction and erosion during construction would be minor and in the long term, the project would not be expected to adversely impact geology, soils, or substrates.

12.31.5.2.2 Hydrology and Water Quality

Affected Resources
There is an abundant supply of both surface and groundwater along the coastline of the Florida panhandle. The project is located within the St. Andrew-St. Joseph Bays Watershed. The canal on which it is located flows into the Gulf approximately 6 miles north of St. Joseph Bay. Ground water in Bay County exists under both unconfined and confined aquifers. The unconfined water table aquifer is composed primarily of quartz sand and gravel and varies in thickness, while the confined aquifer is generally the larger Florida Aquifer System. The water table range from near surface to 65 feet below land surface.
A review of the National Wetland Inventory (NWI) wetland mapper did not identify any wetland within the project site (USFWS NWI 2013). It did identify the open water of the canal. The canal varies in width from approximately 50 to 120 feet.

**Environmental Consequences**

The proposed project has been approved by USACE and a permit issued (Permit No: SAJ-2010-02882 (IP-DNA)). Both the Florida Department of Environmental Protection (FDEP) and USACE permits require mitigation and as a result, impacts to water quality are expected to be minimal. All permit conditions requiring mitigation measures for siltation, erosion, turbidity and release of chemicals would be strictly adhered to. During construction, Best Management Practices and boom placement along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts. The FDEP permit conditions require erosion and turbidity mitigation measures. These include:

- Install floating turbidity barriers
- Install erosion control measures along the perimeter of all work areas
- Stabilize all filled areas with sod, mats, barriers or a combination
- If turbidity thresholds are exceeded the project must stop, stabilize the soils, modify the work procedures, and notify the FDEP.

The FDEP permits also constitute a Certification of Compliance with State Water Quality Standards under Section 401 of the Clean Water Act, which means that the project would comply with state water quality standards and other aquatic resource protection requirements. After construction, increased boat traffic on the canal would result in minimal impacts to surface water quality.

Impacts from chemicals that could potentially be released from sources such as construction equipment and boats are expected to be negligible. Required spill containment measures would be implemented for applicable construction activities. FDEP permits require spill containment protection and mitigation measures such as:

- No boat repair or fueling facilities over the water,
- Prohibited activities include hull cleaning and painting, discharges or release of oils or greases, and related metal-based bottom paints associated with hull scraping, cleaning, and painting.

Best management practices along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts associated with construction activities. Best Management Practices for erosion control would be implemented and maintained at all times during construction to prevent siltation and turbid discharges into waters of the state. Silt and sedimentation control measures would be installed and properly maintained to protect water quality resources. Given that there would be no substantial change in uses at the project site following implementation of the proposed enhancement activities, it is anticipated that there would be no long-term negative impacts to water resources. The implementation of the proposed project would therefore result in short-term minor negative impacts on water resources. This project would not impact groundwater. There would be no adverse impacts to hydrology or water quality.
The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (Corps) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the Corps and final authorization pursuant to CWA/RHA will be completed prior to project implementation.

Overall, potential impacts to water resources are expected to be minor, temporary and localized in nature.

12.31.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
The Clean Air Act (CAA) requires the State of Florida to adopt ambient air quality standards to protect the public from potentially harmful amounts of pollutants. Six common air pollutants (also known as "criteria pollutants") are regulated by USEPA and the states under the CAA. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. The FDEP has designated areas meeting the state’s ambient air quality standards by their monitoring and modeling program efforts, (i.e., attainment areas). Florida has no nonattainment areas within the panhandle region.

Currently, Bay County is classified by USEPA as an attainment area in accordance with the National Ambient Air Quality Standards (NAAQS). Mexico Beach is not within a USEPA Class 1 air quality area; however, St. Marks National Wildlife Refuge, located approximately 72 miles to the east, is designated as a Class I air quality area (USEPA 2013a). Class I air quality areas are afforded special protection under the Clean Air Act. Any proposed new or modified sources of air pollution locating within approximately 200 miles (300 km) of a Class I air quality area are asked to consult with the Federal Land Manager to determine whether emission impact modeling to the Class I area should be conducted and submitted to the Federal Land Manager for review (USFWS 2013).

Beginning in 2011, the CAA also regulates emissions of greenhouse gases (GHG) (USEPA 2013b). The USEPA’s GHG Reporting Rule establishes mandatory GHG reporting requirements for sources that emit 25,000 metric tons or more of carbon dioxide equivalent (CO2e) per year (USEPA 2013b).

Environmental Consequences
Project implementation would require the use of boats as well as barge-mounted and land-based heavy equipment for up to 8 hours per day over a 2-year construction period. This would temporarily affect air quality and elevate greenhouse gas levels in the project vicinity due to emissions and increased dust from operation of construction vehicles and equipment. Any air quality impacts that would occur would be localized, limited to the construction phase of the project, and limited by the size of the project. Therefore, impacts to air quality would be negative but minor and short-term. The project would have no long term impacts on air quality.

Engine exhaust from pile drivers, bulldozers, trucks, and backhoes would contribute to an increase in greenhouse gas emissions. Table 12-1 describes the likely greenhouse gas emission scenario for the implementation of this project.
Based on the assumptions described in Table 12-1 above, GHG emissions would not exceed 25,000 metric tons per year. Given the projected construction-phase GHG emissions, along with the small scale and short duration of the project, predicted impacts from greenhouse gas emissions would be short-term and minor.

### 12.31.5.2.4 Noise

**Affected Resources**

Noise can be defined as unwanted sounds and sound levels, and its impacts are interpreted in relationship to impacts on nearby persons and wildlife. The Noise Control Act of 1972 (42 U.S.C. 4901 to 4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale which approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-2 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.

---

2 Emissions assumptions for all equipment based on 480 8-hour days of operation per piece of equipment over a 24-month construction period.

3 CO₂ emissions assumptions for diesel and gasoline engines based on USEPA 2009.

4 CH₄ and NOx emissions assumptions and CO₂e calculations based on USEPA 2011.

5 Construction equipment emission factors based on USEPA NONROAD emission factors for 250hp pieces of equipment. Data was accessed through the California Environmental Quality Act Roadway Construction Emissions Model.
Table 12-2. Common noise levels.

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (DBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawnmower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Adapted from BPA 1986, 1996

Noise levels in the project area vary depending on the season, time of day, number and types of noise sources, and distance from noise sources. Existing sources of noise in the project area include motor vehicle traffic on Highway 98, recreational boating, commercial vessels, overhead aircraft and ambient natural sounds such as wind, waves, and wildlife.

Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the project. Noise-sensitive receptors in the project area include residential communities, resort properties, beach recreational use and wildlife.

**Environmental Consequences**

Instances of increased noise are expected during the construction phase associated with the restoration project. The proposed project would generate construction noise associated with equipment during removal of the existing catwalk, installation of sheet piles, placement and grading of fill material, and construction of piers. Construction equipment noise is known to disturb fish, marine mammals and nesting shorebirds (discussed below). Construction noise would also create a potential nuisance to visitors and residents in areas adjacent to project construction activities. Construction noise would be temporary and limited to daytime hours, and the construction period is not anticipated to last more than 2 years. Because construction noise would be temporary, negative impacts to the human environment during construction activities would be short-term and minor, as they would likely attract attention but would not result in visitors changing their activities.

After completion of the project, noise sources would be expected to include the existing sources described above, and noise levels would return to pre-project conditions. There exists potential for increased boat and automobile traffic resulting from expansion of the marina, which would result in a slight increase in noise levels in the vicinity. Overall, long-term noise impacts from boating and other recreational activities would remain minor. Likewise, noise impacts from commercial vessels, highway traffic, and ambient natural sounds would be minor.
### 12.31.5.3 Biological Environment

#### 12.31.5.3.1 Living Coastal and Marine Resources

**Protected Species**

Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

**Affected Resources**

The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Bay County, Florida. Table 12-3 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

<table>
<thead>
<tr>
<th>SPECIES/Critical Habitat</th>
<th>SPECIES/Critical Habitat Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle; Leatherback turtle, Loggerhead turtle</td>
<td>The main risk to sea turtles during execution of this project would come from boat collisions during in-water construction activity which could result in harm or mortality. Consultation has been initiated with NMFS to address this risk as the agency that has jurisdiction to review impacts to sea turtles in the estuarine and marine environments. The habitat in the project area is not suitable for sea turtle nesting and the adjacent beach and shoreline will be avoided by all project activities. No lighting is proposed for the project at this time; however, should lighting become necessary it will be wildlife friendly. No increase in predation is expected due to the conservation measures. Therefore, no impacts to sea turtles in their terrestrial habitats are anticipated.</td>
</tr>
<tr>
<td>Loggerhead proposed critical habitat</td>
<td>The proposed City of Mexico Beach Marina action overlaps with the currently proposed critical habitat areas in Florida for Northwest Atlantic Distinct Population Segment of the loggerhead sea turtle (LOGG-N-32) (78 FR 18000) Department of the Interior, 2013). Primary Constituent Elements for proposed loggerhead critical habitat include: 1) Suitable nesting beach habitat that: (a) has relatively unimpeded nearshore access from the ocean to the beach for nesting females and from the beach to the ocean for both post-nesting females and hatchlings and (b) is located above mean high water to avoid being inundated frequently by high tides. 2) Sand that: (a) allows for suitable nest construction, (b) is suitable for facilitating gas diffusion conducive to embryo development, and (c) is able to develop and maintain temperatures and moisture content conducive to embryo development. 3) Suitable nesting beach habitat with sufficient darkness to ensure that nesting turtles are not deterred from emerging onto the beach and hatchlings and post-nesting females orient to the sea. No project activities will occur on the beach in critical habitat. No lighting is proposed for the beach.</td>
</tr>
</tbody>
</table>

---

6 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Indian manatee</td>
<td>Bay county is not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the action area, though it is unlikely. The main risk to manatees during execution of this project would come from construction noise, collision with material or equipment used during in-water construction elements of the project, or boaters using the slips. Conservation measures are designed to avoid and minimize these impacts to an insignificant and discountable level.</td>
</tr>
<tr>
<td>Piping plover and red knot</td>
<td>The main risk to piping plovers and red knot is from human disturbance while resting or foraging in habitats adjacent to work areas. The proposed project could result in short term increases in noise/disturbance. The proposed project will not result in any changes to shoreline habitats where either species could be feeding or resting. The new piers are not expected to increase visitor use to a level that would alter nearby habitats and signage would advise visitors or measures to use to protect wildlife during recreation. Therefore, indirect impacts are expected to be insignificant and discountable.</td>
</tr>
<tr>
<td>St. Andrew beach mouse</td>
<td>Threats to St. Andrew beach mouse would result from staging materials in habitats and crushing burrows or attracting additional predators to the area. Conservation measures will avoid impacts to this species. Habitat adjacent to the project site is within the SABM-1 East Crooked Island Unit of critical habitat for the St. Andrew’s beach mouse. PCE’s include: 1) A contiguous mosaic of primary, secondary scrub vegetation, and dune structure, with a balanced level of competition and predation and few or no competitive or predateous nonnative species present, that collectively provide foraging opportunities, cover, and burrow sites; 2) Primary and secondary dunes, generally dominated by sea oats that, despite occasional temporary impacts and reconfiguration from tropical storms and hurricanes, provide abundant food resources, burrow sites, and protection from predators; 3) Scrub dunes, generally dominated by scrub oaks, that provide food resources and burrow sites, and provide elevated refugia during and after intense flooding due to rainfall and/or hurricane induced storm surge; 4) Functional, unobstructed habitat connections that facilitate genetic exchange, dispersal, natural exploratory movements, and recolonization of locally extirpated areas; and 5) A natural light regime within the coastal dune ecosystem, compatible with the nocturnal activity of beach mice, necessary for normal behavior, growth and viability of all life stages. Conservation measures will ensure there is no adverse modification or destruction of critical habitat.</td>
</tr>
<tr>
<td>Gulf sturgeon</td>
<td>NMFS was consulted on Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon was not considered in the consultation with the USFWS.</td>
</tr>
</tbody>
</table>

In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered
- Kemp’s Ridley Sea Turtle, *Lepidochelys kempii*, Endangered
Additional information on some of these species is provided below.

**Piping plover (Charadrius melodus)**
The sandy beaches and shorelines adjacent to the project area offer suitable foraging and resting habitat for the piping plover during the winter migratory season, and piping plover may forage in the shallow waters of the project area. Natural shorelines in the proposed project vicinity provide suitable winter migration resting habitat for the piping plover. Piping plover wintering habitat includes beaches, mudflats, and sandflats, as well as barrier island beaches and spoil islands (Haig 1992 as cited by USFWS 2013). On the Gulf Coast, preferred foraging areas are associated with wider beaches, mudflats, and small inlets (USFWS 2013).

**Red knot (Calidris canutus rufa)**
The red knot, a federal proposed species, uses the state of Florida both for wintering habitat and migration stopover habitat for those that continue to migrate down to specific wintering locations in South America (Niles et al. 2008). Wintering and migrating red knots forage along sandy beaches, tidal mudflats, saltmarshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms, and roost on high sand flats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008).

**St. Andrews Beach Mouse (Peromyscus polionotus peninsularis)**
The St. Andrews Beach mouse and its critical habitat occurs adjacent to the project site.

Beach mice occur only in dune habitats. All habitat types primary, secondary and scrub dunes are essential to beach mice at the individual level. Coastal dune habitat is generally categorized as: primary dunes with sea oats and other grasses commonly distributed, secondary dunes characterized by such plants as woody goldenrod, Florida rosemary, and interior or scrub dunes dominated by scrub oaks and yaupon holly. The majority of their foraging activity occurs within these primary and secondary dunes (Bird et al. 2013). PCE’s of critical habitat include: 1) A contiguous mosaic of primary, secondary scrub vegetation, and dune structure, with a balanced level of competition and predation and few or no competitive or predaceous nonnative species present, that collectively provide foraging opportunities, cover, and burrow sites; 2) Primary and secondary dunes, generally dominated by sea oats that, despite occasional temporary impacts and reconfiguration from tropical storms and hurricanes, provide abundant food resources, burrow sites, and protection from predators; 3) Scrub dunes, generally dominated by scrub oaks, that provide food resources and burrow sites, and provide elevated refugia during and after intense flooding due to rainfall and/or hurricane induced storm surge; 4) Functional, unobstructed habitat connections that facilitate genetic exchange, dispersal, natural exploratory movements, and recolonization of locally extirpated areas; and 5) A natural light regime within the coastal dune ecosystem, compatible with the nocturnal activity of beach mice, necessary for normal behavior, growth and viability of all life stages.

**Sea Turtles and Marine Mammals**
There are five species of endangered or threatened sea turtles that may occur or have the potential to occur in the project area. These include green turtle, hawksbill turtle, Kemp’s ridley turtle, leatherback...
turtle, and loggerhead turtle. Sea turtles forage in the waters of the coastal Florida panhandle region and have the potential to occur in the waters where in-water work is proposed. Sea turtle nesting habitat, including proposed critical habitat for loggerheads, surrounds the project area.

Twenty-two marine mammals are native to the Gulf of Mexico: 21 pelagic species of whales and dolphins, and the West Indian manatee (see Chapter 3). Of these species, the endangered West Indian manatee has the potential to occur in the project area waters. Manatees typically seek out shallow seagrass areas as preferred feeding habitat. Additionally, bottlenose dolphin (*Tursiops truncatus*) populations are known to migrate into bays, estuaries, and river mouths and could be located in the proposed project area (NMFS 2013a). Bottlenose dolphins have been observed entering and leaving nearshore coastal waters (NMFS 2012).

Of the five listed endangered whale species (sperm whale, sei whale, fin whale, blue whale, humpback whale), only the sperm whale is considered to commonly occur in the Gulf of Mexico. The sperm whale is predominantly found in deep ocean waters, generally deeper than 3,280 feet, on the outer continental shelf. Due to the location of the project in a canal and the relatively shallow depth in the project area, the sperm whale, or any other endangered whale, is not likely to be present.

**Smalltooth Sawfish (Pristis pectinata)**

Smalltooth sawfish (*Pristis pectinata*) do not typically use northern Gulf of Mexico waters (NMFS 2013b).

**Gulf Sturgeon (Acipenser oxyrhynchus desotoi)**

Gulf sturgeon are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Pearl River in Louisiana to the Suwannee River, in Florida (NMFS 2009). Adult fish reside in rivers for 8 to 9 months each year and in estuarine or Gulf of Mexico waters during the 3 to 4 cooler months of each year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993).

Gulf sturgeon critical habitat was jointly designated by the NMFS and USFWS on April 18, 2003 (50 C.F.R. 226.214). The proposed project site is located within the Florida Nearshore Gulf of Mexico Critical Habitat Unit 11, which contains winter feeding and migration habitat for Gulf sturgeon. Critical habitat was designated based on seven primary constituent elements (PCEs) essential for its conservation, as defined in the 2003 *Federal Register* and are listed below. PCE’s 1, 5, 6, and 7 are present in the project area.

The PCE’s are:

1. Abundant food items, such as detritus, aquatic insects, worms, and/or mollusks, within riverine habitats for larval and juvenile life stages; and abundant prey items, such as amphipods, lancelets, polychaetes, gastropods, ghost shrimp, isopods, mollusks, and/or crustaceans, within estuarine and marine habitats and substrates for subadult and adult life stages;
2. Riverine spawning sites with substrates suitable for egg deposition and development, such as limestone outcrops and cut limestone banks, bedrock, large gravel or cobble beds, marl, soapstone, or hard clay;
3. Riverine aggregation areas, also referred to as resting, holding, and staging areas, used by adult, subadult, and/or juveniles, generally, but not always, located in holes below normal riverbed
depths; these are believed necessary for minimizing energy expenditure during freshwater residency and possibly for osmoregulatory functions;

4. A flow regime (i.e., the magnitude, frequency, duration, seasonality, and rate-of-change of freshwater discharge over time) necessary for normal behavior, growth, and survival of all life stages in the riverine environment, including migration, breeding site selection, courtship, egg fertilization, resting, and staging, and for maintaining spawning sites in suitable condition for egg attachment, egg sheltering, resting, and larval staging;

5. Water quality, including temperature, salinity, pH, hardness, turbidity, oxygen content, and other chemical characteristics necessary for normal behavior, growth, and viability of all life stages;

6. Sediment quality, including texture and chemical characteristics, necessary for normal behavior, growth, and viability of all life stages; and

7. Safe and unobstructed migratory pathways necessary for passage within and between riverine, estuarine, and marine habitats (e.g., an unobstructed river or a dammed river that still allows for passage).

Essential Fish Habitat

EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as “those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Error! Reference source not found. provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Mexico Beach Marina site and Gulf of Mexico.

Table 12-4. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.

<table>
<thead>
<tr>
<th>EFH_CATEGORY</th>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Highly Migratory Species</td>
<td>Atlantic Sharpnose Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark - Neonate</td>
</tr>
<tr>
<td>EFH CATEGORY</td>
<td>SPECIES</td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td>-------------------------------------------------</td>
</tr>
<tr>
<td>Bonnethead Shark - Adult</td>
<td>Bonnethead Shark - Adult</td>
</tr>
<tr>
<td>Bonnethead Shark - Juvenile</td>
<td>Bonnethead Shark - Juvenile</td>
</tr>
<tr>
<td>Bonnethead Shark - Neonate</td>
<td>Bonnethead Shark - Neonate</td>
</tr>
<tr>
<td>Bull Shark - Juvenile</td>
<td>Bull Shark - Juvenile</td>
</tr>
<tr>
<td>Finetooth Shark - Adult - and - Juv</td>
<td>Finetooth Shark - Adult - and - Juv</td>
</tr>
<tr>
<td>Finetooth Shark - Neonate</td>
<td>Finetooth Shark - Neonate</td>
</tr>
<tr>
<td>Great Hammerhead Shark - All</td>
<td>Great Hammerhead Shark - All</td>
</tr>
<tr>
<td>Lemon Shark - Juvenile</td>
<td>Lemon Shark - Juvenile</td>
</tr>
<tr>
<td>Nurse Shark - Adult</td>
<td>Nurse Shark - Adult</td>
</tr>
<tr>
<td>Nurse Shark - Juvenile</td>
<td>Nurse Shark - Juvenile</td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark - Adult</td>
<td>Scalloped Hammerhead Shark - Adult</td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark - Juvenile</td>
<td>Scalloped Hammerhead Shark - Juvenile</td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark - Neonate</td>
<td>Scalloped Hammerhead Shark - Neonate</td>
</tr>
<tr>
<td>Spinner Shark - Adult</td>
<td>Spinner Shark - Adult</td>
</tr>
<tr>
<td>Spinner Shark - Juvenile</td>
<td>Spinner Shark - Juvenile</td>
</tr>
<tr>
<td>Spinner Shark - Neonate</td>
<td>Spinner Shark - Neonate</td>
</tr>
<tr>
<td>Tiger Shark - Juvenile</td>
<td>Tiger Shark - Juvenile</td>
</tr>
</tbody>
</table>

**Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic**

<table>
<thead>
<tr>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobia</td>
</tr>
<tr>
<td>King Mackerel</td>
</tr>
<tr>
<td>Spanish Mackerel</td>
</tr>
</tbody>
</table>

**Gulf of Mexico Shrimp**

<table>
<thead>
<tr>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown Shrimp</td>
</tr>
<tr>
<td>Pink Shrimp</td>
</tr>
<tr>
<td>White Shrimp</td>
</tr>
</tbody>
</table>

**Reef Fish Resources of the Gulf of Mexico**

<table>
<thead>
<tr>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almaco Jack</td>
</tr>
<tr>
<td>Banded Rudderfish</td>
</tr>
<tr>
<td>Black Grouper</td>
</tr>
<tr>
<td>Blackfin Snapper</td>
</tr>
<tr>
<td>Blueline Tilefish</td>
</tr>
<tr>
<td>Cubera Snapper</td>
</tr>
<tr>
<td>Gag</td>
</tr>
<tr>
<td>Goldface Tilefish</td>
</tr>
<tr>
<td>Gray (Mangrove) Snapper</td>
</tr>
<tr>
<td>Gray Triggerfish</td>
</tr>
<tr>
<td>Greater Amberjack</td>
</tr>
<tr>
<td>Hogfish</td>
</tr>
<tr>
<td>Lane Snapper</td>
</tr>
<tr>
<td>Lesser Amberjack</td>
</tr>
<tr>
<td>Mutton Snapper</td>
</tr>
<tr>
<td>Nassau Grouper</td>
</tr>
<tr>
<td>Queen Snapper</td>
</tr>
<tr>
<td>Red Grouper</td>
</tr>
<tr>
<td>Red Snapper</td>
</tr>
</tbody>
</table>
Migratory Birds and Bald Eagles

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-5 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

### Table 12-5. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>Foraging, feeding, resting, nesting</td>
<td>Shorebirds nest, forage, feed, and rest, and in the types of habitats consistent with some of the shoreline areas near proposed action but not onsite. As such, they may be impacted locally and temporarily by the project.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Resting, roosting</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats including dunes. The project activity may startle foraging or resting birds. Roosting will not be impacted because activities will occur during the day. Nesting is not known to occur in or near the project area.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-6.
### Table 12-6. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>The Trustees expect foraging and resting birds would be able to move to another nearby location to continue foraging and resting. If project activities occur during shorebird nesting season (February 15 to August 31), the FWC will be contacted to obtain the most recent guidance to protect nesting shorebirds and their recommendations will be implemented if shorebird nesting is occurring within 300 feet of the project site.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. Nesting should not be impacted because the project will not occur near nesting habitats.</td>
</tr>
</tbody>
</table>

### Environmental Consequences

#### Section 7 Consultation

The USFWS reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On March 24, 2014, the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect, five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead), West Indian manatee, piping plover, and red knot (if listed). The concurrence also agreed with the Trustees’ determination that St. Andrews beach mouse would experience no effect. The USFWS also concurred with the Trustees’ determination that the project will not adversely modify or destroy critical habitat for the St. Andrews beach mouse or destroy critical terrestrial habitat for the loggerhead sea turtles (if designated).

Consultation of potential impacts on protected species managed by NMFS from this project was initiated on February 11, 2014. The Trustees’ review of the potential impacts of the project for protected species managed by NMFS determined the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the project implementation area:

- Gulf Sturgeon - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Smalltooth Sawfish – The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Green Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Loggerhead Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Hawksbill Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
• Leatherback Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
• Kemp’s Ridley Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.

Concurrence from NMFS with the Trustees’ conclusions for these species is still pending.

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

Essential Fish Habitat
The Trustees’ review of potential impacts to EFH from the project implementation concluded construction activities will likely have a temporary negative impact on habitat. The disturbance caused by the use of heavy equipment, sediment disturbance, potential increase of debris in the water, and increased noise associated with planned project work (e.g., placing new pilings) may affect any species using the habitat near the project area. However, during construction, adjacent areas with equivalent or better habitat will be available and undisturbed and organisms could move away from disturbed areas. As a result, the Trustees concluded the project is not likely to adversely affect EFH.

On March 17, 2014 NMFS completed its evaluation of potential EFH impacts and concluded that impacts to EFH will be brief and minor (Fay, 2014).

Migratory Birds and Bald Eagles
Bald eagles are not present at the project location so will not be affected. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

Invasive Species

Affected Resources
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem with the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 3 described more about the regulations addressing invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

Environmental Consequences
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage,
monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.31.5.4 Human Uses and Socioeconomics

12.31.5.4.1 Socioeconomics and Environmental Justice

Affected Resources
Mexico Beach, similar to the rest of the Florida Panhandle, relies on the coastal waters of the Gulf of Mexico to provide a variety of economic and social benefits to its residents and visitors. The coastal ecosystems in the project area support a wide variety of commercial and recreational activities that contribute significantly to the State’s economy. Sport and commercial fisheries are some of the most notable economic highlights, within the region and the State. The marine environments within the area also provide essential transportation links, support a variety of water-dependent facilities, and offer an array of recreational opportunities that attract thousands of visitors to the area each year (FDEP 1994).

The 2009 median household income in Mexico Beach was $40,974. Accommodation and food services industries represent the largest employment sector in the city, employing 12.5 percent of residents. Public administration and construction represent the next largest employment sectors, and together the three employ approximately 42.2% of area residents (City-data.com 2013).

Environmental Consequences
No adverse socioeconomic impacts are expected as a result of the proposed project. The proposed project would benefit the local economy during construction through the provision of a small number of construction jobs and associated spending on goods and services by construction workers. Following completion of construction, the project would provide improved facilities to accommodate water-based recreational activities. The limited additional docking space created is not expected to have any long-term socioeconomic impacts.

12.31.5.4.2 Cultural Resources

Affected Resources
This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Environmental Consequences
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would
be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

### 12.31.5.4.3 Infrastructure

**Affected Resources**

Infrastructure in the Florida panhandle consists of a network of interconnected structures, support facilities and transportation systems. Physical infrastructure and public services include commonly provided federal, state, county, municipal, and/or private facilities and utilities that support development and protect public health and safety.

The most significant component of the transportation network in the area is US Highway 98, which closely follows the Gulf coast from the Florida-Alabama state line to St. Marks, Florida. Highway 98 provides the main transportation arterial into and out of the City of Mexico Beach, with the remaining transportation infrastructure consisting primarily of local residential roads. A network of canals provides local access by boat from the Gulf of Mexico to properties located inland from the coast. The closest public airport to the project site is Northwest Florida Beaches International Airport, located approximately 45 miles west in Panama City.

Water, wastewater and sanitation services are provided by the City of Mexico Beach Public Works Department. Electric service is provided by a number of private power companies. Cable television and internet are provided by Mediacom, and phone service is provided by AT&T.

**Environmental Consequences**

During construction of the marina improvements, the proposed project would potentially have minor adverse impacts to infrastructure at the marina associated with construction, utility service interruptions and potential accidental damage to utility infrastructure; and potential restrictions on access and use of canal infrastructure. Following completion of construction, the proposed improvements could lead to an increase in visitor use; however, visitor use is not expected to increase to the point where associated wear on infrastructure would lead to adverse impacts. Overall, the proposed project is expected to have long-term beneficial impacts on infrastructure through the provision of expanded and enhanced marina facilities.

### 12.31.5.4.4 Land and Marine Management

**Affected Resources**

Development in the City of Mexico Beach is regulated by the City of Mexico Beach Comprehensive Plan and the City of Mexico Beach Land Development Code (City of Mexico Beach 2013). Zoning and land development decisions are subject to review and approval by the City of Mexico Beach Planning and Zoning Board. The marina is situated on land owned by the City of Mexico Beach and zoned for Commercial use (Bay County 2013). Marinas are a permitted use in Commercial districts (City of Mexico Beach 1991). Land uses surrounding the site include single-family residential, commercial and hotel uses.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The
Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

**Environmental Consequences**

No changes would occur to the current use at the Mexico Beach Marina, or to uses on adjacent and nearby properties. Land ownership would remain the same, and the site would continue to be managed as a public marina. The proposed project would be consistent with the City of Mexico Beach Land Development Code as enforced by the City of Mexico Beach Planning and Zoning Board, since it is a permitted use in Commercial districts.

12.31.5.4.5  **Aesthetics and Visual Resources**

**Affected Resources**

Mexico Beach is situated on the Gulf of Mexico, along a 5-mile stretch of beach at the mouth of St. Joseph Bay. The landscape in the area is characterized by beaches, tidal flats, dunes, marshes and coastal waterways, with unobstructed views of the Gulf of Mexico near the coastline. Development is characteristic of small beach communities in the region, and consists of low-rise commercial, hotel and single-family residential buildings. The project is within an existing marina within an existing canal typical of many Florida beach communities.

**Environmental Consequences**

Temporary impacts to aesthetics and visual resources would result from implementation of the proposed marina improvements. Construction equipment would be temporarily visible to visitors and recreational users. These construction-related impacts to visual resources would be short term and minor, since the amount of construction equipment required to complete the project would be limited, and construction activities and equipment would be visible to residents and visitors for a maximum of two years. The proposed project would take place at the site of an existing marina. The project would improve the overall visual appearance of the site and surrounding area; therefore, no long-term impacts to aesthetics and visual resources are anticipated.

12.31.5.4.6  **Tourism and Recreational Use**

Florida’s beaches are a major attraction for the state’s economy providing benefits to a variety of user groups. Mexico beach like other Florida coastal communities attract tourists to the unique and diverse wildlife and scenic habitats, abundant fishing opportunities and the sun and surf. The hotels, restaurants, and other retail establishments within the vicinity are heavily dependent upon the revenues generated each year by the millions of residents and tourists that utilize the beach. The Florida Beaches Habitat Conservation Plan noted that Florida’s tourism industry represents a $57 billion industry and 20% of the state’s economy. It generates $3.4 billion a year alone in sales tax revenue.

The City of Mexico Beach is a rapidly growing tourist destination which currently receives upwards of 10,000 visitors a year. Locals and tourists spend much time swimming, beachcombing, boating, fishing, diving, kayaking, surfing, and engaging in other active and passive activities near the beach. Beach usage peaks during the winter and spring, and subsides during the summer.
**Environmental Consequences**

During the construction period, tourism and recreational use would be negatively impacted by noise and visual disturbances associated with the use of construction equipment. Public access to the marina would potentially be prohibited or restricted during construction activities. While these temporary inconveniences would result in minor negative impacts on tourism and recreational use, over the long term the project would result in beneficial impacts to tourism and recreational use. Opportunities for ocean-based recreational activity would be enhanced as a result of improved facilities. The project would not be expected to result in a notable increase in the number of visitors, due to its limited scope; however, the project would contribute to an improved experience for visitors and local residents using the marina. Overall, adverse impacts to tourism and recreational use would be short term and minor. Over the long term, the project would result in beneficial impacts to tourism and recreational uses.

**12.31.5.4.7 Public Health and Safety and Shoreline Protection**

**Affected Resources**

The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the Emergency Planning and Community Right-to-Know Act, and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of these materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

The project area lies within an existing marina with adjacent residential areas, located along a canal approximately 1000 feet removed from the shoreline. A review of the USEPA EnviroMapper revealed that there are no sources of contamination or hazardous materials located on or immediately adjacent to the Mexico Beach Marina (USEPA 2013c). No sources of hazardous, toxic and radioactive waste (HTRW) are otherwise known to exist within the project area. Boats moored at the marina could potentially serve as a source of non-point pollution resulting from inadvertent releases of fuel or oil.

**Environmental Consequences**

Project construction would utilize mechanical equipment and barges that use oil, lubricants and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of construction related hazardous materials such as vehicle fuels, oil, hydraulic fluid, and other vehicle maintenance fluids, and to avoid releases and spills. If a release should occur such releases would be contained and cleaned up promptly in accordance with all applicable regulations. As a result, no impacts associated with construction-related hazardous materials would be anticipated.

Because of the nature and location of the project, no impacts to public health and safety or shoreline erosion are anticipated as a result of construction activities. The project and its construction are not anticipated to generate hazardous waste or the need for disposal of hazardous waste. In the event of a fuel or oil spill from construction equipment, all procedures, regulations and laws pertaining to Oil Spill Prevention and Response would be adhered to and the incident would be reported to appropriate agencies. All occupational and marine safety regulations and laws would be followed to ensure safety of
all workers and monitors. Therefore, it is anticipated that there would be no impacts to public health and safety from the proposed project.

12.31.6 Summary and Next Steps
The proposed Strategic Boat Access: City of Mexico Beach Marina project would improve the existing Mexico Beach Canal Park boat ramp in the City of Mexico Beach. The proposed improvements include replacing the boardwalk dock with a concrete surface and increasing the width, removing and replacing eighteen existing finger piers, and replacement of the existing retaining wall. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.31.7 References
Allen, Ginger M. and Main, Martin B.


Bay County


Bird B. L., Branch L. C., and Hostetler M.E.


Bonneville Power Administration (BPA)

1996 Electrical and biological effects of transmission lines: a review (DOE/BP 2938.) Portland, OR.

1986 Electrical and biological effects of transmission lines: a review. (DOE/BP 524.) Portland, OR.

City-data.com

City of Mexico Beach


Fay, V. 2014. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for improvements to the existing Mexico Beach Canal Park boat ramp in the City of Mexico Beach, Bay County, Florida. March, 17.


Florida Department of Environmental Protection (FDEP)


Florida Fish & Wildlife Commission (FWC)


Fritts, T.H. in Hoffman, and M.A. McGehee

1983 The distribution and abundance of marine turtles in the Gulf of Mexico and nearby Atlantic waters. J. Herpetology 17(4): 327-344.


National Marine Fisheries Service (NMFS)

2005 Panama City Beaches Renourishment Biological Opinion (Consultation Number F/SER/2004/01884).


Natural Resource Conservation Service (NRCS)


Rebel, T.P.


Schmidt W. and Wiggs-Clark M.

1980 Bulletin No. 57 Geology of Bay County, Florida, By Published for Bureau of Geology Division of Resource Management FDEPartment of Natural resources Tallahassee, 1980


2001. Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat. August.

U.S. Army Corps of Engineers (USACE)

2010 Draft Supplemental Environmental Assessment for the Beach Erosion Control and Storm Damage Reduction Project Panama City Beach, Bay County, Florida.


United States Department of Agriculture (USDA), Soil Conservation Service

1984 Soil Survey of Bay County Florida.

U.S. Environmental Protection Agency (USEPA)

2011  Emission Factors for Greenhouse Gas Inventories
       Accessed October 10, 2013 at
       www.epa.gov/climateleaders/documents/emission-factors.pdf

2013a  Information obtained from EPA Region 4 air quality modeling homepage. Accessed


2013c  USEPA EnviroMapper. Accessed October 2, 2013 at

U.S. Fish and Wildlife Service (USFWS)

       http://www.fws.gov/refuges/AirQuality/

USFWS National Wetlands Inventory (NWI)

2013  http://www.fws.gov/wetlands/Wetlands-Mapper.html

Watson, K.

1991-2005 Turtle watch: 1991-2005 sea turtle monitoring on Panama City Beach, Bay County,
       Florida.
12.32  Strategically Provided Boat Access along Florida’s Gulf Coast: Project Description B (Panama City St. Andrews Marina Docking Facility Expansions)

12.32.1  Project Summary
The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (Panama City St. Andrews Marina Docking Facility Expansions) project would improve the existing St. Andrews Marina docking facility in Panama City. The proposed improvements include adding three boat slips, replacing the boat ramp, and replacing a fixed wooden dock with a concrete floating dock. The total estimated cost of the project is $250,029.

12.32.2  Background and Project Description
The Trustees propose to improve and enhance facilities at the existing St. Andrews Marina in Panama City (see Figure 12-3 for general project location). This project builds on an ongoing effort initiated by the FWC through its Florida Boating Improvement Program which, in part, is used to fund applications from local governments in a competitive grant process for boat access improvement projects in remote areas, small towns and cities, and coastal counties (for more information on the program see http://myfwc.com/boating/grant-programs/fbip/).

The objective of the Panama City St. Andrews Marina Docking Facility Expansions project is to enhance and/or increase recreational boating and fishing opportunities by improving the marina. The restoration work proposed includes constructing three boat slips, replacing the boat ramp, and replacing a fixed wooden dock with a concrete floating dock.

12.32.3  Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of their natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (Panama City St. Andrews Marina Docking Facility Expansions) project is intended to enhance and/or increase recreational boating and fishing opportunities by improving the marina. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Agencies have successfully completed projects of similar scope throughout Florida over many years, including similar types of actions in earlier phases of the Deepwater Horizon Early Restoration. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.
A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.32, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.32 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Figure 12-3. Location of FWC Strategic Boat Access City of Panama City St. Andrews Marina docking facility expansions project.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Panama City St. Andrews Marina Docking Facility Expansions project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-
county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.32.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational boating and fishing opportunities by improving an existing marina facility. Performance monitoring will evaluate: 1) the construction of the three new boat slips; 2) the replacement of the existing boat ramp; and 3) the replacement of the existing fixed wooden dock with a concrete floating dock. Specific performance criteria include: 1) the completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the marina is open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by Panama City as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by Panama City.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Panama City will monitor the recreational use activity at the site. Panama City staff will visit the site twice a year to count the number of users at the boat ramp. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

In addition, the State of Florida Trustees and the Department of the Interior recognize the need to evaluate the effectiveness of conservation measures designed to avoid or minimize impacts to sensitive species or their habitats. To assess the public’s awareness of the educational signage intended to minimize impacts of use associated with the improved facilities, readers will be invited to take an online survey accessed via a QR code on the sign. The Florida Trustees and DOI will determine the adequacy of this method of assessing public awareness six months after the completion of construction. If the online surveying is insufficient, concurrent with the twice annual performance monitoring, and performed by the same party, a survey will be taken of a sample of recreational users at the project location.

12.32.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Strategically Provided Boating Access along Florida’s Gulf Coast project, of which this is a component, are $6,496,680 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.7

7 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:
12.32.6 Costs
The total estimated cost to implement this project is $250,029. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.33 Strategically Provided Boat Access along Florida’s Gulf Coast: Environmental Review B (Panama City St. Andrews Marina Docking Facility Expansions)

The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (Panama City St. Andrews Marina Docking Facility Expansions) project would improve the existing St. Andrews Marina docking facility in Panama City. The proposed improvements include adding three boat slips, replacing the boat ramp, and replacing a fixed wooden dock with a concrete floating dock. See Figure 12-4 for the general project location.

12.33.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement), the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This boat ramp project was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

St. Andrews Marina was established in 1959 by the City of Panama City and is used by both commercial and recreational boaters. St. Andrews Marina is easily accessible to the Gulf of Mexico and the Intracoastal Waterway. The marina is situated in a developed area of Panama City characterized by residential and commercial infrastructure. The site itself is a developed marina with existing boat slips, parking areas, boarding docks, boat slips, and temporary mooring locations. It currently has approximately 100 slips. The proposed project would be focused on a small area; the over-water structures where work would take place cover a total area of approximately 630 square feet.
The City of Panama City, Florida proposes to make several improvements at the existing St. Andrews Marina. Included in these changes are the addition of three (3) boat slips, replacement of a boat ramp, and the replacement of a fixed wooden dock with a concrete floating dock. This property is located at 3151 West 10th Street, Panama City, Florida, near the southernmost boundary of the City limits and is owned by the City of Panama City.

The project would provide boaters with enhanced access to St. Andrews Bay and the Gulf of Mexico. This project would help address the reduced quality and quantity of recreational activities (e.g., boating and fishing) in Florida attributable to the Deepwater Horizon Oil Spill.

The total estimated cost to implement this project is $250,029. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

**12.33.2 Project Location**
The project is located at 3151 West 10th Street, Panama City, Bay County, Florida, in Section 1, Township 4-S, Range 15-W, at latitude 30° 16’ 76.88” north and longitude: -85° 70’ 34.87” west. The project site is located at the southern terminus of Bayview Avenue, in the western portion of the city.
Construction activities are to occur along the shoreline and in nearshore waters of St. Andrews Bay, which is a 69,000 acre estuary with direct access to the Gulf of Mexico.

12.33.3 Construction and Installation
The City of Panama City, Florida proposes to make several improvements at the existing St. Andrews Marina. Included in these changes are the addition of three (3) boat slips, replacement of an existing boat ramp, and the replacement of a fixed wooden dock with a concrete floating dock.

Standard construction methods and BMPs will be used to produce the planned improvements. For example, the construction of a boat ramp can be summarized in terms of executing a number of specific tasks and subtasks including:

Task 1. Site Preparation

a. Prior to beginning any waterward work at the boat ramp site the project area needs to be surveyed and marked. Turbidity curtains are then installed to encapsulate the work area and other erosion control methods are put in place on the landward side of the project (e.g., placement of hay bales) to prevent erosion into the water from equipment movement and any work being performed on the upland areas.

Task 2. Ramp Construction

a. The area for the ramp is surveyed in and marked by stake or pole (typically small diameter 2” or less PVC).
b. A coffer or bladder dam is installed and the water within the dam, between the waterward extent of the ramp and the land, is pumped out to upland storage ponds or run through a filter system to remove any sediment in the water before returning it to the receiving waterbody. The work area is kept dry by use of dewater pumps (ground water to be pumped is first sampled and tested for water quality) and disposed of in the same manner as the pumped surface water. This dewatering operation is run continuously throughout the construction of the ramps. Once the ramps are completed the dewatering pumps are shut down and the dams are removed.
c. Construction of the ramps begins once the area is sufficiently dry to remove unsuitable soils, if necessary, and replaced with suitable soil. This soil is then compacted to specification. Then the base material for the ramp is placed, usually a rock material. After placement and compaction of the base the ramp is formed, reinforcing steel placed and then the concrete poured and finished. Once curing of the concrete is complete the forms are removed and the coffer or bladder dams are removed.

Task 3. Monitoring

a. Every day, before the start of construction activities, the turbidity screen is checked and repaired if necessary.
b. The foreman or other designated individual checks the area inside the screen and the screen itself to see if any protected species (manatees, dolphins, small tooth sawfish etc) have gotten

40
trapped within the work area or in the screen. If so then appropriate (FWC) personnel are notified to request removal. No work is begun until the animal, fish or bird is removed.

c. During the work day the work area and area adjacent to the work are is monitored to make sure protected species have not ventured into the area. If so then work is stopped until the animal moves out of the area.

d. At the end of the day the area is checked for debris, sediment and possible spillage and these are properly removed and disposed of before shutting down the site.

e. If a storm is anticipated that might damage the turbidity screen it is removed and stored until the storm event has passed and seas have resided.

It is expected that this process will be used to replace the boat ramp as part of this project.

As part of this engineering and site assessment, a survey of submerged aquatic vegetation (SAV) in the area would be completed. Should SAV be identified in the project area, the conditions in the Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat (U.S. Army Corps of Engineers/National Marine Fisheries Service, 2001) would be implemented. Among other elements this would require pilings for the dock expansion be placed at a minimum of 10 feet apart. BMPs, to limit the noise from any pile driving (e.g., consideration of bubble curtains) will be evaluated with the selection of the final construction methods and implemented, as appropriate.

The existing conceptual plans for the work identify that approximately 15 new pilings would need to be placed as part of the work to install the floating dock and develop the three new slips. The 15 new pilings could be up to 10” by 10” and made of concrete based on conceptual plans from the City of Panama City. These pilings would be placed with some combination of water jetting and mechanical auguring by a small barge.

During all in-water construction activity, the conditions and guidelines of the Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006) would be implemented and adhered to. Significant aspects of these provisions include stopping operation of any equipment if sea turtles or smalltooth sawfish come within 50 feet of the equipment until the time when animals leave the project area of their own volition.

All applicable best management practices (BMPs) and permit conditions would be followed to minimize any adverse impacts of construction. BMPs for erosion control would be implemented and maintained at all times during construction to prevent discharges into surface waters. Methods for land-based portions of the project construction could include, but may not be limited, to the use of staked hay bales, staked filter cloth, sodding, seeding, and mulching; staged construction; and installation of turbidity screens around the immediate project site. Prior to the initiation of any work, erosion control measures would be put in place along the perimeter of construction zone. Turbidity barriers with weighted skirts extending to within one foot of the bottom would be installed along the entire shoreline length of the in-water project area prior to initiation of construction. Turbidity barriers would remain in place and be maintained until the authorized work has been completed and all erodible materials have been stabilized. Erosion control measures would remain in place and be maintained until all authorized
work is completed and the site has been stabilized. During and following construction, all construction waste materials would be disposed of appropriately.

Project work is expected to be less than two years in duration.

12.33.4 Operations and Maintenance
Long-term monitoring and maintenance of the improved facilities would be completed by Panama City as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and would be accomplished by Panama City.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager would go to the site twice to record the number of users. Following the one year construction performance monitoring period, Panama City would monitor the recreational use activity at the site. Panama City staff would visit the site twice a year to count the number of users at the boat ramp. The visitation numbers would then be provided to the Florida Department of Environmental Protection.

In addition, the State of Florida Trustees and the Department of the Interior recognize the need to evaluate the effectiveness of conservation measures designed to avoid or minimize impacts to sensitive species or their habitats. To assess the public’s awareness of the educational signage intended to minimize impacts of use associated with the improved facilities, readers will be invited to take an online survey accessed via a QR code on the sign. The Florida Trustees and DOI will determine the adequacy of this method of assessing public awareness six months after the completion of construction. If the online surveying is insufficient, concurrent with the twice annual performance monitoring, and performed by the same party, a survey will be taken of a sample of recreational users at the project location.

12.33.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

12.33.5.1 No Action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.
12.33.5.2  **Physical Environment**

12.33.5.2.1  **Geology and Substrates**

**Affected Resources**

The project lies in the Gulf coastal lowlands physiographic province (Allen and Main 2005). The landscape of the Gulf coastal lowlands is comprised of a relatively flat terrain, ranging in elevation from 0 to about 50 feet above mean sea level. Soils in the coastal panhandle of Florida consist predominately of medium to fine grain sands and silts associated with recent Pleistocene formations. A study at Tyndall Air Force Base indicates that sediments in the St. Andrews Bay range from fine sands to silt (NOAA 1997).

The soils within the project area and vicinity have been identified and mapped by the U.S. Department of Agriculture Natural Resource Conservation Service (NRCS 2013). The NRCS data identified Map unit 43 - Urban land as the soil unit mapped within the project and vicinity.

Urban land consists of areas that are 75 percent or more covered with streets, houses, commercial buildings, parking lots, shopping centers, industrial parks, airports, and related facilities. This includes soil tracts too small to be mapped separately.

**Environmental Consequences**

There are no anticipated adverse impacts to local geology, soils, and sediments associated with the project. Appropriate erosion control and mitigation measures would be implemented prior to construction. The majority of the work is over water and therefore, impacts to geology and substrates would be minor.

---

12.33.5.2.2  **Hydrology and Water Quality**

**Affected Resources**

The proposed project is located on St. Andrews Bay. St. Andrews Bay is within the St. Andrews Bay Watershed (NFWMD 2000). The St. Andrews Bay watershed is the only major estuarine drainage basin entirely within the Florida Panhandle. There are nine major streams that flow into St. Andrews Bay. The bay is designated as a SWIM Priority Waterbody by the Northwest Florida Water Management District.

**Environmental Consequences**

All permit conditions requiring mitigation measures for siltation, erosion, turbidity and release of chemicals would be strictly adhered to. During construction, Best Management Practices and boom placement along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts. The FDEP permit conditions require erosion and turbidity mitigation measures. These include:

- Install floating turbidity barriers
- Install erosion control measures along the perimeter of all work areas
- Stabilize all filled areas with sod, mats, barriers or a combination
- If turbidity thresholds are exceeded the project must stop, stabilize the soils, modify the work procedures, and notify the FDEP.
The FDEP permits also constitute a Certification of Compliance with State Water Quality Standards under Section 401 of the Clean Water Act, which means that the project would comply with state water quality standards and other aquatic resource protection requirements. After construction, increased boat traffic on the canal could result in minimal impacts to surface water quality.

Impacts from chemicals that could potentially be released from sources such as construction equipment and boats are expected to be negligible. Required spill containment measures would be implemented for applicable construction activities. FDEP permits require spill containment protection and mitigation measures such as:

- No boat repair or fueling facilities over the water,
- Prohibited activities include hull cleaning and painting, discharges or release of oils or greases, and related metal-based bottom paints associated with hull scraping, cleaning, and painting.

Best Management Practices along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts associated with construction activities. Best Management Practices for erosion control would be implemented and maintained at all times during construction to prevent siltation and turbid discharges into waters of the state. Silt and sedimentation control measures would be installed and properly maintained to protect water quality resources. Given that there would be no substantial change in uses at the project site following implementation of the proposed enhancement activities, it is anticipated that there would be no long-term negative impacts to water resources. The implementation of the proposed project would therefore result in short-term minor negative and long-term beneficial impacts on water resources. This project would not impact groundwater. There would be no adverse impacts to hydrology or water quality.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (USACE) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the USACE and final authorization pursuant to CWA/RHA will be completed prior to project implementation.

Overall, potential impacts to water resources are expected to be minor, temporary and localized in nature.

12.33.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
The Clean Air Act (CAA) requires the State of Florida to adopt ambient air quality standards to protect the public from potentially harmful amounts of pollutants. Six common air pollutants (also known as "criteria pollutants") are regulated by USEPA and the states under the CAA. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. The FDEP has designated areas meeting the state’s ambient air quality standards by their monitoring and modeling program efforts, (i.e., attainment areas). Florida has no nonattainment areas within the panhandle region.
Currently, Bay County is classified by USEPA as an attainment area in accordance with the National Ambient Air Quality Standards (NAAQS). The City of Panama City is not within an USEPA Class 1 air quality area; however, St. Marks National Wildlife Refuge, located approximately 80 miles to the east, is designated as a Class I air quality area (USEPA 2013a). Class I air quality areas are afforded special protection under the Clean Air Act. Any proposed new or modified sources of air pollution locating within approximately 200 miles (300 km) of a Class I air quality area are asked to consult with the Federal Land Manager to determine whether emission impact modeling to the Class I area should be conducted and submitted to the Federal Land Manager for review (USFWS 2013).

Beginning in 2011, the CAA also regulates emissions of greenhouse gases (GHG) (USEPA 2013b). The USEPA’s GHG Reporting Rule establishes mandatory GHG reporting requirements for sources that emit 25,000 metric tons or more of carbon dioxide equivalent (CO2e) per year (USEPA 2013b).

**Environmental Consequences**

Project implementation would require the use of barge-mounted and land-based heavy equipment for up to 8 hours per day over a 2-year construction period. This would temporarily affect air quality and elevate greenhouse gas levels in the project vicinity due to emissions and increased dust from operation of construction vehicles and equipment. Any air quality impacts that would occur would be localized, limited to the construction phase of the project, and limited by the size of the project. Therefore, impacts to air quality would be negative but minor and short-term. The project would have no long term impacts on air quality.

Engine exhaust from bulldozers, trucks, backhoes, and other equipment would contribute to an increase in greenhouse gas emissions. Table 12-7 describes the likely greenhouse gas emission scenario for the implementation of this project.

**Table 12-7. Greenhouse gas Impacts of the proposed project.**

<table>
<thead>
<tr>
<th>CONSTRUCTION EQUIPMENT</th>
<th>NO. OF HOURS OPERATED(^8)</th>
<th>CO(_2) (METRIC TONS) (^9)</th>
<th>CH(_4) (CO2E) (METRIC TONS) (^10)</th>
<th>NOX (CO2E ) (METRIC TONS)</th>
<th>TOTAL CO2E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pile Driver</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td>Bulldozer</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td>Backhoe (2)</td>
<td>3840</td>
<td>168</td>
<td>0.096</td>
<td>0.96</td>
<td>169.1</td>
</tr>
<tr>
<td>Dumptruck(^11)</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td>Cement Truck</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>497.62</strong></td>
</tr>
</tbody>
</table>

---

\(^8\) Emissions assumptions for all equipment based on 240 8-hour days of operation per piece of equipment over a 12-month construction period.

\(^9\) CO\(_2\) emissions assumptions for diesel and gasoline engines based on USEPA 2009.

\(^10\) CH\(_4\) and NOx emissions assumptions and CO2e calculations based on USEPA 2011.

\(^11\) Construction equipment emission factors based on USEPA NONROAD emission factors for 250hp pieces of equipment. Data was accessed through the California Environmental Quality Act Roadway Construction Emissions Model.
Based on the assumptions described in Table 12-7 above, GHG emissions would not exceed 25,000 metric tons per year. Given the projected construction-phase GHG emissions, along with the small scale and short duration of the project, predicted impacts from greenhouse gas emissions would be short-term and minor.

12.33.5.2.4 Noise

Affected Resources
Noise can be defined as unwanted sounds and sound levels, and its impacts are interpreted in relationship to impacts on nearby visitors to the NWR and wildlife. The Noise Control Act of 1972 (42 U.S.C. 4901 to 4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale which approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-8 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawn mower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 12-8. Common noise levels.

Noise levels in the project area vary depending on the season, time of day, number and types of noise sources, and distance from noise sources. Existing sources of noise in the project area include motor vehicle traffic on Highway 98, recreational boating, commercial vessels, overhead aircraft and ambient natural sounds such as wind, waves, and wildlife.

Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the project. Noise-sensitive receptors in the project area include residential communities, resort properties, beach recreational use and wildlife.

Environmental Consequences
Instances of increased noise are expected during the construction phase associated with the restoration project. The proposed project would generate construction noise associated with equipment during replacement of the boat ramp, and installation of a concrete floating dock to replace an existing fixed
wooden dock. Construction equipment noise is known to disturb fish, marine mammals and nesting shorebirds (discussed below). Construction noise would also create a potential nuisance to visitors and residents in areas adjacent to project construction activities. Construction noise would be temporary and limited to daytime hours, and the construction period is not anticipated to last more than one year. Because construction noise would be temporary, negative impacts to the human environment during construction activities would be short-term and minor, as they would likely attract attention but would not result in visitors changing their activities.

After completion of the project, noise sources would be expected to include the existing sources described above, and noise levels would return to pre-project conditions. There exists potential for increased boat and automobile traffic resulting from improvements to the marina, which would result in a slight increase in noise levels in the vicinity. Overall, long-term noise impacts from boating and other recreational activities would remain minor. Likewise, noise impacts from commercial vessels, highway traffic, and ambient natural sounds would be minor.

12.33.5.3 Biological Environment

12.33.5.3.1 Living Coastal and Marine Resources

Protected Species
Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

Affected Resources
The site has been a developed marine since 1959 with urban commercial development in the general vicinity. The area surrounding the Marina is highly developed with the majority of non-hardscape habitat being landscaped grass and vegetation. The non-water portions of the marina are also mostly hardscape (buildings and parking lots). Terrestrial vegetation and wildlife habitat at the project site is of limited quality and quantity as a result of past development and shoreline armoring, there is very little vegetation or wildlife habitat present on the upland portions of the site. The extent of riparian habitat within the project site is very limited and the bank is armored with riprap. The habitat surrounding the marina is open water and shoreline habitat of St. Andrews Bay. The shoreline is developed with residential and commercial infrastructure. Impervious surfaces include existing roadways, compacted soil, buildings, paved and graveled surfaces and boat ramp. There is no seagrass, mangroves, or corals present within the project area. In addition, no critical habitat exists within the marina.

The project site is situated on St. Andrews Bay and the water portions of the marina consist of open, shallow estuarine/marine habitats. While nearly 20,000 acres of seagrasses extend through St. Andrews Bay and St. Josephs Bay to the southeast, the most extensive and diverse seagrass habitat in the Florida Panhandle (NFWMD n.d.), no seagrasses exist within the footprint of the proposed project site.
Estuaries are extremely diverse and complex systems and provide spawning, nursery, and forage grounds for many species of fish and invertebrates. Within St. Andrews Bay Fish species within St. Andrews Bay resident fish species include species such as bay anchovy, code goby, sheepshead minnow, silversides, and silver perch (NOAA, 1997). Other transient species include Atlantic croaker, blue runner, bluefish, Gulf flounder, Gulf Menhaden, pinfish, red drum, Spanish mackerel, spotted seatrout, striped mullet (FDNR 1991; NOAA 1997). Some of the invertebrates found within the bay include bay scallop, bay squid, blue crab, brown shrimp, eastern oyster, grass shrimp, and pink shrimp, as well as various species of marine worms and amphipods etc. (FDNR 1991; NOAA 1997). Within the bay “hard” habitats such as piers, docks, seawalls, and rock jetties also contain tropical species such as cocoa damsels, angelfishes, parrotfishes, spadefishes, and butterfly fishes. Wrasses, groupers, and snappers are also found along these hard substrates (FDNR 1991).

In and around St. Andrews Bay a large number of bird species occur. Many are migratory and are protected by the Migratory Bird Treaty Act (MBTA). Species that may occur in the vicinity of the marina include species of herons, egrets, gulls, and terns. The marina does not provide habitat for piping plover or red knot.

The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Bay County, Florida.12 Table 12-9 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

**Table 12-9. Potential Impacts to Species/Critical Habitats managed by DOI**

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle; Leatherback turtle, Loggerhead turtle</td>
<td>No nesting habitat is present in any of the project areas; therefore no impacts from construction are anticipated. Sea turtles may nest in areas that boaters may access from these locations; therefore, visitors could disrupt nesting or hatching. The Trustees expect the conservation measures, including educational tools, will minimize impacts to sea turtles and their terrestrial habitats to an insignificant and discountable level.</td>
</tr>
<tr>
<td></td>
<td>The main risk to sea turtles during execution of this project would come from boat collisions during in-water construction activity which could result in harm or mortality. Consultation has been initiated with NMFS to address this risk as the agency that has jurisdiction to review impacts to sea turtles in the estuarine and marine environments.</td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>Bay county is not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the action areas.</td>
</tr>
<tr>
<td></td>
<td>The main risk to manatees during execution of this project would come from noise during construction and boat collisions during use of ramps which could result in harm or mortality. The Trustees expect conservation measures and educational tools discussed below to minimize impacts to manatees (including those from noise) to an insignificant and discountable level.</td>
</tr>
</tbody>
</table>

12 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
<table>
<thead>
<tr>
<th>SPECIES/Critical Habitat</th>
<th>SPECIES/Critical Habitat Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping plover and red knot</td>
<td>The main risk to piping plovers and red knot is from human disturbance while resting and foraging in habitats adjacent to marine work areas and from human disturbance if boaters choose to visit nearby islands. The proposed project could result in short term increases in noise which could startle individuals and direct disturbance. The proposed project will not result in any changes to shoreline habitats where either species is likely to forage or rest. Educational signage will be posted at all ramps reminding visitors of nearby trust resources and any protective measures that may be necessary when visiting nearby islands. This signage will be developed in coordination with FWC and the Panama City Ecological Services Field Office.</td>
</tr>
<tr>
<td>Piping plover critical habitat</td>
<td>Piping plover critical habitat is not designated in the project area but is nearby (where visitors may access it via these ramps) on Shell Island. The primary constituent elements (PCEs) of wintering piping plover critical habitat include:</td>
</tr>
<tr>
<td></td>
<td>1) Intertidal flats with sand or mud flats (or both) with no or sparse emergent vegetation.</td>
</tr>
<tr>
<td></td>
<td>2) Adjacent unvegetated or sparsely vegetated sand, mud, or algal flats above high tide are also important, especially for roosting piping plovers. Such sites may have debris, detritus, or microtopographic relief (less than 50 cm above substrate surface) offering refuge from high winds and cold weather.</td>
</tr>
<tr>
<td></td>
<td>3) Important components of the beach/dune ecosystem include surf-cast algae, sparsely vegetated back beach and salterns, spits, and washover areas.</td>
</tr>
<tr>
<td></td>
<td>4) Washover areas are broad, unvegetated zones, with little or no topographic relief, that are formed and maintained by the action of hurricanes, storm surge, or other extreme wave action.</td>
</tr>
<tr>
<td></td>
<td>Project construction will not adversely modify or destroy critical habitat for piping plover because the construction work will not be taking place in any of the habitats listed above. Visitation of nearby area will not alter any of the PCEs or result in adverse modification or destruction of critical habitat.</td>
</tr>
<tr>
<td>Choctawhatchee beach mouse</td>
<td>Neither the Choctawhatchee beach mouse nor its critical habitat occurs within the project areas. Therefore, construction activities will not affect this species or its critical habitat.</td>
</tr>
<tr>
<td>Choctawhatchee beach mouse critical habitat</td>
<td>However, both the mouse and its critical habitat occur on Shell Island and Panama City Beach which could be accessed by visitors using the improved ramps. Mice or critical habitat could be disturbed if visitors travel to these areas from the ramps. Conservation measures are expected to minimize the risk of disturbance such that impacts are insignificant and discountable.</td>
</tr>
<tr>
<td></td>
<td>Primary constituent elements (PCEs) for Choctawhatchee beach mouse critical habitat are:</td>
</tr>
<tr>
<td></td>
<td>1) A contiguous mosaic of primary, secondary scrub vegetation, and dune structure, with a balanced level of competition and predation and few or no competitive or predaceous nonnative species present, that collectively provide foraging opportunities, cover, and burrow sites;</td>
</tr>
<tr>
<td></td>
<td>2) Primary and secondary dunes, generally dominated by sea oats that, despite occasional temporary impacts and reconfiguration from tropical storms and hurricanes, provide abundant food resources, burrow sites, and protection from predators;</td>
</tr>
<tr>
<td></td>
<td>3) Scrub dunes, generally dominated by scrub oaks, that provide food resources and burrow sites, and provide elevated refugia during and after intense flooding due to rainfall and/or hurricane induced storm surge;</td>
</tr>
<tr>
<td></td>
<td>4) Functional, unobstructed habitat connections that facilitate genetic exchange, dispersal, natural exploratory movements, and recolonization of locally extirpated areas; and</td>
</tr>
<tr>
<td></td>
<td>5) A natural light regime within the coastal dune ecosystem, compatible with the nocturnal activity of beach mice, necessary for normal behavior, growth and viability of all life stages.</td>
</tr>
</tbody>
</table>
In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrhynchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered
- Kemp’s Ridley Sea Turtle, *Lepidochelys kempii*, Endangered

Additional information on some of these species is provided below.

**Sea Turtles and Marine Mammals**

There are five species of endangered or threatened sea turtles that may occur or have the potential to occur in the project area. These include green turtle, hawksbill turtle, Kemp’s ridley turtle, leatherback turtle, and loggerhead turtle. Sea turtles forage in the waters of the coastal Florida panhandle region and have the potential to occur in the waters where in-water work is proposed. The project site does not contain suitable sea turtle nesting habitat.

Twenty-two marine mammals are native to the Gulf of Mexico: 21 pelagic species of whales and dolphins, and the West Indian manatee (see Chapter 3). Of these species, the endangered West Indian manatee has the potential to occur in the project area waters. Manatee typically seek out shallow seagrass areas as preferred feeding habitat. Additionally, bottlenose dolphin (*Tursiops truncatus*) populations are known to migrate into bays, estuaries, and river mouths and could be located in the proposed project area (NMFS 2013a). Bottlenose dolphins have been observed entering and leaving nearshore coastal waters (NMFS 2012).

**Smalltooth Sawfish (Pristis pectinata)**

Smalltooth sawfish (*Pristis pectinata*) do not typically use northern Gulf of Mexico waters (NMFS 2013b).

**Gulf Sturgeon (Acipenser oxyrhynchus desotoi)**

Gulf sturgeon are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Pearl River in Louisiana to the Suwannee River, in Florida (NMFS 2009). Adult fish reside in rivers for 8 to 9 months each year and in estuarine or Gulf of Mexico waters during the 3 to 4 cooler months of each year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993). No Gulf sturgeon critical habitat is within the project area.
Bald Eagles
The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s Bald Eagle Management Plan guidelines would be followed (FWC 2008). During statewide bald eagle nesting territory surveys, no bald eagle nests occur within 1 mile of the project site.

Migratory Birds
The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-10 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

Table 12-10. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>Foraging, feeding, resting, nesting</td>
<td>At the project sites, shorebirds likely forage and rest and could be locally and temporally impacted during construction. Shorebirds nest, forage, feed, and rest on Shell Island. As such, they may be impacted by visitors traveling form the project sites to Shell Island.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Resting, roosting, nesting</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats at Shell Island. However, the level of project activity could startle resting birds. Because activities will occur during the day roosting should not be impacted.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-11.

Table 12-11. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>In general, the Trustees expect foraging and resting birds would be able to move to another nearby location to continue foraging and resting if disturbed during construction. Shorebirds are not expected to be nesting in the area of construction but use nearby areas that could be visited by people using the ramps. Educational signage will be posted at each ramp and pier to prevent impacts to migratory birds at Shell Island and other locations. Signs will be developed in coordination with FWC and the Panama City Ecological Services Field Office to detail conservation measures to protect shorebirds in nearby habitats.</td>
</tr>
</tbody>
</table>
SPECIES/SPECIES GROUP | CONSERVATION MEASURES TO MINIMIZE IMPACTS
--- | ---
Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican) | Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. Nesting should not be impacted because the project will not occur near nesting habitats. Educational signage will be posted at each ramp and pier. Signs will be developed in coordination with FWC and the Panama City Ecological Services Field Office to detail conservation measures to protect seabirds while visitors may be fishing. Protective measures will also be implemented in the design phase and include the use of pointy, white, piling caps and containers for waste fishing gear.

**Essential Fish Habitat**

EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as "those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Table 12-12 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Panama City, St. Andrew’s Marina site and St. Andrew’s Bay.

**Table 12-12. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.**

<table>
<thead>
<tr>
<th>EFH_CATEGORY</th>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Highly Migratory Species</td>
<td>Atlantic Sharpnose Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark – Adult</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark – Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark – Neonate</td>
</tr>
<tr>
<td></td>
<td>Bonnethead Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Bonnethead Shark- Neonate</td>
</tr>
<tr>
<td></td>
<td>Bull Shark – Juvenile</td>
</tr>
<tr>
<td></td>
<td>Nurse Shark – Juvenile</td>
</tr>
<tr>
<td></td>
<td>Sandbar Shark – Adult</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Tiger Shark – Juvenile</td>
</tr>
<tr>
<td></td>
<td>Tiger Shark – Neonate</td>
</tr>
</tbody>
</table>
### EFH CATEGORY

#### Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic
- Cobia
- King Mackerel
- Spanish Mackerel

#### Gulf of Mexico Red Drum
- Red Drum

#### Gulf of Mexico Shrimp
- Brown Shrimp
- Pink Shrimp
- White Shrimp

#### Reef Fish Resources of the Gulf of Mexico
- Almaco Jack
- Banded Rudderfish
- Black Grouper
- Blackfin Snapper
- Blueline Tilefish
- Cubera Snapper
- Gag
- Goldface Tilefish
- Gray (Mangrove) Snapper
- Gray Triggerfish
- Greater Amberjack
- Hogfish
- Lane Snapper
- Lesser Amberjack
- Mutton Snapper
- Nassau Grouper
- Queen Snapper
- Red Grouper
- Red Snapper
- Scamp
- Silk Snapper
- Snowy Grouper
- Speckled Hind
- Tilefish
- Vermilion Snapper
- Warsaw Grouper
- Wenchman
- Yellowedge Grouper
- Yellowfin Grouper
- Yellowmouth Grouper

### Environmental Consequences

#### Section 7 Consultation
The USFWS reviewed the proposed Panama City St. Andrews Marina Facility Docking Facility Expansions project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On March 24, 2014, the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the
Trustees’ determination that the proposed project may affect, but is not likely to adversely affect, five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead), Choctawhatchee beach mouse, West Indian manatee, piping plover, and red knot (if listed). The USFWS also concurred with the Trustees’ determination that the project will not adversely modify or destroy critical habitat for the Choctawhatchee beach mouse or piping plover.

Consultation of potential impacts on protected species managed by NMFS from this project was initiated on February 19, 2014. The Trustees’ review of the potential impacts of the project for protected species managed by NMFS determined the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the project implementation area:

- Gulf Sturgeon - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Smalltooth Sawfish – The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Green Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Loggerhead Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Hawksbill Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Leatherback Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Kemp’s Ridley Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.

Concurrence from NMFS with the Trustees’ conclusions for these species and associated critical habitats is still pending.

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

**Migratory Birds and Bald Eagle:**
There are no bald eagle nests in proximity to the project site and there is no suitable nesting habitat at the site. Therefore, there would be no impacts on bald eagles. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

**Essential Fish Habitat**
The Trustees’ review of the potential project impacts on EFH concluded the project is not likely to adversely affect EFH as the proposed marina restoration will take place within the footprint of the
existing marina facility and a very small area of subtidal habitat may be converted with the placing of pilings for the new boat slips and the new floating dock.

On March 17, 2014 NMFS completed its evaluation of potential EFH impacts and concluded that impacts to EFH will be minor and brief (Fay, 2014).

Invasive Species

Affected Resources
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem with the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 3 described more about the regulations addressing invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

Environmental Consequences

Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.33.5.4 Human Uses and Socioeconomics

12.33.5.4.1 Socioeconomics and Environmental Justice

Affected Resources
Panama City, similar to the rest of the Florida Panhandle, relies on the coastal waters of the Gulf of Mexico to provide a variety of economic and social benefits to its residents and visitors. The coastal ecosystems in the project area support a wide variety of commercial and recreational activities that contribute significantly to the State’s economy. Sport and commercial fisheries are some of the most notable economic highlights within the region and the State. The marine environments within the area also provide essential transportation links, support a variety of water-dependent facilities, and offer an array of recreational opportunities that attract thousands of visitors to the area each year (FDEP, no date).

The 2011 median household income in Panama City was $37,733 (City-data.com 2013). The largest employment sectors in the Panama City-Lynn Haven-Panama City Beach MSA in 2012 were government; leisure and hospitality; and trade, transportation, and utilities (BLS 2012).
**Environmental Consequences**

No adverse socioeconomic impacts are expected as a result of the proposed project. The proposed project would benefit the local economy during construction through the provision of a small number of construction jobs and associated spending on goods and services by construction workers. Following completion of construction, the project would provide improved facilities to accommodate water-based recreational activities. The limited additional docking space created is not expected to have any long-term socioeconomic impacts.

**12.33.5.4.2 Cultural Resources**

**Affected Resources**

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

**Environmental Consequences**

A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

**12.33.5.4.3 Infrastructure**

**Affected Resources**

Infrastructure in the Florida panhandle consists of a network of interconnected structures, support facilities and transportation systems. Physical infrastructure and public services include commonly provided Federal, State, county, parish, municipal, and/or private facilities and utilities that support development and protect public health and safety.

Panama City is well served by a network of regional arterials and state and U.S. highways. Roadway access to St. Andrews Marina is via Beck Avenue, a two-lane state roadway that is coterminous with U.S. Highway 98 Business Route. Its parent highway, US Highway 98, links Mississippi with southern Florida and closely follows the Gulf coast from the Florida-Alabama state line to St. Marks, Florida. The closest public airport to the project site is Northwest Florida Beaches International Airport, located approximately 16 miles northwest of the project site.

Water and wastewater services in the project area are provided by the City of Panama City. Five private waste haulers are permitted to provide sanitation services. Electric service is provided by Gulf Power Company and gas service is provided by TECO. Cable television and internet are provided by Mediacom, and phone service is provided by AT&T.
**Environmental Consequences**

During construction of the marina improvements, the proposed project would potentially have minor adverse impacts to infrastructure due to traffic delays and roadway damage associated with construction vehicle traffic; utility service interruptions and potential accidental damage to utility infrastructure; and closure of the marina to public use. Following completion of construction, the proposed improvements could lead to an increase in visitor use; however, visitor use is not expected to increase to the point where associated wear on infrastructure would lead to adverse impacts. Overall, the proposed project is expected to have long-term beneficial impacts on infrastructure through the provision of expanded and enhanced marina facilities.

12.33.5.4.4 **Land and Marine Management**

**Affected Resources**

Development in the City of Panama City is guided by the Panama City Comprehensive Plan and regulated according to the Panama City Land Development Code (City of Panama City 2013; 2011). Zoning and land development decisions are subject to review and approval by the City Commission as advised by the Planning Board. The project site is situated on land owned by the City of Panama City and zoned for Public/Institutional (P/I) use (City of Panama City 2011). The proposed project is a permitted use in the Public/Institutional district (City of Panama City 2011). Land uses surrounding the site include commercial, multi-family residential, and park uses.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

**Environmental Consequences**

No changes would occur to the current use at St. Andrews Marina, or to uses on adjacent and nearby properties. Land ownership would remain the same, and the site would continue to be managed as a public marina. The proposed project would be consistent with the City of Panama City Zoning Code, since it is a permitted use in Public/Institutional districts.

12.33.5.4.5 **Aesthetics and Visual Resources**

**Affected Resources**

Panama City is situated on St. Andrews Bay, a 69,000 acre estuary that outlets to the Gulf of Mexico approximately 3.5 miles southwest of the project site. The landscape in the region is characterized by beaches, tidal flats, dunes, marshes and coastal waterways. Development in the project area is characteristic of urban development in the Panama City metropolitan area, and consists of commercial and multi-family residential buildings and related landscape planting, with unobstructed views of St. Andrews Bay from the marina.
Environmental Consequences
Temporary impacts to aesthetics and visual resources would result from implementation of the proposed marina improvements. Construction equipment would be temporarily visible to visitors and recreational users. These construction-related impacts to visual resources would be adverse but minor, since the amount of construction equipment required to complete the project would be limited, and construction activities and equipment would be visible to residents and visitors for a maximum of one year. The proposed project would take place at the site of an existing marina and would not change the overall visual appearance of the site or surrounding area; therefore, no long-term impacts to aesthetics and visual resources are anticipated.

12.33.5.4.6 Tourism and Recreational Use
Panama City is the principal city of the Panama City-Lynn Haven-Panama City Beach Metropolitan Statistical Area (MSA), a popular tourist destination that receives approximately six million visitors annually (Panama City Beach 2013). Locals and tourists spend much time swimming, beachcombing, boating, fishing, diving, kayaking, surfing, and engaging in other active and passive activities near the beach. Beach usage peaks during the winter and spring, and subsides during the summer.

Environmental Consequences
During the construction period, tourism and recreational use would be negatively impacted by noise and visual disturbances associated with the use of construction equipment. Public access to the marina may be limited during construction activities. While these temporary inconveniences would result in minor negative impacts on tourism and recreational use, over the long term the project would result in beneficial impacts to tourism and recreational use. Opportunities for ocean-based recreational activity would be enhanced as a result of improved facilities. The project would not be expected to result in a notable increase in the number of visitors, due to its limited scope; however, the project would contribute to an improved experience for visitors and local residents using the marina. To the extent that visitor use increases as a result of the proposed project, it would have beneficial impacts to tourism as well. Overall, adverse impacts to tourism and recreational use would be short term and minor. Over the long term, the project would result in beneficial impacts to tourism and recreational uses.

12.33.5.4.7 Public Health and Safety and Shoreline Protection
Affected Resources
The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the Emergency Planning and Community Right-to-Know Act, and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of these materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

The project site lies within an existing developed area characterized by commercial and multi-family residential areas. A review of the USEPA EnviroMapper revealed that there are no sources of contamination or hazardous materials located on or immediately adjacent to St. Andrews Marina. Two
automotive facilities reporting sources of hazardous waste are located 0.2 and 0.3 mile from the marina, respectively (USEPA 2013c). No sources of hazardous, toxic and radioactive waste (HTRW) are otherwise known to exist within the project area. Boats launching and landing at the ramp could potentially serve as a source of non-point pollution resulting from inadvertent releases of fuel or oil.

**Environmental Consequences**

Project construction would utilize mechanical equipment that uses oil, lubricants and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of construction related hazardous materials such as vehicle fuels, oil, hydraulic fluid, and other vehicle maintenance fluids, and to avoid releases and spills. If a release should occur such releases would be contained and cleaned up promptly in accordance with all applicable regulations. As a result, no impacts associated with construction-related hazardous materials would be anticipated.

Because of the nature and location of the project, no impacts to public health and safety or shoreline erosion are anticipated as a result of construction activities. The project and its construction are not anticipated to generate hazardous waste or the need for disposal of hazardous waste. In the event of a fuel or oil spill from construction equipment, all procedures, regulations and laws pertaining to Oil Spill Prevention and Response would be adhered to and the incident would be reported to appropriate agencies. All occupational and marine safety regulations and laws would be followed to ensure safety of all workers and monitors. Therefore, it is anticipated that the proposed project would have no impacts to public health and safety.

**12.33.6 Summary and Next Steps**

The proposed FWC Strategic Boat Access: Panama City St. Andrews Marina Docking Facility Expansions project would improve the existing St. Andrews Marina docking facility in Panama City. The proposed improvements include adding three boat slips, replacing the boat ramp, and replacing a fixed wooden dock with a concrete floating dock. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational boating and fishing opportunities by improving the marina. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

**12.33.7 References**

Allen, Ginger M. and Main, Martin B.

Bureau of Labor Statistics (BLS)


City-data.com


City of Panama City


City of Panama City


Fay, V. 2014. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for improvements to the existing St. Andrews Marina docking facility in Panama City, Bay County, Florida. March, 17.


Florida Department of Environmental Protection (FDEP)


Florida Fish & Wildlife Commission (FWC)


Florida Department of Natural Resources (FDNR)


Florida Fish and Wildlife Conservation Commission (FWC)
2007  Florida Manatee Management Plan (*Trichechus manatus latirostris*).


NOAA


Northwest Florida Water Management District (NFWMD)


Panama City Beach


2001. *Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat*. August.

U.S. Army Corps of Engineers (USACE)

2010  Draft Supplemental Environmental Assessment for the Beach Erosion Control and Storm Damage Reduction Project Panama City Beach, Bay County, Florida.
U.S. Environmental Protection Agency (USEPA)


2011 Emission Factors for Greenhouse Gas Inventories


USFWS


Strategically Provided Boat Access along Florida’s Gulf Coast: Project Description C (City of Parker, Donaldson Point Boat Ramp Improvements)

The Strategically Provided Boat Access along Florida’s Gulf Coast: City of Parker, Donaldson Point Boat Ramp Improvements project component has been dropped from the Final Phase III ERP/PEIS. During the public comment period it was discovered that some uncertainty existed as to whether the City of Parker owned the property at which the proposed boat ramp was to be constructed. Rather than get involved in lengthy and costly legal investigations into ownership the City of Parker requested the Trustees to withdraw this project. Total funds allocated to Donaldson Point Boat Ramp project component were $60,569.00.

The funds from Strategically Provided Boat Access along Florida’s Gulf Coast: City of Parker, Donaldson Point Boat Ramp project component will be re-allocated to the Strategically Provided Boat Access along Florida’s Gulf Coast: City of Parker, Earl Gilbert Dock and Boat Ramp Improvements project component. (see Section 12.35). After a recent inspection of the Earl Gilbert project site, it has been determined that several issues will need to be addressed in the final designs and permitting of this project that will increase the project costs. Increased costs to the project would include stormwater management improvements for approximately $30,569.00, alternative piling installation technique for approximately $15,000.00 and accessibility improvements for approximately $15,000.00. Total estimated costs to address the above issues will be $60,659.00. None of the proposed improvements would change the footprint of the originally proposed Earl Gilbert Boat Ramp project component. The re-allocation of funds from the Donaldson Point Boat Ramp project component to the Earl Gilbert Boat Ramp project component does not affect the BCR that was negotiated with BP for the Strategically Provided Boat Access along Florida’s Gulf Coast suite of projects.
12.35 Strategically Provided Boat Access along Florida’s Gulf Coast: Environmental Review C (City of Parker, Donaldson Point Boat Ramp Improvements)

The Section has been intentionally left blank, due to removal of this project component in the Final Phase III ERP/PEIS.
12.36 Strategically Provided Boat Access along Florida’s Gulf Coast: Project Description D (City of Parker, Earl Gilbert Dock and Boat Ramp Improvements)

12.36.1 Project Summary
The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (City of Parker Earl Gilbert Dock and Boat Ramp Improvements) project would improve the existing Earl Gilbert dock and boat ramp in the City of Parker. The proposed work includes improving the existing dock and expanding the existing parking. The total estimated cost of the project is $169,929.

12.36.2 Background and Project Description
The Trustees propose to improve and enhance the existing Earl Gilbert dock and boat ramp in the City of Parker (see Figure 12-5 for general project location). This project builds on an ongoing effort initiated by the FWC through its Florida Boating Improvement Program which, in part, is used to fund applications from local governments in a competitive grant process for boat access improvement projects in remote areas, small towns and cities, and coastal counties (for more information on the program see http://myfwc.com/boating/grant-programs/fbip/).

The objective of the proposed City of Parker Earl Gilbert Dock and Boat Ramp Improvement project is to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. The restoration work proposed includes improving the existing dock and expanding the existing parking.

12.36.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of their natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (City of Parker Earl Gilbert Dock and Boat Ramp Improvements) project is intended to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses caused by the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Agencies have successfully completed projects of similar scope throughout Florida over many years, including similar types of actions in earlier phases of the Deepwater Horizon Early Restoration. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.
A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.36, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.36 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Figure 12-5. Location of FWC Strategic Boat Access City of Parker, Earl Gilbert Dock and Boat Ramp Improvements.
Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Florida FWC Strategic Boat Access: City of Parker, Earl Gilbert Dock and Boat Ramp Improvements project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.36.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational boating and fishing opportunities by improving the existing boat ramp facility. Performance monitoring will evaluate: 1) the improvement of the existing dock, and 2) expansion of the existing parking. Specific performance criteria include: 1) completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the boat ramp facility is open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by the City of Parker as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by the City of Parker.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, the City of Parker will monitor the recreational use activity at the site. The City of Parker will visit the site twice a year to count the number of users at the boat ramp. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

In addition, the State of Florida Trustees and the Department of the Interior recognize the need to evaluate the effectiveness of conservation measures designed to avoid or minimize impacts to sensitive species or their habitats. To assess the public’s awareness of the educational signage intended to minimize impacts of use associated with the improved facilities, readers will be invited to take an online survey accessed via a QR code on the sign. The Florida Trustees and DOI will determine the adequacy of this method of assessing public awareness six months after the completion of construction. If the online surveying is insufficient, concurrent with the twice annual performance monitoring, and performed by the same party, a survey will be taken of a sample of recreational users at the project location.

12.36.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Strategically Provided Boating Access along Florida’s Gulf Coast project, of which this is a component, are $6,496,680 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined
by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.\textsuperscript{13}

\textbf{12.36.6 Costs}

The total estimated cost to implement this project is $169,929. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of publication of the Final Phase III ERP/PEIS. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

\textsuperscript{13} For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.37 Strategically Provided Boat Access along Florida’s Gulf Coast: Environmental Review D (City of Parker, Earl Gilbert Dock and Boat Ramp Improvements)

Florida proposes to make several improvements at the existing Earl Gilbert Park. Included in these changes are improvements to the existing dock, along with the addition of six (6) boat trailer spaces. This property is located near the southernmost boundary of the City limits and is owned by the City of Parker.

The project would provide boaters enhanced access to St. Andrews Bay and the Gulf of Mexico. This project would help address the reduced quality and quantity of recreational activities (e.g., boating and fishing) in Florida attributable to the Deepwater Horizon Oil Spill.

12.37.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement), the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This project was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

The project location is owned by FWC and includes a single-lane boat ramp with a parking area. It is on a peninsula just east of the Tyndall Parkway Bridge. Existing structures at the site include a public boat ramp, dock, and parking area in a partially developed area. There are no slips present. The current dock is L-shaped and has a total over-water area of approximately 600 square feet. The proposed project is to repair the dock and improve parking at the location.

The total estimated cost to implement this project is $169,929. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project.
negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

12.37.2 Project Location
Earl Gilbert Park is located at 6511 Oak Shore Drive, Parker, Bay County Florida, Bay County, Florida, in Section 25, Township 4-S, Range 14-W, at latitude 30° 10' 52.18” north and longitude: -85° 25' 31.04” west. The project site is located at the southern terminus of Oakshore Drive, at the tip of Long Point, a peninsula extending into St. Andrews Bay in the extreme southern portion of the city. Construction activities are to occur at the southern end of Long Point, along the shoreline and in nearshore waters of St. Andrews Bay, which is a 69,000 acre estuary with direct access to the Gulf of Mexico (Figure 12-6).

Figure 12-6. Vicinity and project location.
12.37.3 Construction and Installation
The proposed work includes improving the existing dock and boat ramp and expanding the existing parking with the planned addition of 6 boat trailer spaces.

Work on the dock would consist of renovations to the existing dock instead of removing and constructing a new dock. The existing dock consists of wooden planks and the work would include conducting repairs to replace damaged sections with new wood material in order to improve the safety of the dock. The general size, material, and design of the dock will not change. The existing dock is approximately 3 feet height above MHW (which will not change). The existing dock runs perpendicular and then parallel to the shore (L-shaped) and has an estimated surface area is 600 square feet.

As part of the dock renovations there would be an initial survey of submerged aquatic vegetation (SAV) in the area where the work would be completed. Should SAV be identified in the project area, the conditions in the Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat (U.S. Army Corps of Engineers/National Marine Fisheries Service, 2001) would be implemented, as relevant. Among other elements, these guidelines address decking material and spacing.

The site also contains a single-lane, paved boat ramp (approximately 30 ft wide). The existing boat ramp would be repaired within the current boat ramp footprint. While final plans have not been developed for this project, the construction work associated with repairs/replacement of a boat ramp can be summarized in terms of executing a number of specific tasks and subtasks including:

Task 1. Site Preparation

b. Prior to beginning any waterward work at the boat ramp site the project area needs to be surveyed and marked. Turbidity curtains are then installed to encapsulate the work area and other erosion control methods are put in place on the landward side of the project (e.g., placement of hay bales) to prevent erosion into the water from equipment movement and any work being performed on the upland areas.

Task 2. Ramp Repairs/Construction

d. The area for the ramp is surveyed in and marked by stake or pole (typically small diameter 2” or less PVC).

e. A coffer or bladder dam is installed and the water within the dam, between the waterward extent of the ramp and the land, is pumped out to upland storage ponds or run through a filter system to remove any sediment in the water before returning it to the receiving waterbody. The work area is kept dry by use of dewater pumps (ground water to be pumped is first sampled and tested for water quality) and disposed of in the same manner as the pumped surface water. This dewatering operation is run continuously throughout the construction of the ramps. Once the ramps are complete the dewatering pumps are shut down and the dams are removed.

f. Construction of the ramps begins once the area is sufficiently dry to remove unsuitable soils, if necessary, and replaced with suitable soil. This soil is then compacted to specification. Then the
base material for the ramp is placed, usually a rock material. After placement and compaction of the base the ramp is formed, reinforcing steel placed and then the concrete poured and finished. Once curing of the concrete is complete the forms are removed and the coffer or bladder dams are removed.

Task 3. Monitoring

f. Every day, before the start of construction activities, the turbidity screen is checked and repaired if necessary.

g. The foreman or other designated individual checks the area inside the screen and the screen itself to see if any protected species (manatees, dolphins, small tooth sawfish etc.) have gotten trapped within the work area or in the screen. If so then appropriate (FWC) personnel are notified to request removal. No work is begun until the animal, fish or bird is removed.

h. During the work day the work area and area adjacent to the work are is monitored to make sure protected species have not ventured into the area. If so then work is stopped until the animal moves out of the area.

i. At the end of the day the area is checked for debris, sediment and possible spillage and these are properly removed and disposed of before shutting down the site.

j. If a storm is anticipated that might damage the turbidity screen it is removed and stored until the storm event has passed and seas have resided.

Best management practices (BMPs) for erosion control associated with the ramp and parking lot work would be implemented and maintained at all times during construction to prevent siltation and turbid discharges into waters of the state. Upland silt and sedimentation control measures would be installed and properly maintained at all points where runoff from disturbed areas could result in water quality impacts. This may include the use of filter fences (staked or floating), sedimentation screens, erosion control blankets or other appropriate erosion and turbidity control measures. The in-water use of silt curtains and the dewatering of work areas for the boat ramp repairs would further help limit the scope, nature, and extent, of any turbidity impacts.

One of the critical elements of the effort to limit impacts associated with the project development will be the consideration of, review for, and ultimate implementation of stormwater management controls for the project. Although each project site will pose its own issues when developing the stormwater and sediment control plans for pre, during, and completion of construction plans there is a standard approach to preparing these designs characterized by the following steps, which are distinguished by their relationship to construction, that will be followed for this project:

1. Development of Pre-construction or existing conditions plans w/erosion and sediment control (E&SC) features. These pre-construction plans will illustrate what sediment control measures will be initially installed and their location in order to minimize impacts to receiving waterways when upland land disturbance activities begin. These plans will be based upon an existing site survey delineating the project boundaries, site topography, topographic features (vegetation, soil types, impervious and pervious areas, water bodies (streams and ponds), wetlands, drainage channels, existing structures, drainage basins, flow patterns and major points where stormwater
enters and exits the site. The survey should extend to at least 50 feet beyond the project site and contours should depict intervals of 0.5 to 2.0 feet. The pre-construction plans should also identify phases of construction and areas that will be disturbed along with the overall limits of construction or disturbance. Sensitive areas (e.g., locations of sensitive/protected flora and fauna, wetlands, excessive slopes and unsuitable soils) should also be identified. Taking all the above information from the survey into consideration the designer will designate the locations and describe the structural controls to be installed in order to minimize erosion and control sediment from reaching adjacent receiving waters and wetlands. The most important aspect of the pre-construction drawings is to identify where water flows through the project site and where critical discharge points are located. The nature and location of best management practices (BMP’s) that will then be emplaced and incorporated prior to construction are determined from these drawings. BMP’s commonly identified/used include: placing combinations of silt screens, hay bales, fiber logs, and temporary vegetation down gradient of areas to be disturbed. Other sediment and stormwater control options include installing sediment ponds or traps or diversion berms and conveyance channels to redirect runoff and sediment from receiving waters.

2. Development of During Construction grading plans. These plans may be incorporated with the pre-development plans when feasible for a simple site but otherwise will be developed for depicting E&SC measures to be employed during grading operations. As the project progresses through its various phases of construction it may be necessary to adjust the location of structural E&SC measures or to include additional ones. These plans will show areas for stockpiling top soils and other materials and how they are to be contained (silt fencing, berms etc.), equipment storage areas and refueling areas (if allowed) with protective measures to be employed such as containment berms or absorbent material for possible spills. These plans may also include final stormwater control structures such as retention/detention ponds. These plans will also include requirements for inspection and maintenance of the BMP’s such as inspections and repair/replacement, if necessary, after every storm event. These plans will point out to the contractor critical containment contours to ensure that optimal treatment of runoff from the disturbed areas is realized and minimal impact occurs to receiving waters.

3. Final Grading or Construction Plans. These plans will show how the site is to look upon completion of construction, final grades, stormwater controls and final stabilization of disturbed lands. These plans will include final landscaping (sod, mulching, plants (native trees and shrubs), ditch or swale lining utilizing sod mats, ditch breaks etc., and slope stabilization. Final grades on all impervious areas such as parking, entry and exit drives will designed so as to reduce runoff velocity and direct runoff into drainage conveyance systems and finally into treatment ponds dry or wet type depending on groundwater depths where the majority of runoff is treated before being released into the receiving waters. The design capacity of the treatment ponds will be based upon SCS curves for the required design storm event. Release of stormwater from the sites will be at pre-construction rates. Outlet controls BMP’s may include rip rap installation where necessary to control erosion at exit points. Most boat ramp installations will also include the installation of trench drains at the top the ramps to capture runoff from the drive areas and
divert it to treatment areas or pass it through a filter “sock”. Projects that have sufficient budgets and suitable site conditions may also consider the placement of pervious concrete in lieu of asphalt or concrete driving surfaces. The final grading plans will describe when and where removal of BMP construction sediment control structures (silt fencing, diversion berms etc.) is to be done i.e. establishment of 70% of permanent vegetation. The final part of the stormwater management system is the development of the monitoring or maintenance plan which will describe the frequency of inspection (after every major storm, x’s per year etc.) and maintenance (removing sediment from ponds and swales, cleaning or replacing sand filter beds, replacing sediment “sock” in trench drain) and what actions to take when the system has been reduced in efficiency or has failed.

In addition, while no analysis has been completed to evaluate how the improvements to the Parker Earl Gilbert boat ramp may affect future use by recreators, the FWC does, on occasion, recommend the installation of seagrass information signs (Caution: Seagrass) in shallow waters around dredged channels or in areas affected by human activities where seagrass habitats are present. FWC’s Boating and Waterways unit, part of the Division of Law Enforcement, lacks authority to permit regulatory signs for natural resource protection, but it has the authority to permit informational signs. Generally, seagrass informational signs are installed in waters along a 3’ contour adjacent to shallow seagrass beds in order to warn boaters of the potential for running a ground or striking the bottom and damaging seagrass. This is not always recommended for permitted projects, but it is often employed when attempting to prevent damage by boaters along dredged channels and from boating access corridors.

Critically, during any in-water construction activity, the conditions and guidelines of the Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006) would be implemented and adhered to. These provisions include stopping operation of any equipment if sea turtles or smalltooth sawfish come within 50 feet of the equipment until the time when animals leave the project area of their own volition.

It is expected that the in-water work associated with this project would last no more than 3 months.

12.37.4 Operations and Maintenance
Long-term monitoring and maintenance of the improved facilities would be completed by the City of Parker as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and would be accomplished by the City of Parker.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager would go out twice to the site to record the number of users. Following the one year construction performance monitoring period, the City of Parker would monitor the recreational use activity at the site. The City of Parker would visit the site twice a year to count the number of users at the boat ramp. The visitation numbers would then be provided to the Florida Department of Environmental Protection.

In addition, the State of Florida Trustees and the Department of the Interior recognize the need to evaluate the effectiveness of conservation measures designed to avoid or minimize impacts to sensitive species or their habitats. To assess the public’s awareness of the educational signage intended to
minimize impacts of use associated with the improved facilities, readers will be invited to take an online survey accessed via a QR code on the sign. The Florida Trustees and DOI will determine the adequacy of this method of assessing public awareness six months after the completion of construction. If the online surveying is insufficient, concurrent with the twice annual performance monitoring, and performed by the same party, a survey will be taken of a sample of recreational users at the project location.

12.37.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

12.37.5.1 No Action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.37.5.2 Physical Environment
12.37.5.2.1 Geology and Substrates
Affected Resources
The project lies in the Gulf coastal lowlands physiographic province (Allen and Main 2005). The landscape of the Gulf coastal lowlands is comprised of a relatively flat terrain, ranging in elevation from 0 to about 50 feet above mean sea level. Soils in the coastal panhandle of Florida consist predominately of medium to fine grain sands and silts associated with recent Pleistocene formations. A study at Tyndall Air Force Base indicates that sediments in the St. Andrews Bay range from fine sands to silts (NOAA 1997).

The soils in the project area have been identified and mapped by the U.S. Department of Agriculture Natural Resource Conservation Service (NRCS 2013). The NRCS data identified three soils mapped within the project and vicinity. There are Foxworth sands, 5 to 8 percent slopes, Arents, 0 to 5 percent slopes (Soil Unit 40) and Kureb sand, 0 to 5 percent slopes.

Foxworth sand soils are moderately well drained. This soil has a very low available water capacity, low natural fertility, and low organic matter content throughout. Permeability is very rapid.

The Arents soils consist of manmade land mixed by earth-moving operations, including cutting, leveling, dredging, or filling activities or any combination of these operations (USDA 1984). Slopes are smooth. These soils are a mixture of different soils types and fill. Depth to water table is variable in these soils. Permeability is variable. Natural fertility is generally low.
The Kureb soils are excessively drained nearly level to sloping soil. Slopes are smooth to convex. These soils have very low available water capacity. Permeability is rapid and the natural fertility and organic matter content is low. The water table is below a depth of 80 inches throughout the year.

**Environmental Consequences**

There are no anticipated adverse impacts to local geology, soils, and sediments associated with the project. Appropriate erosion control and mitigation measures would be implemented prior to construction. Adverse impacts to geology and substrates would be minor.

12.37.5.2.2 Hydrology and Water Quality

**Affected Resources**

The proposed project is located on St. Andrews Bay. St. Andrews Bay is within the St. Andrews Bay Watershed (Northwest Florida Water Management District. 2000). The St. Andrew Bay watershed is the only major estuarine drainage basin entirely within the Florida Panhandle. There are nine major streams that flow into St. Andrews Bay. St. Andrews Bay is central in the St. Andrews Bay watershed. St. Andrews Bay is designated as a SWIM Priority Waterbody by the Northwest Florida Water Management District.

**Environmental Consequences**

With required mitigation in place, impacts to water quality are expected to be minimal. All permit conditions requiring mitigation measures for siltation, erosion, turbidity and release of chemicals would be strictly adhered to. During construction, Best Management Practices and boom placement along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts. The Florida Department of Environmental Protection (FDEP) permit conditions require erosion and turbidity mitigation measures. These include:

- Install floating turbidity barriers
- Install erosion control measures along the perimeter of all work areas
- Stabilize all filled areas with sod, mats, barriers or a combination
- If turbidity thresholds are exceeded the project must stop, stabilize the soils, modify the work procedures, and notify the FDEP.

The FDEP permits also constitute a Certification of Compliance with State Water Quality Standards under Section 401 of the Clean Water Act, which means that the project would comply with state water quality standards and other aquatic resource protection requirements.

Impacts from chemicals that could potentially be released from sources such as construction equipment and boats are expected to be negligible. Required spill containment measures would be implemented for applicable construction activities.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (Corps) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the Corps and final authorization pursuant to CWA/RHA will be completed prior to project implementation.
The proposed project would not impact groundwater. The project as designed would result in minor short term impacts to water quality during construction and no long term adverse impacts to hydrology or water quality.

12.37.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources

The Clean Air Act (CAA) requires the State of Florida to adopt ambient air quality standards to protect the public from potentially harmful amounts of pollutants. Six common air pollutants (also known as "criteria pollutants") are regulated by the U.S. Environmental Protection Agency (USEPA) and the states under the CAA. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. The FDEP has designated areas meeting the state’s ambient air quality standards by their monitoring and modeling program efforts, (i.e., attainment areas). Florida has no nonattainment areas within the panhandle region.

Currently, Bay County is classified by USEPA as an attainment area in accordance with the National Ambient Air Quality Standards (NAAQS). The City of Parker is not within a USEPA Class 1 air quality area; however, St. Marks National Wildlife Refuge, located approximately 80 miles to the east, is designated as a Class I air quality area (USEPA 2013a). Class I air quality areas are afforded special protection under the Clean Air Act. Any proposed new or modified sources of air pollution locating within approximately 200 miles (300 km) of a Class I air quality area are asked to consult with the Federal Land Manager to determine whether emission impact modeling to the Class I area should be conducted and submitted to the Federal Land Manager for review (USFWS 2013).

Beginning in 2011, the CAA also regulates emissions of greenhouse gases (GHG) (USEPA 2013b). The USEPA’s GHG Reporting Rule establishes mandatory GHG reporting requirements for sources that emit 25,000 metric tons or more of carbon dioxide equivalent (CO2e) per year (USEPA 2013b).

Environmental Consequences

Project implementation would require the use of barge-mounted and land-based heavy equipment for up to 8 hours per day over a 2-year construction period. This would temporarily affect air quality and elevate greenhouse gas levels in the project vicinity due to emissions and increased dust from operation of construction vehicles and equipment. Any air quality impacts that would occur would be localized, limited to the construction phase of the project, and limited by the size of the project. Therefore, impacts to air quality would be negative but minor and short-term. The project would have no long term impacts on air quality.

Engine exhaust from bulldozers, trucks, backhoes, and other equipment would contribute to an increase in greenhouse gas emissions. Table 12-13 describes the likely greenhouse gas emission scenario for the implementation of this project.
Table 12-13. Greenhouse gas impacts of the proposed project.

<table>
<thead>
<tr>
<th>CONSTRUCTION EQUIPMENT</th>
<th>NO. OF HOURS OPERATED(^1^4)</th>
<th>CO(_2) (METRIC TONS)(^1^5)</th>
<th>CH(_4) (CO(_2)E) (METRIC TONS)(^1^6)</th>
<th>NOX (CO(_2)E) (METRIC TONS)</th>
<th>TOTAL CO(_2)E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pile Driver</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td>Bulldozer</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td>Backhoe (2)</td>
<td>3840</td>
<td>168</td>
<td>0.096</td>
<td>0.96</td>
<td>169.1</td>
</tr>
<tr>
<td>Dumptruck(^1^7)</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td>Cement Truck</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>497.62</strong></td>
</tr>
</tbody>
</table>

Based on the assumptions described in Table 12-13 above, GHG emissions would not exceed 25,000 metric tons per year. Given the projected construction-phase GHG emissions, along with the small scale and short duration of the project, predicted impacts from greenhouse gas emissions would be short-term and minor.

12.37.5.2.4 Noise

**Affected Resources**

Noise can be defined as unwanted sounds and sound levels, and its impacts are interpreted in relationship to impacts on nearby persons and wildlife. The Noise Control Act of 1972 (42 U.S.C. 4901 to 4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale which approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-14 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.

\(^{1^4}\) Emissions assumptions for all equipment based on 240 8-hour days of operation per piece of equipment over a 12-month construction period.

\(^{1^5}\) CO\(_2\) emissions assumptions for diesel and gasoline engines based on USEPA 2009.

\(^{1^6}\) CH\(_4\) and NOx emissions assumptions and CO\(_2\)e calculations based on USEPA 2011.

\(^{1^7}\) Construction equipment emission factors based on USEPA NONROAD emission factors for 250hp pieces of equipment. Data was accessed through the California Environmental Quality Act Roadway Construction Emissions Model.
Table 12-14. Common noise levels.

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (DBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawnmower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Adapted from BPA 1986, 1996

Noise levels in the project area vary depending on the season, time of day, number and types of noise sources, and distance from noise sources. Existing sources of noise in the project area include motor vehicle traffic on Highway 98, recreational boating, commercial vessels, overhead aircraft and ambient natural sounds such as wind, waves, and wildlife.

Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the project. Noise-sensitive receptors in the project area include residential communities, resort properties, beach recreational use and wildlife.

**Environmental Consequences**

Instances of increased noise are expected during the construction phase associated with the restoration project. The proposed project would generate construction noise associated with equipment during repair of the existing dock. Construction equipment noise is known to disturb fish, marine mammals and nesting shorebirds (discussed below). Construction noise would also create a potential nuisance to visitors and residents in areas adjacent to project construction activities. Construction noise would be temporary and limited to daytime hours, and the construction period is not anticipated to last more than one year. Because construction noise would be temporary, negative impacts to the human environment during construction activities would be short-term and minor, as they would likely attract attention but would not result in visitors changing their activities.

After completion of the project, noise sources would be expected to include the existing sources described above, and noise levels would return to pre-project conditions. There exists potential for increased boat and automobile traffic resulting from improvements to the boat ramp, which would result in a slight increase in noise levels in the vicinity. Overall, long-term noise impacts from boating and other recreational activities would remain minor. Likewise, noise impacts from commercial vessels, highway traffic, and ambient natural sounds would be minor.
12.37.5.3 Biological Environment

12.37.5.3.1 Living Coastal and Marine Resources

Wildlife

Affected Resources
Terrestrial vegetation and wildlife habitat at the project site is of limited quality and quantity. As a result of past development and shoreline armoring, there is little vegetation suitable for wildlife habitat present on the upland portions of the site. The site is developed with infrastructure such as buildings, paved and graveled surfaces and boat ramp. These areas are devoid of vegetation and largely impervious. The remainder of the site consists of a few scattered trees and patches of ruderal grass/forb which provides little to no wildlife habitat function.

The in-water habitat adjacent to the site is open water habitat of East Bay, St. Andrews Bay. Shoreline habitat in the immediate vicinity is undeveloped, with beaches extending into a shallow, sandy bottom on the south and east sides of the peninsula near the ramp. The water is brackish. Seagrass is present along the south and eastern sides of the peninsula. A site-specific benthic vegetation survey has not been completed for this project. The Seagrass Integrated Mapping and Monitoring Report No. 1 (FWC, 2011) indicates that seagrass is present in the project area. However specific percentage coverage estimates are not provided. The boat ramp is located just beyond the eastern edge of where sea grass is present. The proposed project work includes repairs to existing structures and the footprint of the developed area is not expected to change. The project site is situated on St. Andrews Bay a shallow estuarine/marine habitats. While nearly 20,000 acres of seagrasses extend through St. Andrews Bay and St. Josephs Bay to the southeast, the most extensive and diverse seagrass habitat in the Florida Panhandle (NFWMD n.d.), no seagrasses exist within the footprint of the proposed project site.

Estuaries are extremely diverse and complex systems and provide spawning, nursery, and forage grounds for many species of fish and invertebrates. Within St. Andrews Bay Fish species within St. Andrews Bay resident fish species include species such as bay anchovy, code goby, sheephead minnow, silversides, and silver perch (NOAA, 1997). Other transient species include Atlantic croaker, blue runner, bluefish, Gulf flounder, Gulf Menhaden, pinfish, red drum, Spanish mackerel, spotted seatrout, striped mullet (FDNR 1991; NOAA 1997). Some of the invertebrates found within the bay include bay scallop, bay squid, blue crab, brown shrimp, eastern oyster, grass shrimp, and pink shrimp, as well as various species of marine worms and amphipods etc. (FDNR 1991; NOAA 1997). Within the bay “hard” habitats such as piers, docks, seawalls, and rock jetties also contain tropical species such as cocoa damsels, angelfishes, parrotfishes, spadefishes, and butterfly fishes. Wrasses, groupers, and snappers are also found along these hard substrates (FDNR 1991).

In and around St. Andrews Bay a large number of bird species occur. Many are migratory and are protected by the Migratory Bird Treaty Act (MBTA). Species that may occur in the vicinity of the project include species of herons, egrets, gulls, and terns. The project area does not provide habitat for Piping plover or red knot.
Environmental Consequences
As noted above, there is no seagrass located within the footprint of the proposed projects, so there would be no direct impacts. Given that no seagrass was identified the proposed project would have no impact on seagrass.

During construction there could be local, short-term minor adverse impacts on both fish and macroinvertebrate species, including shellfish, in the vicinity of the project site. Fish species could be temporarily displaced from habitat in the area of construction due to noise and vibration impacts. Feeding success could also be impacted through increased turbidity; however, most species are highly mobile and would move out of the area to neighboring waters where feeding would be less problematic. Some mortality of sedentary and less mobile species and life stages could occur. However, given the small aerial extent of the impacted area compared to the available habitat within St. Andrews Bay, the overall impact on species would be minor.

Additionally, once construction was complete, fish and invertebrates species would be expected to readily recolonize the area. Some beneficial impacts to species would also occur. Piers and pilings provide a hard substrate habitat that otherwise would not exist in the area. As noted under the affected environment, such hard substrates provide habitat for species such cocoa damsels, angelfishes, parrotfishes, spadefishes, and butterfly fishes. Wrasses, groupers, and snappers can be found among this type of habitat as well (SAFMC 2010). As part of the project, information would be made available at the entrance to the pier on best practices on catch and release and other fishing practices (e.g., placing cut line and hooks for disposal in trash bins) designed to limit potential adverse impacts to fish and other marine species. Trash receptacles would also be placed on the pier to help reposted on the fishing pier to help anglers comply with the recommendations as well as keep other trash out of the water that could otherwise cause impacts on species.

Although bird species that use the waters around the project site for foraging or use the area itself for loafing are likely habituated to human activity, it is likely that they would experience some short-term minor impacts from the increased human activity and the noise from construction activities. However, there is ample suitable habitat in surrounding areas for the birds to use, and impacts would only occur during the construction period. Nesting is not known at the project site for migratory birds, however, preconstruction nesting surveys would be conducted and if evidence of nesting is found, appropriate conservation measures would be taken. Therefore, impacts would be short-term and minor.

Protected Species

Affected Resources
Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).
The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Bay County, Florida\(^{18}\). Table 12-15 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

### Table 12-15. Potential Impacts to Species/Critical Habitats managed by USFWS

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle; Leatherback turtle, Loggerhead turtle</td>
<td>No nesting habitat is present in any of the project areas; therefore no impacts from construction are anticipated. Sea turtles may nest in areas that boaters may access from these locations; therefore, visitors could disrupt nesting or hatching. The Trustees expect the conservation measures, including educational tools, will minimize impacts to sea turtles and their terrestrial habitats to an insignificant and discountable level. The main risk to sea turtles during execution of this project would come from boat collisions during in-water construction activity which could result in harm or mortality. Consultation with NMFS has been initiated to address this risk as the agency that has jurisdiction to review impacts to sea turtles in the estuarine and marine environments.</td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>Bay county is not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the action areas. The main risk to manatees during execution of this project would come from noise during construction and boat collisions during use of ramps which could result in harm or mortality. The Trustees expect conservation measures and educational tools discussed below to minimize impacts to manatees (including those from noise) to an insignificant and discountable level.</td>
</tr>
<tr>
<td>Piping plover and red knot</td>
<td>The main risk to piping plovers and red knot is from human disturbance while resting and foraging in habitats adjacent to marine work areas and from human disturbance if boaters choose to visit nearby islands. The proposed project could result in short term increases in noise which could startle individuals and direct disturbance. The proposed project will not result in any changes to shoreline habitats where either species is likely to forage or rest. Educational signage will be posted at all ramps reminding visitors of nearby trust resources and any protective measures that may be necessary when visiting nearby islands. This signage will be developed in coordination with FWC and the Panama City Ecological Services Field Office.</td>
</tr>
<tr>
<td>Piping plover critical habitat</td>
<td>Piping plover critical habitat is not designated in the project area but is nearby (where visitors may access it via these ramps) on Shell Island. The primary constituent elements (PCEs) of wintering piping plover critical habitat include:</td>
</tr>
<tr>
<td></td>
<td>5) Intertidal flats with sand or mud flats (or both) with no or sparse emergent vegetation.</td>
</tr>
<tr>
<td></td>
<td>6) Adjacent unvegetated or sparsely vegetated sand, mud, or algal flats above high tide are also important, especially for roosting piping plovers. Such sites may have debris, detritus, or microtopographic relief (less than 50 cm above substrate surface) offering refuge from high winds and cold weather.</td>
</tr>
<tr>
<td></td>
<td>7) Important components of the beach/dune ecosystem include surf-cast algae, sparsely vegetated back beach and salterns, spits, and washover areas.</td>
</tr>
<tr>
<td></td>
<td>8) Washover areas are broad, unvegetated zones, with little or no topographic relief, that are formed and maintained by the action of hurricanes, storm surge, or other</td>
</tr>
</tbody>
</table>

\(^{18}\)The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
Project construction will not adversely modify or destroy critical habitat for piping plover because the construction work will not be taking place in any of the habitats listed above. Visitation of nearby area will not alter any of the PCEs or result in adverse modification or destruction of critical habitat.

**Choctawhatchee beach mouse**

Neither the Choctawhatchee beach mouse nor its critical habitat occurs within the project areas. Therefore, construction activities will not affect this species or its critical habitat.

However, both the mouse and its critical habitat occur on Shell Island and Panama City Beach which could be accessed by visitors using the improved ramps. Mice or critical habitat could be disturbed if visitors travel to these areas from the ramps. Conservation measures are expected to minimize the risk of disturbance such that impacts are insignificant and discountable.

Primary constituent elements (PCEs) for Choctawhatchee beach mouse critical habitat are:

6) A contiguous mosaic of primary, secondary scrub vegetation, and dune structure, with a balanced level of competition and predation and few or no competitive or predaceous nonnative species present, that collectively provide foraging opportunities, cover, and burrow sites;

7) Primary and secondary dunes, generally dominated by sea oats that, despite occasional temporary impacts and reconfiguration from tropical storms and hurricanes, provide abundant food resources, burrow sites, and protection from predators;

8) Scrub dunes, generally dominated by scrub oaks, that provide food resources and burrow sites, and provide elevated refugia during and after intense flooding due to rainfall and/or hurricane induced storm surge;

9) Functional, unobstructed habitat connections that facilitate genetic exchange, dispersal, natural exploratory movements, and recolonization of locally extirpated areas; and

10) A natural light regime within the coastal dune ecosystem, compatible with the nocturnal activity of beach mice, necessary for normal behavior, growth and viability of all life stages.

Project construction will not adversely modify or destroy critical habitat for the Choctawhatchee beach mouse because the construction work will not be taking place in any of the habitats listed above. Conservation measures are expected to minimize impacts to PCEs such that no adverse modification or destruction of critical habitat occurs from visitor use.

**Gulf sturgeon**

NMFS was consulted on Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon was not considered in the consultation with the USFWS.

In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered
• Kemp’s Ridley Sea Turtle, *Lepidochelys kempii*, Endangered

Additional information for some of these species is provided below.

**Sea Turtles and Marine Mammals**

There are five species of endangered or threatened sea turtles that may occur or have the potential to occur in the project area. These include green turtle, hawksbill turtle, Kemp’s ridley turtle, leatherback turtle, and loggerhead turtle. Sea turtles forage in the waters of the coastal Florida panhandle region and have the potential to occur in the waters where in-water work is proposed. The project site contains potentially suitable sea turtle nesting habitat along the sandy beach, but the site is on the bay side where nesting is uncommon.

Twenty-two marine mammals are native to the Gulf of Mexico: 21 pelagic species of whales and dolphins, and the West Indian manatee (see Chapter 3). Of these species, the endangered West Indian manatee has the potential to occur in the project area waters. Manatees typically seek out shallow seagrass areas as preferred feeding habitat. Additionally, bottlenose dolphin (*Tursiops truncatus*) populations are known to migrate into bays, estuaries, and river mouths and could be located in the proposed project area (NMFS 2013a). Bottlenose dolphins have been observed entering and leaving nearshore coastal waters (NMFS 2012).

**Smalltooth Sawfish (Pristis pectinata)**

Smalltooth sawfish (*Pristis pectinata*) do not typically use northern Gulf of Mexico waters (NMFS 2013b).

**Gulf Sturgeon (Acipenser oxyrhynchus desotoi)**

Gulf sturgeon are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Pearl River in Louisiana to the Suwannee River, in Florida (NMFS 2009). Adult fish reside in rivers for 8 to 9 months each year and in estuarine or Gulf of Mexico waters during the 3 to 4 cooler months of each year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993). This project is not within Gulf sturgeon critical habitat.

**Migratory Birds and Bald Eagles**

The Migratory Bird Treaty Act of 1918 (16 U.S.C. 703-711) decreed that all migratory birds and their parts (including eggs, nests, and feathers) were fully protected. The migratory bird species protected by the Act are listed in 50 CFR 10.13. More than 250 species of birds have been reported as migratory or permanent residents along the Florida panhandle, several of which breed there as well. These birds can be grouped generally as (1) species that occur year-round, both nesting and overwintering, (2) species that nest during the warm season and overwinter to the south, (3) species that overwinter and nest further north, and (4) species that pass through during spring migrations to more northern nesting sites and/or during fall migrations to overwintering areas. Different populations of the same species sometimes exhibit more than one type of migratory behavior.

Bald eagles are not known to nest within 1 mile of the project site (FDEP, personal communication, September 26, 2013). Three bald eagle nests have been identified within 2.75 miles of the project site, all of which were last known to be active in 2012 (FWC 2013). The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by
state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s Bald Eagle Management Plan guidelines would be followed (FWC 2008).

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-16 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

Table 12-16. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>Foraging, feeding, resting, nesting</td>
<td>At the project sites, shorebirds likely forage and rest and could be locally and temporally impacted during construction. Shorebirds nest, forage, feed, and rest on Shell Island. As such, they may be impacted by visitors traveling form the project sites to Shell Island.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Resting, roosting, nesting</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats at Shell Island. However, the level of project activity could startle resting birds. Because activities will occur during the day roosting should not be impacted.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-17.
Table 12-17. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>In general, the Trustees expect foraging and resting birds would be able to move to another nearby location to continue foraging and resting if disturbed during construction. Shorebirds are not expected to be nesting in the area of construction but use nearby areas that could be visited by people using the ramps. Educational signage will be posted at each ramp and pier to prevent impacts to migratory birds at Shell Island and other locations. Signs will be developed in coordination with FWC and the Panama City Ecological Services Field Office to detail conservation measures to protect shorebirds in nearby habitats.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. Nesting should not be impacted because the project will not occur near nesting habitats. Educational signage will be posted at each ramp and pier. Signs will be developed in coordination with FWC and the Panama City Ecological Services Field Office to detail conservation measures to protect seabirds while visitors may be fishing. Protective measures will also be implemented in the design phase and include the use of pointy, white, piling caps and containers for waste fishing gear.</td>
</tr>
</tbody>
</table>

Essential Fish Habitat

EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as “those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Table 12-18 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the City of Parker, Earl Gilbert Dock and Boat Ramp site and St. Andrew’s Bay.

Table 12-18. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.

<table>
<thead>
<tr>
<th>EFH CATEGORY</th>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic</td>
<td>Cobia, King Mackerel, Spanish Mackerel</td>
</tr>
<tr>
<td>Gulf of Mexico Red Drum</td>
<td>Red Drum</td>
</tr>
<tr>
<td>Gulf of Mexico Shrimp</td>
<td>Brown Shrimp</td>
</tr>
<tr>
<td>EFH CATEGORY</td>
<td>SPECIES</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Pink Shrimp</td>
</tr>
<tr>
<td></td>
<td>White Shrimp</td>
</tr>
</tbody>
</table>

**Reef Fish Resources of the Gulf of Mexico**

<table>
<thead>
<tr>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almaco Jack</td>
</tr>
<tr>
<td>Banded Rudderfish</td>
</tr>
<tr>
<td>Black Grouper</td>
</tr>
<tr>
<td>Blackfin Snapper</td>
</tr>
<tr>
<td>Blue Tilefish</td>
</tr>
<tr>
<td>Cubera Snapper</td>
</tr>
<tr>
<td>Gag</td>
</tr>
<tr>
<td>Goldface Tilefish</td>
</tr>
<tr>
<td>Gray (Mangrove) Snapper</td>
</tr>
<tr>
<td>Gray Triggerfish</td>
</tr>
<tr>
<td>Greater Amberjack</td>
</tr>
<tr>
<td>Hogfish</td>
</tr>
<tr>
<td>Lane Snapper</td>
</tr>
<tr>
<td>Lesser Amberjack</td>
</tr>
<tr>
<td>Mutton Snapper</td>
</tr>
<tr>
<td>Nassau Grouper</td>
</tr>
<tr>
<td>Queen Snapper</td>
</tr>
<tr>
<td>Red Grouper</td>
</tr>
<tr>
<td>Red Snapper</td>
</tr>
<tr>
<td>Scamp</td>
</tr>
<tr>
<td>Silk Snapper</td>
</tr>
<tr>
<td>Snowy Grouper</td>
</tr>
<tr>
<td>Speckled Hind</td>
</tr>
<tr>
<td>Tilefish</td>
</tr>
<tr>
<td>Vermilion Snapper</td>
</tr>
<tr>
<td>Warsaw Grouper</td>
</tr>
<tr>
<td>Wenchman</td>
</tr>
<tr>
<td>Yellowedge Grouper</td>
</tr>
<tr>
<td>Yellowfin Grouper</td>
</tr>
<tr>
<td>Yellowmouth Grouper</td>
</tr>
</tbody>
</table>

**Environmental Consequences**

**Section 7 Consultation**

The USFWS reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On March 24, 2014, the review of potential impacts to species managed by USFWS was completed (McCain, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect, five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead), Choctawhatchee beach mouse, West Indian manatee, piping plover, and red knot (if listed). The USFWS also concurred with the Trustees’ determination that the project will not adversely modify or destroy critical habitat for the Choctawhatchee beach mouse or piping plover.
Consultation of potential impacts on protected species managed by NMFS from this project was initiated on February 19, 2014. The Trustees’ review of the potential impacts of the project for protected species managed by NMFS determined the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the project implementation area:

- Gulf Sturgeon - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Smalltooth Sawfish – The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Green Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Loggerhead Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Hawksbill Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Leatherback Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Kemp’s Ridley Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.

Concurrence from NMFS with the Trustees’ conclusions for these species and associated critical habitats is still pending.

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

**Migratory Birds and Bald Eagle:**
There are no bald eagle nests in proximity to the project site and there is no suitable nesting habitat at the site. Therefore, there would be no impacts on bald eagles. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

**Essential Fish Habitat**
The proposed work in the EFH area reflects maintenance of the existing structures (improvements and repairs to the existing boat ramp and dock). As a result, disturbance to species will be limited in their spatial extent, minor in scope, and brief in duration. Construction activities will be conducted at the site of existing structures and may have a minor, short term impact on habitat. During construction, all appropriate BMPs will be followed to minimize the potential impacts of construction activities on EFH and species in the area. During construction, adjacent areas with equivalent or better habitat will be available and undisturbed and organisms could move away from disturbed areas. Therefore, the project is not likely to adversely affect EFH.
On April 24, 2014 NMFS completed its evaluation of potential EFH impacts and concluded that the project construction is not likely to adversely affect EFH and any disturbance to species will be minor and brief.

**Invasive Species**

**Affected Resources**

Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 3 described more about the regulations addressing invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

**Environmental Consequences**

Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

**12.37.5.4 Human Uses and Socioeconomics**

**12.37.5.4.1 Socioeconomics and Environmental Justice**

**Affected Resources**

The City of Parker, similar to the rest of the Florida Panhandle, relies on the coastal waters of the Gulf of Mexico to provide a variety of economic and social benefits to its residents and visitors. The coastal ecosystems in the project area support a wide variety of commercial and recreational activities that contribute significantly to the State’s economy. Sport and commercial fisheries are some of the most notable economic highlights, within the region and the State. The marine environments within the area also provide essential transportation links, support a variety of water-dependent facilities, and offer an array of recreational opportunities that attract thousands of visitors to the area each year (FDEP no date).

The 2011 median household income in the City of Parker was $43,192 (City-data.com 2013). The largest employment sectors in the Panama City-Lynn Haven-Panama City Beach MSA in 2012 were government; leisure and hospitality; and trade, transportation, and utilities (BLS 2012).
Environmental Consequences

No adverse socioeconomic impacts are expected as a result of the proposed project. The proposed project would benefit the local economy during construction through the provision of a small number of construction jobs and associated spending on goods and services by construction workers. Following completion of construction, the project would provide improved facilities to accommodate water-based recreational activities. The dock repairs and parking area work associated with this project is not expected to have any long-term socioeconomic impacts.

12.37.5.4.2 Cultural Resources

Affected Resources

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Environmental Consequences

A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.37.5.4.3 Infrastructure

Affected Resources

Infrastructure in the Florida panhandle consists of a network of interconnected structures, support facilities and transportation systems. Physical infrastructure and public services include commonly provided Federal, State, county, parish, municipal, and/or private facilities and utilities that support development and protect public health and safety.

The City of Parker is well served by a network of regional arterials and state highways. The most significant component of the transportation network in the immediate project area is US Highway 98, which closely follows the Gulf coast from the Florida-Alabama state line to St. Marks, Florida and crosses St. Andrews Bay approximately 1000 feet to the northwest of the project site. Oakshore Drive provides access from the project site to Highway 98 and central Parker. The closest public airport to the project site is Northwest Florida Beaches International Airport, located approximately 28 miles northwest of the project site in Panama City.

Water and wastewater services in the project area are provided by the City of Parker. Five private waste haulers are permitted to provide sanitation services. Electric service is provided by Gulf Power Company and gas service is provided by TECO. Cable television and internet are provided by Mediacom, and phone service is provided by AT&T.

Environmental Consequences

During construction of the boat ramp improvements, the proposed project would potentially have minor adverse impacts to infrastructure due to traffic delays and roadway damage associated with
construction vehicle traffic; utility service interruptions and potential accidental damage to utility infrastructure; and closure of the boat ramp to public use. Following completion of construction, the proposed improvements could lead to an increase in visitor use; however, visitor use is not expected to increase to the point where associated wear on infrastructure would lead to adverse impacts. Overall, the proposed project is expected to have long-term beneficial impacts on infrastructure through the provision of expanded and enhanced boat ramp facilities.

12.37.5.4.4  Land and Marine Management

Affected Resources
Development in the City of Parker is guided by the City of Parker Comprehensive Plan and regulated according to the City of Parker Land Development Code (City of Parker 2010; 2012). Zoning and land development decisions are subject to review and approval by the City Council as advised by the Planning Commission. The project site is situated on land owned by the City of Parker and zoned for Recreational use (City of Parker 2012). The proposed project is a permitted use in Recreational districts (City of Parker 2012). Land uses surrounding the site include single-family and multi-family residential uses and vacant land.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

Environmental Consequences
No changes would occur to the current use at the Earl Gilbert boat ramp, or to uses on adjacent and nearby properties. Land ownership would remain the same, and the site would continue to be managed as a public boat ramp. The proposed project would be consistent with the City of Parker Land Development Code, since it is a permitted use in Recreational districts.

12.37.5.4.5  Aesthetics and Visual Resources

Affected Resources
The City of Parker is situated on St. Andrews Bay, a 69,000 acre estuary that outlets to the Gulf of Mexico approximately 7.8 miles southwest of the project site. The landscape in the region is characterized by beaches, tidal flats, dunes, marshes and coastal waterways. Development in the City of Parker is characteristic of urban and suburban communities in the Panama City metropolitan area, and consists of low-rise commercial, hotel and single-family residential buildings. Land surrounding the project site is largely vacant and sparsely vegetated with grass and palm trees, with unobstructed views of St. Andrews Bay.

Environmental Consequences
Temporary impacts to aesthetics and visual resources would result from implementation of the proposed boat ramp and dock improvements. Construction equipment would be temporarily visible to
visitors and recreational users. These construction-related impacts to visual resources would be adverse but minor, since the amount of construction equipment required to complete the project would be limited, and construction activities and equipment would be visible to residents and visitors for a maximum of two years. The proposed project would take place at the site of an existing boat ramp and would not change the overall visual appearance of the site or surrounding area; therefore, no long-term impacts to aesthetics and visual resources are anticipated.

12.37.5.4.6 Tourism and Recreational Use
The City of Parker is located in the Panama City MSA, which is a popular tourist destination that receives approximately six million visitors annually (Panama City Beach 2013). Locals and tourists spend much time swimming, beachcombing, boating, fishing, diving, kayaking, surfing, and engaging in other active and passive activities near the beach. Beach usage peaks during the winter and spring, and subsides during the summer.

Environmental Consequences
During the construction period, tourism and recreational use would be negatively impacted by noise and visual disturbances associated with the use of construction equipment. Public access to the boat ramp would be prohibited during construction activities. While these temporary inconveniences would result in minor negative impacts on tourism and recreational use, over the long term the project would result in beneficial impacts to tourism and recreational use. Opportunities for ocean-based recreational activity would be enhanced as a result of improved facilities. The project would not be expected to result in a notable increase in the number of visitors, due to its limited scope; however, the project would contribute to an improved experience for local residents using the boat ramp. To the extent that visitor use increases as a result of the proposed project, it would have beneficial impacts to tourism as well. Overall, adverse impacts to tourism and recreational use would be short term and minor. Over the long term, the project would result in beneficial impacts to tourism and recreational uses.

12.37.5.4.7 Public Health and Safety and Shoreline Protection
Affected Resources
The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the Emergency Planning and Community Right-to-Know Act, and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of these materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

The project site lies within an existing park with adjacent residential areas. A review of USEPA EnviroMapper revealed that there are no sources of contamination or hazardous materials located on or immediately adjacent to the Earl Gilbert boat ramp (USEPA 2013c). No sources of hazardous, toxic and radioactive waste (HTRW) are otherwise known to exist within the project area. Boats launching and landing at the ramp could potentially serve as a source of non-point pollution resulting from inadvertent releases of fuel or oil.
Environmental Consequences

Project construction would utilize mechanical equipment that uses oil, lubricants and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of construction related hazardous materials such as vehicle fuels, oil, hydraulic fluid, and other vehicle maintenance fluids, and to avoid releases and spills. If a release should occur such releases would be contained and cleaned up promptly in accordance with all applicable regulations. As a result, no impacts associated with construction-related hazardous materials would be anticipated.

Because of the nature and location of the project, no impacts to public health and safety or shoreline erosion are anticipated as a result of construction activities. The project and its construction are not anticipated to generate hazardous waste or the need for disposal of hazardous waste. In the event of a fuel or oil spill from construction equipment, all procedures, regulations and laws pertaining to Oil Spill Prevention and Response would be adhered to and the incident would be reported to appropriate agencies. All occupational and marine safety regulations and laws would be followed to ensure safety of all workers and monitors. Therefore, it is anticipated that there would be no impacts to public health and safety from the proposed project.

12.37.6 Summary and Next Steps
The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (City of Parker Earl Gilbert Dock and Boat Ramp Improvements) project would improve the existing Earl Gilbert dock and boat ramp in the City of Parker. The proposed work includes improving the existing dock and expanding the existing parking. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.37.7 References

Allen, Ginger M. and Main, Martin B


Bureau of Labor Statistics (BLS)

City-data.com


City of Parker


Fay, V. 2014. Memorandum to Leslie Craig. Essential Fish Habitat (EFH) assessment review for improvements to the City of Parker, Earl Gilbert Dock and Boat Ramp in St. Andrews Bay, Bay County, Florida. March, 11.


Florida Department of Environmental Protection (FDEP)


Florida Fish & Wildlife Commission (FWC)


2011 Yarbro and Carlson, Editors. SIMM Report #1 at athttp://myfwc.com/media/1590785/St_Andrew_Bay.pdf


National Oceanic and Atmospheric Administration (NOAA)


National Marine Fisheries Service (NMFS)


Northwest Florida Water Management District (NFWMD)


Panama City Beach

2013 Information obtained from Panama City Beach website. Accessed October 4, 2013 at http://www.visitpanamacitybeach.com/

South Atlantic Fishery Management Council (SAFMC)


2001. Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat. August.

U.S. Army Corps of Engineers (USACE)

2010 Draft Supplemental Environmental Assessment for the Beach Erosion Control and Storm Damage Reduction Project Panama City Beach, Bay County, Florida.

U.S. Environmental Protection Agency (USEPA)


95

U.S. Fish and Wildlife Service (USFWS)


12.38 Strategically Provided Boat Access along Florida’s Gulf Coast: Project Description E (City of Port St. Joe, Frank Pate Boat Ramp Improvements)

12.38.1 Project Summary
The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (City of Port St. Joe Frank Pate Boat Ramp Improvements) project would improve the existing Frank Pate boat ramp in the City of Port St. Joe. The proposed improvements include constructing an additional boarding dock, boat trailer parking, access drive, staging area, and a fish cleaning station. The total estimated cost of the project is $806,972.

12.38.2 Background and Project Description
The Trustees propose to improve and enhance the existing Frank Pate boat ramp in the City of Port St. Joe (see Figure 12-7 for general project location). This project builds on an ongoing effort initiated by the FWC through its Florida Boating Improvement Program which, in part, is used to fund applications from local governments in a competitive grant process for boat access improvement projects in remote areas, small towns and cities, and coastal counties (for more information on the program see http://myfwc.com/boating/grant-programs/fbip/).

The objective of the FWC City of Port St. Joe Frank Pate Boat Ramp Improvement project is to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. The restoration work proposed includes constructing an additional boarding dock, boat trailer parking, access drive, staging area, and a fish cleaning station.

12.38.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (City of Port St. Joe Frank Pate Boat Ramp Improvements) project is intended to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Agencies have successfully completed projects of similar scope throughout Florida over many years, including similar types of actions in earlier phases of the Deepwater Horizon Early Restoration. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.
A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.38, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.38 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Florida FWC Strategic Boat Access: City of Port St. Joe Frank Pate Boat Ramp Improvements project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.38.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational boating and fishing opportunities by improving an existing boat ramp. Performance monitoring will evaluate: 1) construction of a boarding dock; 2) the addition of boat trailer parking; 3) the construction of an access drive; 4) the addition of a staging area; and 5) the construction a fish cleaning station. Specific performance criteria include: 1) the completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the boat ramp is open and available.
Long-term monitoring and maintenance of the improved facilities will be completed by the City of Port St. Joe as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by the City of Port St. Joe.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, the City of Port St. Joe will monitor the recreational use activity at the site. The City of Port St. Joe will visit the site twice a year to count the number of users at the boat ramp. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.38.5 Offsets

The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Strategically Provided Boating Access along Florida’s Gulf Coast project, of which this is a component, are $6,496,680 expressed in present value 2013 dollars to be applied against the monetized
value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees' assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.\footnote{For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees' assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:}

### 12.38.6 Costs

The total estimated cost to implement this project is $806,972. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.
12.39 **Strategically Provided Boat Access along Florida’s Gulf Coast:**

**Environmental Review E (City of Port St. Joe, Frank Pate Boat Ramp Improvements)**

Public boat ramps provide local boaters with access to public waterways and many types of secondary water-dependent activities, including fishing, SCUBA diving, water-skiing, and simply cruising local waterways under power or sail. Boating provides not only recreational values but also substantial economic value to local and state economies.

Florida proposes to make several improvements at the existing Frank Pate City Park Boat Ramp. This project builds on an ongoing effort initiated by the Florida Fish and Wildlife Conservation Commission (FWC) through its Florida Boating Improvement Program which, in part, is used to fund applications from local governments in a competitive grant process for boat access improvement projects in remote areas, small towns and cities, and coastal counties. Included in the proposed improvements is the renovation and extension of an existing boarding dock; construction of additional boat trailer parking; and construction of a new staging area and a fish cleaning station. The total estimated cost of the project is $806,972. This property is located in southern Gulf County, Florida and is owned and managed by the City of Port St. Joe.

The project would provide boaters with enhanced access from Port St. Joe to offshore areas in St. Joseph Bay and the Gulf of Mexico. This project would help address the reduced quality and quantity of recreational activities (e.g., boating and fishing) in Florida attributable to the Deepwater Horizon Oil Spill.

This project satisfies the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of their natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (City of Port St. Joe Frank Pate Boat Ramp Improvements) project is intended to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

12.39.1 **Introduction and Background**

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.
Pursuant to the process articulated in the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement), the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This boat ramp project was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

The project site is at a city park and includes a two-lane concrete boat ramp with boarding docks; restrooms; and gravel parking for 15-20 vehicles with trailers. The surrounding area is currently developed, with US Highway 98 running parallel to the shoreline and several other boat launch and dock structures located in the vicinity. The existing concrete boat ramp is approximately 50 feet wide. A small dock runs down the middle of the ramp and is approximately 100 feet long and 10 feet wide. Two docks run along the outside edges of the boat ramp, and each is approximately 100 feet long and 10 feet wide. An approximately 400 square foot platform sits at the end of the shoreline just past the boat ramp. The banks near the boat ramp are armored, and the sides of the boat basin are equipped with fenders and rails. The shoreline adjacent to the boat ramps is armored with revetments, and jetties composed of rip-rap extend for a distance of approximately 600 feet seaward of the boat ramps.

The proposed improvements would include renovating and extending a boat dock, repair of rails and fenders lining the ramps and boat basin; construction of additional parking spaces at an existing parking area, construction of a staging area and construction of a new fish cleaning station. The proposed project would improve boater access and user experience at the facility. It is expected that with the addition of the improved dock, rails and fenders, boater safety would also be improved.

The total estimated cost to implement this project is $806,972. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

12.39.2 Project Location
The project is located at 5th and Baltzell streets on St. Joseph Bay, Port St. Joe, Gulf County, Florida, in Section 1, Township 8-S, Range 11-W, at Latitude: 29° 81’ 10.85” North and Longitude: -85° 30’ 52.41” West. The activities are to occur between U.S. Highway 98 and the shoreline. St. Joseph Bay is located in the western Florida Panhandle approximately 75 miles southwest of Tallahassee and has direct access to the Gulf of Mexico (Figure 12-8).
12.39.3 Construction and Installation

The proposed improvements include the renovation and extension of an existing boarding dock; construction of additional boat trailer parking; and construction of a new staging area and an upland fish cleaning station tied to existing wastewater treatment infrastructure.

There is an existing, two-lane boat ramp at the site with the two lanes separated by a boarding dock. A gravel parking lot lies to the southeast of the boat ramp. There is also an informal grass parking area on the north side of the ramp. The proposed project would include making the north parking lot more formal and adding additional parking to the gravel lot of the boat ramp. A fish cleaning station would be located near the existing park restroom facilities so the existing water and sewer lines could be used. A conceptual plan for this work also shows additional elements being pursued as part of the improvements to the park but that are not part of this project.

The current boarding dock separating the two lanes of the boat ramp would be renovated and extended to allow for more temporary mooring areas while boaters are launching and loading at the ramp. Fenders and rub rails located on the north and south sides of the boat basin along the existing sheet pile retaining wall would also be repaired.
As part of the dock expansion, up to 20 pilings could be placed (no pilings need to be removed). These are expected to be 8” diameter pilings that would be placed through a combination of water jetting and mechanical auguring. Development of final plans will incorporate the guidance and requirements set forth in the Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat (U.S. Army Corps of Engineers/National Marine Fisheries Service, 2001) should an SAV survey indicate sea grasses are located in the project area. Among other impacts, implementing these guidelines would require pilings for the dock expansion be placed at a minimum of 10 feet apart.

Most work, and all equipment and materials staging, would be completed from the existing disturbed areas near the current boat ramp, although some of the dock construction work would take place from the water. During periods of in-water work the guidelines and conditions within the Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006) will be implemented and adhered to. These provisions include stopping operation of any equipment if sea turtles or smalltooth sawfish come within 50 feet of the equipment until the time when animals leave the project area of their own volition.

BMPs for erosion control would also be implemented and maintained at all times during upland construction to prevent siltation and turbid discharges into surface waters. Methods could include but are not limited to the use of staked hay bales, staked filter cloth, sodding, seeding, and mulching; staged construction; and installation of turbidity screens around the immediate project site.

One of the critical elements of the effort to limit impacts associated with the project development will be the consideration of, review for, and ultimate implementation of stormwater management controls for the project. Although each project site will pose its own issues when developing the stormwater and sediment control plans for pre, during, and completion of construction plans there is a standard approach to preparing these designs characterized by the following steps, which are distinguished by their relationship to construction, that will be followed for this project:

1. Development of Pre-construction or existing conditions plans w/erosion and sediment control (E&SC) features. These pre-construction plans will illustrate what sediment control measures will be initially installed and their location in order to minimize impacts to receiving waterways when upland land disturbance activities begin. These plans will be based upon an existing site survey delineating the project boundaries, site topography, topographic features (vegetation, soil types, impervious and pervious areas, water bodies (streams and ponds), wetlands, drainage channels, existing structures, drainage basins, flow patterns and major points where stormwater enters and exits the site. The survey should extend to at least 50 feet beyond the project site and contours should depict intervals of 0.5 to 2.0 feet. The pre-construction plans should also identify phases of construction and areas that will be disturbed along with the overall limits of construction or disturbance. Sensitive areas (e.g., locations of sensitive/protected flora and fauna, wetlands, excessive slopes and unsuitable soils) should also be identified. Taking all the above information from the survey into consideration the designer will designate the locations and describe the structural controls to be installed in order to minimize erosion and control sediment from reaching adjacent receiving waters and wetlands. The most important aspect of the pre-construction drawings is to identify where water flows through the project site and
where critical discharge points are located. The nature and location of best management practices (BMP’s) that will then be emplaced and incorporated prior to construction are determined from these drawings. BMP’s commonly identified/used include: placing combinations of silt screens, hay bales, fiber logs, and temporary vegetation down gradient of areas to be disturbed. Other sediment and stormwater control options include installing sediment ponds or traps or diversion berms and conveyance channels to redirect runoff and sediment from receiving waters.

2. Development of During Construction grading plans. These plans may be incorporated with the pre-development plans when feasible for a simple site but otherwise will be developed for depicting E&SC measures to be employed during grading operations. As the project progresses through its various phases of construction it may be necessary to adjust the location of structural E&SC measures or to include additional ones. These plans will show areas for stockpiling top soils and other materials and how they are to be contained (silt fencing, berms etc.), equipment storage areas and refueling areas (if allowed) with protective measures to be employed such as containment berms or absorbent material for possible spills. These plans may also include final stormwater control structures such as retention/detention ponds. These plans will also include requirements for inspection and maintenance of the BMP’s such as inspections and repair/replacement, if necessary, after every storm event. These plans will point out to the contractor critical containment contours to ensure that optimal treatment of runoff from the disturbed areas is realized and minimal impact occurs to receiving waters.

3. Final Grading or Construction Plans. These plans will show how the site is to look upon completion of construction, final grades, stormwater controls and final stabilization of disturbed lands. These plans will include final landscaping (sod, mulching, plants (native trees and shrubs), ditch or swale lining utilizing sod mats, ditch breaks etc., and slope stabilization. Final grades on all impervious areas such as parking, entry and exit drives will be designed so as to reduce runoff velocity and direct runoff into drainage conveyance systems and finally into treatment ponds dry or wet type depending on groundwater depths where the majority of runoff is treated before being released into the receiving waters. The design capacity of the treatment ponds will be based upon SCS curves for the required design storm event. Release of stormwater from the sites will be at pre-construction rates. Outlet controls BMP’s may include rip rap installation where necessary to control erosion at exit points. Most boat ramp installations will also include the installation of trench drains at the top the ramps to capture runoff from the drive areas and divert it to treatment areas or pass it through a filter “sock”. Projects that have sufficient budgets and suitable site conditions may also consider the placement of pervious concrete in lieu of asphalt or concrete driving surfaces. The final grading plans will describe when and where removal of BMP construction sediment control structures (silt fencing, diversion berms etc.) is to be done i.e. establishment of 70% of permanent vegetation. The final part of the stormwater management system is the development of the monitoring or maintenance plan which will describe the frequency of inspection (after every major storm, x’s per year etc.) and maintenance (removing sediment from ponds and swales, cleaning or replacing sand filter beds,
replacing sediment “sock” in trench drain) and what actions to take when the system has been reduced in efficiency or has failed.

In addition, while no analysis has been completed to evaluate how the improvements to the Frank Pate boat ramp may affect future use by recreators, the FWC does, on occasion, recommend the installation of seagrass information signs (Caution: Seagrass) in shallow waters around dredged channels or in areas affected by human activities where seagrass habitats are present. FWC’s Boating and Waterways unit, part of the Division of Law Enforcement, lacks authority to permit regulatory signs for natural resource protection, but it has the authority to permit informational signs. Generally, seagrass informational signs are installed in waters along a 3’ contour adjacent to shallow seagrass beds in order to warn boaters of the potential for running a ground or striking the bottom and damaging seagrass. This is not always recommended for permitted projects, but it is often employed when attempting to prevent damage by boaters along dredged channels and from boating access corridors.

Finally, should any lighting be installed or upgraded the new lighting will be wildlife friendly and comply with the guidance provided in the current edition of the FWC’s Lighting Technical Manual.

It is expected that the in-water work associated with this project would last no more than 3 months.

12.39.4 Operations and Maintenance
Long-term operations and maintenance of the improved facilities would be completed by The City of Port St. Joe as part of their regular public facilities maintenance activities. These activities would include insuring that the boat ramp, restroom facilities, and parking lot are in working order and defective areas would be fixed as appropriate. It is anticipated that regular operation and maintenance may include pavement repairs, replacement of boards on boarding docks, and repairs to restroom plumbing and fixtures.

Monitoring would be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. Performance monitoring would evaluate the construction of the boat ramp. Specific parameters include: completion of construction as designed and permitted. During the one year construction performance monitoring period, the Florida Trustees’ project manager would go out twice to the site to record the number of users. Following the one year construction performance monitoring period, the City of Port St. Joe would monitor the human use activity at the site. City of Port St. Joe personnel would visit the site twice a year to count the number of users at the boat ramp. The visitation numbers would then be provided to the Florida Department of Environmental Protection.

12.39.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental effects of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.
12.39.5.1 No Action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.39.5.2 Physical Environment

12.39.5.2.1 Geology and Substrates

Affected Resources
The project lies in the Gulf coastal lowlands physiographic province (Allen and Main 2005). The landscape of the Gulf coastal lowlands is comprised of a relatively flat terrain, ranging in elevation from 0 to about 50 feet above mean sea level. Soils in the coastal panhandle of Florida consist predominately of medium to fine grain sands and silts associated with recent Pleistocene formations. It can be assumed that the soils at the project site are similar.

Environmental Consequences
Mechanized equipment and hand tools would be used to complete the renovation and extension of an existing boarding dock; construction of additional boat trailer parking; and construction of a new staging area and fish cleaning station. Some excavation of soils would occur; however, adverse impacts to geology and substrates would be minor. Disturbance would be detectable, but would be short term, small, and localized. There would be no long-term changes to local geologic features; however, paving of the parking lot would increase the area of impervious surface at the site in the long term and could result in minor, localized changes to soil characteristics. It is assumed that ongoing use of the site as a parking lot has already compacted soils to the point where infiltration is slight, and paving is not expected to create a noticeable change in runoff conditions. Erosion and/or compaction may occur in localized areas; appropriate erosion control and mitigation measures would be implemented prior to and during construction. Overall, the project’s impacts related to soil compaction and erosion during construction would be minor and in the long term, the project would not be expected to adversely impact geology, soils, or substrates.

12.39.5.3 Hydrology and Water Quality

Affected Resources
Northwest Florida has seven major watersheds, all of which have been identified as priorities under the Surface Water Management and Improvement (SWIM) program. Water quality protection is the underlying goal of SWIM, along with the preservation and restoration of natural systems and associated public uses and benefits (Northwest Florida Water Management District [NFWFMD] 2011).

The proposed project is on St. Joseph Bay. St. Joseph Bay is separated from the Gulf of Mexico by St. Joseph Peninsula and is considered the only body of water in the eastern Gulf that is not influenced by freshwater inflows (FDEP 2008). The bay has a surface area of 42,826 acres and connects to the Intracoastal Waterway by the Gulf County Canal (Thorpe 2000).
St. Joseph Bay is part of the St. Andrews Bay watershed system, which includes St. Andrews, West, East, and North Bays; St. Joseph Bay; and Deer Point Reservoir, as well as the respective surface water basins of each of these waterbodies. The waterways are primarily used for transportation, seafood harvesting, recreation, and waste disposal. Broad issues for the St. Andrews Bay system include degradation through point and nonpoint pollution sources, habitat quality that is threatened by and degraded through sedimentation and deposition, and public education and awareness (Thorpe 2000).

**Floodplains**
Based on Federal Emergency Management Agency (FEMA) flood insurance rate maps, the proposed project appears to be within Zone VE, or an area subject to inundation by the 1 percent annual chance flood event with additional hazards due to storm-induced velocity wave action (FEMA 2002).

**Wetlands**
There are wetlands within the vicinity of the project site. However, no wetlands were identified within the project footprint. The proposed boat dock is over open water.

**Environmental Consequences**
With required mitigation in place, impacts to water quality are expected to be minimal. All permit conditions requiring mitigation measures for siltation, erosion, turbidity and release of chemicals would be strictly adhered to. During construction, Best Management Practices and boom placement along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts. The Florida Department of Environmental Protection (FDEP) permit conditions require erosion and turbidity mitigation measures. These include:

- Install floating turbidity barriers
- Install erosion control measures along the perimeter of all work areas
- Stabilize all filled areas with sod, mats, barriers or a combination
- If turbidity thresholds are exceeded the project must stop, stabilize the soils, modify the work procedures, and notify the FDEP.

The FDEP permits also constitute a Certification of Compliance with State Water Quality Standards under Section 401 of the Clean Water Act, which means that the project would comply with state water quality standards and other aquatic resource protection requirements.

After construction, increased boat traffic at the refurbished boat dock could result in minimal impacts to surface water quality. Boat wakes created by additional boat traffic that could increase shoreline erosion would be controlled through no-wake or speed zones to mitigate shoreline erosion.

Impacts from chemicals that could potentially be released from sources such as construction equipment and boats are expected to be minor. Required spill containment measures would be implemented for applicable construction activities. FDEP permits require spill containment protection and mitigation measures such as:
- No boat repair or fueling facilities over the water,
- Prohibited activities include hull cleaning and painting, discharges or release of oils or greases, and related metal-based bottom paints associated with hull scraping, cleaning, and painting.

Best Management Practices along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts associated with construction activities. Best Management Practices for erosion control would be implemented and maintained at all times during construction to prevent siltation and turbid discharges into waters of the state. Silt and sedimentation control measures would be installed and properly maintained to protect water quality resources. Given that there would be no substantial change in uses at the project site following implementation of the proposed enhancement activities, it is anticipated that there would be no long-term negative impacts to water resources. The implementation of the proposed project would therefore result in short-term minor negative impacts on water resources. This project would not impact groundwater. There would be no adverse impacts to hydrology or water quality. Overall, potential impacts to water resources are expected to be minor, temporary and localized in nature.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (USACE) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the USACE and final authorization pursuant to CWA/RHA will be completed prior to project implementation.

12.39.5.3.1 Air Quality and Greenhouse Gas Emissions

Affected Resources
The Clean Air Act (CAA) requires the State of Florida to adopt ambient air quality standards to protect the public from potentially harmful amounts of pollutants. Six common air pollutants (also known as "criteria pollutants") are regulated by the U.S. Environmental Protection Agency (USEPA) and the states under the CAA. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. The Florida Department of Environmental Protection (FDEP) has designated areas meeting the state’s ambient air quality standards by their monitoring and modeling program efforts, (i.e., attainment areas). Florida has no nonattainment areas within the panhandle region.

Currently, Port St. Joe is classified by USEPA as an attainment area in accordance with the National Ambient Air Quality Standards (NAAQS). The City of Port St. Joe is not located within a USEPA Class 1 air quality area; however, St. Marks National Wildlife Refuge, located approximately 65 miles to the northeast, is designated as a Class I air quality area (USEPA 2013a). Class I air quality areas are afforded special protection under the Clean Air Act. Any proposed new or modified sources of air pollution locating within approximately 200 miles (300 km) of a Class I air quality area are asked to consult with the Federal Land Manager to determine whether emission impact modeling to the Class I area should be conducted and submitted to the Federal Land Manager for review (USFWS 2013).
Beginning in 2011, the CAA also regulates emissions of greenhouse gases (GHG) (USEPA 2013b). The USEPA’s GHG Reporting Rule establishes mandatory GHG reporting requirements for sources that emit 25,000 metric tons or more of carbon dioxide equivalent (CO2e) per year (USEPA 2013b).

**Environmental Consequences**

Project implementation would require the use of heavy equipment for up to 8 hours per day over a 2-year construction period. This would temporarily affect air quality and elevate GHG levels in the project vicinity due to emissions and increased dust from operation of construction vehicles and equipment. Any air quality impacts that would occur would be localized, limited to the construction phase of the project, and limited by the size of the project. Therefore, impacts to air quality would be negative but minor and short-term. The project would have no long term impacts on air quality.

Engine exhaust from grading equipment, pile driver, and trucks would contribute to an increase in GHG emissions. Table 12-19 describes the likely GHG emissions scenario for the implementation of this project.

Based on the assumptions described in Table 12-19 below, GHG emissions would not exceed 25,000 metric tons per year. Given the projected construction-phase GHG emissions, along with the small scale and short duration of the project, predicted impacts from GHG emissions would be short-term and minor.

### 12.39.5.3.2 Noise

**Affected Resources**

Noise can be defined as unwanted sounds and sound levels, and its impacts are interpreted in relationship to impacts on nearby persons and wildlife. The Noise Control Act of 1972 (42 U.S.C. 4901 to 4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale which approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-20 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.

Noise levels in the project area vary depending on the season, time of day, number and types of noise sources, and distance from noise sources. Existing sources of noise in the project area include motor vehicle traffic on State Highway 20, recreational boating, commercial vessels, overhead aircraft and ambient natural sounds such as wind, waves, and wildlife.

Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the project. Noise-sensitive receptors in the project area include residential communities, resort properties, beach recreational use and wildlife.
Table 12-19. Greenhouse gas impacts of the proposed project.

<table>
<thead>
<tr>
<th>CONSTRUCTION EQUIPMENT</th>
<th>NO. OF HOURS OPERATED(^{20})</th>
<th>CO2 (METRIC TONS)(^{21})</th>
<th>CH4 (CO2E) (METRIC TONS)(^{22})</th>
<th>NOX (CO2E) (METRIC TONS)</th>
<th>TOTAL CO2E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pile Driver(^{23})</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td>Grader (2)</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td>Tractor Trailer</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>246.39</td>
</tr>
</tbody>
</table>

Table 12-20. Common noise levels.

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (DBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawnmower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Adapted from BPA 1986, 1996

\(^{20}\) Emissions assumptions for all equipment based on 240 8-hour days of operation per piece of equipment over a 12-month construction period.

\(^{21}\) CO\(_2\) emissions assumptions for diesel and gasoline engines based on USEPA 2009.

\(^{22}\) CH\(_4\) and NO\(_x\) emissions assumptions and CO\(_2\)e calculations based on USEPA 2011.

\(^{23}\) Construction equipment emission factors based on USEPA NONROAD emission factors for 250hp pieces of equipment. Data was accessed through the California Environmental Quality Act Roadway Construction Emissions Model.
Environmental Consequences

Instances of increased noise are expected during the construction phase associated with the restoration project. The proposed project would generate construction noise associated with equipment during the renovation and extension of an existing boarding dock; construction of additional boat trailer parking; and construction of a new staging area and fish cleaning station. Construction equipment noise is known to disturb fish, marine mammals and nesting shorebirds (discussed below). Construction noise would also create a potential nuisance to visitors and residents in areas adjacent to project construction activities. Construction noise would be temporary and limited to daytime hours, and the construction period is not anticipated to last more than one year. Because construction noise would be temporary, negative impacts to the human environment during construction activities would be short-term and minor, as they would likely attract attention but would not result in visitors changing their activities.

After completion of the project, noise sources would be expected to include the existing sources described above, and noise levels would return to pre-project conditions. There exists potential for increased boat and automobile traffic resulting from improvements to the boat ramp and related facilities, which would result in a slight increase in noise levels in the vicinity. Overall, long-term noise impacts from boating and other recreational activities would remain minor. Likewise, noise impacts from commercial vessels, highway traffic, and ambient natural sounds would be minor.

12.39.5.4 Biological Environment

12.39.5.4.1 Living Coastal and Marine Resources

General Habitat

Affected Resources

The project is located in an urban area. The existing boat ramp and dock is adjacent to a paved street and parking lot and is surrounded by ruderal grasses. The upland area surrounding the boat ramp is a developed urban area. Terrestrial vegetation and wildlife habitat at the project site is of limited quality and quantity. As a result of past development and shoreline armoring, there is very little vegetation or wildlife habitat present on the upland portions of the site. Most of the project site has been graveled and an existing boat ramp is in place. The unvegetated parking lot and boat ramp habitat type comprises most of the project site, and consists of unvegetated areas that are completely developed with infrastructure such as buildings, paved and graveled surfaces and boat ramp. These areas are devoid, or nearly devoid, of vegetation and largely impervious. They provide little to no wildlife habitat function.

The shoreline area is sandy beach with vegetation, and transitions to shallow salt-water habitat with sandy-bottom. The boat ramp is located in a small inlet, surrounded by armored shoreline. The extent of riparian habitat within the project site is very limited the bank is armored with concrete seawall and riprap and the upland extent of functional riparian habitat is limited by existing impervious surfaces. The riparian area within the proposed project site is mostly devoid of vegetation, with the exception of a few scattered trees and patches of ruderal grass/forb habitat within the riparian buffer zone. Impervious surfaces include existing roadways, compacted soil, buildings, paved and graveled surfaces and boat ramp. The bank is armored with riprap, and above the riprap, there is a narrow band of ruderal grass/forb habitat.
Seagrass is present in the general area of the boat ramp, across a small peninsula from the channel that boats would use. A site-specific benthic vegetation survey has not been completed. However, seagrass is present in the vicinity of the project area, specific percentage coverage estimates have not been determined. The proposed project work includes repairs to the existing boarding dock and a small expansion. These construction activities will not occur in the area where seagrass is present.

No listed plant species have the potential to occur within the project site.

The project site is surrounded by an urban or suburban environments and based on the types of habitat present, it is expected that ruderal species such as raccoon, opossum, gray squirrel (Sciurus carolinensis), and other non-game mammals would be present in upland areas within the vicinity of each project.

**Motile Invertebrates and Fishes**

The St. Josephs Bay supports numerous fish and marine species and provides habitat for several crustacean species, which include brown shrimp, pink shrimp, white shrimp, marsh grass shrimp, and common blue crab. Important commercial and recreational fishes, which feed on these invertebrates or on aquatic primary producers, would include: striped mullet, spotted seatrout, sand seatrout, red drum, black drum, silver perch, Atlantic croaker, southern king, southern flounder, gulf flounder, gulf menhaden, striped mullet, Florida pompano, and Spanish mackerel.

**Environmental Consequences**

**Habitat**

The proposed project would be located at the site of an existing boat ramp and parking lot. The existing shoreline is a mixture of concrete seawall, riprap and the majority of the remaining upland area is developed providing little habitat. Due to the lack of vegetation present at the site, impacts on native vegetation would not be expected. The construction activity would result in short term temporary minor impacts to common wildlife, these species live in an urban environmental where ambient noise levels are high. Habitat conditions after construction would be similar to the existing conditions, and no long-term impacts to common wildlife would be anticipated.

The upland areas within the project site do not contain critical habitat for beach mice or piping plovers. Construction would cause only minimal alteration and/or damage to habitats. No submerged aquatic vegetation, which is habitat for species such as manatees, sea turtles, fish and invertebrates, is known to occur at the site. Therefore, the project would result in minor impacts to fish and wildlife resources.

The project would require FDEP and USACE permits. Both the FDEP Wetland and Environmental Resource Field permits and USACE Permit require Best Management Practices (BMPs) for species protection and turbidity and erosion control to be implemented. This would help minimize the damage and loss of habitats. All construction activities would be done in compliance with FDEP and USACE permit conditions.
Protected Species

Affected Resources
Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MMPA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA). The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Gulf County, Florida24. Table 12-21 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

Table 12-21. Potential Impacts to Species/Critical Habitats managed by USFWS

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
</table>
| Green turtle, Hawksbill turtle, Kemp’s ridley turtle; Leatherback turtle, Loggerhead turtle | All of the project areas are within existing developed areas associated with each of these boat ramps and no additional disturbance of existing habitat is proposed. The current facilities do not support nesting habitat for sea turtles; however sea turtle nesting could occur on beaches adjacent to each of these projects. Additional lighting or visitor use could disrupt normal nesting behaviors of sea turtles in nearby habitats. Conservation measures should reduce potential impacts to an insignificant and discountable level.  
The main risk to sea turtles during construction and use of these ramps would come from boat collisions which could result in harm or mortality. Consultation has been initiated with NMFS to address this risk, the agency that has jurisdiction to review impacts to sea turtles in their estuarine and marine habitats. |
| West Indian manatee                                            | The counties in the project area are not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the project waters.  
The main risk to manatees during implementation of this project is noise from in-water construction and risk to manatees during use of the new ramps would come from boat collisions which could result in harm or mortality. Conservation measures are anticipated to reduce these potential impacts to an insignificant and discountable level. |
| Piping plover and red knot                                     | The main risk to piping plovers and red knot is from human disturbance while resting and foraging in habitats adjacent to work areas and from human disturbance if boaters choose to visit nearby islands. The proposed project could result in short term increases in noise during construction which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the individuals to move to a nearby area. Because other foraging/resting habitats are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns for either species and consider this effect insignificant and discountable. The proposed project will not result in any changes to shoreline habitats where either species is likely to forage or rest. Educational signage will be posted at all ramps reminding visitors of nearby trust resources and any protective measures that may be necessary when visiting nearby islands. This signage will be developed in coordination with FWC and the Panama City Ecological Services Field Office. |

24 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
<table>
<thead>
<tr>
<th>SPECIES/Critical Habitat</th>
<th>Species/Critical Habitat Impacts</th>
</tr>
</thead>
</table>
| Piping plover critical habitat                | Piping plover critical habitat is not designated in the project area but is nearby (where visitors may access it via these ramps) on St. Joe Peninsula. The primary constituent elements (PCEs) of wintering piping plover critical habitat include:  
  - Intertidal flats with sand or mud flats (or both) with no or sparse emergent vegetation.  
  - Adjacent unvegetated or sparsely vegetated sand, mud, or algal flats above high tide are also important, especially for roosting piping plovers. Such sites may have debris, detritus, or microtopographic relief (less than 50 cm above substrate surface) offering refuge from high winds and cold weather.  
  - Important components of the beach/dune ecosystem include surf-cast algae, sparsely vegetated back beach and salterns, spits, and washover areas.  
  - Washover areas are broad, unvegetated zones, with little or no topographic relief, that are formed and maintained by the action of hurricanes, storm surge, or other extreme wave action.  
  
  Project construction will not adversely modify or destroy critical habitat for piping plover because the construction work will not be taking place in any of the habitats listed above. Visitation of nearby area will not alter any of the PCE’s or result in adverse modification or destruction of critical habitat because general visitor use does not result in changes to the way a shoreline accretes or erodes or how the area is maintained through natural processes. |
| St. Andrews beach mouse                       | Neither the St. Andrews beach mouse nor its critical habitat occurs within the project areas. Therefore, construction activities will not affect this species or its critical habitat.                                                                                                                                                                                                                                                                                                                                 |
| St. Andrews beach mouse                       | However, both the mouse and its critical habitat occur on the St. Joe Peninsula which could be accessed by visitors using the improved ramps. Mice or critical habitat could be disturbed if visitors travel to St. Joe Peninsula from the ramps. Conservation measures are expected to minimize the risk of disturbance such that impacts are insignificant and discountable.  

  Primary constituent elements (PCEs) for St. Andrews beach mouse critical habitat are:  
  1) A contiguous mosaic of primary, secondary scrub vegetation, and dune structure, with a balanced level of competition and predation and few or no competitive or predaceous nonnative species present, that collectively provide foraging opportunities, cover, and burrow sites;  
  2) Primary and secondary dunes, generally dominated by sea oats that, despite occasional temporary impacts and reconfiguration from tropical storms and hurricanes, provide abundant food resources, burrow sites, and protection from predators;  
  3) Scrub dunes, generally dominated by scrub oaks, that provide food resources and burrow sites, and provide elevated refugia during and after intense flooding due to rainfall and/or hurricane induced storm surge;  
  4) Functional, unobstructed habitat connections that facilitate genetic exchange, dispersal, natural exploratory movements, and recolonization of locally extirpated areas; and  
  5) A natural light regime within the coastal dune ecosystem, compatible with the nocturnal activity of beach mice, necessary for normal behavior, growth and viability of all life stages.  
  
  Project construction will not adversely modify or destroy critical habitat for the St. Andrews beach mouse because the construction work will not be taking place in any of the habitats listed above. Conservation measures are expected to minimize impacts to PCEs such that no adverse modification or destruction of critical habitat occurs from visitor use. |
In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered
- Kemp’s Ridley Sea Turtle, *Lepidochelys kempii*, Endangered

Additional information for some of these species is provided below.

**Piping Plover**
The sandy beaches and shorelines within St. Josephs Bay offer suitable foraging and resting habitat for the piping plover during the winter migratory season, and piping plover may forage in the shallow waters of the project areas. However, no suitable habitat is located within the proposed project site. Natural shorelines in the proposed project vicinity provide suitable winter migration resting habitat for the piping plover. Piping plover wintering habitat includes beaches, mudflats, and sandflats, as well as barrier island beaches and spoil islands (Haig 1992, as cited by USFWS 2013c). On the Gulf Coast, preferred foraging areas were associated with wider beaches, mudflats, and small inlets (USFWS 2013). No piping plover critical habitat is located within the project site.

**Red knot (Calidris canutus rufa)**
The red knot, a federal proposed species, uses the state of Florida both for wintering habitat and migration stopover habitat for those that continue to migrate down to specific wintering locations in South America (Niles et al. 2008). Wintering and migrating red knots forage along sandy beaches, tidal mudflats, saltmarshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms, and roost on high sand flats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008).

**St. Andrews Beach Mouse (Peromyscus polionotus peninsularis)**
The St. Andrews beach mouse and its critical habitat occurs adjacent to the boat ramp. All habitat types primary, secondary and scrub dunes are essential to beach mice at the individual level. Coastal dune habitat is generally categorized as: primary dunes with sea oats and other grasses commonly distributed, secondary dunes characterized by such plants as woody goldenrod, Florida rosemary, and interior or scrub dunes dominated by scrub oaks and yaupon holly. The majority of their foraging activity
occurs within these primary and secondary dunes (Bird et al. 2013). PCE’s for beach mouse critical habitat are: 1) A contiguous mosaic of primary, secondary scrub vegetation, and dune structure, with a balanced level of competition and predation and few or no competitive or predaceous nonnative species present, that collectively provide foraging opportunities, cover, and burrow sites; 2) Primary and secondary dunes, generally dominated by sea oats that, despite occasional temporary impacts and reconfiguration from tropical storms and hurricanes, provide abundant food resources, burrow sites, and protection from predators; 3) Scrub dunes, generally dominated by scrub oaks, that provide food resources and burrow sites, and provide elevated refugia during and after intense flooding due to rainfall and/or hurricane induced storm surge; 4) Functional, unobstructed habitat connections that facilitate genetic exchange, dispersal, natural exploratory movements, and recolonization of locally extirpated areas; and 5) A natural light regime within the coastal dune ecosystem, compatible with the nocturnal activity of beach mice, necessary for normal behavior, growth and viability of all life stages.

Sea Turtles and Marine Mammals
There are five species of endangered or threatened sea turtles that may occur or have the potential to occur in the project area. These include green turtle, hawksbill turtle, Kemp’s ridley turtle, leatherback turtle, and loggerhead turtle. Sea turtles forage in the waters of the coastal Florida panhandle region and have the potential to occur in the waters where in-water work is proposed. The project site contains potentially suitable sea turtle nesting habitat along the sandy beach, but the site is on the bay side where nesting is uncommon.

Twenty-two marine mammals are native to the Gulf of Mexico: 21 pelagic species of whales and dolphins, and the West Indian manatee (see Chapter 3). Of these species, the endangered West Indian manatee has the potential to occur in the project area waters. Manatee typically seek out shallow seagrass areas as preferred feeding habitat. Additionally, bottlenose dolphin (Tursiops) populations are known to migrate into bays, estuaries, and river mouths and could be located in the proposed project area (NMFS 2013a). Bottlenose dolphins have been observed entering and leaving nearshore coastal waters (NMFS 2012).

Of the five listed endangered whale species (sperm whale, sei whale, fin whale, blue whale, humpback whale), only the sperm whale is considered to commonly occur in the Gulf of Mexico. The sperm whale is predominantly found in deep ocean waters, generally deeper than 3,280 feet, on the outer continental shelf. Due to the location of the project along a bay and the relatively shallow depth in the project area, the sperm whale, or any other endangered whale, is not likely to be present.

Smalltooth Sawfish (Pristis pectinata)
Smalltooth sawfish (Pristis pectinata) do not typically use northern Gulf of Mexico waters (NMFS 2013b).

Gulf Sturgeon (Acipenser oxyrhynchus desotoi)
Gulf sturgeon are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Pearl River in Louisiana to the Suwannee River, in Florida (NMFS 2009). Adult fish reside in rivers for 8 to 9 months each year and in estuarine or Gulf of Mexico waters during the 3 to 4 cooler months of each year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993).
Gulf sturgeon critical habitat was jointly designated by the NMFS and USFWS on April 18, 2003 (50 C.F.R. 226.214). The proposed project site is located within critical habitat for Gulf sturgeon. Critical habitat was designated based on seven primary constituent elements (PCEs) essential for its conservation, as defined in the 2003 Federal Register and are listed below. PCE’s 1, 5, 6, and 7 are present in the project area.

The PCE’s are:

1. Abundant food items, such as detritus, aquatic insects, worms, and/or mollusks, within riverine habitats for larval and juvenile life stages; and abundant prey items, such as amphipods, lancelets, polychaetes, gastropods, ghost shrimp, isopods, mollusks, and/or crustaceans, within estuarine and marine habitats and substrates for subadult and adult life stages;
2. Riverine spawning sites with substrates suitable for egg deposition and development, such as limestone outcrops and cut limestone banks, bedrock, large gravel or cobble beds, marl, soapstone, or hard clay;
3. Riverine aggregation areas, also referred to as resting, holding, and staging areas, used by adult, subadult, and/or juveniles, generally, but not always, located in holes below normal riverbed depths; these are believed necessary for minimizing energy expenditure during freshwater residency and possibly for osmoregulatory functions;
4. A flow regime (i.e., the magnitude, frequency, duration, seasonality, and rate-of-change of freshwater discharge over time) necessary for normal behavior, growth, and survival of all life stages in the riverine environment, including migration, breeding site selection, courtship, egg fertilization, resting, and staging, and for maintaining spawning sites in suitable condition for egg attachment, egg sheltering, resting, and larval staging;
5. Water quality, including temperature, salinity, pH, hardness, turbidity, oxygen content, and other chemical characteristics necessary for normal behavior, growth, and viability of all life stages;
6. Sediment quality, including texture and chemical characteristics, necessary for normal behavior, growth, and viability of all life stages; and
7. Safe and unobstructed migratory pathways necessary for passage within and between riverine, estuarine, and marine habitats (e.g., an unobstructed river or a dammed river that still allows for passage).

State-Listed Birds, MBTA and BGEPA
St. Joseph Bay is a designated Important Bird Area. The proposed project is located within the St. Joseph Bay and, thus, the Important Bird Area. Various shorebirds can be found in the vicinity of the project area. The beaches within the vicinity of the project are important wintering and nesting areas for shorebirds. The common species found within the vicinity of the project site include: spotted sandpiper, ruddy turnstone, sanderling, dunlin, Western sandpiper, least sandpiper Willet snowy plover, semipalmated plover, Wilson’s plover, common snipe, American oystercatcher, black-necked stilt, short-billed dowitcher, whimbrel, black-bellied plover, American woodcock, lesser yellowlegs, and greater yellowlegs. However, due to the highly disturbed nature of the habitat surrounding the proposed project, it is unlikely that migratory birds would utilize the project area as nesting habitat.
All migratory bird species are protected under the MBTA during the nesting season. The nesting season in Florida is from February 15 to August 13.

The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s Bald Eagle Management Plan guidelines would be followed (FWC 2008). According to the FWC Bald Eagle Nest Locator, there are no bald eagle nests within 1 mile of the project site.

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-22 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

### Table 12-22. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>Foraging, feeding, resting, nesting</td>
<td>Shorebirds nest, forage, feed, and rest in the types of habitats consistent with some of the shoreline areas near the proposed project. As such, they may be impacted locally and temporarily by the project.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Resting, roosting, nesting</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats including dunes. Seabirds may nest nearby.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-23.

### Table 12-23. Conservation measures to minimize impacts to migratory bird groups.

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>The project area is not an optimal area for shorebird foraging. Therefore, the Trustees expect foraging and resting birds to move to another nearby location, likely with better habitat, to continue foraging and resting. If project activities occur during shorebird nesting season (February 15 to August 31), the FWC will be contacted to obtain the most recent guidance to protect nesting shorebirds or rookeries and their recommendations will be implemented.</td>
</tr>
<tr>
<td></td>
<td>Signage will include information to make visitors aware of nesting birds in nearby areas and</td>
</tr>
<tr>
<td>SPECIES/SPECIES GROUP</td>
<td>CONSERVATION MEASURES TO MINIMIZE IMPACTS</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------------------</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. If the level of project activity startles foraging or resting birds, the Trustees would expect them to move a short distance and resume behaviors as noise will be localized to the existing ramp areas. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. If project activities occur during seabird nesting season (February 15 to August 31), the FWC will be contacted to obtain the most recent guidance to protect nesting seabirds or rookeries and their recommendations will be implemented. Signage will include information to make visitors aware of nesting birds in nearby areas and any protective measures that are necessary.</td>
</tr>
</tbody>
</table>

**Essential Fish Habitat**

EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as "those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

**Error! Reference source not found.** provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Port St. Joe Frank Pate Boat Ramp Improvement site and Gulf of Mexico.

**Table 12-24. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.**

<table>
<thead>
<tr>
<th>EFH CATEGORY</th>
<th>SPECIES</th>
</tr>
</thead>
</table>
| Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic | Cobia  
King Mackerel  
Spanish Mackerel |
| Gulf of Mexico Red Drum | Red Drum |
| Reef Fish Resources of the Gulf of Mexico | Almaco Jack  
Banded Rudderfish  
Black Grouper  
Blackfin Snapper  
Blueline Tilefish  
Cubera Snapper |
<table>
<thead>
<tr>
<th>EFH CATEGORY</th>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gag</td>
</tr>
<tr>
<td></td>
<td>Goldface Tilefish</td>
</tr>
<tr>
<td></td>
<td>Gray (Mangrove) Snapper</td>
</tr>
<tr>
<td></td>
<td>Gray Triggerfish</td>
</tr>
<tr>
<td></td>
<td>Greater Amberjack</td>
</tr>
<tr>
<td></td>
<td>Hogfish</td>
</tr>
<tr>
<td></td>
<td>Lane Snapper</td>
</tr>
<tr>
<td></td>
<td>Lesser Amberjack</td>
</tr>
<tr>
<td></td>
<td>Mutton Snapper</td>
</tr>
<tr>
<td></td>
<td>Nassau Grouper</td>
</tr>
<tr>
<td></td>
<td>Queen Snapper</td>
</tr>
<tr>
<td></td>
<td>Red Grouper</td>
</tr>
<tr>
<td></td>
<td>Red Snapper</td>
</tr>
<tr>
<td></td>
<td>Scamp</td>
</tr>
<tr>
<td></td>
<td>Silk Snapper</td>
</tr>
<tr>
<td></td>
<td>Snowy Grouper</td>
</tr>
<tr>
<td></td>
<td>Speckled Hind</td>
</tr>
<tr>
<td></td>
<td>Tilefish</td>
</tr>
<tr>
<td></td>
<td>Vermilion Snapper</td>
</tr>
<tr>
<td></td>
<td>Warsaw Grouper</td>
</tr>
<tr>
<td></td>
<td>Wenchman</td>
</tr>
<tr>
<td></td>
<td>Yellowedge Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowmouth Grouper</td>
</tr>
<tr>
<td><strong>Gulf of Mexico Shrimp</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brown Shrimp</td>
</tr>
<tr>
<td></td>
<td>Pink Shrimp</td>
</tr>
<tr>
<td></td>
<td>White Shrimp</td>
</tr>
<tr>
<td><strong>Atlantic Highly Migratory Species</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Bonnethead Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Bonnethead Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Bonnethead Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Bull Shark-Juvenile</td>
</tr>
<tr>
<td>EFH CATEGORY</td>
<td>SPECIES</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Finetooth Shark-Adult and Juvenile</td>
</tr>
<tr>
<td></td>
<td>Finetooth Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Great Hammerhead Shark-All Ages</td>
</tr>
<tr>
<td></td>
<td>Lemon Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Lemon Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Lemon Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Nurse Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Nurse Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Tiger Shark-Juvenile</td>
</tr>
</tbody>
</table>

**Environmental Consequences**

**Protected Species**
The USFWS reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On May 1, 2014, the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect, St. Andrews beach mouse, five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead), West Indian manatee, piping plover, and red knot (if listed). The USFWS also concurred with the Trustees’ determination that the project will not adversely modify or destroy critical habitat for the St. Andrews beach mouse, piping plover, or destroy critical terrestrial habitat for the loggerhead sea turtle (if designated).

Consultation of potential impacts on protected species managed by NMFS from this project was initiated on February 11, 2014. The Trustees’ review of the potential impacts of the project for protected species managed by NMFS determined the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the project implementation area:

- Gulf Sturgeon - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Smalltooth Sawfish – The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Green Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Loggerhead Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Hawksbill Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Leatherback Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Kemp’s Ridley Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.

Concurrence from NMFS with the Trustees’ conclusions for these species and associated critical habitats is still pending.

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ *Sea Turtle and Smalltooth Sawfish Construction Conditions* (NMFS, 2006), *Standard Manatee Conditions for In-Water Work* (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

**Migratory Birds and Eagles**

Bald eagles are not present at the project location so will not be affected. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

**Essential Fish Habitat**

From the Trustees’ review the Trustees conclude the project is not likely to adversely affect EFH. The proposed dock construction will take place adjacent to the existing boat ramp extending its length. A very small area of subtidal habitat will be converted with the placing of pilings for the expanded dock, however, this will take place directly adjacent to the boat ramp, where the habitat is already likely to be significantly disturbed as a result of both the boat traffic to and from the boat ramp and use of the existing boat launch structure and shoreline habitat. Disturbance to species will be minor and brief and during construction and adjacent areas with equivalent or better habitat will be available and undisturbed allowing organisms to move away from disturbed areas.

On April 24, 2014 NMFS completed its evaluation of potential EFH impacts and concluded that the project construction is not likely to adversely affect EFH and any disturbance to species will be minor and brief (Fay, 2014).

**Invasive Species**

**Affected Resources**

Non-native invasive species could alter the existing terrestrial or aquatic ecosystem with the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 3 described more about the regulations addressing invasive species,
pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

**Environmental Consequences**
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

### 12.39.5.5 Human Uses and Socioeconomics

#### 12.39.5.5.1 Socioeconomics and Environmental Justice

**Affected Resources**
The City of Port St. Joe, similar to the rest of the Florida Panhandle, relies on the coastal waters of the Gulf of Mexico to provide a variety of economic and social benefits to its residents and visitors. The coastal ecosystems in the project area support a wide variety of commercial and recreational activities that contribute significantly to the State’s economy. Sport and commercial fisheries are some of the most notable economic highlights, within the region and the State. The marine environments within the area also provide essential transportation links, support a variety of water-dependent facilities, and offer an array of recreational opportunities that attract thousands of visitors to the area each year (FDEP, 1994).

The 2011 estimated median household income in Port St. Joe was $37,286. The major employment sectors in the Crestview-Fort Walton Beach-Destin area, which includes the project site, are government; education and health services; leisure and hospitality; and construction (City-data.com 2013).

**Environmental Consequences**
No adverse socioeconomic impacts are expected as a result of the proposed project. The proposed project would benefit the local economy during construction through the provision of a small number of construction jobs and associated spending on goods and services by construction workers. Following completion of construction, the project would provide improved facilities to accommodate water-based recreational activities. The improvements to the boat ramp and associated facilities would not measurably change the type or level of use at the site, and therefore are not expected to have any long-term socioeconomic impacts.
12.39.5.5.2 Cultural Resources

Affected Resources
This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Environmental Consequences
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.39.5.5.3 Infrastructure

Affected Resources
Infrastructure in the Florida panhandle consists of a network of interconnected structures, support facilities and transportation systems. Physical infrastructure and public services include commonly provided Federal, State, county, parish, municipal, and/or private facilities and utilities that support development and protect public health and safety.

The most significant component of the transportation network in the area is US Highway 98, which closely follows the Gulf coast from the Florida-Alabama state line to St. Marks, Florida. Highway 98 provides the main transportation arterial into and out of Mexico Beach, with the remaining transportation infrastructure consisting primarily of local residential roads. A network of canals provides local access by boat from the Gulf of Mexico to properties located inland from the coast. The closest public airport to the project site is Tallahassee Regional Airport, located approximately 75 miles northeast of the project site in Tallahassee.

Water, wastewater and sanitation services in the project area are provided by the City of Port St. Joe. Electric service in the surrounding area is provided by Florida Power Corporation and Gulf Coast Electric Cooperative. Cable television and internet are provided by Mediacom, and phone service is provided by AT&T.

Environmental Consequences
During construction of the boat ramp and related facilities, the proposed project would potentially have minor adverse impacts to infrastructure due to traffic delays and roadway damage associated with construction vehicle traffic; utility service interruptions; and potential accidental damage to utility infrastructure. Following completion of construction, the proposed improvements could lead to an increase in visitor use; however, visitor use is not expected to increase to the point where associated wear on infrastructure would lead to adverse impacts. Overall, the proposed project is expected to have long-term beneficial impacts on infrastructure through the provision of expanded and enhanced boat launch facilities.
12.39.5.5.4 Land and Marine Management

Affected Resources
Development in Port St. Joe is regulated by the City of Port St. Joe Land Development Code. Frank Pate Park, which includes the boat ramp and parking lot, is situated on land owned by the City of Port St. Joe and zoned for Municipal use (Gulf County 2013). Boat ramps are a permitted use in municipal districts (City of Port St. Joe 2013). Land uses surrounding the site include single-family residential uses, commercial uses, park uses, and vacant land.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

Environmental Consequences
No changes would occur to the current use at the Frank Pate boat ramp, or to uses on adjacent and nearby properties. Land ownership would remain the same, and the site would continue to be managed by The City of Port St. Joe as a public boat launch. The proposed project would be consistent with the City of Port St. Joe Land Development Code, since it is a permitted use in municipal districts.

12.39.5.5.5 Aesthetics and Visual Resources

Affected Resources
Frank Pate City Park is situated on St. Joseph Bay, an approximately 69-acre embayment of the Gulf of Mexico located within Gulf County, Florida. The landscape in the area is characterized by beaches, tidal flats, dunes, marshes and coastal waterways. Development is relatively sparse in the immediate surrounding area and consists of single-family residences and vacant land.

Environmental Consequences
Temporary impacts to aesthetics and visual resources would result from implementation of the proposed boat ramp improvements. Construction equipment would be temporarily visible to recreational users. These construction-related impacts to visual resources would be adverse but minor, since the amount of construction equipment required to complete the project would be limited, and construction activities and equipment would be visible to users for a maximum of one year. The proposed project would take place at the site of an existing boat ramp and would not change the overall visual appearance of the site or surrounding area; therefore, no long-term impacts to aesthetics and visual resources are anticipated.

12.39.5.5.6 Tourism and Recreational Use
Florida’s beaches contribute greatly to the state’s economy, providing benefits to a variety of user groups. Locals and tourists alike spend much time swimming, beachcombing, boating, fishing, diving, kayaking, surfing, and engaging in other active and passive activities near the beach. The areas surrounding St. Joseph Bay, like other Florida coastal communities, attract tourists to the unique and diverse wildlife and scenic habitats, abundant fishing opportunities and the sun and surf. The hotels,
restaurants, and other retail establishments within the vicinity are heavily dependent upon the revenues generated each year by the millions of residents and tourists that utilize the beach. The Florida Beaches Habitat Conservation Plan noted that Florida’s tourism industry represents a $57 billion industry and 20% of the state’s economy. It generates $3.4 billion a year alone in sales tax revenue.

**Environmental Consequences**

During the construction period, tourism and recreational use would be negatively impacted by noise and visual disturbances associated with the use of construction equipment. Public access to the boat ramp would be prohibited during construction activities. While these temporary inconveniences would result in minor negative impacts on tourism and recreational use, over the long term the project would result in beneficial impacts to tourism and recreational use. Opportunities for ocean-based recreational activity would be enhanced as a result of improved facilities. The project would not be expected to result in a notable increase in the number of visitors, due to its limited scope; however, the project would contribute to an improved experience for visitors and local residents using the boat ramp. Overall, adverse impacts to tourism and recreational use would be short term and minor. Over the long term, the project would result in beneficial impacts to tourism and recreational uses.

**12.39.5.5.7 Public Health and Safety and Shoreline Protection**

**Affected Resources**

The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the Emergency Planning and Community Right-to-Know Act, and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of these materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

The project area lies at the site of an existing boat ramp and gravel parking lot with adjacent residential areas, located along the central-eastern shoreline of St. Joseph Bay. A review of the USEPA EnviroMapper revealed that there are no sources of contamination or hazardous materials located on or immediately adjacent to the Frank Pate boat ramp (USEPA 2013c). No sources of hazardous, toxic and radioactive waste (HTRW) are otherwise known to exist within the project area. Boats launching and landing at the boat ramp could potentially serve as a source of non-point pollution resulting from inadvertent releases of fuel or oil.

**Environmental Consequences**

Project construction would utilize mechanical equipment that uses oil, lubricants and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of construction related hazardous materials such as vehicle fuels, oil, hydraulic fluid, and other vehicle maintenance fluids, and to avoid releases and spills. If a release should occur such releases would be contained and cleaned up promptly in accordance with all applicable regulations. As a result, no impacts associated with construction-related hazardous materials would be anticipated.
Because of the nature and location of the project, no impacts to public health and safety or shoreline erosion are anticipated as a result of construction activities. The project and its construction are not anticipated to generate hazardous waste or the need for disposal of hazardous waste. In the event of a fuel or oil spill from construction equipment, all procedures, regulations and laws pertaining to Oil Spill Prevention and Response would be adhered to and the incident would be reported to appropriate agencies. All occupational and marine safety regulations and laws would be followed to ensure safety of all workers and monitors. Therefore, it is anticipated that there would be no impacts to public health and safety from the proposed project.

12.39.6 Summary and Next Steps
The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (City of Port St. Joe Frank Pate Boat Ramp Improvements) project would improve the existing Frank Pate boat ramp in the City of Port St. Joe. The proposed improvements include constructing an additional boarding dock, boat trailer parking, access drive, staging area, and a fish cleaning station. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.39.7 References
Allen, Ginger M. and Main, Martin B.

Bird B. L., Branch L. C., and Hostetler M. E.

Bonneville Power Administration (BPA)
1996 Electrical and biological effects of transmission lines: a review (DOE/BP 2938.) Portland, OR.
1986 Electrical and biological effects of transmission lines: a review. (DOE/BP 524.) Portland, OR.

City-data.com
City of Port St. Joe


FDEP


Federal Emergency Management Agency (FEMA)


Florida Fish & Wildlife Commission (FWC)


Fritts, T.H


Fuller, D. A.

1978 The habitats, distribution, and incidental capture of sea turtles in the Gulf of Mexico. Working paper on sea turtles for the task force developing the draft shrimp management plan for the US Gulf of Mexico. Centre for Wetland Resources, Louisiana State University Baton Rouge, 44p. (Habitat use, Distribution, Fisheries interactions)

Gulf County

Gulf of Mexico Fisheries Management Council (GMFMC)
2005  **FINAL Generic Amendment Number 3 for Addressing Essential Fish Habitat Requirements, Habitat Areas of Particular Concern, and Adverse Effects of Fishing in the following Fishery Management Plans of the Gulf of Mexico: Shrimp Fishery of the Gulf of Mexico, United States Waters Red Drum Fishery of the Gulf of Mexico Reef Fish Fishery of the Gulf of Mexico Coastal Migratory Pelagic Resources (Mackerels) in the Gulf of Mexico and South Atlantic Stone Crab Fishery of the Gulf of Mexico Spiny Lobster in the Gulf of Mexico and South Atlantic Coral and Coral Reefs of the Gulf of Mexico**
March 2005

Harrington, B.A.


National Marine Fisheries Service (NMFS)
2005  Panama City Beaches Renourishment Biological Opinion (Consultation Number F/SER/2004/01884).

Niles, L.J., H.P. Sitters, A.D. Dey, P.W. Atkinson, A.J. Baker, K.A. Bennett, R. Carmona, K.E. Clark,
Northwest Florida Water Management District (NFWMD)


Pritchard, P. C. H.


Rebel, T.P.


2001. Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat. August.

U.S. Army Corps of Engineers (USACE)

2010 Draft Supplemental Environmental Assessment for the Beach Erosion Control and Storm Damage Reduction Project Panama City Beach, Bay County, Florida.


U.S. Environmental Protection Agency (USEPA)


U.S. Fish and Wildlife Service (USFWS)


Watson, K.
12.40 Strategically Provided Boat Access along Florida’s Gulf Coast: Project Description F (City of St. Marks Boat Ramp Improvements)

12.40.1 Project Summary
The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (City of St. Marks Boat Ramp Improvements) project would improve the existing City of St. Marks boat ramp. The proposed improvements include adding a boarding dock to the one-lane boat ramp. The total estimated cost of the project is $50,006.

12.40.2 Background and Project Description
The Trustees propose to improve and enhance an existing boat ramp in the City of St. Marks (see Figure 12-9 for general project location). This project builds on an ongoing effort initiated by the FWC through its Florida Boating Improvement Program which, in part, is used to fund applications from local governments in a competitive grant process for boat access improvement projects in remote areas, small towns and cities, and coastal counties (for more information on the program see http://myfwc.com/boating/grant-programs/fbip/).

The objective of the Strategically Provided Boat Access along Florida’s Gulf Coast (City of St. Marks Boat Ramp Improvements) project is to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. The restoration work proposed includes constructing a boarding dock to the one-lane boat ramp.

12.40.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (City of St. Marks Boat Ramp Improvements) project is intended to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Agencies have successfully completed projects of similar scope throughout Florida over many years, including similar types of actions in earlier phases of the Deepwater Horizon Early Restoration. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.40, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and
measures to avoid or minimize adverse impacts described in 12.40 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Florida FWC Strategic Boat Access: City of St. Marks Boat Ramp Improvements project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

Figure 12-9. Location of FWC Strategic Boat Access City of St. Marks Boat Ramp Improvements.
12.40.4 Performance Criteria, Monitoring and Maintenance

As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational boating and fishing opportunities by improving an existing boat ramp. Performance monitoring will evaluate the construction of the boarding dock to the one-lane boat ramp. Specific performance criteria include: 1) the completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the boat ramp is open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by the City of St. Marks as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by the City of St. Marks.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, the City of St. Marks will monitor the recreational use activity at the site. The City of St. Marks will visit the site twice a year to count the number of users at the boat ramp. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.40.5 Offsets

The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Strategically Provided Boating Access along Florida’s Gulf Coast project, of which this is a component, are $6,496,680 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.25

12.40.6 Costs

The total estimated cost to implement this project is $50,006. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---

25 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.41 Strategically Provided Boat Access along Florida’s Gulf Coast: Environmental Review F (City of St. Marks Boat Ramp Improvements)

Florida proposes to make improvements at the existing St. Marks Public Boat Ramp. Included in these changes is the addition of a boarding dock to an existing single-lane boat ramp. The ramp is located on 0.8 acre of property owned by the City of St. Marks at the confluence of the St. Marks and Wakulla Rivers, in the southern portion of the St. Marks city limits. This project builds on an ongoing effort initiated by the Florida Fish and Wildlife Conservation Commission (FWC) through its Florida Boating Improvement Program which, in part, is used to fund applications from local governments in a competitive grant process for boat access improvement projects in remote areas, small towns and cities, and coastal counties.

This project would enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. The improvements would help address the reduced quality and quantity of recreational activities (e.g., boating and fishing) in Florida attributable to the Deepwater Horizon Oil Spill by providing enhanced access to Apalachee Bay and the Gulf of Mexico.

12.41.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement), the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This boat ramp project was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.
The City of St. Marks boat ramp is a public boat launch facility consisting of one single-lane and one double-lane boat ramp, with 41 trailer parking spaces and 15 vehicle-only parking spaces. The facility is located on under an acre of property within the City of St. Marks, which is part of the Tallahassee Metropolitan Statistical Area (MSA).

The dock would be a fixed structure constructed of wooden decking anchored to pilings. In addition to improving boater access, the addition of the dock would enhance boater safety at the ramp by providing boat passengers with greater ease of loading and unloading. The total estimated cost to implement this project is $50,006.

12.41.2 Project Location
St. Marks Boat Ramp is located in the City of St. Marks, Wakulla County, Florida, in Section 11, Township 4-S, Range 01-E, at latitude 30° 15′ 15.07″ north and longitude: -84° 20′ 97.33″ west. The project site is located 3 River Breeze St. St. Marks, FL 32355, Wakulla County, FL, at the confluence of the St. Marks and Wakulla Rivers in the southern portion of the city. Construction activities are to occur along the shoreline. The St. Marks River outlets to Apalachee Bay, an arm of the Gulf of Mexico indenting the coast of northern Florida in the Big Bend region, where the Florida Peninsula joins the U.S. mainland (Figure 12-10).

12.41.3 Construction and Installation
The proposed Florida FWC Strategic Boat Access project would improve the existing City of St. Marks boat ramp by adding a boarding dock to the existing one-lane boat ramp shown in Figure 12-10, which is no longer used for motor boat launching. This boarding dock would be used primarily to facilitate the launching, loading, and removal of non-motorized watercraft (e.g., canoes, kayaks). Figure 12-10 shows the project location and the surrounding area.
The project consists of constructing a dock up to 50 linear feet long and approximately 8 feet in width, composed of wood, metal grating or composite decking anchored to pilings. The length of the dock and the type of decking, including grating, manufacturer, and board spacing will be defined in the final project design. In-water excavation is not anticipated for this project activity with the emphasis being on the placement of a limited number of pilings to support and anchor the dock in the desired location. Final design and location of the dock would reflect, among other things, the results of a submerged aquatic vegetation (SAV) survey in the potential placement areas. This survey typically involves an initial review of aerial photos and existing seagrass maps. Initial results are then confirmed with an onsite visual survey typically conducted from a boat. In areas with visibility issues the assessment may involve attaching a small rake head to a line and dragging it through the area of interest to see if seagrasses are present. Snorkel assessments would then be used, if necessary, to verify results.

Should SAV be identified in the potential project area where pilings would need to be placed, the conditions in the Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat (U.S. Army Corps of Engineers/National Marine Fisheries Service, 2001) would be implemented. Among other elements this would require pilings for the canoe/kayak launch be placed a minimum of 10 feet apart. As a result,
while the exact number of pilings has not been finalized it is expected that roughly a dozen, as a maximum, could be needed given the anticipated maximum dock length and spacing. The project could require placement of as many as 16 piles. These piles would be made out of wood, be no more than 8” in diameter, and would be placed by a combination of water jetting and mechanical auguring.

The first step in the construction of the dock will be to stake out the project area including locations for the placement of the pilings. Following this staking, the pilings would be placed to the design depth. Once the piles, beams and cross bracing are placed the decking is begun from the land and proceeds out over the water. In addition to hand tools, equipment is expected to include a small construction barge, pile-driver, and tractor trailer for transporting construction materials and equipment.

In addition, BMPs for erosion control would be implemented and maintained at all times during construction to prevent siltation and turbid discharges into surface waters from land-based activity. Methods for land-based portions of the project construction would include, but may not be limited to, the use of staked hay bales, staked filter cloth, sodding, seeding, and mulching; staged construction; and installation of turbidity screens around the immediate project site. Prior to the initiation of any work, erosion control measures would be put in place along the perimeter of all landward work areas to prevent the displacement of fill material into the St. Marks River. Turbidity barriers with weighted skirts extending to within one foot of the bottom would be installed along the entire shoreline length of the in-water project area prior to initiation of construction. Turbidity barriers would remain in place and be maintained until the authorized work has been completed and all erodible materials have been stabilized.

The project would require no more than 3 months of in-water work being conducted during daylight hours.

12.41.4 Operations and Maintenance
Long-term operations and maintenance of the improved facilities would be performed by the City of St. Marks as part of their regular public facilities maintenance activities. These activities would include insuring that the boat ramp and dock are in working order and defective areas would be fixed as appropriate. It is anticipated that regular operation and maintenance may include concrete repairs, replacement of planks or grates on docks, and grading or graveling of the parking area.

12.41.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental effects of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

12.41.5.1 No Action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.
Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.41.5.2 Physical Environment

12.41.5.2.1 Geology and Substrates

Affected Resources
The project lies in the Gulf coastal lowlands physiographic province (Allen and Main 2005). The landscape of the Gulf coastal lowlands is comprised of a relatively flat terrain, ranging in elevation from 0 to about 50 feet above mean sea level. Soils in the coastal panhandle of Florida consist predominately of medium to fine grain sands and silts associated with recent Pleistocene formations.

The soils in the project area have been identified and mapped by the U.S. Department of Agriculture Natural Resource Conservation Service (USDA 1987). The NRCS data identified two soils mapped within the project and vicinity. There are Ridgewood-Ortega-Rutlege (Soil Unit 6) and Tooles-Nutall fine sands (Soil Unit 26).

The Ridgewood-Ortega-Rutlege complex is a nearly level to gently undulating, somewhat poorly drained, moderately well drained, and very poorly drained sandy soils. They are found along most of the southern boundary of Wakulla County on the Gulf Coast.

The Tooles-Nutall fine sands are a nearly level and poorly drained soil. These soils have a seasonally high water table. They are generally found in board areas on flatwoods.

Environmental Consequences
There are no anticipated adverse impacts to local geology, soils, and sediments associated with the project. Appropriate erosion control and mitigation measures would be implemented prior to construction. Adverse impacts to geology and substrates would be minor.

12.41.5.2.2 Hydrology and Water Quality

Affected Resources
The proposed project is located at the confluence of the St. Marks and Wakulla Rivers. St. Marks River is within the Apalachee Bay Watershed (Northwest Florida Water Management District 2000). The St. Marks River watershed extends from the red hills of southern Georgia to the Gulf of Mexico, covering approximately 1,170 square miles (748,800 acres). Approximately 91 percent of the watershed (1,060 square miles or 678,400 acres) lies within Jefferson, Leon, and Wakulla counties in Florida; the remainder is in Thomas County, Georgia. Surface water features include the St. Marks River; its major tributary the Wakulla River, and the headwaters of the Wakulla River, Wakulla Springs. Other major surface water features within the watershed are lakes Miccosukee, Lafayette, and Munson, and the coastal receiving waters of Apalachee Bay (NFWMD 2009). It has been classified by the Florida Department of Environmental Protection as an Outstanding Florida Water, and is the easternmost river within the Northwest Florida Water Management District (Boning, 2007).
Ground water is derived mostly from precipitation of which the majority flows down karst features into the underground Floridan Aquifer. This water moves under the influence of gravity towards the Gulf of Mexico.

There are wetlands within the vicinity of the project site however, with the exception of open water (i.e., the St. Marks River), there are no wetlands within the project footprint.

**Environmental Consequences**

All permit conditions requiring mitigation measures for siltation, erosion, turbidity and release of chemicals would be strictly adhered to. During construction, Best Management Practices and boom placement along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts. The FDEP permit conditions require erosion and turbidity mitigation measures. These include:

- Install floating turbidity barriers
- Install erosion control measures along the perimeter of all work areas
- Stabilize all filled areas with sod, mats, barriers or a combination
- If turbidity thresholds are exceeded the project must stop, stabilize the soils, modify the work procedures, and notify the FDEP.

The FDEP permits also constitute a Certification of Compliance with State Water Quality Standards under Section 401 of the Clean Water Act, which means that the project would comply with state water quality standards and other aquatic resource protection requirements. After construction, increased boat traffic on the canal could result in minimal impacts to surface water quality.

Impacts from chemicals that could potentially be released from sources such as construction equipment and boats are expected to be negligible. Required spill containment measures would be implemented for applicable construction activities. FDEP permits require spill containment protection and mitigation measures such as:

- No boat repair or fueling facilities over the water,
- Prohibited activities include hull cleaning and painting, discharges or release of oils or greases, and related metal-based bottom paints associated with hull scraping, cleaning, and painting.

Best Management Practices along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts associated with construction activities. Best Management Practices for erosion control would be implemented and maintained at all times during construction to prevent siltation and turbid discharges into waters of the state. Silt and sedimentation control measures would be installed and properly maintained to protect water quality resources.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (USACE) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the USACE and final authorization pursuant to CWA/RHA will be completed prior to project implementation.
Given that there would be no substantial change in uses at the project site following implementation of the proposed enhancement activities, it is anticipated that there would be no long-term negative impacts to water resources. The implementation of the proposed project would therefore result in short-term minor negative impacts on water resources. This project would not impact groundwater. There would be no adverse impacts to hydrology or water quality.

Overall, potential impacts to water resources are expected to be minor, temporary and localized in nature.

12.41.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
The Clean Air Act (CAA) requires the State of Florida to adopt ambient air quality standards to protect the public from potentially harmful amounts of pollutants. Six common air pollutants (also known as "criteria pollutants") are regulated by EPA and the states under the CAA. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. The Florida Department of Environmental Protection (DEP) has designated areas meeting the state’s ambient air quality standards by their monitoring and modeling program efforts, (i.e., attainment areas). Florida has no nonattainment areas within the panhandle region.

Currently, Wakulla County is classified by EPA as an attainment area in accordance with the National Ambient Air Quality Standards (NAAQS). The City of St. Marks is not within an EPA Class 1 air quality area; however, St. Marks National Wildlife Refuge, located approximately 80 miles to the east, is designated as a Class I air quality area (EPA 2013a). Class I air quality areas are afforded special protection under the Clean Air Act. Any proposed new or modified sources of air pollution locating within approximately 200 miles (300 km) of a Class I air quality area are asked to consult with the Federal Land Manager to determine whether emission impact modeling to the Class I area should be conducted and submitted to the Federal Land Manager for review (USFWS 2013). Therefore, the proposed boat ramp improvements would be subject to consultation regarding potential emissions impacts on St. Marks National Wildlife Refuge. Factors to be considered include distance to the Class I area, magnitude of emissions, current conditions of air sensitive resources in the Class I area, potential for source growth in an area or region, prevailing meteorological conditions, and cumulative impacts of multiple sources to air sensitive resources.

Beginning in 2011, the CAA also regulates emissions of greenhouse gases (GHG) (EPA 2013b). The EPA’s GHG Reporting Rule establishes mandatory GHG reporting requirements for sources that emit 25,000 metric tons or more of carbon dioxide equivalent (CO2e) per year (EPA 2013b).

Environmental Consequences
Project implementation would require the use of a barge-mounted pile driver and potentially some land-based heavy equipment, plus a tractor trailer for transport of construction materials and equipment, for up to 8 hours per day over a 1-year construction period. This would temporarily affect air quality and elevate greenhouse gas levels in the project vicinity due to emissions and increased dust from operation of construction vehicles and equipment. Any air quality impacts that would occur would be localized, limited to the construction phase of the project, and limited by the size of the project.
Therefore, impacts to air quality would be negative but minor and short-term. The project would have no long term impacts on air quality.

Engine exhaust from construction equipment would contribute to an increase in greenhouse gas emissions. Table 12-25 describes the likely greenhouse gas emission scenario for the implementation of this project.

<table>
<thead>
<tr>
<th>CONSTRUCTION EQUIPMENT</th>
<th>NO. OF HOURS OPERATED(^{26})</th>
<th>CO2 (METRIC TONS)(^{27})</th>
<th>CH4 (CO2E) (METRIC TONS)(^{28})</th>
<th>NOX (CO2E) (METRIC TONS)</th>
<th>TOTAL CO2E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pile Driver</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td>Backhoe</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td>Tractor Trailer(^{29})</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>246.39</td>
</tr>
</tbody>
</table>

Based on the assumptions described in Table 12-25 above, GHG emissions would not exceed 25,000 metric tons per year. Given the projected construction-phase GHG emissions, along with the small scale and short duration of the project, predicted impacts from greenhouse gas emissions would be short-term and minor.

12.41.5.2.4 Noise

**Affected Resources**

Noise can be defined as unwanted sounds and sound levels, and its impacts are interpreted in relationship to impacts on nearby persons and wildlife. The Noise Control Act of 1972 (42 U.S.C. 4901 to 4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale which approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-26 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.

---

\(^{26}\) Emissions assumptions for all equipment based on 240 8-hour days of operation per piece of equipment over a 12-month construction period.

\(^{27}\) CO\(_2\) emissions assumptions for diesel and gasoline engines based on USEPA 2009.

\(^{28}\) CH\(_4\) and NOx emissions assumptions and CO\(_2\)e calculations based on USEPA 2011.

\(^{29}\) Construction equipment emission factors based on USEPA NONROAD emission factors for 250hp pieces of equipment. Data was accessed through the California Environmental Quality Act Roadway Construction Emissions Model.
Table 12-26. Common noise levels.

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (DBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawnmower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Adapted from BPA 1986, 1996

Noise levels in the project area vary depending on the season, time of day, number and types of noise sources, and distance from noise sources. Existing sources of noise in the project area include motor vehicle traffic on Highway 98, recreational boating, commercial vessels, overhead aircraft and ambient natural sounds such as wind, waves, and wildlife.

Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the project. Noise-sensitive receptors in the project area include residential communities and wildlife.

Environmental Consequences

Instances of increased noise are expected during the construction phase associated with the restoration project. The proposed project would generate construction noise associated with the addition of a boarding dock to the existing single-lane boat ramp. Construction equipment noise is known to disturb fish, marine mammals and nesting shorebirds (discussed below). Construction noise would also create a potential nuisance to visitors and residents in areas adjacent to project construction activities. Construction noise would be temporary and limited to daytime hours, and the construction period is not anticipated to last more than one year. Because construction noise would be temporary, negative impacts to the human environment during construction activities would be short-term and minor, as they would likely attract attention but would not result in visitors changing their activities.

After completion of the project, noise sources would be expected to include the existing sources described above, and noise levels would return to pre-project conditions. There exists potential for increased boat and automobile traffic resulting from improvements to the boat ramp, which would result in a slight increase in noise levels in the vicinity. Overall, long-term noise impacts from boating and other recreational activities would remain minor. Likewise, noise impacts from commercial vessels, highway traffic, and ambient natural sounds would be minor.
12.41.5.3 Biological Environment

12.41.5.3.1 Living Coastal and Marine Resources

Wildlife

Affected Resources
Terrestrial vegetation and wildlife habitat within the project footprint is of limited quality and quantity. As a result of past development and shoreline armoring, there is very little vegetation or wildlife habitat present on the upland portions of the site. A majority of the project site consists of a paved parking lot and boat ramp. The unvegetated parking lot and boat ramp habitat type comprises most of the project site, and consists of unvegetated areas that are completely developed with infrastructure such as buildings, paved and graveled surfaces and boat ramp. These areas are devoid, or nearly devoid, of vegetation and largely impervious. They provide little to no wildlife habitat function. A review of an aerial view of the site reveals that the areas adjacent to the project site are undeveloped and mostly natural habitat. They consist of what appears to be upland forest scrub shrub as well as extensive wetlands systems.

The riparian area within the proposed project site is mostly devoid of vegetation, with the exception of a few scattered trees and patches of ruderal grass/forb habitat within the riparian buffer zone. Impervious surfaces include existing roadways, compacted soil, buildings, paved and graveled surfaces and boat ramp. The bank is armored with riprap, and above the riprap, there is a narrow band of ruderal grass/forb habitat.

The project site is surrounded for the most part by undeveloped natural environments and based on the types of habitat present, it is expected that species such as deer, raccoon, opossum, gray squirrel, and other small mammals would be present in upland areas within the vicinity of each project.

Fishes
The St. Marks River and Apalachee Bay Watershed supports numerous fish include: large and small mouth bass, sunfish, reeye chub, coastal shiner, Seminole killifish, bluefin killifish, eastern mosquitofish, and Okefenokee pygmy sunfish, striped mullet, spotted seatrout, sand seatrout, red drum, black drum, silver perch, Atlantic croaker, southern king, southern flounder, gulf flounder, gulf menhaden, striped mullet, Florida pompano, and Spanish mackerel.

Environmental Consequences

Habitat
The proposed project would be located at the site of an existing boat ramp and parking lot. Due to the lack of vegetation present at the site, impacts on native vegetation would not be expected. The construction activity would result in short term temporary minor impacts to common wildlife, these species would move always from the area during construction and then return after. Habitat conditions after construction would be similar to the existing conditions, and no long-term impacts to common wildlife would be anticipated.

The upland areas within the project site do not contain critical habitat for any listed species. Construction would cause only minimal alteration and/or damage to habitats.
The project would require FDEP and USACE permits. Both the FDEP Wetland and Environmental Resource Field permits and USACE Permit require Best Management Practices (BMPs) for species protection and turbidity and erosion control to be implemented. This would help minimize the damage and loss of habitats. All construction activities would be done in compliance with FDEP and USACE permit conditions.

**Fishes**

This project would likely result in short term minor impacts due to construction related disturbances; however, there would likely be no impact to feeding, reproduction, or other factors affecting population levels. Short-term, localized minor impacts to fisheries resources would occur during the construction phase of the project. They would be expected to move away from the site during construction and return following completion of construction.

Any impacts to fisheries resources are expected to be short in duration and minor.

**Protected Species**

**Affected Resources**

Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Wakulla County, Florida. Table 12-27 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Wakulla County, Florida. Table 12-27 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

---

30 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.

31 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
Table 12-27. Potential Impacts to Species/Critical Habitats managed by USFWS

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Indian manatee</td>
<td>Manatees are commonly present in Wakulla Springs and could be using Wakulla River and St. Mark’s rivers. Manatees could be startled during pile driving during construction. Visitor use could result in boat collisions with manatees which could result in harm or mortality.</td>
</tr>
</tbody>
</table>

In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered
- Kemp’s Ridley Sea Turtle, *Lepidochelys kempii*, Endangered

**State-Listed Birds, MBTA, and BGEPA**

The location of the project up the St Marks River does not provide suitable habitat for shorebirds. All migratory bird species are protected under the Migratory Bird Treaty Act (MBTA) during the nesting season. The nesting season in Florida is from February 15 to August 13. The area is utilized by many bird species including waterfowl, gulls, and raptors.

The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s *Bald Eagle Management Plan* guidelines would be followed (FWC 2008). According to the FWC Bald Eagle Nest Locator, there are no bald eagle nests within 1 mile of the project site.

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-28 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential
impacts to these groups and associated habitats that could result from the implementation of this project.

**Table 12-28. Potential project impacts to different migratory bird groups**

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wading birds and songbirds</td>
<td>Foraging, feeding, resting, nesting</td>
<td>Wading birds and songbirds collectively forage, feed, rest, and may nest and in the types of habitats consistent with some of the areas near the proposed project location. As such, they may be impacted locally and temporarily by the project. It is expected that they would be able to move to another nearby location to continue foraging, feeding and resting activities. Therefore the Trustees do not anticipate impacts. The short duration of the anticipate activity is also unlikely to adversely affect nesting activity as noise and disruption would already be issues with the site being an active boat ramp.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-29.

**Table 12-29. Conservation measures to minimize impacts to migratory bird groups**

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wading birds and songbirds</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging, resting, or nesting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only.</td>
</tr>
</tbody>
</table>

**Essential Fish Habitat**

EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as "those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Table 12-30 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the City of St. Marks Boat Ramp site and the St. Marks River which outlets to Apalachee Bay.
Table 12-30. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.

<table>
<thead>
<tr>
<th>EFH CATEGORY</th>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic</td>
<td>Cobia</td>
</tr>
<tr>
<td></td>
<td>King Mackerel</td>
</tr>
<tr>
<td></td>
<td>Spanish Mackerel</td>
</tr>
<tr>
<td>Gulf of Mexico Red Drum</td>
<td>Red Drum</td>
</tr>
<tr>
<td>Gulf of Mexico Shrimp</td>
<td>Brown Shrimp</td>
</tr>
<tr>
<td></td>
<td>Pink Shrimp</td>
</tr>
<tr>
<td></td>
<td>White Shrimp</td>
</tr>
<tr>
<td>Reef Fish Resources of the Gulf of Mexico</td>
<td>Almaco Jack</td>
</tr>
<tr>
<td></td>
<td>Banded Rudderfish</td>
</tr>
<tr>
<td></td>
<td>Black Grouper</td>
</tr>
<tr>
<td></td>
<td>Blackfin Snapper</td>
</tr>
<tr>
<td></td>
<td>Blueline Tilefish</td>
</tr>
<tr>
<td></td>
<td>Cubera Snapper</td>
</tr>
<tr>
<td></td>
<td>Gag</td>
</tr>
<tr>
<td></td>
<td>Goldface Tilefish</td>
</tr>
<tr>
<td></td>
<td>Gray (Mangrove) Snapper</td>
</tr>
<tr>
<td></td>
<td>Gray Triggerfish</td>
</tr>
<tr>
<td></td>
<td>Greater Amberjack</td>
</tr>
<tr>
<td></td>
<td>Hogfish</td>
</tr>
<tr>
<td></td>
<td>Lane Snapper</td>
</tr>
<tr>
<td></td>
<td>Lesser Amberjack</td>
</tr>
<tr>
<td></td>
<td>Mutton Snapper</td>
</tr>
<tr>
<td></td>
<td>Nassau Grouper</td>
</tr>
<tr>
<td></td>
<td>Queen Snapper</td>
</tr>
<tr>
<td></td>
<td>Red Grouper</td>
</tr>
<tr>
<td></td>
<td>Red Snapper</td>
</tr>
<tr>
<td></td>
<td>Scamp</td>
</tr>
<tr>
<td></td>
<td>Silk Snapper</td>
</tr>
<tr>
<td></td>
<td>Snowy Grouper</td>
</tr>
<tr>
<td></td>
<td>Speckled Hind</td>
</tr>
<tr>
<td></td>
<td>Tilefish</td>
</tr>
<tr>
<td></td>
<td>Vermilion Snapper</td>
</tr>
<tr>
<td></td>
<td>Warsaw Grouper</td>
</tr>
<tr>
<td></td>
<td>Wenchman</td>
</tr>
<tr>
<td></td>
<td>Yellowedge Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowmouth Grouper</td>
</tr>
</tbody>
</table>
**Environmental Consequences**

**Section 7 Consultation**
The USFWS reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On February 6, 2014, the review of potential impacts to species managed by USFWS was completed (Reynolds, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect West Indian manatee.

Consultation of potential impacts on protected species managed by NMFS from this project was initiated on February 19, 2014. The Trustees’ review of the potential impacts of the project for protected species managed by NMFS determined the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the project implementation area:

- **Gulf Sturgeon** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Smalltooth Sawfish** – The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Green Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Loggerhead Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Hawksbill Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Leatherback Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Kemp’s Ridley Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.

Concurrence from NMFS with the Trustees’ conclusions for these species and associated critical habitats is still pending.

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

**State-Listed Birds, MBTA, and BGEP**
Bald eagles are not present at the project location so will not be affected. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.
Essential Fish Habitat
The proposed work in the EFH area reflects installation of a boarding dock adjacent to the existing boat ramp. As a result, disturbance to species will be limited in their spatial extent, minor in scope, and brief in duration. Construction activities will be conducted at the site of existing structures and may have a minor, short term impact on habitat. Construction of the new dock would convert a small area of potential habitat to a less favorable condition, however, the location is currently actively used as a boat launch facility, and therefore it is unlikely that the project location currently provides high-quality habitat. During construction, all appropriate BMPs will be followed to minimize the potential impacts of construction activities on EFH and species in the area. During construction, adjacent areas with equivalent or better habitat will be available and undisturbed and organisms could move away from disturbed areas. Therefore, the project is not likely to adversely affect EFH.

On April 24, 2014 NMFS completed its evaluation of potential EFH impacts and concluded that the project construction is not likely to adversely affect EFH and any disturbance to species will be minor and brief (Fay, 2014).

Marine Mammals
Manatees are likely to be present in the project vicinity due to their use of Wakulla Springs and River. It is anticipated that manatees would not be attracted to the area of the boat ramp due to the lack of submerged vegetation for foraging at the site. In addition, the Standard Manatee Conditions for In-Water work (USFWS 2011) will be implemented to minimize any impacts to manatee such that they are short term and minor.

Due to the location of the project occurring in terrestrial areas and at an existing boat ramp and the relatively shallow depth in the project area, the presence of dolphins and whales, is highly unlikely and no impacts are expected.

Invasive Species

Affected Resources
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 3 described more about the regulations addressing invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

Environmental Consequences
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best
management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.41.5.4 **Human Uses and Socioeconomics**

12.41.5.4.1 Socioeconomics and Environmental Justice

**Affected Resources**
The City of St. Marks, similar to the rest of the Florida Panhandle, relies on the coastal waters of the Gulf of Mexico to provide a variety of economic and social benefits to its residents and visitors. The coastal ecosystems in the project area support a wide variety of commercial and recreational activities that contribute significantly to the State’s economy. Sport and commercial fisheries are some of the most notable economic highlights, within the region and the State. The marine environments within the area also provide essential transportation links, support a variety of water-dependent facilities, and offer an array of recreational opportunities that attract thousands of visitors to the area each year (FDEP, no date).

The 2011 median household income in the City of St. Marks was $74,625 (City-data.com 2013). The largest employment sectors in the Tallahassee MSA in 2012 were government; trade, transportation and utilities; and education and health services (BLS 2012).

**Environmental Consequences**
No adverse socioeconomic impacts are expected as a result of the proposed project. The proposed project would benefit the local economy during construction through the provision of a small number of construction jobs and associated spending on goods and services by construction workers. Following completion of construction, the project would provide improved facilities to accommodate water-based recreational activities. Given the limited scope of the proposed improvements, the project is not expected to have any long-term socioeconomic impacts.

12.41.5.4.2 Cultural Resources

**Affected Resources**
This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

**Environmental Consequences**
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.
12.41.5.4.3 Infrastructure

Affected Resources

Infrastructure in the Florida panhandle consists of a network of interconnected structures, support facilities and transportation systems. Physical infrastructure and public services include commonly provided Federal, State, county, parish, municipal, and/or private facilities and utilities that support development and protect public health and safety.

The City of St. Marks is well served by a network of regional arterials and US and state highways. The most significant components of the transportation network in the immediate project area is US Highway 98, which extends from western Mississippi to southern Florida and closely follows the Gulf coast from the Florida-Alabama state line to St. Marks. Access to the project site is River Breexe Street and Old Fort Road and a network of other residential streets which provide access to US Highway 98 and central St. Marks. The closest public airport to the project site is Tallahassee Regional Airport, located approximately 24 miles northwest of the project site in Tallahassee.

Water, wastewater, and sanitation services in the project area are provided by the City of St. Marks. Electric service in the area is provided by Gulf Power Company. Cable television and internet are provided by Mediacom, and phone service is provided by AT&T.

Environmental Consequences

During construction of the boat ramp improvements, the proposed project would potentially have minor adverse impacts to infrastructure due to traffic delays and roadway damage associated with construction vehicle traffic; utility service interruptions and potential accidental damage to utility infrastructure; and closure of the boat ramp to public use. Following completion of construction, the proposed improvements could lead to an increase in use; however, use is not expected to increase to the point where associated wear on infrastructure would lead to adverse impacts. Overall, the proposed project is expected to have long-term beneficial impacts on infrastructure through the provision of enhanced recreational boating access facilities.

12.41.5.5 Land and Marine Management

Affected Resources

Development in the City of St. Marks is guided by the City of St. Marks Comprehensive Plan and regulated according to the City of St. Marks Land Development Code (City of St. Marks 2010; 2013). Zoning and land development decisions are subject to review and approval by the City Commission. The project site is situated on land owned by the City of St. Marks and zoned for Recreation uses (City of St. Marks 2012). The proposed project is a permitted use in Recreation districts (City of St. Marks 2012). Land surrounding the site is largely vacant.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and
concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

*Environmental Consequences*

No changes would occur to the current use at the St. Marks boat ramp, or to uses on adjacent and nearby properties. Land ownership would remain the same, and the site would continue to be managed as a public boat ramp. The proposed project would be consistent with the City of St. Marks Land Development Code, since it is a permitted use in Recreation districts.

12.41.5.5.1 Aesthetics and Visual Resources

*Affected Resources*

The City of St. Marks is situated on the St. Marks River, which outlets to Apalachee Bay approximately 4 miles southwest of the project site. The landscape in the region is characterized by woodlands, wetlands, urban development, and coastal waterways, with marshes, beaches, and tidal flats closer to the Gulf coast. Development in the City of St. Marks is characteristic of urban and suburban communities in the Tallahassee metropolitan area, and consists of low-rise commercial, hotel and multi-family and single-family residential buildings. The landscape surrounding the project site is largely vacant of development and characterized by woodlands and wetlands.

*Environmental Consequences*

Temporary impacts to aesthetics and visual resources would result from implementation of the proposed boat ramp and dock improvements. Construction equipment would be temporarily visible to visitors and recreational users. These construction-related impacts to visual resources would be adverse but minor, since the amount of construction equipment required to complete the project would be limited, and construction activities and equipment would be visible to residents and visitors for a maximum of two years. The proposed project would take place at the site of an existing boat ramp and would not change the overall visual appearance of the site or surrounding area; therefore, no long-term impacts to aesthetics and visual resources are anticipated.

12.41.5.5.2 Tourism and Recreational Use

The City of St. Marks is located in the Tallahassee MSA. St. Marks is a popular location for recreational and commercial fishing. Locals and tourists also spend much time swimming, beachcombing, boating, fishing, diving, kayaking, surfing, and engaging in other active and passive activities near the beach (City of St. Marks 2013).

*Environmental Consequences*

During the construction period, tourism and recreational use would be negatively impacted by noise and visual disturbances associated with the use of construction equipment. Public access to the boat ramp would be prohibited during construction activities. While these temporary inconveniences would result in minor negative impacts on tourism and recreational use, over the long term the project would result in beneficial impacts to tourism and recreational use. Opportunities for ocean-based recreational activity would be enhanced as a result of improved facilities. The project would not be expected to result in a notable increase in the number of visitors, due to its limited scope; however, the project would contribute to an improved experience for local residents using the boat ramp. To the extent that
visitor use increases as a result of the proposed project, it would have beneficial impacts to tourism as well. Overall, adverse impacts to tourism and recreational use would be short term and minor. Over the long term, the project would result in beneficial impacts to tourism and recreational uses.

**12.41.5.5.3 Public Health and Safety and Shoreline Protection**

**Affected Resources**
The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the Emergency Planning and Community Right-to-Know Act, and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of these materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

The project site lies on a parcel of city-owned land that is undeveloped except for a boat ramp and gravel parking area. Adjacent properties are characterized by single-family residential development. A review of the US Environmental Protection Agency (USEPA) EnviroMapper revealed that there are no sources of contamination or hazardous materials located on or immediately adjacent to the St. Marks boat ramp (EPA 2013c). No sources of hazardous, toxic and radioactive waste (HTRW) are otherwise known to exist within the project area. Boats launching and landing at the ramp could potentially serve as a source of non-point pollution resulting from inadvertent releases of fuel or oil.

**Environmental Consequences**
Project construction would utilize mechanical equipment that uses oil, lubricants and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of construction related hazardous materials such as vehicle fuels, oil, hydraulic fluid, and other vehicle maintenance fluids, and to avoid releases and spills. If a release should occur such releases would be contained and cleaned up promptly in accordance with all applicable regulations. As a result, no impacts associated with construction-related hazardous materials would be anticipated.

Because of the nature and location of the project, no impacts to public health and safety or shoreline erosion are anticipated as a result of construction activities. The project and its construction are not anticipated to generate hazardous waste or the need for disposal of hazardous waste. In the event of a fuel or oil spill from construction equipment, all procedures, regulations and laws pertaining to Oil Spill Prevention and Response would be adhered to and the incident would be reported to appropriate agencies. All occupational and marine safety regulations and laws would be followed to ensure safety of all workers and monitors. Therefore, it is anticipated that there would be no impacts to public health and safety from the proposed project.

**12.41.6 Summary and Next Steps**
The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (City of St. Marks Boat Ramp Improvements) project would improve the existing City of St. Marks boat ramp. The proposed improvements include adding a boarding dock to the one-lane boat ramp. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose
to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.41.7 References

Allen, Ginger M. and Main, Martin B.


Boning, Charles R.


Bonneville Power Administration (BPA)

1986 Electrical and biological effects of transmission lines: a review. (DOE/BP 524.)

Portland, OR.

1996 Electrical and biological effects of transmission lines: a review (DOE/BP 2938.)

Portland, OR.

Bureau of Labor Statistics (BLS)


City-data.com


City of St. Marks


Florida Department of Environmental Protection (FDEP)


Florida Department of Environmental Protection (FDEP)


Florida Fish & Wildlife Commission (FWC)


Fritts, T.H


Fuller, D. A.

1978 The habitats, distribution, and incidental capture of sea turtles in the Gulf of Mexico. Working paper on sea turtles for the task force developing the draft shrimp management plan for the US Gulf of Mexico. Centre for Wetland Resources, Louisiana State University Baton Rouge, 44p. (Habitat use, Distribution, Fisheries interactions)

Gulf of Mexico Fisheries Management Council (GMFMC)

2005 FINAL Generic Amendment Number 3 for Addressing Essential Fish Habitat Requirements, Habitat Areas of Particular Concern, and Adverse Effects of Fishing in the
following Fishery Management Plans of the Gulf of Mexico: Shrimp Fishery of the Gulf of Mexico, United States Waters Red Drum Fishery of the Gulf of Mexico Reef Fish Fishery of the Gulf of Mexico Coastal Migratory Pelagic Resources (Mackerels) in the Gulf of Mexico and South Atlantic Stone Crab Fishery of the Gulf of Mexico Spiny Lobster in the Gulf of Mexico and South Atlantic Coral and Coral Reefs of the Gulf of Mexico March 2005


National Marine Fisheries Service


2001. Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat. August.

U.S. Army Corps of Engineers (USACE)

2010 Draft Supplemental Environmental Assessment for the Beach Erosion Control and Storm Damage Reduction Project Panama City Beach, Wakulla County, Florida.

U.S. Department of Agriculture (USDA)


U.S. Environmental Protection Agency (EPA)


2011 Emission Factors for Greenhouse Gas Inventories
Accessed October 10, 2013 at
www.epa.gov/climateleaders/documents/emission-factors.pdf


U.S. Fish and Wildlife Service (USFWS)


Wakulla County

12.42 Strategically Provided Boat Access along Florida’s Gulf Coast: Project Description G (Walton County, Choctaw Beach Boat Ramp Improvements)

The Strategically Provided Boat Access along Florida’s Gulf Coast: Walton County, Choctaw Beach Boat Ramp Improvements project component has been dropped from the Final Phase III ERP/PEIS. Walton County requested the Trustees to withdraw the project so the County could seek funding from other sources to construct this project. Total funds allocated to the Choctaw Beach Boat Ramp project component were $140,642.00.

The funds from the Strategically Provided Boat Access along Florida’s Gulf Coast: Choctaw Beach project component will be re-allocated to the Strategically Provided Boat Access along Florida’s Gulf Coast: City of Mexico Beach Marina project component. (see Section 12.29). After recently revisiting the Choctaw Beach project site, it has been determined that engineering and environmental concerns would warrant using a different pilings installation method at the site. It is now being proposed to revise the extraction and installation of pilings and the retaining wall from traditional hammer type construction to press type construction. The estimated increase in costs for using the press type construction method will be $100,642.00. Estimated increases in costs to improve accessibility will be $40,000.00. Total estimated costs to address the above issues will be $140,642.00. None of the proposed improvements would change the footprint of the originally proposed Mexico Beach Marina project component. The re-allocation of funds from the Choctaw Beach Boat Ramp project component to the Mexico Beach Marina project component does not affect the BCR that was negotiated with BP for the Strategically Provided Boat Access along Florida’s Gulf Coast suite of projects.
Strategically Provided Boat Access along Florida’s Gulf Coast: Environmental Review G (Walton County, Choctaw Beach Boat Ramp Improvements)

The Section has been intentionally left blank, due to removal of this project component in the Final Phase III ERP/PEIS.
12.44 Strategically Provided Boat Access along Florida’s Gulf Coast: Project Description H (Walton County, Lafayette Creek Boat Dock Improvements)

12.44.1 Project Summary
The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (Walton County Lafayette Creek Boat Dock Improvements) project would improve the existing Lafayette Creek boat dock in Walton County. The proposed improvements include expanding the dock by 400 feet at the boat ramp to accommodate larger vessels and additional vessels. The total estimated cost of the project is $207,850.

12.44.2 Background and Project Description
The Trustees propose to improve and enhance an existing boat dock at Lafayette in Walton County (see Figure 12-11 for general project location). This project builds on an ongoing effort initiated by the FWC through its Florida Boating Improvement Program which, in part, is used to fund applications from local governments in a competitive grant process for boat access improvement projects in remote areas, small towns and cities, and coastal counties (for more information on the program see http://myfwc.com/boating/grant-programs/fbip/).

The objective of the Strategically Provided Boat Access along Florida’s Gulf Coast (Walton County Lafayette Creek Boat Dock Improvements) project is to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. The restoration work proposed includes expanding the dock by 400 feet at the boat ramp to accommodate larger vessels and additional vessels.

12.44.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (Walton County Lafayette Creek Boat Dock Improvements) project is intended to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Agencies have successfully completed projects of similar scope throughout Florida over many years, including similar types of actions in earlier phases of the Deepwater Horizon Early Restoration. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); Section 6e of the Framework Agreement.
A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.44, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.44 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

![Figure 12-11. Location of FWC Strategic Boat Access Walton County, Lafayette Creek Boat Dock improvements.](image)

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Florida FWC Strategic Boat Access: Walton County, Lafayette Creek Boat Dock Improvements project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.
12.44.4 Performance Criteria, Monitoring and Maintenance

As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational boating and fishing opportunities by improving an existing boat ramp. Performance monitoring will evaluate the construction of the dock. Specific performance criteria include: 1) the completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the boat ramp facility is open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by Walton County as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by Walton County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Walton County will monitor the recreational use activity at the site. Walton County will visit the site twice a year to count the number of users at the boat ramp. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.44.5 Offsets

The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Strategically Provided Boating Access along Florida’s Gulf Coast project, of which this is a component, are $6,496,680 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.

12.44.6 Costs

The total estimated cost to implement this project is $207,850. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---

32 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
Strategically Provided Boat Access along Florida’s Gulf Coast: Environmental Review F (Walton County, Lafayette Creek Boat Dock Improvements)

Public boat ramps provide local boaters with access to public waterways. Boating access provides the primary infrastructure upon which many types of secondary activities may be enjoyed. Water-dependent activities, including fishing, SCUBA diving, water-skiing, and simply cruising local waterways under power or sail, provide not only recreational value but also substantial economic value to the local and state economies.

Florida proposes to make improvements at the existing Lafayette Creek boat ramp and docking facility in the City of Freeport, Florida, as it does not meet the current demand of the area. Included in these improvements is the installation of a boardwalk and docking facility adjacent to an existing docking facility. This property is located in southern Walton County, along Lafayette Creek about one mile from LaGrange Bayou, which extends northeast of Choctawhatchee Bay. The property is owned and managed by The City of Freeport.

The project would provide boaters with enhanced access from the Lafayette Creek boat ramp to offshore areas within Choctawhatchee Bay and the Gulf of Mexico. This project would help address the reduced quality and quantity of recreational activities (e.g., boating and fishing) in Florida attributable to the Deepwater Horizon Oil Spill.

This project satisfies the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. This proposed project is intended to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.
Pursuant to the process articulated in the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement), the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This boat ramp project was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

The property is a public boat launch and docking facility with a single-lane, paved boat ramp, boat dock, picnic area, restroom, and paved parking for 8 vehicles, that is located on a point at the confluence of Lafayette Creek with LaGrange Bayou. The existing concrete boat ramp is approximately 20 feet wide and oriented perpendicular to the shoreline (approximately northwest-southeast). A wooden boardwalk and boat dock extends to the north-northeast of the boat ramp and provides space to accommodate about 10 boats. There is a boardwalk and picnic area to the west of the boat ramp; the boardwalk is approximately 150 feet long and runs along the shoreline on the west side of the point. The shoreline in the project area is armored with rip-rap. The proposed improvements include adding 400 feet of boardwalk and dock space adjacent to the existing docking facility on the east side of the point, to accommodate more and larger vessels.

The total estimated cost to implement this project is $207,850. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

12.45.2 Project Location
The project is located at the southern terminus of Shipyard Road in Freeport, Florida, in Sections 15 and 22, Township 1-S, Range 19-W, at Latitude: 30° 48’ 65.69” North and Longitude: -86° 13’ 65.68” West. The activities are to occur between the parking lot and the shoreline. The project area is located in the western Florida Panhandle approximately 40 miles east of Pensacola and has access to the Gulf of Mexico via LaGrange Bayou and Choctawhatchee Bay (Figure 12-12).
12.45.3 Construction and Installation
The proposed project improvements include expanding the dock by 400 feet at the boat ramp to accommodate larger vessels and additional vessels. Potential impacts are currently being evaluated. All permit conditions and appropriate BMPs would be followed to minimize potential adverse impacts to species.

In addition to the existing boardwalk and docking facility, there is an existing, single-lane boat ramp at the site, along with a gazebo, restroom building, 8 trailer parking spaces, and landscape planting. These site improvements would remain in their current condition following completion of the proposed project.

12.45.3.1 Construction Methods
The proposed Florida FWC Strategic Boat Access project would improve the existing Lafayette Creek boat dock in Walton County. The boat dock would be extended by 400 feet at the boat ramp to accommodate larger vessels and additional vessels.

The property is a public boat launch and docking facility with a single-lane, paved boat ramp, boat dock, picnic area, restroom, and paved parking for 8 vehicles, that is located on a point at the confluence of Lafayette Creek with LaGrange Bayou. The existing concrete boat ramp is approximately 20 feet wide.

Figure 12-12. Vicinity and project location.
and oriented perpendicular to the shoreline (approximately northwest-southeast). A wooden boardwalk and boat dock extends to the north-northeast of the boat ramp and provides space to accommodate about 10 boats. There is a boardwalk and picnic area to the west of the boat ramp; the boardwalk is approximately 150 feet long and runs along the shoreline on the west side of the point. The shoreline within the project area is armored however; the shoreline in the surrounding areas is predominantly natural. There are no seagrass, mangroves, or corals present within the project area.

As part of the existing FDEP permit to the Walton County Board of County Commissioners for this project, Permit No.: 66-0269475-003-EI, some of the project construction tasks and methods are identified. Constructing the additional boardwalk will require a mix of in-water and land-based work. The total project construction would require 168 8” diameter tip pilings with a 35’ length. The pilings will be pushed down the first 25 feet and driven (hammered) the final 5’ into the layer of existing hardpan. The top 20 to 25’ of soil is organic much that has no resistance or capacity. An alternate method that may work is a vibratory hammer instead of driving which may work in the dense sand hardpan layer.

Prior to starting construction, the existing FDEP permit indicates roughly 800’ of turbidity barrier will be installed in Lafayette Creek to minimize direct water quality impacts, primarily turbidity increases. These turbidity barriers will have weighted skirts extending to within one foot of the bottom and would remain in place and be maintained until the authorized work has been completed and all erodible materials have been stabilized.

There will not be any pilings removed as part of the project. The northern most slip has existing tie off pilings for the Governor Stone which has been previously kept at the facility. The Governor Stone is the oldest working Schooner in the State and is provided port at the facility at no cost during different portions of the year. Work would be coordinated so that the Governor Stone is not in port. There are three (3) derelict vessels that would need to be removed as part of the project as they are sitting in the proposed footprint of the dock.

Methods for limiting the impact of the land-based portions of the project construction would include, but may not be limited, to the use of staked hay bales, staked filter cloth, sodding, seeding, and mulching; staged construction; and installation of turbidity screens around the immediate project site. Immediately after completion of the final grading of land surface, all slopes, land surfaces, and filled areas would be stabilized using sod, degradable mats, barriers, or a combination of similar stabilizing materials to prevent erosion. Erosion control measures would remain in place and be maintained until all authorized work is completed and the site has been stabilized. During and following construction, all construction waste materials would be disposed of appropriately.

Because of the lack of submerged aquatic vegetation (SAV) at the site the Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat (U.S. Army Corps of Engineers/National Marine Fisheries Service, 2001) are not presumed to be relevant so specific guidelines, such as the requirement that pilings for the dock expansion be placed at a minimum of 10 feet apart, are not presumed to be applicable.
During all in-water construction activity, the conditions and guidelines of the *Sea Turtle and Smalltooth Sawfish Construction Conditions* (NMFS, 2006) would be implemented and adhered to. Significant aspects of these provisions include stopping operation of any equipment if sea turtles or smalltooth sawfish come within 50 feet of the equipment until the time when animals leave the project area of their own volition.

Project work would be completed in approximately 1 year.

### 12.45.4 Operations and Maintenance

Long-term operations and maintenance of the improved facilities would be provided by the City of Freeport as part of their regular public facilities maintenance activities. These activities would include insuring that the boat ramp and docks, restroom facilities, and parking lot are in working order and defective areas would be fixed as appropriate. It is anticipated that regular operation and maintenance may include pavement repairs, replacement of boards on the docks and boardwalk, and repairs to restroom facilities.

Monitoring would be conducted to ensure project plans and designs were correctly implemented. Monitoring would be designed around the project goals and objectives. Performance monitoring would evaluate the construction of the proposed improvements. Specific parameters would include: completion of construction as designed and permitted. During the one year construction performance monitoring period, the Florida Trustees’ Project Manager would visit the site twice to record the number of users. Following the one year construction performance monitoring period, the City of Freeport would monitor the human use activity at the site. City of Freeport personnel would visit the site twice a year to count the number of users at the site. The visitation numbers would then be provided to the Florida Department of Environmental Protection (FDEP).

Literature reviews indicate that sea turtles (loggerhead [*Caretta caretta*], green [*Chelonia mydas*], leatherback [*Dermochelys coriacea*], Kemp’s ridley [*Lepidochelys kempii*], and hawksbill [*Eretmochelys imbricata*]), West Indian manatee (*Trichechus manatus*), and Gulf sturgeon (*Acipenser oxyrinchus desotoi*) could occur in the project area (see Section 3.2). With the exception of the Gulf sturgeon, the project area is not designated as critical habitat for any of the species.

Bald eagles are known to nest in Florida, and four bald eagle nests have been identified in Walton County. One nest exists within approximately 3 miles of the project site and was last known to be active in 2012 (FWC 2013). Golden eagles are not present along the Gulf Coast.

### 12.45.5 Affected Environment and Environmental Consequences

Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

#### 12.45.5.1 No Action

Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.
Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.45.5.2 Physical Environment

12.45.5.2.1 Geology and Substrates

Affected Resources
The project lies in the Gulf coastal lowlands physiographic province (Allen et al. 2005). The landscape of the Gulf coastal lowlands is comprised of a relatively flat terrain, ranging in elevation from 0 to about 50 feet above mean sea level. Soils in the coastal panhandle of Florida consist predominately of medium to fine grain sands and silts associated with recent Pleistocene formations.

The soils in the project area have been identified and mapped by the U.S. Department of Agriculture (USDA 1984). The USDA data identified soil map unit 8 Chipley-Foxworth-Albany as the only soil unit mapped within the project area. Chipley-Foxworth-Albany soils are nearly level to gently sloping, somewhat poorly drained or moderately well drained soils some are sandy throughout and others are sandy and have a loamy subsoil. Chipley soils are gently sloping, poorly drained soils that border drainages and flatwoods in upland areas. The Foxworth series consists of very deep soils that formed in sandy marine or eolian sediments. These soils are on broad, nearly level, and gently sloping uplands and sloping to steep side slopes leading to drainage ways. Runoff is very slow and permeability is rapid or very rapid. Foxworth sands are moderately well-drained soils and, like Chipley soils, are located in flatwoods of upland areas. Albany soils are very loamy, somewhat poorly drained and exist on seepage slopes in upland areas.

Environmental Consequences
Mechanized equipment and hand tools would be used to complete the construction of the dock. Some excavation of soils would occur; however, adverse impacts to geology and substrates would be minor. Disturbance would be detectable, but would be short term, small, and localized. There would be no long-term changes to local geologic feature. Erosion and/or compaction may occur in localized areas during construction; appropriate erosion control and mitigation measures would be implemented prior to and during construction. Overall, the project’s adverse impacts related to soil compaction and erosion during construction would be short term and minor. In the long term, the project would not be expected to adversely impact geology, soils, or substrates.

12.45.5.2.2 Hydrology and Water Quality

Affected Resources
There is an abundant supply of both surface and groundwater along the coastline of the Florida Panhandle. The region has seven major watersheds, all of which have been identified as priorities under the Surface Water Management and Improvement (SWIM) program. Water quality protection is the underlying goal of SWIM, along with the preservation and restoration of natural systems and associated public uses and benefits (NFWMD 2011). The project is located within the Choctawhatchee Bay Watershed. The Choctawhatchee River is the largest river in the area, and its basin encompasses approximately 4,748 square miles in Alabama and Florida (Rivers of Alabama 2013). The
Choctawhatchee River flows into Choctawhatchee Bay, a 129 square mile estuary that empties into the Gulf of Mexico at East Pass near Destin, Florida.

Groundwater in Walton County exists in both unconfined and confined aquifers. The formations underlying the area are grouped into six major hydrogeologic units, based on permeability. These are, in descending order, the sand-and-gravel aquifer; the Pensacola Clay confining bed; the upper limestone of the Floridan Aquifer; the Buccatunna Clay confining bed; the lower limestone of the Floridan Aquifer; and the Claiborne confining unit (Barr 1983). The sand-and-gravel aquifer in the vicinity of the project area is about 20 feet deep and discharges to the Choctawhatchee River and Choctawhatchee Bay (NFWMD 2000). The principal source of potable water in the area around Choctawhatchee Bay is the Floridan Aquifer. Water in the aquifer occurs under confined or artesian conditions throughout the area (Barr 1983).

A review of the National Wetland Inventory (NWI) wetland mapper did not identify any wetlands within the project site. It did identify the open water of the canal.

**Environmental Consequences**

With required mitigation in place, impacts to water quality are expected to be minimal. All permit conditions requiring mitigation measures for siltation, erosion, turbidity and release of chemicals would be strictly adhered to. During construction, Best Management Practices and boom placement along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts. The FDEP permit conditions require erosion and turbidity mitigation measures. These include:

- Install floating turbidity barriers
- Install erosion control measures along the perimeter of all work areas
- Stabilize all filled areas with sod, mats, barriers or a combination
- If turbidity thresholds are exceeded the project must stop, stabilize the soils, modify the work procedures, and notify the FDEP.

The FDEP permits also constitute a Certification of Compliance with State Water Quality Standards under Section 401 of the Clean Water Act, which means that the project would comply with state water quality standards and other aquatic resource protection requirements. After construction, increased boat traffic from boats launching and landing at the ramp could result in minimal impacts to surface water quality. Boat wakes created by additional boat traffic that could increase shoreline erosion would be controlled through no-wake or speed zones to mitigate shoreline erosion along Lafayette Creek.

Impacts from chemicals that could potentially be released from sources such as construction equipment and boats are expected to be minor. Required spill containment measures would be implemented for applicable construction activities. The FDEP permits require spill containment protection and mitigation measures such as:

- No boat repair or fueling facilities over the water,
- Prohibited activities include hull cleaning and painting, discharges or release of oils or greases, and related metal-based bottom paints associated with hull scraping, cleaning, and painting
Best Management Practices along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts associated with construction activities. Best Management Practices for erosion control would be implemented and maintained at all times during construction to prevent siltation and turbid discharges into waters of the state. Silt and sedimentation control measures would be installed and properly maintained to protect water quality resources. Given that there would be no substantial change in uses at the project site following implementation of the proposed enhancement activities, it is anticipated that there would be no long-term negative impacts to water resources. The implementation of the proposed project would therefore result in short-term minor negative and long-term beneficial impacts on water resources. This project would not impact groundwater. There would be no adverse impacts to hydrology or water quality. Overall, potential impacts to water resources are expected to be minor, temporary and localized in nature.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (USACE) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the USACE and final authorization pursuant to CWA/RHA will be completed prior to project implementation.

12.45.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources

The Clean Air Act (CAA) requires the State of Florida to adopt ambient air quality standards to protect the public from potentially harmful amounts of pollutants. Six common air pollutants (also known as "criteria pollutants") are regulated by the U.S. Environmental Protection Agency (USEPA) and the states under the CAA. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. The FDEP has designated areas meeting the state’s ambient air quality standards by their monitoring and modeling program efforts, (i.e., attainment areas). Florida has no nonattainment areas within the panhandle region.

Currently, Walton County is classified by USEPA as an attainment area in accordance with the National Ambient Air Quality Standards (NAAQS). Walton County is not located within an USEPA Class 1 air quality area; however, St. Marks National Wildlife Refuge, located approximately 118 miles to the southeast, is designated as a Class I air quality area (USEPA 2013a). Class I air quality areas are afforded special protection under the Clean Air Act. Any proposed new or modified sources of air pollution locating within approximately 200 miles (300 km) of a Class I air quality area are asked to consult with the Federal Land Manager to determine whether emission impact modeling to the Class I area should be conducted and submitted to the Federal Land Manager for review (USFWS 2013). Therefore, the proposed boat dock improvements would be subject to consultation regarding potential emissions impacts on St. Marks National Wildlife Refuge. Factors to be considered include distance to the Class I area, magnitude of emissions, current conditions of air sensitive resources in the Class I area, potential for source growth in an area or region, prevailing meteorological conditions, and cumulative impacts of multiple sources to air sensitive resources.
Beginning in 2011, the CAA also regulates emissions of greenhouse gases (GHG) (USEPA 2013b). The USEPA’s GHG Reporting Rule establishes mandatory GHG reporting requirements for sources that emit 25,000 metric tons or more of carbon dioxide equivalent (CO2e) per year (USEPA 2013b).

**Environmental Consequences**

Project implementation would require the use of heavy equipment for up to 8 hours per day over a 1-year construction period. This would temporarily affect air quality and elevate greenhouse gas levels in the project vicinity due to emissions and increased dust from operation of construction vehicles and equipment. Any air quality impacts that would occur would be localized, limited to the construction phase of the project, and limited by the size of the project. Therefore, impacts to air quality would be negative but minor and short-term. The project would have no long term impacts on air quality.

Engine exhaust from backhoes, trucks, pile drivers, and other equipment would contribute to an increase in greenhouse gas emissions. Table 12-31 describes the likely greenhouse gas emission scenario for the implementation of this project.

Based on the assumptions described in Table 12-31 below, GHG emissions would not exceed 25,000 metric tons per year. Given the projected construction-phase GHG emissions, along with the small scale and short duration of the project, predicted impacts from greenhouse gas emissions would be short-term and minor.

12.45.5.2.1 Noise

**Affected Resources**

Noise can be defined as unwanted sounds and sound levels, and its impacts are interpreted in relationship to impacts on nearby persons and wildlife. The Noise Control Act of 1972 (42 U.S.C. 4901 to 4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale which approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-32 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.
Table 12-31. Greenhouse gas impacts of the proposed project.

<table>
<thead>
<tr>
<th>CONSTRUCTION EQUIPMENT</th>
<th>NO. OF HOURS OPERATED(^{33})</th>
<th>CO(_2) (METRIC TONS)(^{34})</th>
<th>CH(_4) (CO(_2)E) (METRIC TONS)(^{35})</th>
<th>NOX (CO(_2)E) (METRIC TONS)</th>
<th>TOTAL CO(_2)E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tractor trailer</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td>Pile Driver</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td>Backhoe</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td>Dumptruck(^{36})</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td>Cement Truck</td>
<td>1920</td>
<td>81.6</td>
<td>0.048</td>
<td>0.48</td>
<td>82.13</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>410.65</td>
</tr>
</tbody>
</table>

Noise levels in the project area vary depending on the season, time of day, number and types of noise sources, and distance from noise sources. Existing sources of noise in the project area include motor vehicle traffic, recreational boating, commercial vessels, overhead aircraft and ambient natural sounds such as wind, waves, and wildlife.

Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the project. Noise-sensitive receptors in the project area include residential communities, recreational uses and wildlife.

Table 12-32. Common noise levels.

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (DBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawnmower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Adapted from BPA 1986, 1996

\(^{33}\) Emissions assumptions for all equipment based on 240 8-hour days of operation per piece of equipment over a 12-month construction period.

\(^{34}\) CO\(_2\) emissions assumptions for diesel and gasoline engines based on USEPA 2009.

\(^{35}\) CH\(_4\) and NOx emissions assumptions and CO\(_2\)E calculations based on USEPA 2011.

\(^{36}\) Construction equipment emission factors based on USEPA NONROAD emission factors for 250hp pieces of equipment. Data was accessed through the California Environmental Quality Act Roadway Construction Emissions Model.
Environmental Consequences
Instances of increased noise are expected during the construction phase associated with the restoration project. The proposed project would generate construction noise associated with equipment during construction and placement of the boardwalk and docking facility. Construction equipment noise is known to disturb fish, marine mammals and nesting shorebirds (discussed below). Construction noise would also create a potential nuisance to visitors and residents in areas adjacent to project construction activities. Construction noise would be temporary and limited to daytime hours, and the construction period is not anticipated to last more than one year. Because construction noise would be temporary, negative impacts to the human environment during construction activities would be short-term and minor, as they would likely attract attention but would not result in visitors changing their activities.

After completion of the project, noise sources would be expected to include the existing sources described above, and noise levels would return to pre-project conditions. There exists potential for increased boat and automobile traffic resulting from improvements to the dock and related facilities, which would result in a slight increase in noise levels in the vicinity. Overall, long-term noise impacts from boating and other recreational activities would remain minor. Likewise, noise impacts from commercial vessels, highway traffic, and ambient natural sounds would be minor.

12.45.5.3 Biological Environment

12.45.5.3.1 Living Coastal and Marine Resources

Wildlife

Affected Resources
The site is developed with existing structures including a paved boat ramp, boardwalk, and docking facility and a large, paved parking lot. The banks along the shoreline are armored. The structures cover approximately 12,475 square feet over water. The existing docks provide approximately 10 locations for boats to dock. The project is located on Lafayette Creek which for the most part consists of natural stream habitat and natural substrate. The habitat surrounding the project is a mixture of is open water and shoreline habitat along with developed and undeveloped upland forested and wetland communities. The shoreline within the project area is armored however; the shoreline in the surrounding areas is predominantly natural. There is no seagrass, mangroves, or corals present within the project area. In addition, no critical habitat exists within the marina.

The majority of the project area consists of a paved parking lot, and a concrete boat ramp is in place. Areas around the perimeter of the parking lot are vegetated with grass and landscape planting. These areas provide little to no wildlife habitat function.

The extent of riparian habitat within the project site is limited, as the bank is armored with riprap and the upland extent of functional riparian habitat is limited by existing impervious surfaces. The riparian area within the proposed project site is mostly devoid of vegetation, with the exception of a few scattered trees and patches of ruderal grass/forb habitat within the riparian buffer zone. Impervious surfaces include the existing parking lot and roadway, compacted soil, and boat ramp.
Estuaries are extremely diverse and complex systems and provide spawning, nursery, and forage grounds for many species of fish and invertebrates. Fish species within Choctawhatchee Bay resident fish species include species such as bay anchovy, code goby, sheepshead minnow, silversides, and silver perch (NOAA, 1997). Other transient species include Atlantic croaker, blue runner, bluefish, Gulf flounder, Gulf Menhaden, pinfish, red drum, Spanish mackerel, spotted seatrout, striped mullet (FDNR 1991; NOAA 1997). Some of the invertebrates found within the bay include bay scallop, bay squid, blue crab, brown shrimp, eastern oyster, grass shrimp, and pink shrimp, as well as various species of marine worms and amphipods etc. (FDNR 1991; NOAA 1997). Within the bay “hard” habitats such as piers, docks, seawalls, and rock jetties also contain tropical species such as cocoa damsels, angelfishes, parrotfishes, spadefishes, and butterfly fishes. Wrasses, groupers, and snappers are also found along these hard substrates (FDNR 1991).

In and around Choctawhatchee Bay a large number of bird species occur. Many are migratory and are protected by the Migratory Bird Treaty Act (MBTA). Species that may occur in the vicinity of the marina include species of herons, egrets, gulls, and terns. The project site does not provide habitat for piping plover or red knot.

Environmental Consequences
As noted above, there is no seagrass located within the footprint of the proposed project, so there would be no direct impacts. Given that no seagrass was identified and that in-water BMPs, such as sediment curtains, would be employed to contain re-suspended sediments the proposed project would have no effect on seagrass.

During construction there could be local, short-term minor adverse impacts on both fish and macroinvertebrate species, including shellfish, in the vicinity of the project. Fish species could be temporarily displaced from habitat in the area of construction due to noise and vibration impacts. Feeding success could also be impacted through increased turbidity; however, most species are highly mobile and would move out of the area to neighboring waters where feeding would be less problematic. Some mortality of sedentary and less mobile species and life stages could occur. However, given the small aerial extent of the impacted area compared to the available habitat within Choctawhatchee Bay and Lafayette Creek, the overall impact on species would be minor.

Additionally, once construction was complete, fish and invertebrates species would be expected to readily recolonize the area. Some beneficial impacts to species would also occur. Piers and pilings provide a hard substrate habitat that otherwise would not exist in the area. As noted under the affected environment, such hard substrates provide habitat for species such cocoa damsels, angelfishes, parrotfishes, spadefishes, and butterfly fishes. Wrasses, groupers, and snappers also can be found among this type of habitat as well (FDNR 1991). As part of the project, information would be made available at the entrance to the pier on best practices on catch and release and other fishing practices (e.g., placing cut line and hooks for disposal in trash bins) designed to limit potential adverse impacts to fish and other marine species. Trash receptacles would also be placed on the pier to help keep other trash out of the water that could otherwise cause adverse impacts on species.
Although bird species that use the waters around the marina for foraging or use the marina area itself for loafing are likely habituated to human activity, it is likely that they would experience some short-term and minor impacts from the increased human activity and the noise from construction activities. However, there is ample suitable habitat in surrounding areas for the birds to use, and impacts would only occur during the construction period. Nesting is not known at the marina for migratory birds, however, preconstruction nesting surveys would be conducted and if evidence of nesting is found, appropriate conservation measures would be taken. Therefore, impacts would be short-term and minor.

**Protected Species**

**Affected Resources**

The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Walton County, Florida. Table 12-33 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Indian manatee</td>
<td>The counties in the project area are not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the project waters. The main risk to manatees during implementation of this project would come from boat collisions in the Bay, after launching at the ramp, which could result in harm or mortality. Manatees are not expected to be present in Lafayette Creek therefore noise from construction and use of siltation or turbidity barriers are not expected to affect this species. However, conservation measures will be implemented nonetheless to ensure adverse impacts are minimized to a discountable level if a manatee were to be present in the construction zone.</td>
</tr>
<tr>
<td>Gulf sturgeon</td>
<td>NMFS was consulted on Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon was not considered in the consultation with the USFWS.</td>
</tr>
</tbody>
</table>

In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered

---

The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered


Additional information for some of these species is provided below.

**Smalltooth Sawfish (Pristis pectinata)**

Smalltooth sawfish (*Pristis pectinata*) do not typically use northern Gulf of Mexico waters (NMFS 2013b).

**Gulf Sturgeon (Acipenser oxyrhynchos desotoi)**

Gulf sturgeon are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Pearl River in Louisiana to the Suwannee River, in Florida (NMFS 2009). Adult fish reside in rivers for 8 to 9 months each year and in estuarine or Gulf of Mexico waters during the 3 to 4 cooler months of each year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993).

Gulf sturgeon critical habitat was jointly designated by the NMFS and USFWS on April 18, 2003 (50 C.F.R. 226.214). Critical habitat was designated based on seven primary constituent elements (PCEs) essential for its conservation, as defined in the 2003 *Federal Register*.

These seven elements are:

1. Abundant food items, such as detritus, aquatic insects, worms, and/or mollusks, within riverine habitats for larval and juvenile life stages; and abundant prey items, such as amphipods, lancelets, polychaetes, gastropods, ghost shrimp, isopods, mollusks, and/or crustaceans, within estuarine and marine habitats and substrates for subadult and adult life stages;
2. Riverine spawning sites with substrates suitable for egg deposition and development, such as limestone outcrops and cut limestone banks, bedrock, large gravel or cobble beds, marl, soapstone, or hard clay;
3. Riverine aggregation areas, also referred to as resting, holding, and staging areas, used by adult, subadult, and/or juveniles, generally, but not always, located in holes below normal riverbed depths; these are believed necessary for minimizing energy expenditure during freshwater residency and possibly for osmoregulatory functions;
4. A flow regime (i.e., the magnitude, frequency, duration, seasonality, and rate-of-change of freshwater discharge over time) necessary for normal behavior, growth, and survival of all life stages in the riverine environment, including migration, breeding site selection, courtship, egg fertilization, resting, and staging, and for maintaining spawning sites in suitable condition for egg attachment, egg sheltering, resting, and larval staging;
5. Water quality, including temperature, salinity, pH, hardness, turbidity, oxygen content, and other chemical characteristics necessary for normal behavior, growth, and viability of all life stages;
6. Sediment quality, including texture and chemical characteristics, necessary for normal behavior, growth, and viability of all life stages; and
7. Safe and unobstructed migratory pathways necessary for passage within and between riverine, estuarine, and marine habitats (e.g., an unobstructed river or a dammed river that still allows for passage).
Migratory Birds and Bald Eagles:
The Migratory Bird Treaty Act of 1918 (16 U.S.C. 703-711) decreed that all migratory birds and their parts (including eggs, nests, and feathers) were fully protected. The migratory bird species protected by the Act are listed in 50 CFR 10.13. More than 250 species of birds have been reported as migratory or permanent residents along the Florida panhandle, several of which breed there as well. These birds can be grouped generally as (1) species that occur year-round, both nesting and overwintering, (2) species that nest during the warm season and overwinter to the south, (3) species that overwinter and nest further north, and (4) species that pass through during spring migrations to more northern nesting sites and/or during fall migrations to overwintering areas. Different populations of the same species sometimes exhibit more than one type of migratory behavior.

The FWC conducts statewide bald eagle nesting territory surveys annually. Two recorded active bald eagle nests are identified within approximately 2.96 and 4.37 miles from the project site (https://public.myfwc.com/FWRI/EagleNests/nestlocator.aspx#search). Bald eagles are known to nest within 1 mile of the project site (FDEP, personal communication, September 26, 2013). The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s Bald Eagle Management Plan guidelines would be followed (FWC 2008).

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-34 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

Table 12-34. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wading birds, songbirds, and woodpeckers</td>
<td>Foraging, feeding, resting, nesting</td>
</tr>
</tbody>
</table>
Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-35.

**Table 12-35. Conservation measures to minimize impacts to migratory bird groups**

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wading birds, songbirds, and woodpeckers</td>
<td>Migratory birds are likely to be foraging and resting in the general vicinity of the project site. Care will be taken to minimize noise and physical disruptions near areas where foraging, resting, or nesting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. However, if evidence of nesting is suspected or observed, FWC will be contacted to obtain the most recent guidance to protect nesting shorebirds or rookeries and their recommendations will be implemented.</td>
</tr>
</tbody>
</table>

**Essential Fish Habitat**

EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as “those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Table 12-36 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Walton County, Lafayette Creek Boat Ramp site and LaGrange Bayou which outlets to Choctawhatchee Bay.

**Table 12-36. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.**

<table>
<thead>
<tr>
<th>EFH CATEGORY</th>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic</td>
<td>Cobia</td>
</tr>
<tr>
<td></td>
<td>King Mackerel</td>
</tr>
<tr>
<td></td>
<td>Spanish Mackerel</td>
</tr>
<tr>
<td>Gulf of Mexico Red Drum</td>
<td>Red Drum</td>
</tr>
<tr>
<td>Gulf of Mexico Shrimp</td>
<td>Brown Shrimp</td>
</tr>
<tr>
<td></td>
<td>Pink Shrimp</td>
</tr>
<tr>
<td></td>
<td>Rock Shrimp</td>
</tr>
<tr>
<td></td>
<td>White Shrimp</td>
</tr>
<tr>
<td>Reef Fish Resources of the Gulf of Mexico</td>
<td>Almaco Jack</td>
</tr>
<tr>
<td></td>
<td>Banded Rudderfish</td>
</tr>
<tr>
<td></td>
<td>Black Grouper</td>
</tr>
<tr>
<td></td>
<td>Blackfin Snapper</td>
</tr>
<tr>
<td>EFH CATEGORY</td>
<td>SPECIES</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Blueline Tilefish</td>
</tr>
<tr>
<td></td>
<td>Cubera Snapper</td>
</tr>
<tr>
<td></td>
<td>Gag</td>
</tr>
<tr>
<td></td>
<td>Goldface Tilefish</td>
</tr>
<tr>
<td></td>
<td>Gray (Mangrove) Snapper</td>
</tr>
<tr>
<td></td>
<td>Gray Triggerfish</td>
</tr>
<tr>
<td></td>
<td>Greater Amberjack</td>
</tr>
<tr>
<td></td>
<td>Hogfish</td>
</tr>
<tr>
<td></td>
<td>Lane Snapper</td>
</tr>
<tr>
<td></td>
<td>Lesser Amberjack</td>
</tr>
<tr>
<td></td>
<td>Mutton Snapper</td>
</tr>
<tr>
<td></td>
<td>Nassau Grouper</td>
</tr>
<tr>
<td></td>
<td>Queen Snapper</td>
</tr>
<tr>
<td></td>
<td>Red Grouper</td>
</tr>
<tr>
<td></td>
<td>Red Snapper</td>
</tr>
<tr>
<td></td>
<td>Scamp</td>
</tr>
<tr>
<td></td>
<td>Silk Snapper</td>
</tr>
<tr>
<td></td>
<td>Snowy Grouper</td>
</tr>
<tr>
<td></td>
<td>Speckled Hind</td>
</tr>
<tr>
<td></td>
<td>Tilefish</td>
</tr>
<tr>
<td></td>
<td>Vermilion Snapper</td>
</tr>
<tr>
<td></td>
<td>Warsaw Grouper</td>
</tr>
<tr>
<td></td>
<td>Wenchman</td>
</tr>
<tr>
<td></td>
<td>Yellowedge Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowmouth Grouper</td>
</tr>
</tbody>
</table>

**Environmental Consequences**

**Section 7 Consultation**

The USFWS reviewed the proposed Oakshore Drive Pier project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On February 6, 2014, the review of potential impacts to species managed by USFWS was completed (Reynolds, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect the West Indian manatee.

The Trustees’ review of the potential impacts of the project for protected species managed by NMFS determined the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the project implementation area:

- **Gulf Sturgeon** - The proposed may project affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Smalltooth Sawfish** – The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Green Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Loggerhead Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Hawksbill Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Leatherback Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Kemp’s Ridley Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.

Concurrence from NMFS with the Trustees’ conclusions for these species and associated critical habitats is still pending.

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ *Sea Turtle and Smalltooth Sawfish Construction Conditions* (NMFS, 2006), *Standard Manatee Conditions for In-Water Work* (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

**Migratory Birds and Bald Eagle:**
Bald eagles are not present at the project location so will not be affected. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

**Essential Fish Habitat**
The Trustees’ review of potential impacts from the project to EFH concluded the project is not likely to adversely affect EFH. The proposed dock construction will take place adjacent to the existing boat ramp. A very small area of benthic habitat may be converted with the placing of pilings for the expanded dock, however, this will take place directly adjacent to the boat ramp, where the habitat is already likely to be significantly disturbed as a result of both the boat traffic to and from the boat ramp and use of the existing boat launch structure and shoreline habitat.

On March 17, 2014 NMFS completed its evaluation of potential EFH impacts and concluded that the project is not likely to adversely affect EFH and any impacts would be minor and brief (Fay, 2014).

**Invasive Species**

**Affected Resources**
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem with the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 3 described more about the regulations addressing invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.
Environmental Consequences

Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.45.5.4 Human Uses and Socioeconomics

12.45.5.4.1 Socioeconomics and Environmental Justice

Affected Resources

The City of Freeport, similar to the rest of the Florida Panhandle, relies on the coastal waters of the Gulf of Mexico to provide a variety of economic and social benefits to its residents and visitors. The coastal ecosystems in the project area support a wide variety of commercial and recreational activities that contribute significantly to the State’s economy. Sport and commercial fisheries are some of the most notable economic highlights, within the region and the State. The marine environments within the area also provide essential transportation links, support a variety of water-dependent facilities, and offer an array of recreational opportunities that attract thousands of visitors to the area each year (FDEP 1994).

The estimated 2011 median household income in the City of Freeport was $32,094 (City-data.com 2013). The major employment sectors in the Crestview-Fort Walton Beach-Destin area, which includes the project site, are government; leisure and hospitality; trade, transportation, and utilities; and professional and business services (BLS 2012).

Environmental Consequences

No adverse socioeconomic impacts are expected as a result of the proposed project. The proposed project would benefit the local economy during construction through the provision of a small number of construction jobs and associated spending on goods and services by construction workers. Following completion of construction, the project would provide improved facilities to accommodate water-based recreational activities. The improvements to the boat ramp and associated facilities would not measurably change the type or level of use at the site, and therefore are not expected to have any long-term socioeconomic impacts.

12.45.5.4.2 Cultural Resources

Affected Resources

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic
properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

**Environmental Consequences**
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.45.5.4.3 **Infrastructure**

**Affected Resources**
Infrastructure in the Florida panhandle consists of a network of interconnected structures, support facilities and transportation systems. Physical infrastructure and public services include commonly provided Federal, State, county, parish, municipal, and/or private facilities and utilities that support development and protect public health and safety.

Access to the project site is via Shipyard Road, a two-lane road connecting the site to central Freeport via County Highway 83 (Bay Loop Road). State Highways 20 and 83 are the main transportation arterials in the project area connecting the City of Freeport with the rest of the Florida Panhandle. The closest public airport to the project site is Northwest Florida Beaches International Airport, located approximately 45 miles southeast in Panama City.

Water, wastewater and sanitation services in the project area are provided by the City of Freeport. Electric service is provided by Choctawhatchee Electric Cooperative (CHELCO). Cable television and internet are provided by Mediacom, and phone service is provided by AT&T.

**Environmental Consequences**
During construction of the boardwalk and boat dock, the proposed project would potentially have minor adverse impacts to infrastructure due to traffic delays and roadway damage associated with construction vehicle traffic; utility service interruptions; and potential accidental damage to utility infrastructure. Following completion of construction, the proposed improvements could lead to an increase in visitor use; however, visitor use is not expected to increase to the point where associated wear on infrastructure would lead to adverse impacts. Overall, the proposed project is expected to have long-term beneficial impacts on infrastructure through the provision of expanded and enhanced docking facilities.

12.45.5.4.4 **Land and Marine Management**

**Affected Resources**
Development in Freeport is regulated by the City of Freeport Comprehensive Plan and the City of Freeport Land Development Code. Zoning and land development decisions are subject to approval by the city Council as advised by the Planning Board (City of Freeport 2013). The existing boat ramp, docks and parking lot are situated on land owned by the City of Freeport and zoned for Conservation (CON) use (City of Freeport 2013). Boat ramps are a permitted use in the Conservation district (City of Freeport 2001). Land uses surrounding the site include industrial uses, single-family residential uses, vacant
forested land, and wetlands. Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS. The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process.

**Environmental Consequences**

No changes would occur to the current use at the site, or to uses on adjacent and nearby properties. Land ownership would remain the same, and the site would continue to be managed by the City of Freeport as a public boat launch and docking facility. The proposed project would be consistent with the City of Freeport Land Development Code, since it is a permitted use in Conservation districts.

12.45.5.4.5  Aesthetics and Visual Resources

**Affected Resources**

Lafayette Creek is a tributary of LaGrange Bayou, which in turn connects to Choctawhatchee Bay, a 129-square mile inlet of the Gulf of Mexico located within Okaloosa and Walton Counties. The landscape in the area is characterized by wooded areas, tidal flats, marshes and coastal waterways. Development is relatively sparse in the immediate surrounding area and consists of single-family residences, industrial properties, and vacant land.

**Environmental Consequences**

Temporary impacts to aesthetics and visual resources would result from implementation of the proposed boat improvements. Construction equipment would be temporarily visible to recreational users. These construction-related impacts to visual resources would be adverse but minor, since the amount of construction equipment required to complete the project would be limited, and construction activities and equipment would be visible to users for a maximum of one year. The proposed project would take place at the site of an existing boat ramp and would not change the overall visual appearance of the site or surrounding area; therefore, no long-term impacts to aesthetics and visual resources are anticipated.

12.45.5.4.6  Tourism and Recreational Use

Florida’s beaches contribute greatly to the state’s economy, providing benefits to a variety of user groups. Locals and tourists alike spend much time swimming, beachcombing, boating, fishing, diving, kayaking, surfing, and engaging in other active and passive activities near the beach. The areas surrounding Choctawhatchee Bay, like other Florida coastal communities, attract tourists to the unique and diverse wildlife and scenic habitats, abundant fishing opportunities and the sun and surf. The hotels, restaurants, and other retail establishments within the vicinity are heavily dependent upon the revenues generated each year by the millions of residents and tourists that utilize the beach. The Florida Beaches Habitat Conservation Plan noted that Florida’s tourism industry represents a $57 billion industry and 20% of the state’s economy. It generates $3.4 billion a year alone in sales tax revenue (FDEP n.d.).
**Environmental Consequences**

During the construction period, tourism and recreational use would be negatively impacted by noise and visual disturbances associated with the use of construction equipment. Public access to the boat ramp and docking facility would be limited and potentially prohibited during construction activities. While these temporary inconveniences would result in minor negative impacts on tourism and recreational use, over the long term the project would result in beneficial impacts to tourism and recreational use. Opportunities for ocean-based recreational activity would be enhanced as a result of improved facilities. The project would not be expected to result in a notable increase in the number of visitors, due to its limited scope; however, the project would contribute to an improved experience for visitors and local residents using the boat ramp. Overall, adverse impacts to tourism and recreational use would be short term and minor. Over the long term, the project would result in beneficial impacts to tourism and recreational uses.

**12.45.5.4.7 Public Health and Safety and Shoreline Protection**

**Affected Resources**

The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the Emergency Planning and Community Right-to-Know Act, and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of these materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

The project area lies at the site of an existing boat ramp and gravel parking lot with adjacent residential areas, located along the northern shoreline of Choctawhatchee Bay. A review of the USEPA EnviroMapper revealed that there are no sources of contamination or hazardous materials located on or immediately adjacent to the project site. One potential source of hazardous waste, a shipbuilding facility, was identified approximately 0.25 mile of the project site (USEPA 2013c). No sources of hazardous, toxic and radioactive waste (HTRW) are otherwise known to exist within the project area. Boats launching and landing at the boat ramp could potentially serve as a source of non-point pollution resulting from inadvertent releases of fuel or oil.

**Environmental Consequences**

Project construction would utilize mechanical equipment that uses oil, lubricants and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of construction related hazardous materials such as vehicle fuels, oil, hydraulic fluid, and other vehicle maintenance fluids, and to avoid releases and spills. If a release should occur such releases would be contained and cleaned up promptly in accordance with all applicable regulations. As a result, no impacts associated with construction-related hazardous materials would be anticipated.

Because of the nature and location of the project, no impacts to public health and safety or shoreline erosion are anticipated as a result of construction activities. The project and its construction are not anticipated to generate hazardous waste or the need for disposal of hazardous waste. In the event of a
fuel or oil spill from construction equipment, all procedures, regulations and laws pertaining to Oil Spill Prevention and Response would be adhered to and the incident would be reported to appropriate agencies. All occupational and marine safety regulations and laws would be followed to ensure safety of all workers and monitors. Therefore, it is anticipated that there would be no impacts to public health and safety from the proposed project.

12.45.6 Summary and Next Steps
The proposed Strategically Provided Boat Access along Florida’s Gulf Coast (Walton County Lafayette Creek Boat Dock Improvements) project would improve the existing Lafayette Creek boat dock in Walton County. The proposed improvements include expanding the dock by 400 feet at the boat ramp to accommodate larger vessels and additional vessels. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.45.7 References
Baker Block Museum

Barr, Douglas E.

Bird B. L., Branch L. C., and Hostetler M. E.

Bureau of Labor Statistics (BLS)

City-data.com
City of Freeport

Fay, V. 2014. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for improvements to the existing Lafayette Creek boat dock in Walton County, Florida. March 17.


Florida Department of Environmental Protection (FDEP)

Florida Fish & Wildlife Commission (FWC)


Northwest Florida Water Management District (NFWMD)


National Marine Fisheries Service (NMFS)

Rivers of Alabama.org

2001. Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat. August.

U.S. Army Corps of Engineers (USACE)
2010 Draft Supplemental Environmental Assessment for the Beach Erosion Control and Storm Damage Reduction Project Panama City Beach, Bay County, Florida.

United States Department of Agriculture Soil Conservation Service(USDA-SCS)
1984 Soil Survey of Walton County, Florida.

U.S. Environmental Protection Agency (USEPA)
U.S. Fish and Wildlife Service (USFWS)


CHAPTER 12: PROPOSED PHASE III EARLY RESTORATION PROJECTS: FLORIDA (continued)

12.46 Walton County Boardwalks and Dune Crossovers: Project Description A (Ed Walline Beach Access Improvements) ........................................................................................................ 2
   12.46.1 Project Summary ........................................................................................................ 2
   12.46.2 Background and Project Description ........................................................................... 2
   12.46.3 Evaluation Criteria ..................................................................................................... 3
   12.46.4 Performance Criteria, Monitoring and Maintenance ................................................. 3
   12.46.5 Offsets ...................................................................................................................... 4
   12.46.6 Costs ....................................................................................................................... 4

12.47 Walton County Boardwalks and Dune Crossovers: Project Description B (Gulfview Heights Beach Access Improvements) ........................................................................................................ 5
   12.47.1 Project Summary ........................................................................................................ 5
   12.47.2 Background and Project Description ........................................................................... 5
   12.47.3 Evaluation Criteria ..................................................................................................... 6
   12.47.4 Performance Criteria, Monitoring and Maintenance ................................................. 6
   12.47.5 Offsets ...................................................................................................................... 7
   12.47.6 Costs ....................................................................................................................... 7

12.48 Walton County Boardwalks and Dune Crossovers: Project Description C (Grayton Dunes Beach Access Boardwalk Improvements) ........................................................................................................ 8
   12.48.1 Project Summary ........................................................................................................ 8
   12.48.2 Background and Project Description ........................................................................... 8
   12.48.3 Evaluation Criteria ..................................................................................................... 9
   12.48.4 Performance Criteria, Monitoring and Maintenance ................................................. 9
   12.48.5 Offsets ...................................................................................................................... 10
   12.48.6 Costs ....................................................................................................................... 10

12.49 Walton County Boardwalks and Dune Crossovers: Project Description D (Dothan Beach Access Boardwalk Improvements) ........................................................................................................ 11
   12.49.1 Project Summary ........................................................................................................ 11
   12.49.2 Background and Project Description ........................................................................... 11
   12.49.3 Evaluation Criteria ..................................................................................................... 12
12.49.4 Performance Criteria, Monitoring and Maintenance .............................................. 12
12.49.5 Offsets ................................................................................................................ 13
12.49.6 Costs .................................................................................................................. 13

12.50 Walton County Boardwalks and Dune Crossovers: Project Description E (Palms of Dune Allen West Beach Access Improvements) ............................................................................. 14
12.50.1 Project Summary .................................................................................................. 14
12.50.2 Background and Project Description ................................................................. 14
12.50.3 Evaluation Criteria ............................................................................................... 15
12.50.4 Performance Criteria, Monitoring and Maintenance .......................................... 15
12.50.5 Offsets ................................................................................................................ 16
12.50.6 Costs .................................................................................................................. 16

12.51 Walton County Boardwalks and Dune Crossovers: Project Description F (Bayside Ranchettes Park Improvements) ............................................................................. 17
12.51.1 Project Summary .................................................................................................. 17
12.51.2 Background and Project Description ................................................................. 17
12.51.3 Evaluation Criteria ............................................................................................... 18
12.51.4 Performance Criteria, Monitoring and Maintenance .......................................... 18
12.51.5 Offsets ................................................................................................................ 19
12.51.6 Costs .................................................................................................................. 19

12.52 Walton County Boardwalks and Dune Crossovers: Environmental Review ................. 20
12.52.1 Introduction and Background ................................................................................ 20
12.52.2 Project Location .................................................................................................. 20
12.52.3 Construction and Installation ................................................................................ 22
12.52.4 Operations and Maintenance ............................................................................... 30
12.52.5 Affected Environment and Environmental Consequences .................................. 30
12.52.6 Summary and Next Steps .................................................................................... 61
12.52.7 References ......................................................................................................... 62

12.53 Gulf County Recreation Project: Project Description A (Highland View Boat Ramp) ............. 67
12.53.1 Project Summary .................................................................................................. 67
12.53.2 Background and Project Description ..................................................................... 67
12.53.3 Evaluation Criteria ............................................................................................... 69
12.53.4 Performance Criteria, Monitoring and Maintenance .......................................... 69
12.53.5 Offsets ................................................................................................................ 70
12.53.6 Costs .................................................................................................................. 70
12.54 Gulf County Recreation Projects: Project Description B (Indian Pass Boat Ramp) ...................... 71
12.55 Gulf County Recreation Projects: Environmental Review A (Highland View Boat Ramp) .......... 72
   12.55.1 Introduction and Background ........................................................................................... 72
   12.55.2 Project Location .................................................................................................................. 73
   12.55.3 Construction and Installation .............................................................................................. 73
   12.55.4 Operations and Maintenance ............................................................................................... 75
   12.55.5 Affected Environment and Environmental Consequences ............................................. 75
   12.55.6 Summary and Next Steps ................................................................................................... 92
   12.55.7 References .......................................................................................................................... 92
12.56 Gulf County Recreation Projects: Project Description C (Improvements at Beacon Hill Veterans’ Memorial Park) .......................................................................................................................................................... 96
   12.56.1 Project Summary .................................................................................................................. 96
   12.56.2 Background and Project Description ..................................................................................... 96
   12.56.3 Evaluation Criteria ............................................................................................................. 97
   12.56.4 Performance Criteria, Monitoring and Maintenance .................................................... 97
   12.56.5 Offsets ............................................................................................................................... 98
   12.56.6 Costs .................................................................................................................................. 98
12.57 Gulf County Recreation Projects: Environmental Review C (Beacon Hill Veteran’s Memorial Park) .......................................................................................................................................................... 99
   12.57.1 Introduction and Background ............................................................................................... 99
   12.57.2 Project Location .................................................................................................................. 99
   12.57.3 Construction and Installation .............................................................................................. 102
   12.57.4 Operations and Maintenance ............................................................................................... 102
   12.57.5 Affected Environment and Environmental Consequences ............................................. 102
   12.57.6 Summary and Next Steps ................................................................................................... 115
   12.57.7 References .......................................................................................................................... 116
12.58 Gulf County Recreation Projects: Project Description D (Windmark Beach Fishing Pier Improvements) .......................................................................................................................................................... 119
   12.58.1 Project Summary .................................................................................................................. 119
   12.58.2 Background and Project Description ..................................................................................... 119
   12.58.3 Evaluation Criteria ............................................................................................................. 120
   12.58.4 Performance Criteria, Monitoring and Maintenance .................................................... 120
   12.58.5 Offsets ............................................................................................................................... 121
   12.58.6 Costs .................................................................................................................................. 121
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.59</td>
<td>Gulf County Recreation Projects: Environmental Review D (Windmark Beach Fishing Pier Improvements)</td>
</tr>
<tr>
<td>12.59.1</td>
<td>Introduction and Background</td>
</tr>
<tr>
<td>12.59.2</td>
<td>Project Location</td>
</tr>
<tr>
<td>12.59.3</td>
<td>Construction and Installation</td>
</tr>
<tr>
<td>12.59.4</td>
<td>Operations and Maintenance</td>
</tr>
<tr>
<td>12.59.5</td>
<td>Affected Environment and Environmental Consequences</td>
</tr>
<tr>
<td>12.59.6</td>
<td>Summary and Next Steps</td>
</tr>
<tr>
<td>12.59.7</td>
<td>References</td>
</tr>
<tr>
<td>12.60</td>
<td>Bald Point State Park Recreation Areas: Project Description</td>
</tr>
<tr>
<td>12.60.1</td>
<td>Project Summary</td>
</tr>
<tr>
<td>12.60.2</td>
<td>Background and Project Description</td>
</tr>
<tr>
<td>12.60.3</td>
<td>Evaluation Criteria</td>
</tr>
<tr>
<td>12.60.4</td>
<td>Performance Criteria, Monitoring and Maintenance</td>
</tr>
<tr>
<td>12.60.5</td>
<td>Offsets</td>
</tr>
<tr>
<td>12.60.6</td>
<td>Costs</td>
</tr>
<tr>
<td>12.61</td>
<td>Bald Point State Park Recreation Areas: Environmental Review</td>
</tr>
<tr>
<td>12.61.1</td>
<td>Introduction and Background</td>
</tr>
<tr>
<td>12.61.2</td>
<td>Project Location</td>
</tr>
<tr>
<td>12.61.3</td>
<td>Construction and Installation</td>
</tr>
<tr>
<td>12.61.4</td>
<td>Operations and Maintenance</td>
</tr>
<tr>
<td>12.61.5</td>
<td>Affected Environment and Environmental Consequences</td>
</tr>
<tr>
<td>12.61.6</td>
<td>Summary and Next Steps</td>
</tr>
<tr>
<td>12.61.7</td>
<td>References</td>
</tr>
<tr>
<td>12.62</td>
<td>Enhancement of Franklin County Parks and Boat Ramps: Project Description A (Abercrombie Boat Ramp Project)</td>
</tr>
<tr>
<td>12.63</td>
<td>Enhancement of Franklin County Parks and Boat Ramps: Project Description B (Waterfront Park)</td>
</tr>
<tr>
<td>12.63.1</td>
<td>Project Summary</td>
</tr>
<tr>
<td>12.63.2</td>
<td>Background and Project Description</td>
</tr>
<tr>
<td>12.63.3</td>
<td>Evaluation Criteria</td>
</tr>
<tr>
<td>12.63.4</td>
<td>Performance Criteria, Monitoring and Maintenance</td>
</tr>
<tr>
<td>12.63.5</td>
<td>Offsets</td>
</tr>
<tr>
<td>12.63.6</td>
<td>Costs</td>
</tr>
</tbody>
</table>
12.64 Enhancement of Franklin County Parks and Boat Ramps: Project Description C (Indian Creek Park) ......................................................................................................................... 188
  12.64.1 Project Summary ........................................................................................................ 188
  12.64.2 Background and Project Description ......................................................................... 188
  12.64.3 Evaluation Criteria .................................................................................................... 189
  12.64.4 Performance Criteria, Monitoring and Maintenance .............................................. 189
  12.64.5 Offsets ..................................................................................................................... 190
  12.64.6 Costs ....................................................................................................................... 190

12.65 Enhancement of Franklin County Parks and Boat Ramps: Project Description D (Eastpoint Fishing Pier Improvements) ......................................................................................... 191
  12.65.1 Project Summary ........................................................................................................ 191
  12.65.2 Background and Project Description ......................................................................... 191
  12.65.3 Evaluation Criteria .................................................................................................... 191
  12.65.4 Performance Criteria, Monitoring and Maintenance .............................................. 192
  12.65.5 Offsets ..................................................................................................................... 193
  12.65.6 Costs ....................................................................................................................... 193

12.66 Enhancement of Franklin County Parks and Boat Ramps: Project Description E (St. George Island Fishing Pier Improvements) ......................................................................................... 194
  12.66.1 Project Summary ........................................................................................................ 194
  12.66.2 Background and Project Description ......................................................................... 194
  12.66.3 Evaluation Criteria .................................................................................................... 194
  12.66.4 Performance Criteria, Monitoring and Maintenance .............................................. 195
  12.66.5 Offsets ..................................................................................................................... 196
  12.66.6 Costs ....................................................................................................................... 196

12.67 Enhancement of Franklin County Parks and Boat Ramps: Environmental Review .......... 197
  12.67.1 Introduction and Background .................................................................................. 197
  12.67.2 Project Location ....................................................................................................... 198
  12.67.3 Construction and Installation .................................................................................. 198
  12.67.4 Operations and Maintenance .................................................................................. 206
  12.67.5 Affected Environment and Environmental Consequences .................................. 206
  12.67.6 Summary and Next Steps ....................................................................................... 226
  12.67.7 References ............................................................................................................. 227

12.68 Apalachicola River Wildlife and Environmental Area Fishing and Wildlife Viewing Access Improvements: Project Description A (Cash Bayou) ............................................................................. 229
12.68.1 Project Summary ................................................................. 229
12.68.2 Background and Project Description ................................... 229
12.68.3 Evaluation Criteria ............................................................. 230
12.68.4 Performance Criteria, Monitoring and Maintenance .................. 230
12.68.5 Offsets ............................................................................. 231
12.68.6 Costs .............................................................................. 231

12.69 Apalachicola River Wildlife and Environmental Area Fishing and Wildlife Viewing Access
Improvements: Project Description B (Sand Beach) ................................ 232
12.69.1 Project Summary ................................................................. 232
12.69.2 Background and Project Description ................................... 232
12.69.3 Evaluation Criteria ............................................................. 232
12.69.4 Performance Criteria, Monitoring and Maintenance .................. 234
12.69.5 Offsets ............................................................................. 234
12.69.6 Costs .............................................................................. 235

12.70 Apalachicola River Wildlife and Environmental Area Fishing and Wildlife Viewing Access
Improvements: Environmental Review .............................................. 236
12.70.1 Introduction and Background ............................................. 236
12.70.2 Project Location ................................................................. 237
12.70.3 Construction and Installation .............................................. 238
12.70.4 Operations and Maintenance .............................................. 241
12.70.5 Affected Environment and Environmental Consequences .......... 242
12.70.6 Summary and Next Steps .................................................. 256
12.70.7 References ....................................................................... 257
12.46 Walton County Boardwalks and Dune Crossovers: Project Description A (Ed Walline Beach Access Improvements)

This project includes several components and the environmental review is done at the project level.

12.46.1 Project Summary
The proposed Walton County Ed Walline Beach Access Improvements project would improve the Ed Walline regional beach access facility in Walton County. The proposed improvements include replacing pavilions and restroom fixtures and updating all interior plumbing. The total estimated cost of the project is $117,700.

12.46.2 Background and Project Description
The Trustees propose to improve facilities at the Ed Walline regional beach access facility in Walton County, FL (see Figure 12-1 for general location). The objective of the Walton County Ed Walline Beach Access Improvement project is to enhance and/or increase recreational beach use opportunities by improving the facilities at the Ed Walline beach access point. The restoration work proposed includes replacing pavilions and restroom fixtures and upgrading all interior plumbing.

Figure 12-1. Location of Walton County Boardwalks and Dune Crossovers: Ed Walline Beach Access Improvements Project.
12.46.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Walton County Ed Walline Beach Access Improvement project is intended to enhance and/or increase recreational beach use opportunities by improving the facilities at the Ed Walline beach access point. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Florida counties have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.51, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.51 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Walton County Boardwalks and Dune Crossovers – Ed Walline Beach Access Improvements project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.46.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objectives are to enhance and/or increase recreational beach use opportunities by improving the facilities at the Ed Walline beach access point. Performance monitoring will evaluate: 1) the replacement of the pavilions; 2) the replacement of the restroom fixtures; and 3) the update of all interior plumbing. Specific performance criteria include: 1) completion of the construction as designed
and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the facilities are open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by Walton County as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by Walton County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Walton County will monitor the recreational use activity at the site. Walton County staff will visit the site twice a year to count the number of users at the beach access point. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

### 12.46.5 Offsets

The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Walton County Boardwalks and Dune Crossovers project, of which this is a component, are $1,486,552 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.¹

### 12.46.6 Costs

The total estimated cost to implement this project is $117,700. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---

¹ For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.47 Walton County Boardwalks and Dune Crossovers: Project Description B (Gulfview Heights Beach Access Improvements)

12.47.1 Project Summary
The proposed Walton County Gulfview Heights Beach Access Improvements project would improve the Gulfview Heights beach access facility in Walton County. The proposed improvements include replacing restroom fixtures, updating all interior plumbing, and repairing all soffits on pavilions. The total estimated cost of the project is $87,981.

12.47.2 Background and Project Description
The Trustees propose to improve facilities at the Gulfview Heights beach access facility in Walton County, FL (see Figure 12-2 for general location). The objective of the Walton County Gulfview Heights Beach Access Improvement project is to enhance and/or increase recreational beach use opportunities by improving the existing facilities at the beach access point. The restoration work proposed includes replacing restroom fixtures, updating all interior plumbing, and repairing all soffits on pavilions.

Figure 12-2. Location of Walton County Boardwalks and Dune Crossovers: Gulfview Heights Beach Access Improvements Project.
12.47.3 Evaluation Criteria

This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Walton County Gulfview Heights Beach Access Improvements project is intended to enhance and/or increase recreational beach use opportunities by improving the existing facilities at the beach access point. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Florida counties have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.51, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.51 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Walton County Boardwalks and Dune Crossovers – Gulfview Heights Beach Access Improvements project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.47.4 Performance Criteria, Monitoring and Maintenance

As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objectives are to enhance and/or increase recreational beach use opportunities by improving the existing facilities at the beach access point. Performance monitoring will evaluate: 1) the replacement of the restroom fixtures; 2) the update of all interior plumbing; and 3) the repair of all soffits on pavilions. Specific performance criteria include: 1) the completion of the construction as
designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the facilities are open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by Walton County as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by Walton County.

During the one year construction performance monitoring period, the Florida Trustees' Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Walton County will monitor the recreational use activity at the site. Walton County staff will visit the site twice a year to count the number of users at the beach access point. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.47.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Walton County Boardwalks and Dune Crossovers project, of which this is a component, are $1,486,552 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.²

12.47.6 Costs
The total estimated cost to implement this project is $87,981. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---

² For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.48 Walton County Boardwalks and Dune Crossovers: Project Description C (Grayton Dunes Beach Access Boardwalk Improvements)

12.48.1 Project Summary
The proposed Walton County Grayton Dunes Beach Access Boardwalk Improvements project would improve the Grayton Dunes beach access and boardwalk facility in Walton County. The proposed improvements include replacing the dune walkover allowing beach visitors to access the beach. The total estimated cost of the project is $168,076.

12.48.2 Background and Project Description
The Trustees propose to improve facilities at the Grayton Dunes beach access boardwalk in Walton County, FL (see Figure 12-3 for general location). The objective of the Walton County Grayton Dunes Beach Access Boardwalk Improvement project is to enhance and/or increase recreational beach use opportunities by improving access to the beach. The restoration work proposed includes replacing the dune walkover allowing beach visitors to access the beach.

Figure 12-3. Location of Walton County Boardwalks and Dune Crossovers: Grayton Dunes Beach Access Improvements Project.
12.48.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Walton County Grayton Dunes Beach Access Boardwalk Improvements is intended to enhance and/or increase recreational beach use opportunities by improving access to the beach. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Florida counties have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.51, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.51 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Walton County Boardwalks and Dune Crossovers – Grayton Dunes Beach Access Boardwalk Improvements project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.48.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational beach use opportunities by improving beach access. Performance monitoring will evaluate the replacement of the dune walkovers. Specific performance criteria include: 1) the completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the dune walkovers are open and available.
Long term monitoring and maintenance of the improved facilities will be completed by Walton County as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be assumed by Walton County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Walton County will monitor the recreational use activity at the site. Walton County staff will visit the site twice a year to count the number of users at the beach access boardwalk. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.48.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Walton County Boardwalks and Dune Crossovers project, of which this is a component, are $1,486,552 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.3

12.48.6 Costs
The total estimated cost to implement this project is $168,076. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

3 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.49 Walton County Boardwalks and Dune Crossovers: Project Description D (Dothan Beach Access Boardwalk Improvements)

12.49.1 Project Summary
The proposed Walton County Dothan Beach Access Boardwalk Improvements project would improve the Dothan Beach Access Boardwalk in Walton County. The proposed improvements include replacing the dune walkover allowing beach visitors to access the beach. The total estimated cost of the project is $188,909.

12.49.2 Background and Project Description
The Trustees propose to improve facilities at the Dothan Beach access boardwalk in Walton County, FL (see Figure 12-4 for general location). The objective of the Walton County Dothan Beach Access Boardwalk Improvement project is to enhance and/or increase recreational beach use opportunities by improving access to the beach. The restoration work proposed includes replacing the dune walkover allowing beach visitors to access the beach.

Figure 12-4. Location of Walton County Boardwalks and Dune Crossovers: Dothan Beach Access Improvements Project.
**12.49.3 Evaluation Criteria**

This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Walton County Dothan Beach Access Boardwalk Improvements project is intended to enhance and/or increase recreational beach use opportunities by improving access to the beach. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Florida counties have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.51, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.51 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Walton County Boardwalks and Dune Crossovers – Dothan Beach Access Boardwalk Improvements project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

**12.49.4 Performance Criteria, Monitoring and Maintenance**

As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational beach use opportunities by improving beach access. Performance monitoring will evaluate the replacement of the dune walkovers. Specific performance criteria include: 1) completion of the construction as designed and permitted, and 2)
enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the dune walkovers are open and available.

Long term monitoring and maintenance of the improved facilities will be completed by Walton County as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be assumed by Walton County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Walton County will monitor the recreational use activity at the site. Walton County staff will visit the site twice a year to count the number of users at the beach access point and boardwalk. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

### 12.49.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Walton County Boardwalks and Dune Crossovers project, of which this is a component, are $1,486,552 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.  

### 12.49.6 Costs
The total estimated cost to implement this project is $188,909. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---

4 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.50 Walton County Boardwalks and Dune Crossovers: Project Description E (Palms of Dune Allen West Beach Access Improvements)

12.50.1 Project Summary
The proposed Walton County Palms of Dune Allen West Beach Access Improvements project would improve the Palms of Dune Allen West beach access facility in Walton County. The proposed improvements include constructing a dune walkover, allowing beach visitors to access the beach. The total estimated cost of the project is $112,109.

12.50.2 Background and Project Description
The Trustees propose to improve facilities at the Palms of Dune Allen West beach access facility in Walton County, FL (see Figure 12-5 for general location). The objective of the Walton County Palms of Dune Allen West Beach Access Improvement project is to enhance and/or increase recreational beach use opportunities by improving beach access. The restoration work proposed includes constructing a dune walkover, allowing beach visitors to access the beach.

Figure 12-5. Location of Walton County Boardwalks and Dune Crossovers: Palms of Dune Allen West Beach Access Improvements Project.
12.50.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Walton County Palms of Dune Allen West Beach Access Improvements project is intended to enhance and/or increase recreational beach use opportunities by improving beach access. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Florida counties have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.51, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.51 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Walton County Boardwalks and Dune Crossovers – Palms of Dune Allen West Beach Access Improvements project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.50.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational beach use opportunities by improving beach access. Performance monitoring will evaluate construction of the dune walkovers. Specific performance criteria include: 1) completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the dune walkover is open and available.
Long-term monitoring and maintenance of the improved facilities will be completed by Walton County as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by Walton County.

During the one year construction performance monitoring period, the Florida Trustees' Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Walton County will monitor the recreational use activity at the site. Walton County staff will visit the site twice a year to count the number of users at the beach access point. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.50.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Walton County Boardwalks and Dune Crossovers project, of which this is a component, are $1,486,552 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.5

12.50.6 Costs
The total estimated cost to implement this project is $112,109. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---

5 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.51 Walton County Boardwalks and Dune Crossovers: Project Description F (Bayside Ranchettes Park Improvements)

12.51.1 Project Summary
The proposed Walton County Bayside Ranchettes Park Improvements project would improve the Bayside Ranchettes Park in Walton County. The proposed improvements include constructing a parking area, a picnic table, a dock, and steps into the water allowing access to the bay. The total estimated cost of the project is $68,501.

12.51.2 Background and Project Description
The Trustees propose to improve facilities at the Bayside Ranchettes Park in Walton County, FL (see Figure 12-6 for general location). The objective of the Walton County Bayside Ranchettes Park Improvement project is to enhance and/or increase recreational beach use opportunities by improving recreational opportunities at the park. The restoration work proposed includes constructing a parking area, a picnic table, a dock, and steps into the water allowing access to the bay.

Figure 12-6. Location of Walton County Boardwalks and Dune Crossovers: Bayside Ranchettes Park Improvements Project.
12.51.3 Evaluation Criteria

This proposed project satisfies the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Walton County Bayside Ranchettes Park Improvements project is intended to enhance and/or increase recreational beach use opportunities by improving recreational opportunities at the park. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Florida counties have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.51, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.51 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Walton County Boardwalks and Dune Crossovers – Bayside Ranchettes Park Improvements project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.51.4 Performance Criteria, Monitoring and Maintenance

As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. Project objective is to enhance and/or increase recreational beach use opportunities by improving recreational opportunities at the park. Performance monitoring will evaluate: 1) the construction of a parking area; 2) the construction of a picnic table; 3) the construction of a dock; and 4) the construction of steps into the water allowing access to the bay. Specific performance criteria include: 1) completion of the
construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the park is open and available.

Long term monitoring and maintenance of the improved facilities will be completed by Walton County as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be assumed by Walton County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Walton County will monitor the recreational use activity at the site. Walton County staff will visit the site twice a year to count the number of users at the park. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

**12.51.5 Offsets**
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Walton County Boardwalks and Dune Crossovers project, of which this is a component, are $1,486,552 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.\(^6\)

**12.51.6 Costs**
The total estimated cost to implement this project is $68,501. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

\(^6\) For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.52 Walton County Boardwalks and Dune Crossovers: Environmental Review

The proposed Walton County Boardwalks and Dune Crossovers projects would construct and restore infrastructure to increase and enhance opportunities for the public to safely access coastal resources affected by the Deepwater Horizon Oil Spill.

12.52.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf of Mexico in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not, fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement, the Trustees released a Phase I Early Restoration Plan (ERP) in April 2012, after public review of a draft. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III ERP. This park improvement project was submitted as an ERP on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and Oil Pollution Act (OPA), the project meets Florida’s criteria that ERPs occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

With loss of recreational opportunities for both local residents and tourists affected by the Oil Spill, the projects presented here would provide enhancements of current public access to the beach by protecting dunes and improving infrastructure at six beach access locations in Walton County, Florida.

12.52.2 Project Location

The proposed projects are in the State of Florida, Walton County. All sites are approximately 17–25 miles east of Eglin Air Force Base and 21–29 miles west of Panama City Beach, Florida. Five of the sites are on the Gulf Coast, and one site (Bayside Ranchettes Park) is on Choctawhatchee Bay, approximately 4 miles north over land of the Gulf Coast. The six projects and their specific locations are summarized below and are on Figure 12-7.
Figure 12-7. Location of Palms of Dune Allen West Beach, Ed Walline Beach, Gulfview Heights Beach, Bayside Ranchettes Park, Grayton Dunes Beach, and Dothan Beach access and infrastructure improvement projects.

12.52.2.1 Palms of Dune Allen West Beach Access Improvements
This parcel is approximately 0.5 acre of beach and dunes. It is owned by Walton County but remains undeveloped at this time. Improvement of this beach access would provide a dune walkover allowing beach visitors to access the beach. The Palms of Dune Allen site is approximately 1,300 feet east of Oyster Lake, a coastal dune lake (see Figure 12-7).
12.52.2.2 Ed Walline Beach Access Improvements
This is a regional beach access with restroom facilities and picnic pavilions. Improvement of this beach access would provide enhanced facilities by replacing the pavilions, replacing restroom fixtures, and updating all interior plumbing (see Figure 12-7).

12.52.2.3 Gulfview Heights Beach Access Improvements
This is a regional beach access with restroom facilities and picnic pavilions. Improvement of this beach access would provide enhanced facilities by replacing restroom fixtures, updating all interior plumbing, and repairing all soffits on pavilions. The Gulfview Heights site is approximately 1,500 feet west of Draper Lake, a coastal dune lake (see Figure 12-7).

12.52.2.4 Grayton Dunes Beach Access Boardwalk Improvements
This is a regional beach access with parking and a 400-foot boardwalk. Improvement of this beach access would provide enhanced facilities by replacing the dune walkover, allowing beach visitors to access the beach. The project originates from a beachside residential area at the end of the pavement on Garfield Street and is approximately 400 feet west of the border of Grayton Beach State Park and Western Lake, a coastal dune lake (see Figure 12-7).

12.52.2.5 Dothan Beach Access Boardwalk Improvements
This is a pedestrian beach access with a boardwalk. Improvement of this beach access would provide enhanced facilities by replacing the dune walkover, allowing beach visitors to access the beach (see Figure 12).

12.52.2.6 Bayside Ranchettes Park Improvements
This parcel is approximately 0.25 acre on the Choctawhatchee Bay. It is owned by Walton County but remains undeveloped at this time. Improvement of this beach access would provide parking, a picnic table, a dock, and steps into the water allowing access to the bay. The proposed Bayside Ranchettes Park project is on the Choctawhatchee Bay, a coastal inlet that is connected to the Gulf of Mexico by Destin Pass near Destin, Florida. The Choctawhatchee River flows into the bay, along with several other small rivers and streams. The bay has a surface area of 130 square miles and also connects to the Santa Rosa Sound. In addition, the Mid-Bay Bridge crosses the bay, connecting the cities of Destin and Niceville, Florida (see Figure 12-7. Location of Palms of Dune Allen West Beach, Ed Walline Beach, Gulfview Heights Beach, Bayside Ranchettes Park, Grayton Dunes Beach, and Dothan Beach access and infrastructure improvement projects.).

12.52.3 Construction and Installation
Detailed construction methods and plans have not yet been developed for the new facilities, construction, and improvements to infrastructure described below. Table 12-1 summarizes each project’s proposed improvements. Most of the project would be on-beach construction and improvements to existing facilities. Standard best management practices (BMP) for this type of construction would be used to minimize impacts, and are described below.
### Table 12-1. Walton County Beach access infrastructure improvements detail.

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>EXISTING FACILITIES DESCRIPTION</th>
<th>PROPOSED IMPROVEMENTS DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed Walline Beach Access</td>
<td>Restroom facilities and picnic pavilion</td>
<td>Replacing the pavilion, replacing restroom fixtures, and updating all interior plumbing</td>
</tr>
<tr>
<td>Gulfview Heights Beach Access</td>
<td>Restroom facilities and picnic pavilions</td>
<td>Replacing restroom fixtures, updating all interior plumbing, and repairing all soffits on pavilions</td>
</tr>
<tr>
<td>Grayton Dunes Beach Access</td>
<td>Parking and a 400-foot boardwalk</td>
<td>Replacing the existing dune walkover</td>
</tr>
<tr>
<td>Dothan Beach Access</td>
<td>Boardwalk</td>
<td>Replacing existing dune walkover</td>
</tr>
<tr>
<td>Palms of Dune Allen West Beach Access</td>
<td>N/A - Undeveloped</td>
<td>Constructing new dune walkover</td>
</tr>
<tr>
<td>Bayside Ranchettes Park</td>
<td>N/A - Undeveloped</td>
<td>Creating a new parking area, adding a picnic table, and constructing a dock and steps into the waters of Choctawhatchee Bay</td>
</tr>
</tbody>
</table>

A range of hand tools and mechanized equipment would likely be used to complete these construction projects. This project would likely include small tools for restroom repairs. Larger equipment such as backhoes, graders, or other earthmoving equipment may be required for plumbing repairs and for enhancing dune walkover structures. Construction of parking areas and recreational facilities, as well as repairs to existing facilities, may also require use of heavy construction equipment. Activities would include grading and paving the new parking area and mechanical and manual excavation for the steps, dock, and parking areas. Excavation and construction may involve equipment such as excavators/track hoes, bulldozers, backhoes, graders, compacting equipment (roller), dump trucks, bobcats, a paving machine, rollers, forklifts, and pickup trucks; some additional hand digging may also occur. Assumed equipment usage and manpower requirements are detailed in Table 12-2 for the upland components of these projects.

### Table 12-2. Assumed equipment usage and worker needs.

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>NUMBER OF DAYS USED</th>
<th>NUMBER OF WORKER DAYS</th>
<th>ASSUMPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dump truck</td>
<td>5</td>
<td>5</td>
<td>One week total for paving and excavation associated with parking, steps, and dock</td>
</tr>
<tr>
<td>Flatbed truck</td>
<td>8</td>
<td>8</td>
<td>One trip per week for two months to deliver materials for pavilion, dock, boardwalks, restrooms, etc.</td>
</tr>
<tr>
<td>Concrete Truck</td>
<td>2</td>
<td>2</td>
<td>Two days for pilings, steps, and boat dock</td>
</tr>
<tr>
<td>Pickup truck</td>
<td>88</td>
<td>88</td>
<td>Two pickups per day for two months</td>
</tr>
<tr>
<td>Bobcat</td>
<td>10</td>
<td>10</td>
<td>One week excavation and paving; one week auger use.</td>
</tr>
<tr>
<td>Grader</td>
<td>2</td>
<td>2</td>
<td>Two days grading</td>
</tr>
<tr>
<td>Paving machine</td>
<td>2</td>
<td>2</td>
<td>Two days paving</td>
</tr>
<tr>
<td>Roller</td>
<td>2</td>
<td>2</td>
<td>Two days paving</td>
</tr>
<tr>
<td>Track hoe</td>
<td>3</td>
<td>3</td>
<td>Three days excavation</td>
</tr>
<tr>
<td>Dozer</td>
<td>5</td>
<td>5</td>
<td>One week and grading</td>
</tr>
<tr>
<td>Forklift</td>
<td>8</td>
<td>8</td>
<td>One delivery per week for six months</td>
</tr>
</tbody>
</table>
The footprint of construction activities at most sites would remain within the footprint of existing facilities. Restroom repairs and improvements, as well as repairs or improvements to facilities such as pavilions, would likely require little or no disturbance outside of the existing public facilities. Repair and construction of dune walkover areas may require some minimal disturbance outside the footprint of existing facilities, but would be limited to the extent possible to existing developed areas. One parcel (Bayside Ranchettes Park) is currently undeveloped. Construction of public facilities, including parking, picnic area, and a dock would require disturbance of several feet of soil; the final footprint is not known. The projects would install and maintain sturdy animal-proof garbage containers to prevent the invasion of house mice and predators (cats, raccoons, fox, and coyotes) while providing a place for visitors to dispose of refuse.

Materials to be removed include old plumbing fixtures and other old restroom material, and other debris removed as part of facilities improvements. Old boardwalk and pavilion materials would be removed from areas where repairs are required. Soil would likely be removed from most sites.

Posts may be required for some repairs, including pavilion and boardwalk repairs. Pilings would likely be placed by mechanically auguring holes (with an auger mounted to a bobcat) to place pre-formed pilings or to place forms that would be filled with pumped concrete to create new pilings. The holes for the pilings would likely be approximately 1–2 feet in diameter (this is an estimate, final sizes would depend on final design requirements).

In addition, as work proceeds, the project area could be isolated by construction fencing to prevent incidental access. This fencing material would be placed by hand driving (e.g., with a sledge hammer or post driver) stakes as necessary. These stakes would likely be less than 2 inches in diameter and driven to a depth of 1–2 feet to secure the fencing.

The dune walkovers would be constructed at a height (minimum 3 feet above grade) to accommodate natural dune growth and associated vegetation and would follow the additional guidance within Conservation Measures for Dune Walkover Construction (USFWS, 2013). No storage of equipment or materials would occur on the beach or dunes throughout construction. No activity, except as needed to remove old walkovers, construct the new walkovers, and repair/maintain the walkovers (in subsequent years), would occur on existing healthy dunes during any time of the year.

If dunes are impacted during the proposed projects, they would be restored by planting the appropriate vegetation or installing sand fence. All dune vegetation to be used in dune restoration would be native to the specific Walton County dunes and grown from northwest Florida plant stock. If seedlings are planted, they would be at least 1 × 1 inch with a 2.5-inch pot. Vegetation would be planted with an appropriate amount of fertilizer and anti-desiccant material, as appropriate, for the plant size. Planting must be on 18-inch centers throughout the created dune; however, 24-inch centers may be acceptable depending on the area to be planted. No irrigation lines or pipes would be installed.

Bayside Ranchettes dock construction
As part of the dock expansion at Bayside Ranchettes, up to 26 pilings could be placed to construct a 60’ by 6’ dock. (this is a new dock so no pilings need to be removed). These are expected to be 8” diameter wood pilings that would be placed through a combination of water jetting and mechanical auguring.
using small workboats (e.g., Carolina skiffs) that are generally less than 20 feet long. Once the pilings are set, initial cross pieces would be placed from boats and then the dock would be built out from shore.

As part of final dock design effort, a survey of submerged aquatic vegetation (SAV) in the area would be completed. Should the site assessment for the project identify SAV in the proposed project area, the conditions in the Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat (U.S. Army Corps of Engineers/National Marine Fisheries Service, 2001) would be implemented. Among other elements that would result should these guidelines need to be implemented, there would requirements that pilings be placed a minimum of 10 feet apart and there would be requirements for the height of the pier and spacing of decking materials. No permanent slips will be added as part of the dock construction.

During all in-water construction activity, the conditions and guidelines of the Sea Turtle and Smalltooth Sawfish Construction Conditions (NOAA, 2006) would be implemented and adhered to. Significant aspects of these provisions include stopping operation of any equipment if sea turtles or smalltooth sawfish come within 50 feet of the equipment until the time when animals leave the project area of their own volition.

BMPs for erosion control would also be implemented and maintained at all times during upland construction to prevent siltation and turbid discharges into surface waters. Methods could include but are not limited to the use of staked hay bales, staked filter cloth, sodding, seeding, and mulching; staged construction; and installation of turbidity screens around the immediate project site. Should the parking area improvements result in an increase in the area of impermeable surface a site stormwater management plan would also be developed to control impacts from water flowing from the site to the Bay.

One of the critical elements of the effort to limit impacts associated with the project development will be the consideration of, review for, and ultimate implementation of stormwater management controls for the project. Although each project site will pose its own issues when developing the stormwater and sediment control plans for pre, during, and completion of construction plans there is a standard approach to preparing these designs characterized by the following steps, which are distinguished by their relationship to construction, that will be followed for this project:

1. Development of Pre-construction or existing conditions plans w/erosion and sediment control (E&SC) features. These pre-construction plans will illustrate what sediment control measures will be initially installed and their location in order to minimize impacts to receiving waterways when upland land disturbance activities begin. These plans will be based upon an existing site survey delineating the project boundaries, site topography, topographic features (vegetation, soil types, impervious and pervious areas, water bodies (streams and ponds), wetlands, drainage channels, existing structures, drainage basins, flow patterns and major points where stormwater enters and exits the site. The survey should extend to at least 50 feet beyond the project site and contours should depict intervals of 0.5 to 2.0 feet. The pre-construction plans should also identify phases of construction and areas that will be disturbed along with the overall limits of construction or disturbance. Sensitive areas (e.g., locations of sensitive/protected flora and fauna, wetlands, excessive slopes and unsuitable soils) should also be identified. Taking all the above information from the survey into consideration the designer will designate the locations
and describe the structural controls to be installed in order to minimize erosion and control sediment from reaching adjacent receiving waters and wetlands. The most important aspect of the pre-construction drawings is to identify where water flows through the project site and where critical discharge points are located. The nature and location of best management practices (BMP’s) that will then be emplaced and incorporated prior to construction are determined from these drawings. BMP’s commonly identified/used include: placing combinations of silt screens, hay bales, fiber logs, and temporary vegetation down gradient of areas to be disturbed. Other sediment and stormwater control options include installing sediment ponds or traps or diversion berms and conveyance channels to redirect runoff and sediment from receiving waters.

2. Development of During Construction grading plans. These plans may be incorporated with the pre-development plans when feasible for a simple site but otherwise will be developed for depicting E&SC measures to be employed during grading operations. As the project progresses through its various phases of construction it may be necessary to adjust the location of structural E&SC measures or to include additional ones. These plans will show areas for stockpiling top soils and other materials and how they are to be contained (silt fencing, berms etc.), equipment storage areas and refueling areas (if allowed) with protective measures to be employed such as containment berms or absorbent material for possible spills. These plans may also include final stormwater control structures such as retention/detention ponds. These plans will also include requirements for inspection and maintenance of the BMP’s such as inspections and repair/replacement, if necessary, after every storm event. These plans will point out to the contractor critical containment contours to ensure that optimal treatment of runoff from the disturbed areas is realized and minimal impact occurs to receiving waters.

3. Final Grading or Construction Plans. These plans will show how the site is to look upon completion of construction, final grades, stormwater controls and final stabilization of disturbed lands. These plans will include final landscaping (sod, mulching, plants (native trees and shrubs), ditch or swale lining utilizing sod mats, ditch breaks etc., and slope stabilization. Final grades on all impervious areas such as parking, entry and exit drives will designed so as to reduce runoff velocity and direct runoff into drainage conveyance systems and finally into treatment ponds dry or wet type depending on groundwater depths where the majority of runoff is treated before being released into the receiving waters. The design capacity of the treatment ponds will be based upon SCS curves for the required design storm event. Release of stormwater from the sites will be at pre-construction rates. Outlet controls BMP’s may include rip rap installation where necessary to control erosion at exit points. Most boat ramp installations will also include the installation of trench drains at the top the ramps to capture runoff from the drive areas and divert it to treatment areas or pass it through a filter “sock”. Projects that have sufficient budgets and suitable site conditions may also consider the placement of pervious concrete in lieu of asphalt or concrete driving surfaces. The final grading plans will describe when and where removal of BMP construction sediment control structures (silt fencing, diversion berms etc.) is to be done i.e. establishment of 70% of permanent vegetation. The final part of the stormwater management system is the development of the monitoring or maintenance plan which will describe the frequency of inspection (after every major storm, x’s per year etc.) and maintenance (removing sediment from ponds and swales, cleaning or replacing sand filter beds,
replacing sediment “sock” in trench drain) and what actions to take when the system has been reduced in efficiency or has failed.

12.52.3.1 Best Management Practices and Conservation Measures

The following conservation measures for dune walkover construction would be implemented at each site:

- **Boardwalks**: A dune walkover would be constructed at a height (minimum 3 feet above grade) to accommodate natural dune growth and associated vegetation.

- **Equipment storage**: No storage of equipment or materials would occur on the beach or dunes throughout the entire year.

- **Dune protection**: No activity, except as needed to repair/replace/construct the walkovers, would occur on existing healthy dunes during any time of the year. Activities in this area would be limited to maintenance and restoration of the habitat. If dunes are impacted, they would be restored by planting the appropriate vegetation or installing sand fence. Appropriate signs would be used to designate and indicate the purpose of the conservation area, if necessary.

- **Sand fence**: Minimal use of sand fence would be encouraged. When used, the fence would be used for restoration of dune blowouts. Post and rope are preferred for beach visitor access, pedestrian traffic control, and wildlife exclusion zones (e.g., bird wintering areas). If used for dune restoration, the fence would be placed in a sea turtle–compatible design and be made of biodegradable material.

- **Native landscaping**: The habitat quality of all non-developed areas would be maximized and the habitats would be connected by landscaping with native dune plants. The landscaping plan would be reviewed and approved by the U.S. Fish and Wildlife Service.

- **Dune vegetation**: All dune vegetation used in dune restoration would be native to the specific Walton County dunes and grown from northwest Florida plant stock. Vegetation would be planted with an appropriate amount of fertilizer and anti-desiccant material, as appropriate, for the plant size. Planting must be on 18-inch centers throughout the created dune; however, 24-inch centers may be acceptable depending on the area to be planted. No irrigation lines or pipes would be installed.

- **Refuse**: Sturdy animal-proof garbage containers would be installed and maintained to prevent the invasion of house mice and predators (cats, raccoons, fox, and coyotes).

- **Lighting**: No lighting would be used on the dune walkover. Any lighting for pavilions or other features would be wildlife friendly and will comply with Walton County's Wildlife Conservation Zone Lighting ordinance using best available technology.

In addition, Rule 62B-41.007, Fla. Admin. Code, which is titled Design, Siting, and Other Requirements, requires additional measures to protect beaches and dunes, which would be adhered to in the development of this project, as described below.

To protect the environmental functions of Florida’s beaches, only beach compatible fill would be placed on the beach or in any associated dune system. Beach compatible fill is material that maintains the general character and functionality of the material occurring on the beach and in the adjacent dune and coastal system. Such material would be predominately composed of carbonate, quartz, or similar material with a particle size distribution ranging from 0.062 millimeters (mm) (4.0⁴) to 4.76 mm (-2.25⁴).
(classified as sand by the Unified Soils or the Wentworth classification). The material should be similar in color and grain size distribution (sand grain frequency, mean and median grain size and sorting coefficient) to the material in the existing coastal system at the disposal site, should not result in cementation of the beach, and should not contain the following:

- Greater than 5%, by weight, silt, clay, or colloids passing the #230 sieve (4.0*)
- Greater than 5%, by weight, fine gravel retained on the #4 sieve (2.25*)
- Coarse gravel, cobbles, or material retained on the 3/4-inch sieve in a percentage or size greater than what is found on the native beach
- Construction debris, toxic material, or other foreign matter

If rocks or other non-specified materials appear on the surface of the filled beach in excess of 50% of background in any 10,000-square-foot area, then surface rock should be removed from those areas. These areas would also be tested for subsurface rock percentage and remediated as required. If the natural beach exceeds any of the limiting parameters listed above, then the fill material would not exceed the naturally occurring level for that parameter (Florida Administrative Rule 62B-41.007).

In addition to construction BMPs and dune walkover conservation measures, four of the sites (Grayton Dunes, Dothan Beach, Palms of Dune Allen West, and Bayside Ranchettes) are within the Coastal Construction Control Line (CCCL). An essential part of Florida’s coastal management program, the CCCL program is designed to protect the coastal system from improperly sited and designed structures that can erode, destabilize, or destroy the beach and dune system, with the overall goal of balancing development and the health of these natural systems (FDEP 2013a). The CCCL is defined as “that portion of the beach-dune system subject to severe fluctuations based on a 100-year storm surge, storm waves, or other forces such as wind, wave, or water level changes” (FDEP 2012a). The following environmental-related permit obligations/best practices would be followed for the above referenced projects:

1. The contractor would use extreme care to prevent any impacts to the beach and dune system, marine turtles, their nests and habitat, or adjacent property and structures.
2. The construction would not result in removal or destruction of native vegetation, which would either destabilize a frontal, primary, or significant dune or cause a significant impact to the beach and dune system from increased erosion by wind or water.
3. The construction would not direct discharges of water or other fluids in a seaward direction and in a manner that would result in significant impacts. For the purposes of this rule section, construction would be designed to minimize erosion-induced surface-water runoff within the beach and dune system and to prevent additional seaward or off-site discharges associated with a coastal storm event.
4. Construction traffic would not occur and building materials would not be stored on vegetated areas seaward of the control line unless specifically authorized by the permit.
5. The contractor would not disturb existing beach and dune topography and vegetation except as expressly authorized in the permit, and would restore any disturbed topography or vegetation prior to completing the project.
6. All fill material placed seaward of the control line would be sand, which is similar to that already existing on the site in both coloration and grain size.
7. The construction would not result in removal or disturbance of in situ sandy soils of the beach and dune system to such a degree that a significant impact to the beach and dune system would result from either a) reducing the existing ability of the system to resist erosion during a storm or b) lowering existing levels of storm protection to upland properties and structures.

8. If not specifically authorized elsewhere in the permit, no operation, transportation, or storage of equipment or materials are authorized seaward of the dune crest or rigid coastal structure during the marine turtle nesting season. The marine turtle nesting season is May 1 through October 31 (FDEP 2012b).

Lastly, Standard Manatee Conditions for In-Water Work (USFWS 2011) would apply to the Bayside Ranchettes Park project, which includes building a dock and steps into the water. The permittee would comply with the following conditions intended to protect manatees from direct project effects:

- All personnel associated with the project would be instructed about the presence of manatees and manatee speed zones, and the need to avoid collisions with and impact to manatees. The permittee would advise all construction personnel that there are civil and criminal penalties for harming, harassing, or killing manatees that are protected under the Marine Mammal Protection Act, the Endangered Species Act (ESA), and the Florida Manatee Sanctuary Act.
- All vessels associated with the construction project would operate at "Idle Speed/No Wake" at all times while in the immediate area and while in water where the draft of the vessel provides less than a 4-foot clearance from the bottom. All vessels would follow routes of deep water whenever possible.
- Siltation or turbidity barriers would be made of material in which manatees cannot become entangled, would be properly secured, and would be regularly monitored to avoid manatee entanglement or entrapment. Barriers would not impede manatee movement.
- All on-site project personnel would be responsible for observing water-related activities for the presence of manatee(s). All in-water operations, including vessels, would be shut down if a manatee(s) comes within 50 feet of the operation. Activities would not resume until the manatee(s) has moved beyond the 50-foot radius of the project operation, or until 30 minutes elapse if the manatee(s) has not reappeared within 50 feet of the operation. Animals would not be herded away or harassed into leaving.
- Any collision with or harm to a manatee would be reported immediately to the FWC Hotline at 1-888-404-3922.
- Collision and/or harm would also be reported to the U.S. Fish and Wildlife Service (USFWS) in Jacksonville (1-904-731-3336) for north Florida or Vero Beach (1-772-562-3909) for south Florida, and to FWC at ImperiledSpecies@myFWC.com.
- Temporary signs concerning manatees would be posted before and during any in-water project activities. All signs would be removed by the permittee upon completion of the project. Temporary signs that have already been approved for this use by the FWC would be used. One sign that reads “Caution: Boaters” would be posted. A second sign measuring at least 8 ½ x 11 inches explaining the requirements for “Idle Speed/No Wake” and the shutdown of in-water operations would be posted in a location prominently visible to all personnel engaged in water-related activities. These signs can be viewed at MyFWC.com/manatee.
• The project would adhere to all applicable permit conditions and federal, state, and local requirements for the protection of marine mammals during construction (FWC 2011b).

12.52.3.2 Construction Timeframe

Proposed construction work is expected to take 2–3 months to start and 2 months to complete. The following proposed schedule is planned:

- Design Complete: Summer 2014
- Permitting Complete: DEP permits would be obtained once funding is secured. FDEP permits would not be required for Gulfview Heights, and Ed Walline sites, because they are landward of the CCCL.
- Contract Bid: Summer 2014
- Construction Start: Summer 2014
- Construction Compete: Fall 2014

12.52.4 Operations and Maintenance

Long-term monitoring and maintenance of the improved facilities would be completed by Walton County as part of their regular public facilities maintenance activities. Funding for this post construction maintenance is not included in the value for the project cost and would be accomplished by Walton County.

As part of the project cost, monitoring would be conducted to ensure project plans and designs are correctly implemented. Performance monitoring would evaluate the construction of the boardwalks, dune walkovers, dock and steps, restrooms, and picnic pavilion to ensure successful completion as designed and permitted. Following the construction performance monitoring period, human use and activity at the site would be monitored through the local government’s regular maintenance activities. This assessment would not be directly undertaken by the Florida Trustees.

12.52.5 Affected Environment and Environmental Consequences

Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

12.52.5.1 No Action

Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.
12.52.5.2  Physical Environment

12.52.5.2.1  Geology and Substrates

Affected Resources

According to the Geologic Map of Florida, the Ed Walline, Gulfview Heights, Grayton Dunes, Dothan Beach, and Palms of Dune Allen West sites are on the Quaternary system, Holocene series, Holocene Sediments stratigraphic unit. This stratigraphic unit consists of quartz sands, carbonate sands and muds, and organics. These sediments occur near the present coastline, typically at elevation 5 feet above mean sea level or lower (FDEP 2013b; FDEP 2013c).

The Bayside Ranchettes Park site is on the Quaternary system, Pleistocene/Holocene series, Undifferentiated Quaternary Sediments stratigraphic unit. This stratigraphic unit consists of siliciclastics, organics, and freshwater carbonates. The siliciclastics are light gray, tan, brown to black, unconsolidated to poorly consolidated, clean to clayey, silty, unfossiliferous, variably organic-bearing sands to blue green to olive green, poorly to moderately consolidated, sandy, silty clays. Gravel is occasionally present. Organics occur as plant debris, roots, disseminated organic matrix, and beds of peat. Freshwater carbonates, or marls, are buff-colored to tan, unconsolidated to poorly consolidated, fossiliferous carbonate muds. Sand, silt, and clay may be present in limited quantities, and these carbonates often contain organics. The dominant fossils in the freshwater carbonates are mollusks (FDEP 2013b).

The Department of Environmental Protection, Bureau of Beaches and Coastal Systems identifies and manages beaches of the state that are critically eroding. The Ed Walline, Gulfview Heights, Grayton Dunes, Dothan Beach, and Palms of Dune Allen West sites are all along these state-designated, critically eroded beaches. A critically eroded area is a “segment of the shoreline where natural processes or human activity have caused or contributed to erosion and recession of the beach or dune system to such a degree that upland development, recreational interests, wildlife habitat, or important cultural resources are threatened or lost” (FDEP 2012a). The critically eroded areas at the Palms of Dune Allen West, Ed Walline, and Gulfview Heights sites threaten development and County Road 30A, whereas those at Grayton Dunes and Dothan Beach only threaten development (FDEP 2012a).

A sinkhole is a closed depression in the land surface that is formed by surficial solution or by subsidence or collapse of surficial materials from the solution of near-surface limestone or other soluble rocks. Sinkholes are a natural and common geologic feature in areas underlain by limestone and other rock types soluble in natural water; they are one of the predominant landform features of Florida. The state has been classified into four areas of sinkhole occurrence. Coastal Walton County is categorized as Area IV with a carbonate rock cover more than 200 feet thick. Area IV consists of cohesive sediments interlayered with discontinuous carbonate beds. Sinkholes are very few, but several large-diameter, deep sinkholes occur. Cover-collapse sinkholes dominate in Area IV, which occur when a solution cavity develops in limestone to such a size that the overlying cover material can no longer support its own weight. Activities that promote sinkholes include over-withdrawal of groundwater, drilling water wells, and creating artificial surface water ponds (FDEP 2013d).
**Environmental Consequences**

Mechanized equipment and hand tools would be used to complete the repairs to current infrastructure and to construct the restroom facility, dune walkovers, and expansion of parking at the sites. Permit-required erosion control measures would be implemented at all of the proposed sites, and contractors would use BMPs to control erosion and minimize compaction.

Some excavation of soils would occur; however, adverse impacts to geology and substrates in the form of erosion and/or compaction would be minor because disturbance would be detectable. Impacts would also be short term and localized because of the limited construction period and footprint and due to adherence to the construction BMPs outlined in the Construction and Installation section above. There would be no long-term changes to local geology, soils, and sediments due to erosion and/or compaction associated with each project because of the limited construction period and footprint. Erosion and/or compaction may occur in localized areas, but would be minimized by the erosion control BMPs specified in the Construction and Installation section. Sinkholes are not expected to be an issue during project construction based on the Area IV classification.

**12.5.2.2 Hydrology and Water Quality**

**Affected Resources**

**Watersheds**

Northwest Florida has seven major watersheds, all of which have been identified as priorities under the Surface Water Management and Improvement (SWIM) program. Water quality protection is the underlying goal of SWIM, along with the preservation and restoration of natural systems and associated public uses and benefits (NWFWMD 2011). According to the Northwest Florida Water Management District, the Ed Walline, Gulfview Heights, Palms of Dune Allen West, and Bayside Ranchettes Park (on Choctawhatchee Bay) sites are part of the Choctawhatchee River and Bay watershed system, whereas the Grayton Dunes and Dothan Beach sites are part of the St. Andrew Bay watershed system. The Bayside Ranchettes Park sits on the shoreline adjacent to Choctawhatchee Bay.

The Choctawhatchee River and Bay watershed system encompasses approximately 3.5 million acres, 42% of which are in the state of Florida (the rest is in Alabama). Walton County is dominated by this watershed, aside from a small portion in the northeast part of the county. Made up primarily of the Choctawhatchee River, its tributaries, and the bay, the watershed system provides an array of aquatic, wetland, environmental, and human benefits over diverse ecological systems. Major tributaries of the Choctawhatchee River include the Pea River and Little Choctawhatchee River, as well as Holmes, Wrights, Bruce, and Pine Log Creeks. The waterways are primarily used for transportation, fishing, military uses, outdoor recreation, tourism, aesthetic qualities, and waste disposal. The system has one direct opening from its bay to the Gulf of Mexico at East Pass near Destin, Florida. Broad issues for the Choctawhatchee River and Bay system include urban stormwater runoff and other nonpoint sources of pollution, widespread sedimentation, domestic and industrial wastewater discharges, and habitat loss and degradation. Cumulatively, these impacts have degraded the productivity of the river and bay system and diminished the benefits it provides (NWFWMD 2002).
The St. Andrew Bay watershed system is the only major estuarine drainage basin entirely within the Florida panhandle; it encompasses approximately 750,000 acres in six Florida counties. The watershed contains St. Andrew Bay (east, west, and north bays), St. Joseph Bay, Deer Point Reservoir, and their respective surface water basins. Only 4% of the watershed is in Walton County. This part of the watershed drains into several coastal dune drainages. The residential population in this area has grown in the past two decades, with the resulting challenge of increased human land use, non-point source pollution, and habitat loss and degradation. Land development tends to cause stream channelization, increase in impervious surface area, erosion, and habitat loss. Resulting hydrologic impacts include increased frequency and severity of flooding, lowered water tables, and reduced streamflow in dry weather (NWFWMD 2000).

Coastal Dune Lakes
Walton County’s 26-mile coastline is home to 15 named coastal dune lakes. Coastal dune lakes are extremely rare around the world and only occur along the Gulf Coast and in the state of Oregon in the United States. These unique geographic features share an intermittent connection with the Gulf of Mexico, acting as outfalls into the Gulf during periods of overflow/flooding while allowing saltwater and marine life in during high tides and storm surges. Walton County maintains protection of their coastal dune lakes through monitoring partnerships, cooperation with state and federal agencies, and via meetings of the Coastal Dune Lakes Advisory Board (Walton County 2013a). The Palms of Dune Allen West, Gulfview Heights, and Grayton Dunes sites are all within 1,500 feet of a coastal dune lake. The Palms of Dune Allen site is approximately 1,300 feet east of Oyster Lake, Gulfview Heights is approximately 1,500 feet west of Draper Lake, and Grayton Dunes is approximately 500 feet west of Western Lake.

Impaired Waters
Impaired waters are waters that are too polluted or otherwise degraded to meet the water quality standards set by states, territories, or authorized tribes. In 2002, 32% of Florida’s lakes and 84% of its bays were impaired. The Choctawhatchee Bay is listed as impaired by the EPA for fecal coliform and mercury in fish tissue in its lower segment, and for mercury in fish tissue for its middle and upper segments. The Bayside Ranchettes Park site is in the upper segment. Total maximum daily loads (TMDLs) have not yet been adopted for these locations. No other lakes in the project sites are impaired (EPA 2010).

Wetlands
According to the National Wetland Inventory, the six proposed project sites do not appear to overlap any wetlands, but they are surrounded by various types of wetlands, mainly freshwater wetlands upland of the proposed sites (Figure 12-8,

Figure 12-9,

Figure 12-10).

Floodplains
According to Federal Emergency Management Agency (FEMA) flood information, all six proposed project sites are in a Special Flood Hazard Areas inundated by 100-year floods (Walton County 2013c).

Environmental Consequences
With required mitigation in place, anticipated impacts to water quality, such as erosion caused by construction, would be minimal and short in duration at all proposed project sites. This project would use the construction BMPs outlined in the Construction and Installation section to minimize erosion-related construction impacts as well as impacts to surface water, groundwater, and wetlands. Contractors would take special precautions when working within the CCCL and around coastal dune lake habitats. Floodplain status would not be affected. Adverse impacts to hydrology and water quality would therefore be minor and short term.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (USACE) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the USACE and final authorization pursuant to CWA/RHA will be completed prior to implementation of the Bayside Ranchettes project. The remaining proposed projects are not anticipated to require authorization by the USACE pursuant CWA/RHA.

12.52.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
The Clean Air Act requires the EPA to set National Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to public health and the environment. NAAQS have been set for six common air pollutants (also known as criteria pollutants), consisting of particle pollution or particulate matter, ozone, carbon monoxide, sulfur dioxide, nitrogen dioxide, and lead. Particulate matter is defined as fine particulates with a diameter of 10 micrometers or less (PM$_{10}$) and fine particulates with a diameter of 2.5 or less (PM$_{2.5}$). When a designated air quality area or airshed in a state exceeds a NAAQS, that area may be designated as a “nonattainment” area. Areas with levels of pollutants below the health-based standard are designated as “attainment” areas. To determine whether an area meets the NAAQS, air monitoring networks have been established and are used to measure ambient air quality. The EPA also regulates 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health effects.

Air quality within the Florida panhandle is in attainment with the NAAQS (EPA 2013).
Figure 12-8. Wetlands near Palms of Dune Allen West, Ed Walline, and Gulfview Heights project sites.
Figure 12-9. Wetlands near Grayton Dunes Beach and Dothan Beach project sites.
Figure 12-10. Wetlands near Bayside Ranchettes Park project site.

Greenhouse Gases
Gases that trap heat in the air are called greenhouse gases (GHGs). The primary GHGs are carbon dioxide (CO₂), methane, nitrous oxide, and fluorinated gases. Over the past century, human activities have released into the atmosphere large amounts of GHGs, which are contributing to global warming. Global warming is defined as the ongoing rise in global average temperature near the Earth’s surface. Global warming is causing climate patterns to change.

According to the EPA, the average annual temperature in the southeast portion of the United States has increased by approximately 2.0°F since 1970. Winters, in particular, are getting warmer, and the average number of freezing days has decreased by 4–7 days per year since the mid-1970s. Most areas are getting
wetter; autumn precipitation has increased by 30% since 1901 (EPA 2013). In many parts of the region, the number of heavy downpours has increased. Despite the increases in fall precipitation, the area affected by moderate and severe drought has increased since the mid-1970s (EPA 2013).

Average annual temperatures in the region are projected to increase from 4°F to 9°F by 2080. Hurricane-related rainfall is projected to continue to increase. Models suggest that rainfall will arrive in heavier downpours with increased dry periods between storms. These changes would increase the risk of both flooding and drought. The coasts will likely experience stronger hurricanes and sea level rise. Storm surge could present problems for coastal communities and ecosystems (EPA 2013).

Total GHG emissions in the state of Florida from 1990 to 2007 have increased at an average rate of 2.1% per year. Total GHG emissions in 2007 were 290 million metric tons of CO₂ equivalent (MMTCO₂E). In 2007, 91% of GHG emissions in Florida were CO₂ emissions (FDEP 2010).

**Environmental Consequences**

Project implementation would require the use of heavy mechanized equipment which would lead to temporary emissions (e.g., criteria pollutants, HAPs, GHGs) from the operation of construction vehicles and equipment. Any air quality impacts that occur would be measurable but minor due their localized nature, short-term duration, and the small size of the project. BMPs would be employed to prevent, mitigate, and control potential air pollutants during project implementation, such as following speed limits and prohibiting idling unless necessary to run equipment. No air quality–related permits would be required because of the minimal levels of emissions.

The major pieces of construction equipment that would contribute to GHG emissions for these projects are listed in Table 12-3, along with their estimated emissions. GHG emissions from the remaining (hand) equipment would be negligible. The emissions estimates are based on the operating assumptions in Table 12-2, and include emissions from all of the six proposed projects.

Based on the estimates in Table 12-3, the project would generate approximately 75 metric tons of GHGs over the duration of all phases. The following mitigation measures have been identified to reduce or eliminate GHG emissions from the project:

- Shut down idling construction equipment, if feasible.
- Locate staging areas as close to construction sites as practicable to minimize driving distances between staging areas and construction sites.
- Encourage the use of the proper size of equipment for the job to maximize energy efficiency.
- Encourage the use of alternative fuels for generators at construction sites, such as propane or solar, or use electrical power where practicable.

The project would have short-term, minor impacts but no long-term impacts on GHG emissions. Mitigation measures would minimize GHG emissions.
Table 12-3. Estimated greenhouse gas impacts of the proposed projects for major construction equipment.

<table>
<thead>
<tr>
<th>EQUIPMENT DESCRIPTION</th>
<th>TOTAL HOURS USED</th>
<th>CO₂ FACTOR-MT/100 HOURS</th>
<th>CO₂ (MT)</th>
<th>CH₄ FACTOR-MT/100HRS</th>
<th>CH₄ (MT)</th>
<th>N₂O FACTOR-MT/100 HOURS</th>
<th>N₂O (MT)</th>
<th>TOTAL CO₂ (MT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dump trucks/flatbed truck</td>
<td>104</td>
<td>1.70</td>
<td>1.8</td>
<td>0.50</td>
<td>0.5</td>
<td>7.20</td>
<td>7.5</td>
<td>9.8</td>
</tr>
<tr>
<td>Concrete trucks</td>
<td>16</td>
<td>1.70</td>
<td>0.3</td>
<td>0.50</td>
<td>0.1</td>
<td>7.20</td>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Pickup trucks</td>
<td>704</td>
<td>1.10</td>
<td>7.7</td>
<td>0.35</td>
<td>2.5</td>
<td>4.40</td>
<td>31.0</td>
<td>41.2</td>
</tr>
<tr>
<td>Bobcat (bare and with auger mount)</td>
<td>80</td>
<td>2.65</td>
<td>2.1</td>
<td>0.90</td>
<td>0.7</td>
<td>10.60</td>
<td>8.5</td>
<td>11.3</td>
</tr>
<tr>
<td>Moto grader</td>
<td>16</td>
<td>2.25</td>
<td>0.4</td>
<td>0.65</td>
<td>0.1</td>
<td>1.08</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Paving machine</td>
<td>16</td>
<td>2.00</td>
<td>0.3</td>
<td>0.50</td>
<td>0.1</td>
<td>8.00</td>
<td>1.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Rollers</td>
<td>16</td>
<td>2.00</td>
<td>0.3</td>
<td>0.5</td>
<td>0.1</td>
<td>8.00</td>
<td>1.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Track hoe (w/ bucket/thumb or vibratory attachments)</td>
<td>24</td>
<td>2.55</td>
<td>0.6</td>
<td>0.85</td>
<td>0.2</td>
<td>10.20</td>
<td>2.4</td>
<td>3.3</td>
</tr>
<tr>
<td>Dozer</td>
<td>40</td>
<td>2.25</td>
<td>0.9</td>
<td>0.65</td>
<td>0.3</td>
<td>1.08</td>
<td>0.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Forklift</td>
<td>64</td>
<td>2.25</td>
<td>1.4</td>
<td>0.65</td>
<td>0.4</td>
<td>1.08</td>
<td>0.7</td>
<td>2.5</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>1,080</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>75</strong></td>
</tr>
</tbody>
</table>

mt = metric tonnes

At the completion of the project, visitor use (and therefore vehicle use) could increase due to the improved access and facilities. Increased exhaust emissions could affect air quality over the long term. However, impacts to air quality are expected to be minor because 1) management actions could be taken if necessary to limit park visits, 2) they would be negligible in the context of the total number of miles travelled in the regional airshed, and 3) because vehicles would likely be parked for the duration of their visit and therefore only producing emissions when coming and going from the site.

### 12.52.5.3 Noise

**Affected Resources**

Noise can be defined as unwanted or nuisance sound. The Noise Control Act of 1972 (42 USC 4901 to 4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. Amplitude is the magnitude of a sound and is usually expressed in decibels (dB), a dimensionless ratio of sound pressure to that of a reference pressure. The A-weighted decibel (dBA) is the adjusted unit of sound used to describe the human response to noise from industrial and transportation sources. The threshold of human hearing is 0 dBA. A 3-dBA increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-4 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.
Noise levels in the project area vary depending on the season, time of day, number and types of noise sources, and the distance of the receptor from noise sources. Existing sources of noise in the project area are from nearby residential activities (e.g., lawn care), traffic on nearby roads and highways, overhead aircraft, and ambient natural sounds such as wind, waves, and wildlife.

Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the project. Sources of noise in the project sites include flight activity coming out of Eglin Air Force Base, which sits on the west edge of Choctawhatchee Bay, residences located around the sites, boats and other watercraft on the Gulf of Mexico and in Choctawhatchee Bay, and car and truck traffic. Noise-sensitive receptors in the project sites include residences around the sites, recreational users, and wildlife. There are currently residences in and around each of the sites, some as close as 25 feet.

**Environmental Consequences**

Instances of increased noise would occur during the project and construction activities at each of the six sites. Construction activities, including use of heavy equipment such as graders and backhoes and smaller hand-held tools such as saws and nail guns, would cause an increase in noise during the day for the duration of construction when heard at noise-sensitive receptors near the sites. Construction equipment noise is known to disturb fish, marine mammals, and nesting shorebirds. Construction noise would also negatively affect local residents in areas near project construction activities.

Standard state contract provisions include restricting work to weekdays from normally 7am to 7pm unless in a hospital or strictly residential area. Contractors are normally not allowed to work outside these limits unless it is for safety, traffic, or highly restricted schedules, and then it must be by permission. In addition, state contracts require that all equipment used on-site must be properly muffled and in good repair. As a result, noise impacts are expected to be minor and short term. The noise impacts would be short term because the construction period is not anticipated to last more than 2 months at each site and minor because of the temporary nature of the construction noise and state-required construction BMPs. Negative impacts to the soundscape would be of a level that is likely to attract visitor and neighbor attention but not cause changes in visitor or resident activities.
After completion of the project, the soundscape would return to pre-project levels. The potential for increased vehicle traffic exists due to the improved access and facilities at each site, which would result in a slight increase in noise levels in the vicinity. Overall, long-term noise impacts from traffic, beach use, picnicking, and other recreational activities would remain minor due to the small footprint of each site.

### 12.52.5.4 Biological Environment

#### 12.52.5.4.1 Living Coastal and Marine Resources

The Gulf of Mexico is one of the nation’s most valuable ecosystems. Florida’s barrier islands, estuaries, coral reefs, beaches, seagrass meadows, coastal wetlands, and mangrove forests are world-renowned natural resources and attractions. These habitats provide a range of ecosystem services, including fisheries, wildlife-related activities, food production, energy production, infrastructure protection, and recreational opportunities (Gulf Coast Ecosystem Restoration Task Force 2011). In Walton County, beach and dune systems are an integral part of the coastal system and represent one of the most valuable natural resources in Florida, providing protection to adjacent upland properties, recreational areas, and habitat for wildlife.

### Affected Resources

The Florida Gap Project uses the recently enacted U.S. National Vegetation Classification System to classify its vegetation map of the state of Florida. The land cover mapping technique developed by the Florida Fish and Wildlife Cooperative Unit synergizes existing geospatial information with current Landsat imagery and ground-truthed data (Florida Fish and Wildlife Cooperative Unit 2000).

According to Florida’s GAP Land Cover GIS data, the Palms of Dune Allen West, Ed Walline, and Gulfview Heights sites are dominated by a mix of sand/beach and urban land cover classes (a mix of urban, open, and residential land types). Additional land cover classes that are identified as existing in these project sites, though less prevalent, include cover classes such as gallberry/saw palmetto shrubland compositional group, swamp forest ecological complex, sand pine forest, and coastal strand. The Palms of Dune Allen West and Ed Walline sites sit on the sand/beach, which is dominant, with urban complex immediately to the north; whereas the Gulfview Heights site sits on dry prairie (xeric-mesic) ecological complex with urban complex immediately to the north.

The Grayton Dunes site sits on open land surrounded by urban residential, sand/beach, and a small amount of bay/gum/cypress ecological cover, and coastal strand.

The Dothan Beach site sits on urban residential land surrounded by sand/beach and coastal strand.

Finally, nearly the entire parcel proposed for development at the Bayside Ranchettes Park site sits on pasture/agricultural/grassland. This parcel is surrounded by a less dominant mix gallberry/saw palmetto shrubland compositional group, xeric-mesic mixed pine/oak forest ecological complex, swamp forest ecological complex, mesic-hydric pine forest compositional group, and urban land cover. Table 12-5 describes the characteristics of these land cover class types in detail.
Table 12-5. Landcover class descriptions.

<table>
<thead>
<tr>
<th>LANDCOVER CLASS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>This class represents predominantly commercial urban areas.</td>
</tr>
<tr>
<td>Sand/beach</td>
<td>This class represents unvegetated sand and beach</td>
</tr>
<tr>
<td>Pasture/grassland/agriculture</td>
<td>This class represents pasture, grassland, and some agriculture. The difficulty of differentiating grassland and some forms of agriculture (e.g., hay) from pasture using spectral data has resulted in this lumped class. The class appears to be primarily pasture, although some overlap with sandhill and other open, graminoid type communities may have occurred.</td>
</tr>
<tr>
<td>Coastal strand</td>
<td>This is a coastal dune- and shrub-dominated community. Dominance in north Florida by saw palmetto (<em>Serenoa repens</em>) and yaupon holly (<em>Ilex vomitoria</em>) is common. In southern Florida, saw palmetto (<em>Serenoa repens</em>) remains common and sea grape (<em>Coccoloba uvifera</em>) becomes a more prominent community member.</td>
</tr>
<tr>
<td>Dry prairie ecological complex</td>
<td>In Florida, dry prairies are sparsely wooded savannas with dominance by a mosaic of saw palmetto (<em>Serenoa repens</em>) and grasses (<em>Aristida</em> spp., <em>Sporobolus</em> spp., and <em>Andropogon</em> spp.)</td>
</tr>
<tr>
<td>Gallberry/saw palmetto compositional group</td>
<td>This class represents shrub and graminoid communities found in association with wet flatwoods. Although similar to the dry prairie class, it tends to be wetter and have a greater dominance by shrubs. Gallberry (<em>Ilex glabra</em> and <em>I. coriacea</em>), fetterbush (<em>Lyonia lucida</em>), sweet pepperbush (<em>Clethra alnifolia</em>), and titi (<em>Cyrilla racemosa</em> and <em>Cliftonia monophylla</em>) are representative species. This community may be an early phase of pine regeneration or it may have a more permanent status.</td>
</tr>
<tr>
<td>Swamp forest compositional group</td>
<td>This class represents deciduous and evergreen swamp forests of north and central Florida.</td>
</tr>
<tr>
<td>Sand pine forest</td>
<td>Forest dominated by sand pine (<em>Pinus clausa</em>). These forests are found on dry, sand ridges in the interior and along the coast.</td>
</tr>
<tr>
<td>Bay/gum/cypress ecological complex</td>
<td>This class represents forested communities containing combinations of bay (<em>Gordonia lasianthus</em>, <em>Magnolia virginiana</em>, <em>Persea palustris</em>), gum (<em>Nyssa</em> spp.), and cypress (<em>Taxodium</em> spp.).</td>
</tr>
<tr>
<td>Xeric-mesic mixed pine/oak forest ecological complex</td>
<td>This complex represents mesic to xeric mixed pine/oak forest. The dominant species may include varying levels of <em>Pinus elliottii</em>, <em>P. palustris</em>, <em>P. taeda</em>, <em>Quercus falcata</em>, <em>Q. hemisphaerica</em>, <em>Q. virginiana</em>, <em>Carya glabra</em>, and <em>C. tomentosa</em>.</td>
</tr>
</tbody>
</table>

**Environmental Consequences**

Impacts to living coastal and marine resources would be minor. Impacts on native vegetation would be detectable but would not alter overall natural conditions and would be limited to localized areas. Infrequent disturbance and destruction of some individual plants would be expected, but would not affect local or rangewide population stability. The opportunity for the increased spread of non-native species would be temporary and localized and is not anticipated to displace native species populations and distributions. Infrequent or one-time disturbance to locally suitable habitat could occur, but sufficient habitat would remain functional at both the local and regional scales to maintain the viability of the species.
Five of the projects would be at existing coastal access sites to the Gulf of Mexico, with one site (Bayside Ranchettes Park) providing a new access point to Choctawhatchee Bay. The proposed improvements at Palms of Dune Allen West and Ed Walline sites would have no impact to vegetation because they sit on the sand/beach land cover class, which represents unvegetated sand and beach. The Grayton Dunes site would also experience no impact to vegetation because it sits on open land, which has no vegetation. The Dothan Beach site sits on urban residential, so there would also be no impact to vegetation. The Gulfview Heights site sits on dry prairie (xeric-mesic) ecological complex with urban complex immediately to the north and sand/beach to the south. Plants such as saw palmetto and grasses (see Table 12-4) could be impacted by crushing or trampling during the proposed repairing of soffits on pavilions and updates to existing infrastructure, but this impact would be minor and short in duration due to the adherence to construction BPMs, the small footprint of the project, and the fact that no substrate excavation would take place. Lastly, the Bayside Ranchettes Park site sits on the pasture/grassland/agriculture land cover class, which is composed primarily of pasture with some overlap of sandhill and other open, graminoid type communities. The impacts to vegetation at this site would be moderate because of the vegetation removal associated with construction of a parking area, a picnic table, a dock, but short term in duration due to the 2-month construction timeframe.

At the sites with existing vegetation, there is potential for the introduction of invasive plant species due to the introduction of vehicles and equipment that may spread seeds or plants; however, BMPs (HACCP planning and implementation) to prevent introduction and spread have been incorporated into the project. Collectively, the proposed sites would have minor and short-term impacts to vegetation, because of the general lack of vegetation at the sites and the 2-month construction timeframe at each site.

12.52.5.5 Wildlife Habitat

Affected Resources
The Gulf Coast Beaches host a variety of resident and migratory animals. Dune and beach habitat in the project areas provide habitat and important services for 1) nesting and hatching sea turtles, 2) overwintering piping plovers, 3) nesting, resting and foraging migratory birds, and 4) beach mice (Walton County 2011). In addition, migratory butterflies can also be viewed along the coastline. Walton County has adopted a Wildlife Lighting Ordinance (No. 2009-03), which provides guidelines for proper light management to minimize disturbances to nesting sea turtles, their hatchlings, and other coastal wildlife. All new construction within the Wildlife Conservation Zone (750 feet from the mean high water line of the Gulf of Mexico) must comply with the ordinance (Walton County 2013d). All five southern projects are within this zone, but project activities would occur during daylight hours.

Environmental Consequences
Construction and operations would cause only minimal damage to habitats because of the small construction footprints and already existing access footprint at the sites. Although common wildlife may be disturbed from construction activities, these species live in an urban environment where ambient noise levels are high. Habitat conditions after construction would be similar to the existing ones, and no impacts to common wildlife would be anticipated. Construction and operations would cause only minimal alteration and/or damage to habitats, and therefore a minor, short-term impact. The dune habitat in the project sites would be moderately improved over the long term as a result of dune
restoration and walkover construction. The FDEP Wetland and Environmental Resource Field permits would require the implementation of BMPs for turbidity and erosion control. This would help minimize the damage and loss of habitats through the same mitigation measures mentioned in the Construction and Installation section.

12.52.5.5.1 Marine and Estuarine Fauna

Affected Resources
The Choctawhatchee Bay and Gulf of Mexico provide habitat for numerous fish and other marine species. The value of marine habitats at the project sites has been affected by population growth, development, and wastewater disposal. Increased coastal development, in particular, has contributed to displaced habitats, loss of wetlands, and greater amounts of stormwater runoff entering the bay and its tributaries (NWFWMD 2011). Nonetheless, the marine environment at the project sites provides habitat to an array of aquatic species, including redfish, speckled trout (Cynoscion nebulosus), shrimp, oysters, gulf menhaden (Brevoortia patronus), blue crab, flounder, striped mullet (Mugil cephalus), white mullet (Mugil curema), and dolphins. Offshore saltwater fish in South Walton include speckled trout, redfish, Spanish mackerel (Scomberomorus maculates), flounder, bluefish (Pomatomus saltatrix) and cobia (Rachycentron canadum) (South Walton 2013; FWC 2013). Benthic organisms such as bivalves, gastropods, and other mollusks, anemones, amphipods, annelids, crustaceans, and echinoderms, and are also abundant in these waters (FWC 2001).

Environmental Consequences
Fish and benthic organisms are not expected to be impacted by the Gulfside projects because construction would take place only in upland areas and because BMPs listed in the Construction and Installation section would be adhered to. Construction on the Bayside Ranchettes Park, however, would include building a dock onto the water. Construction activities are expected to have a minor, short-term impact on fish due to the small project footprint and short (two-month) temporal timescale, in addition to adhering to BMPs listed in the Construction and Installation section. Over the long term, increases in recreational swimmers, canoers, and kayakers at all sites may occur due to the improved access and facilities at the sites. These recreational activities are generally low impact for fish and are expected to have a negligible impact on fish populations.

12.52.5.5.2 Protected Species

Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

Affected Resources
The Grayson site is within critical habitat for the Choctawhatchee beach mouse (Figure 12-11). In addition, both the Gulf Coast and the Choctawhatchee Bay are considered critical habitat for the Gulf sturgeon (Figure 12-11).
The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Walton County, Florida. Table 12-6 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

Table 12-6. Potential Impacts to Species/Critical Habitats managed by USFWS in the project area

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle; Leatherback turtle, Loggerhead turtle</td>
<td>The main risk to sea turtles during execution of this project would come should work be conducted during the turtles nesting season from approximately May to November when turtles, and to a greater extent their nests could be at risk of harassment, harm, and mortality from the use of heavy equipment on the beach. Construction equipment can crush individuals and nests, create ruts and other structures that may make it difficult to return to the sea, and compact substrates which may make nesting difficult. Due to the small footprint of any single project and the conservation measures below, impacts to sea turtles and their nests will be minimized to an insignificant and discountable level. No proposed or designated critical habitat for sea turtles occurs within the action area; therefore, none will be adversely affected or modified.</td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>The county in the project area is not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the project waters (U.S. Department of the Interior, 2011) for the Bayside Ranchettes action area. The main risk to manatees during implementation of this project would come from in-water material collisions which could result in harm or mortality. Due to the conservation measures below, the Trustees believe these impacts will be reduced such that they are either avoided or insignificant and discountable.</td>
</tr>
<tr>
<td>Piping plover</td>
<td>The main risk to Piping plovers is from human disturbance while resting and foraging in habitats adjacent to work areas. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the plovers to move to a nearby area. Because other foraging/resting habitats surround the area the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable. Piping plover critical habitat is not designated in or near the action.</td>
</tr>
<tr>
<td>Red knot</td>
<td>The main risk to Red knots is from human disturbance while resting and foraging in habitats adjacent to work areas. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the red knots to move to a nearby area. Because other foraging/resting habitats surround the area the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable.</td>
</tr>
<tr>
<td>Gulf sturgeon</td>
<td>NMFS was consulted on Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon was not considered in the consultation with the USFWS.</td>
</tr>
<tr>
<td>Choctawhatchee beach mouse</td>
<td>The Choctawhatchee beach mouse could occupy any and all these sites except Bayside Ranchettes, though they are not expected in the Ed Walline and Gulfview Heights project areas. If working in or near habitat for the mouse (i.e., dune systems) burrows could collapse during walkover construction/replacement activities which can result in abandonment of the burrow by the adults; leading to potential harm or mortality and mortality of any young within the burrow, and increased risk of predation. Lighting added to parking areas could affect the nocturnal habitats of the mouse. Because of the conservation measures listed below (including...</td>
</tr>
</tbody>
</table>

---

Critical habitat for Choctawhatchee beach mouse

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>those for critical habitat), the Trustees believe impacts to beach mice are insignificant and discountable.</td>
</tr>
<tr>
<td>The Grayton Dunes Beach Access Boardwalk Improvements component of the Walton County Boardwalks and Dune Crossovers Project overlaps with Choctawhatchee Beach Mouse Critical Habitat Unit 3 (Grayton Beach Unit – 179 acres). Critical habitat is adjacent to the Deer Lake project site.</td>
</tr>
<tr>
<td>Primary Constituent Elements for the mouse habitat are:</td>
</tr>
<tr>
<td>1) A contiguous mosaic of primary, secondary scrub vegetation, and dune structure, with a balanced level of competition and predation and few or no competitive or predaceous nonnative species present, that collectively provide foraging opportunities, cover, and burrow sites;</td>
</tr>
<tr>
<td>2) Primary and secondary dunes, generally dominated by sea oats that, despite occasional temporary impacts and reconfiguration from tropical storms and hurricanes, provide abundant food resources, burrow sites, and protection from predators;</td>
</tr>
<tr>
<td>3) Scrub dunes, generally dominated by scrub oaks, that provide food resources and burrow sites, and provide elevated refugia during and after intense flooding due to rainfall and/or hurricane induced storm surge;</td>
</tr>
<tr>
<td>4) Functional, unobstructed habitat connections that facilitate genetic exchange, dispersal, natural exploratory movements, and recolonization of locally extirpated areas; and</td>
</tr>
<tr>
<td>5) A natural light regime within the coastal dune ecosystem, compatible with the nocturnal activity of beach mice, necessary for normal behavior, growth and viability of all life stages.</td>
</tr>
</tbody>
</table>

The proposed projects are not expected to negatively impact PCE’s but rather may benefit PCE’s. The existing boardwalks or lack of boardwalks could be limiting the amount of contiguous habitat, food resources, burrow sites, and the boardwalks may be causing obstructions due to their low height. Repairing boardwalks and constructing new ones including should allow for unobstructed movements by mice; help prevent dune erosion (pathway “fanning”) from general visitor use thereby reducing changes to burrow sites, food resources, and susceptibility to hurricane/storm impacts. No lighting is planned for the walkovers. At Deer Lake any lighting will wildlife friendly, consistent with latest edition of FWC lighting technical manual. Due to the conservation measures below and project design, no adverse modification or destruction of critical habitat is anticipated.

In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Protected Resource Division (PRD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that the Ed Walline Beach Access Improvements, Gulfview Heights Beach Access Improvements, Grayton Dunes Beach Access Boardwalk Improvements, and Palms of Dune Allen West Beach Access Improvements projects fall outside of NMFS Endangered Species Act (ESA) jurisdiction, as they do not contain suitable habitat for species managed by NMFS. As a result, these projects did not require further ESA evaluation from NOAA.

However, the Bayside Ranchettes Park Improvement project does incorporate in-water work that could potentially affect protected species managed by NMFS. As a result, the Bayside Ranchettes project was reviewed for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:
- Gulf Sturgeon, Acipenser oxyrinchus desotoi, Threatened
- Smalltooth Sawfish, Pristis pectinata, Endangered
- Green Sea Turtle, Chelonia mydas, Endangered
- Loggerhead Sea Turtle, Caretta caretta, Threatened
- Hawksbill Sea Turtle, Eretmochelys imbricata, Endangered
- Leatherback Sea Turtle, Dermochelys coriacea, Endangered
- Kemp’s Ridley Sea Turtle, Lepidochelys kempii, Endangered

Additional information on some of these species is provided below.

**Sea Turtles and Marine Mammals**

There are five species of endangered or threatened sea turtles that may occur or have potential to occur within the project sites. These include green turtle, hawksbill turtle, Kemp’s ridley turtle, leatherback turtle, and loggerhead turtle. Sea turtles forage in the waters of the coastal Florida panhandle region and have potential to occur within the waters where in-water work is proposed. All of the Gulfside project sites contain suitable sea turtle nesting habitat along the sandy beach.

Twenty-two marine mammals are native to the Gulf of Mexico: 21 pelagic species of whales and dolphins, and the West Indian manatee (see Chapter 3). Of these species, the endangered West Indian manatee has the potential to occur in the project area waters. Manatees typically seek out shallow seagrass areas as preferred feeding habitat. Additionally, bottlenose dolphin (Tursiops) populations are known to migrate into bays, estuaries, and river mouths and could be located in the proposed project area (NMFS 2013a). Bottlenose dolphins have been observed entering and leaving nearshore coastal waters (NMFS 2012).

The endangered West Indian manatee has the potential to occur in the adjacent project area waters. Manatees typically seek out shallow seagrass areas as preferred feeding habitat. Additionally, populations of bottlenose dolphins (Tursiops) are known to migrate into bays, estuaries, and river mouths and could be in any of the proposed project sites (NMFS 2013).

**Gulf Sturgeon**

Both the Gulf Coast and Choctawhatchee Bay are considered critical habitat for the Gulf Sturgeon (see Figure 12-11) in the project sites. Gulf sturgeons are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Pearl River, Louisiana to the Suwannee River, Florida (NMFS 2009). Adult fish reside in rivers 8–9 months each year and in estuarine or Gulf waters during the 3–4 cooler months of each year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993).

Gulf sturgeon critical habitat was jointly designated by the NMFS and USFWS on April 18, 2003 (50 Code of Federal Regulations [C.F.R.] 226.214). The Bayside Ranchettes Park site is in designated Gulf sturgeon critical habitat Unit 12 (NOAA 2012). Unit 12 is the Choctawhatchee Bay unit in Walton County, which is fed by unit 5, the Choctawhatchee River unit. Critical habitat provides feeding, resting, and sheltering, habitat necessary for maintaining the natural processes that support reproduction, migration, and survival (50 C.F.R. 226.214). These units provide critical winter feeding and migration habitat for Gulf sturgeon. Critical habitat was designated based on seven primary constituent elements (PCEs) essential for its conservation, as defined in the 2003 Federal Register 67:39107, as follows:

Figure 12-11. Gulf Sturgeon and Choctawhatchee Beach Mouse critical habitat in relation to the project sites.
1. Abundant food items, such as detritus, aquatic insects, worms, and/or mollusks, within riverine habitats for larval and juvenile life stages; and abundant prey items, such as amphipods, lancelets, polychaetes, gastropods, ghost shrimp, isopods, mollusks, and/or crustaceans, within estuarine and marine habitats and substrates for subadult and adult life stages;

2. Riverine spawning sites with substrates suitable for egg deposition and development, such as limestone outcrops and cut limestone banks, bedrock, large gravel or cobble beds, marl, soapstone, or hard clay;

3. Riverine aggregation areas, also referred to as resting, holding, and staging areas, used by adult, subadult, and/or juveniles, generally, but not always, located in holes below normal riverbed depths; these are believed necessary for minimizing energy expenditure during freshwater residency and possibly for osmoregulatory functions;

4. A flow regime (i.e., the magnitude, frequency, duration, seasonality, and rate-of-change of freshwater discharge over time) necessary for normal behavior, growth, and survival of all life stages in the riverine environment, including migration, breeding site selection, courtship, egg fertilization, resting, and staging, and for maintaining spawning sites in suitable condition for egg attachment, egg sheltering, resting, and larval staging;

5. Water quality, including temperature, salinity, pH, hardness, turbidity, oxygen content, and other chemical characteristics necessary for normal behavior, growth, and viability of all life stages;

6. Sediment quality, including texture and chemical characteristics, necessary for normal behavior, growth, and viability of all life stages; and

7. Safe and unobstructed migratory pathways necessary for passage within and between riverine, estuarine, and marine habitats (e.g., an unobstructed river or a dammed river that still allows for passage). (*Federal Register* 67:39107)

**Choctawhatchee Beach Mouse and Its Critical Habitat**

The Choctawhatchee beach mouse, like other beach mice, uses the dune systems for sheltering, breeding, and foraging. Choctawhatchee beach mouse habitat consists of coastal sand dunes (high primary and secondary, lower interior) with sparse vegetation, including sea oats, bluestem, and bunch grass on the primary and secondary dunes, and scrubby oaks, dwarfed magnolia, and rosemary on the older dunes. The diet of the Choctawhatchee beach mouse primarily consists of seeds and fruit of dune plants, and insects. Beach mice are nocturnal and disperse out of their burrows at night to forage. Beach mice breeding peaks in the winter but can occur year-round if there is enough food available. The foremost threat facing the Choctawhatchee beach mouse is beach development. Development along beaches can cause destruction or degradation to dunes and dune habitat. For the beach mouse, this leads to increased habitat fragmentation and potential population isolation (Florida Natural Areas Inventory 2001). The Choctawhatchee beach mouse could be present at all sites except Bayside Ranchettes. The Grayton Dunes Beach site is within critical habitat for the Choctawhatchee beach mouse (see Figure 12-12).
Red Knot
The red knot, a federal proposed species, uses the state of Florida both for wintering habitat and migration stopover habitat for those that continue to migrate down to specific wintering locations in South America (Niles et al. 2008). Wintering and migrating red knots forage along sandy beaches, tidal mudflats, salt marshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms and roost on high sand flats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008).

Piping Plover
The sandy beaches and shorelines adjacent to the project sites offer suitable foraging and resting habitat for the piping plover during the winter migratory season, and piping plover may forage in the shallow waters of the project sites. Natural shorelines in the proposed project vicinity provide suitable winter migration resting habitat for the piping plover. Piping plover wintering habitat includes beaches, mudflats, and sandflats, as well as barrier island beaches and spoil islands (Haig 1992, as cited by USFWS 2013). On the Gulf Coast, preferred foraging areas were associated with wider beaches, mudflats, and small inlets (USFWS 2013b).
EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as “those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. Ed Walline Beach Access, Dothan Beach Access, Grayton Dunes, Gulfview Heights Beach Access, and Palms of Dune Allen are located in uplands above the mean high-tide line, therefore no EFH is located within the project footprint.
Error! Reference source not found. provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Walton County Bayside Ranchettes Park site and Choctawhatchee Bay.

Table 12-7. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.

<table>
<thead>
<tr>
<th>EFH CATEGORY</th>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Atlantic Highly Migratory Species</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Bull Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Nurse Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Sandbar Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Tiger Shark - Juvenile</td>
</tr>
<tr>
<td><strong>Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spanish Mackerel</td>
</tr>
<tr>
<td></td>
<td>Cobia</td>
</tr>
<tr>
<td></td>
<td>King Mackerel</td>
</tr>
<tr>
<td><strong>Gulf of Mexico Red Drum</strong></td>
<td>Red Drum</td>
</tr>
<tr>
<td><strong>Gulf of Mexico Shrimp</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pink Shrimp</td>
</tr>
<tr>
<td></td>
<td>White Shrimp</td>
</tr>
<tr>
<td></td>
<td>Brown Shrimp</td>
</tr>
<tr>
<td><strong>Reef Fish Resources of the Gulf of Mexico</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lane Snapper</td>
</tr>
<tr>
<td></td>
<td>Lesser Amberjack</td>
</tr>
<tr>
<td></td>
<td>Mutton Snapper</td>
</tr>
<tr>
<td></td>
<td>Nassau Grouper</td>
</tr>
<tr>
<td></td>
<td>Queen Snapper</td>
</tr>
<tr>
<td></td>
<td>Red Grouper</td>
</tr>
<tr>
<td></td>
<td>Red Snapper</td>
</tr>
<tr>
<td></td>
<td>Scamp</td>
</tr>
<tr>
<td></td>
<td>Silk Snapper</td>
</tr>
<tr>
<td></td>
<td>Snowy Grouper</td>
</tr>
<tr>
<td></td>
<td>Speckled Hind</td>
</tr>
<tr>
<td></td>
<td>Tilefish</td>
</tr>
<tr>
<td></td>
<td>Vermilion Snapper</td>
</tr>
<tr>
<td></td>
<td>Warsaw Grouper</td>
</tr>
<tr>
<td></td>
<td>Wenchman</td>
</tr>
<tr>
<td></td>
<td>Yellowedge Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowmouth Grouper</td>
</tr>
<tr>
<td></td>
<td>Almako Jack</td>
</tr>
</tbody>
</table>
### EFH CATEGORY

<table>
<thead>
<tr>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banded Rudderfish</td>
</tr>
<tr>
<td>Black Grouper</td>
</tr>
<tr>
<td>Blackfin Snapper</td>
</tr>
<tr>
<td>Blueline Tilefish</td>
</tr>
<tr>
<td>Cubera Snapper</td>
</tr>
<tr>
<td>Gag</td>
</tr>
<tr>
<td>Goldface Tilefish</td>
</tr>
<tr>
<td>Gray (Mangrove) Snapper</td>
</tr>
<tr>
<td>Gray Triggerfish</td>
</tr>
<tr>
<td>Greater Amberjack</td>
</tr>
<tr>
<td>Hogfish</td>
</tr>
</tbody>
</table>

**Migratory Birds and Bald Eagles**

All migratory bird species are protected under the MBTA.

The Trustees have also reviewed the proposed projects for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively.

There are four eagles nests in Walton County, all spaced near the shoreline in the western portion of the Choctawhatchee Bay, all of which are more than 2 miles away from any of the project sites.

The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s Bald Eagle Management Plan guidelines would be followed (FWC 2008).

Table 12-8 provides a summary of the different bird groups specifically addressed by this review and summarizes the potential impacts to bird groups and associated habitats that could result from the implementation of these projects.

**Table 12-8. Potential project impacts to different migratory bird groups**

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>Foraging, feeding, resting, nesting</td>
<td>Shorebirds nest, forage, feed, and rest, and in the types of habitats consistent with some of the shoreline areas near the proposed project. As such, they may be impacted locally and temporarily by the project. Impacts to breeding/nesting birds will be avoided.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls,</td>
<td>Resting, roosting.</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats</td>
</tr>
</tbody>
</table>


## Table 12-9. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>The Trustees expect foraging and resting birds would be able to move to another nearby location to continue foraging and resting. If project activities occur during shorebird nesting season (February 15 to August 31), the FWC will be contacted to obtain the most recent guidance to protect nesting shorebirds or rookeries and their recommendations will be implemented.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. Nesting should not be impacted because the project will not occur near nesting habitats.</td>
</tr>
<tr>
<td>Songbirds</td>
<td>Trees will not be removed during songbird nesting season at Grayton Beach.</td>
</tr>
</tbody>
</table>

### Environmental Consequences

The proposed project has been evaluated for potential short- and long-term impacts to state and federally protected species that may occur in and adjacent to the project sites based on available suitable habitat and restoration goals. Descriptions of these evaluations are provided below.

### Essential Fish Habitat

On April 24, 2014, NOAA concluded the Bayside Ranchettes Park Improvements project is not likely to adversely affect EFH (Fay, 2014). The proposed dock construction will take place adjacent to the existing boat ramp. A small area of subtidal habitat would be converted with the placing of pilings for the new dock and steps, however, this will take place near the shoreline and the project is located in an area where the habitat is already likely to be significantly disturbed by the presence and use of nearby docks and, to a lesser degree, by the lack of formal points of access to the water. Disturbance to species will be minor and brief and during construction and adjacent areas with equivalent or better habitat will be available and undisturbed and organisms could move away from disturbed areas.

### State-Listed Birds, MBTA, and BGEPA

No bald eagles are known or are likely to use the project sites, due to the lack of wooded areas surrounding most of the sites. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.
**Protected Species**

On March 10, 2014, the review of potential impacts to species managed by USFWS was completed for these projects (McClain, 2014). The USFWS concurred with the Trustees’ determination that the proposed projects may affect, but are not likely to adversely affect, five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead), West Indian manatee, Choctawhatchee beach mouse, piping plover, and red knot (if listed). Further, the review determined the proposed project will not adversely modify or destroy critical habitat for the Choctawhatchee beach mouse.

Consultation of potential impacts on protected species managed by NMFS from the Bayside Ranchettes project was initiated on February 19, 2014. The Trustees’ review of the potential impacts of the Bayside Ranchettes Park Improvements project for protected species managed by NMFS determined the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the Bayside Ranchettes project implementation area:

- **Gulf Sturgeon Critical Habitat** - The proposed project footprint falls within an identified Gulf sturgeon critical habitat unit (Critical Habitat Unit 12 – Choctawhatchee Bay); however, it has been determined that the construction activities associated with this project will not adversely affect the PCE’s associated with this habitat or modify designated Gulf sturgeon critical habitat.
- **Gulf Sturgeon** - The proposed may project affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Smalltooth Sawfish** – The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Green Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Loggerhead Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Hawksbill Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Leatherback Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Kemp’s Ridley Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.

Concurrence from NMFS with the Trustees’ conclusions is still pending.

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA for the Bayside Ranchettes project. Due to these species’ mobility and the implementation of NMFS’ *Sea Turtle and Smalltooth Sawfish Construction Conditions* (NMFS, 2006), *Standard Manatee Conditions for In-Water Work* (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.
12.52.5.3  Invasive Species

**Affected Resources**
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

**Environmental Consequences**
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.52.5.6  Human Uses and Socioeconomics

12.52.5.6.1  Socioeconomics and Environmental Justice

**Affected Resources**
The proposed project would be in Walton County, Florida. Data and characteristics on the population of Walton County are summarized and compared to those same measures for the population of the state as a whole (Table 12-10).

**Environmental Consequences**
The proposed projects would create approximately 91 worker days of employment during construction. The improved beach access and facilities at the various sites would result in a minor increase in visitation to the sites, which could benefit the local economy for multiple years. The projects would not create a benefit for any specific group or individual, but rather would produce benefits realized by the local community and visitors. Also, there are no indications that the public improvements would be contrary to the goals of Executive Order 12898, or would create disproportionate, adverse human health or environmental impacts on minority or low-income populations of the surrounding community. Therefore no environmental justice issues would be anticipated in the short term or long term.
Table 12-10. Population characteristics of Santa Rosa County are compared with State of Florida data.

<table>
<thead>
<tr>
<th>PEOPLE QUICKFACTS</th>
<th>WALTON COUNTY</th>
<th>FLORIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population, 2012 estimate</td>
<td>57,582</td>
<td>19,317,568</td>
</tr>
<tr>
<td>Population, 2010 (April 1) estimates base</td>
<td>55,043</td>
<td>18,802,690</td>
</tr>
<tr>
<td>Population, percentage change, April 1, 2010 to July 1, 2012</td>
<td>4.6%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Population, 2010</td>
<td>55,043</td>
<td>18,801,310</td>
</tr>
<tr>
<td>Persons under 5 years, percentage, 2012</td>
<td>5.6%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Persons under 18 years, percentage, 2012</td>
<td>20.1%</td>
<td>20.7%</td>
</tr>
<tr>
<td>Persons 65 years and over, percentage, 2012</td>
<td>17.5%</td>
<td>18.2%</td>
</tr>
<tr>
<td>Female persons, percentage, 2012</td>
<td>48.9%</td>
<td>51.1%</td>
</tr>
<tr>
<td>White alone, percentage, 2012 (a)</td>
<td>89.6%</td>
<td>78.3%</td>
</tr>
<tr>
<td>Black or African American alone, percentage, 2012 (a)</td>
<td>6.0%</td>
<td>16.6%</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone, percentage, 2012 (a)</td>
<td>0.9%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Asian alone, percentage, 2012 (a)</td>
<td>1.0%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander alone, percentage, 2012 (a)</td>
<td>0.2%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Two or More Races, percentage, 2012</td>
<td>2.3%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Hispanic or Latino, percentage, 2012 (b)</td>
<td>5.9%</td>
<td>23.2%</td>
</tr>
<tr>
<td>White alone, not Hispanic or Latino, percentage, 2012</td>
<td>84.4%</td>
<td>57.0%</td>
</tr>
<tr>
<td>Homeownership rate, 2007–2011</td>
<td>74.0%</td>
<td>69.0%</td>
</tr>
<tr>
<td>Median household income, 2007–2011</td>
<td>$46,926</td>
<td>$47,827</td>
</tr>
<tr>
<td>Persons below poverty level, 2007–2011</td>
<td>14.9%</td>
<td>14.7%</td>
</tr>
<tr>
<td>Manufacturers’ shipments, 2007 ($1,000)</td>
<td>0</td>
<td>104,832,907</td>
</tr>
<tr>
<td>Merchant wholesaler sales, 2007 ($1,000)</td>
<td>205,148</td>
<td>221,641,518</td>
</tr>
<tr>
<td>Retail sales, 2007 ($1,000)</td>
<td>705,008</td>
<td>262,341,127</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau State & County QuickFacts 2013
(a) Includes persons reporting only one race.
(b) Hispanics may be of any race, so also are included in applicable race categories.
FN: Footnote on this item for this area in place of data
NA: Not available
D: Suppressed to avoid disclosure of confidential information
X: Not applicable
S: Suppressed; does not meet publication standards
Z: Value greater than zero but less than half unit of measure shown
F: Fewer than 100 firms
12.52.5.6.2 Cultural Resources

Affected Resources
There are multiple project sites associated with the beach improvements. Because the sites are geographically separated, they are discussed individually below. A review of Florida Master Site Files was conducted for each of the beach locations.

Bayside Ranchettes Park
There are at least eight previously recorded archaeological sites within 1 mile of the Bayside Ranchettes Beach site. All of these sites are prehistoric, and all of them with the exception of 8WL543A are of unknown eligibility at this time. Site 8WL543A, a prehistoric scatter, was recommended ineligible for the National Register of Historic Places (NRHP). Site 8WL33, which is approximately 0.4 mile to the southwest, is reported to contain human remains.

A review of the project site indicates that there are no previously recorded sites within the area where construction would take place. However, given the concentration of prehistoric sites in the immediate area, it is likely that additional resources may be present.

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Dothan Beach
There are at least two previously recorded archaeological sites within 1 mile of the Dothan Beach site. These sites consist of a single prehistoric site (8WL74) and a shipwreck (8WL1359). Neither of these sites has a recommendation for the NRHP.

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Grayton Dunes Beach
A review of the Florida Master Site File indicates that there are at least 23 previously recorded sites within and just outside the park. Sites 8WL434-440 and 8WL491 are historic standing structures outside the park. Site 8WL483 is the listing for the park itself; sites 8WL2573-2579 are standing structures present within the park. The remaining sites (8WL29, 69, 82, 24/47, 83, 876, and 1069) are all prehistoric in nature.

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.
**Gulfview Heights Beach**

There is one previously recorded archaeological site within 1 mile of the project site. This site, 8WL982, is along the beach and is a prehistoric site of unknown eligibility. Although this site is not in the project site, sites have been found along the beach in similar contexts.

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

**Ed Walline Beach**

There is a single site near this project site; it is a prehistoric scatter of material identified near Draper Lake. Although this site is not in the project site, sites have been found along the beach in similar contexts.

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

**Palms of Dune Allen West Beach**

There are at least three archaeological sites recorded near this project site. Of these, two are prehistoric scatters near Oyster Lake and one is a historic-era cemetery (the Gulf Cemetery, 8WL2631) that is still in use.

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

**Environmental Consequences**

One of the proposed projects, the Grayton Beach, is in a state park owned and operated by the State of Florida. As such, there are some additional requirements associated with construction within the park. A Phase I cultural resources survey would be conducted. Based on the results of the survey, project plans would be altered to avoid any historic properties that would be adversely affected by the project work (ground disturbance and construction).

A complete and separate review of each of these projects under Section 106 of the NHPA is ongoing and will be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within a specific project area. Each project will be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.
12.52.5.6.3 Infrastructure

Affected Resources
The existing infrastructure at certain sites would be improved, whereas at others, new infrastructure would be added.

Environmental Consequences
The projects would not have an adverse impact on infrastructure in the area, because all infrastructure at the proposed project sites would either be improved or replaced with new infrastructure.

12.52.5.6.4 Land and Marine Management

Affected Resources
The surrounding land-use characteristics at the five Gulfside sites consist of public beaches along the Gulf shorelines surrounded by residential areas. The Bayside Ranchettes Park site is in a wooded, bayside, residential area with several adjacent and nearby docks with steps into the water. The Gulfside site projects would be in a coastal area that is regulated by the federal Coastal Zone Management Act (CZMA) of 1972 and the Florida Coastal Management Act of 1978.

Environmental Consequences
The projects would be consistent with current land use and would have no adverse impact on land use or marine management in the area.

12.52.5.6.5 Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

12.52.5.6.6 Aesthetics and Visual Resources

Affected Resources
Existing aesthetics and visual resources are views of a heavily developed sandy shorelines, residential areas, hotels, and beachside towns.

Environmental Consequences
Aesthetics would be reduced in the project sites during construction due to the presence of equipment and materials. However, these impacts would be minor, temporary changes to visual resources because they would be limited to the immediate vicinity of the sites and would be limited to the 2-month construction period. Placement of dune walkovers in areas where there currently are none may result in a change in the visual character of the dune areas. However, design standards as discussed in the Construction and Installation section above are intended to minimize visual impacts and maintain a natural environment that allows people access, but also protects valuable dune resources. Although
dune walkovers would be visible to users of the facilities, it is not anticipated that these walkovers would detract significantly from the existing viewshed and result in a long-term, adverse effect.

12.52.5.6.7 Tourism and Recreational Use

Affected Resources
Walton County’s 16 premier sandy beaches are visited by tourists each year to fish, dive, swim, and view wildlife. Recreation at these sites includes swimming, beach-going, picnicking, wildlife viewing, fishing, hiking, canoeing, kayaking, and bicycling (Walton County 2013b).

Environmental Consequences
During the construction period, the visitor recreational experience at certain sites would be negatively impacted by noise and visual disturbances associated with the use of construction equipment. The construction process would also limit recreational activities near construction areas for a short time to protect public safety. The impact would be short term and minor because there are numerous other sites along these beaches in Walton County to obtain the same or similar recreational experiences. These alternate beach access locations may experience a temporary spike in use during the 2-month construction period. Over the long term, minor, beneficial impacts to tourism and recreational use would be expected due to the enhancement of recreational opportunities associated with improved facilities and accessibility.

12.52.5.6.8 Public Health and Safety and Shoreline Protection

Affected Resources
There are no known hazardous waste generation or disposal sites near the project sites. Erosion at the proposed project sites are typical of a barrier island shoreline, but would be mitigated through construction BMPs discussed in the Construction and Installation section.

Environmental Consequences
Overall, the project would have a minor, beneficial impact on public health and safety and shoreline protection because the projects would provide organized public access to the beach, concentrating shoreline access impacts and providing limited public facilities, and would have no negative impacts on these resources.

12.52.6 Summary and Next Steps
The proposed Walton County Boardwalks and Dune Crossovers: Grayton Dunes Beach Access Boardwalk Improvements project would improve the Grayton Dunes beach access and boardwalk facility in Walton County. The proposed improvements include replacing the dune walkover allowing beach visitors to access the beach. The proposed Walton County Boardwalks and Dune Crossovers: Ed Walline Beach Access Improvements project would improve the Ed Walline regional beach access facility in Walton County. The proposed improvements include replacing pavilions and restroom fixtures and upgrading all interior plumbing. The proposed Walton County Boardwalks and Dune Crossovers: Dothan Beach Access Boardwalk Improvements project would improve the Dothan Beach Access Boardwalk in Walton County. The proposed improvements include replacing the dune walkover allowing beach visitors to access the beach. The proposed Walton County Boardwalks and Dune Crossovers: Bayside Ranchettes Park Improvements project would improve the Bayside Ranchettes Park in Walton County. The
proposed improvements include constructing a parking area, a picnic table, a dock, and steps into the water allowing access to the bay. The proposed Walton County Boardwalks and Dune Crossovers: Palms of Dune Allen West Beach Access Improvements project would improve the Palms of Dune Allen West beach access facility in Walton County. The proposed improvements include constructing a dune walkover, allowing beach visitors to access the beach. The proposed Walton County Boardwalks and Dune Crossovers: Gulfview Heights Beach Access Improvements project would improve the Gulfview Heights beach access facility in Walton County. The proposed improvements include replacing restroom fixtures, updating all interior plumbing, and repairing all soffits on pavilions. These projects are consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. These projects would enhance and/or increase increase recreational beach use opportunities by improving beach access and beach access facilities, and by improving recreational opportunities at parks. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.52.7 References

EPA. 2010. National Summary of Impaired Waters and TMDL Information. Florida. Available at:


Fay, V. 2014. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for the proposed Florida Walton County Bayside Ranchettes Park Improvement Project in Choctawhatchee Bay, Walton County, Florida. March April 24.


NOAA. 2009. Amendment 1 to the Consolidated Atlantic Highly Migratory Species Fishery Management Plan Essential Fish Habitat and EIS. Accessed September 30, 2013


USFWS Mapped by Jeremy Rabalais

USFWS 2011 Standard Manatee Conditions for In-Water Work.


Walton County 2013a. Coastal Dune Lakes Advisory Board. Available at:


———. 2013c. Walton County Flood Zones Map. Available at:

———. 2013d. Wildlife Lighting, Sea Turtle Lighting. Available at:
12.53 Gulf County Recreation Project: Project Description A (Highland View Boat Ramp)

12.53.1 Project Summary
The proposed Gulf County Highland View Boat Ramp project would improve the existing Highland View boat ramp in Gulf County. As part of this project, the amenities at this boat ramp site would be upgraded. No work to the ramp itself is planned. This work would include some renovations to the existing pier structure such as replacing planking and side bumpers. Expanding the pier footprint is not anticipated and no new piling placement is expected. Additional work would include renovating and expanding the existing informal sand parking area to provide a more stable long-term surface. In addition, current project plans call for providing some sort of restroom facilities (e.g., a port-a-potty). The total estimated cost of the project is $176,550.

12.53.2 Background and Project Description
The Trustees propose to improve and enhance the existing Highland View boat ramp in Gulf County (see Figure 12-13 for general project location). The objective of the Gulf County Highland View Boat Ramp project is to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. The restoration work proposed includes renovating the existing pier structure, renovating and expanding the parking area, and providing restroom facilities.
Figure 12-13. Location of Gulf County Recreation Project – Highland View Boat Ramp Project.
12.53.3 Evaluation Criteria
This proposed project satisfies the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Gulf County Highland View Boat Ramp project is intended to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Agencies have successfully completed projects of similar scope throughout Florida over many years, including similar types of actions in earlier phases of the Deepwater Horizon Early Restoration. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.54, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.54 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Gulf County Recreation Project – Highland View Boat Ramp project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.53.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. Performance monitoring will evaluate: 1) the renovation of the existing pier structure; 2) the renovation and expansion of the parking area; and 3) the new restroom facilities. Specific performance criteria include: 1) the completion of the construction as designed and permitted,
and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the boat ramp is open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by Gulf County as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by Gulf County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Gulf County will monitor the human use activity at the site. Gulf County staff will visit the site twice a year to count the number of users at the boat ramp. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

### 12.53.5 Offsets

The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. Combined NRD Offsets for the Gulf County Recreation Projects, of which this is a component, are $4,237,200 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.\(^8\)

### 12.53.6 Costs

The total estimated cost to implement this project is $176,550. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---

\(^8\) For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
Gulf County Recreation Projects: Project Description B (Indian Pass Boat Ramp)

The Gulf County Recreation Projects: Indian Pass Boat Ramp project component is being dropped from the Final Phase III ERP/PEIS. Gulf County requested Trustees to withdraw the project so the County could pursue the construction of a new ramp at a nearby location and abandon this facility. Total funds allocated to Indian Pass Boat Ramp project component were $176,550.00.

The funds from the Gulf County Recreation Projects: Indian Pass Boat Ramp project component will be re-allocated to the Gulf County Recreation Project: Windmark Fishing Pier project component. (see Section 12.57). During the NEPA review of the Windmark Fishing Pier project, it has become apparent that additional funds will be needed to construct additional boardwalks to address environmental issues involving beach mice, protecting the existing dune system and making the pier accessible for all. The construction of the additional boardwalks will be $176,550.00. The construction of the additional boardwalks is not outside the scope of the originally proposed Windmark Fishing Pier project component. The re-allocation of funds from the Indian Pass Boat Ramp project component to the Windmark Fishing Pier project component does not affect the BCR that was negotiated with BP for the Gulf County Recreation suite of projects.
12.55 Gulf County Recreation Projects: Environmental Review A (Highland View Boat Ramp)

The purpose of this project is to improve the quality and safety of recreational boating in Florida’s St. Joseph Bay and Apalachicola Bay systems.

12.55.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement), the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This boat ramp project was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

Public boat ramps provide local boaters with access to public waterways. Boating access provides the primary infrastructure upon which many types of secondary activities may be enjoyed. A myriad of water-dependent activities provide recreational values and include fishing, scalloping, SCUBA diving, water skiing, swimming, or simply cruising local waterways under power of sail.

This project would involve replacing and enhancing an existing boat ramp in Gulf County, Florida, to provide better facilities for the public and safer launch conditions for a wider variety of vessels. This project is part of the Florida Department of Environmental Protection (FDEP) Gulf County Recreation Project.
12.55.2  Project Location
The Highland View boat ramp is located in Port St. Joe, Gulf County, Florida, under the Tapper Bridge on Highway 98 (Figure 12-13 and Figure 12-14). The coordinates in decimal degrees are 29.832N 85.313W. This boat ramp is a single-lane concrete ramp on the Gulf County Canal providing access to St. Joseph Bay. The boat ramp area consists of an L-shaped boarding dock, parking for more than 40 vehicles with trailers, and restroom facilities and trash cans.

12.55.3  Construction and Installation
As part of the Highland View boat ramp project, the amenities at this boat ramp site would be upgraded. No work to the ramp itself if planned. This work would include some renovations to the existing pier structure such as replacing planking and side bumpers. Expanding the pier footprint is not anticipated and no new piling placement is expected. Additional work would include renovating and expanding the existing informal sand parking area to provide a more stable long-term surface. In addition, current project plans call for providing some sort of restroom facilities (e.g., a port-a-potty).

The Standard Manatee Conditions for In-Water Work (USFWS 2011) will be implemented during any in-water activities. These conditions include:

Figure 12-14. Vicinity Map of the Highland View Boat Ramp in Gulf County Florida.
• All personnel associated with the project shall be instructed about the presence of manatees and manatee speed zones, and the need to avoid collisions with and impact to manatees. The permittee shall advise all construction personnel that there are civil and criminal penalties for harming, harassing, or killing manatees that are protected under the Marine Mammal Protection Act, the ESA, and the Florida Manatee Sanctuary Act.

• All vessels associated with the construction project shall operate at “idle speed/no wake” at all times while in the immediate area and while in water where the draft of the vessel provides less than a 4-foot clearance from the bottom. All vessels shall follow routes of deep water whenever possible.

• Siltation or turbidity barriers shall be made of material in which manatees cannot become entangled, shall be properly secured, and shall be regularly monitored to avoid manatee entanglement or entrapment. Barriers must not impede manatee movement.

• All on-site project personnel shall be responsible for observing water-related activities for the presence of manatee(s). All in-water operations, including vessels, must be shut down if a manatee(s) comes within 50 feet of the operation. Activities shall not resume until the manatee(s) has moved beyond the 50-foot radius of the project operation, or until 30 minutes elapses if the manatee(s) has not reappeared within 50 feet of the operation. Animals shall not be herded away or harassed into leaving.

• Any collision with or harm to a manatee shall be reported immediately to the Florida Fish and Wildlife Commission (FWC) Hotline at 1-888-404-3922.

• Collision and/or harm should also be reported to the USFWS in Jacksonville (1-904-731-3336) for north Florida or Vero Beach (1-772-562-3909) for south Florida, and to the FWC at ImperiledSpecies@myFWC.com.

• Temporary signs concerning manatees shall be posted before and during all in-water project activities. All signs are to be removed by the permittee upon completion of the project. Temporary signs that have already been approved for this use by the FWC must be used. One sign reads: “Caution: Boaters must be posted.” A second sign measuring at least 8.5 × 11 inches explaining the requirements for idle speed/no wake and the shutdown of in-water operations must be posted in a location prominently visible to all personnel engaged in water-related activities. These signs can be viewed at MyFWC.com/manatee.

The Highland View boat ramp projects will adhere to all applicable permit conditions, federal, state, and local requirements for the protection of marine mammals during construction.

Construction materials would be staged in the project area during work.

In addition, as work proceeds, the project area would be isolated by construction fencing to prevent incidental access. This fencing material would be emplaced by hand driving (e.g., with a sledge hammer or post driver) stakes as necessary. These stakes would likely be less than 2 inches in diameter and driven to a depth of 1 to 2 feet to secure the fencing. No piles would be driven for these boat ramp renovations.

Equipment for the replacement and enhancement of the boat ramp would be expected to consist of the following:
• Three tractor-trailers for material delivery
• Six small power tools (nail guns, saws, drills)
• One generator for the small tools

Construction could occur at any time but would ideally take place during the time of year when recreation use is lowest to minimize impacts to boat ramp users. Construction work and permitting is expected to take up to 2 years to complete. Currently, development and completion of the design is anticipated for summer 2015 and construction would begin in the summer or fall of 2015.

12.55.4 Operations and Maintenance
Gulf County operates a variety of parks for outdoor recreation and leisure facilities, including the Highland View boat ramp. Maintenance would fall under the purview of the Gulf County Maintenance Department, which would include tasks such as restroom checks and cleaning, as well as removing debris and trash from the boat ramps and boat trailer parking areas.

12.55.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

12.55.5.1 No Action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.55.5.2 Physical Environment
12.55.5.2.1 Geology and Substrates
Affected Resources
According to the Geologic Map of Florida, the ramps are likely located on the Quaternary system, Holocene series stratigraphic unit. This stratigraphic unit consists of quartz sands, carbonate sands, muds, and organics occurring near the present coastline at elevations generally less than 5 feet (Scott 2001).

The Highland View boat ramp is built on Corolla fine sand, 1 to 5 percent slopes, soil map unit. This soil is moderately well drained and somewhat poorly drained on nearly level flats, small dunes, and swales on large dunes along the Gulf Coast beaches. Homesites may be built on this soil, but it is not suited for cultivated crops, pasture, or woodlands.

A sinkhole is a closed depression in the land surface that is formed by surficial solution or by subsidence or collapse of surficial materials due to the solution of near-surface limestone or other soluble rocks.
Sinkholes are a natural and common geologic feature in areas underlain by limestone and other rock types soluble in natural water; they are one of the predominant landform features of Florida. The state has been classified into four areas of sinkhole occurrence. Gulf County is categorized as Area IV with a carbonate rock cover more than 200 feet thick. Area IV consists of cohesive sediments interlayered with discontinuous carbonate beds. Sinkholes are very few, but several large-diameter, deep sinkholes occur. Cover-collapse sinkholes dominate in Area IV, which occur when a solution cavity develops in limestone to such a size that the overlying cover material can no longer support its own weight (FDEP 2013).

**Environmental Consequences**
Mechanized equipment and hand tools would be used to complete the construction of the boat ramps. Some excavation of soils would occur; however, adverse impacts to geology and substrates would be minor. Disturbance would be detectable, but would be short term, small, and localized. There would be no long-term changes to local geologic features or soil characteristics. Erosion and/or compaction may occur in localized areas.

12.55.5.2.2 **Hydrology and Water Quality**

**Affected Resources**
Northwest Florida has seven major watersheds, all of which have been identified as priorities under the Surface Water Management and Improvement (SWIM) program. Water quality protection is the underlying goal of SWIM, along with the preservation and restoration of natural systems and associated public uses and benefits (Northwest Florida Water Management District [NFWFMD] 2011).

The Highland View boat ramp is on the Gulf County Canal, which flows into St. Joseph Bay. St. Joseph Bay is separated from the Gulf of Mexico by St. Joseph Peninsula and is considered the only body of water in the eastern Gulf that is not influenced by freshwater inflows (FDEP 2008a). The bay has a surface area of 42,826 acres and connects to the Intracoastal Waterway by the Gulf County Canal (Thorpe 2000).

St. Joseph Bay is part of the St. Andrews Bay watershed system, which includes St. Andrews, West, East, and North bays; St. Joseph Bay; and Deer Point Reservoir, as well as the respective surface water basins of each of these waterbodies. The waterways are primarily used for transportation, seafood harvesting, recreation, and waste disposal. Broad issues for the St. Andrews Bay system include degradation through point and nonpoint pollution sources, habitat quality that is threatened by and degraded through sedimentation and deposition, and public education and awareness (Thorpe 2000).

**Floodplains**
Based on Federal Emergency Management Agency (FEMA) flood insurance rate maps (12045C0461F and 12045C0329F), the Highland View boat ramp appears to be within Zone A, or an area subject to inundation by the 1 percent annual chance flood event and no base flood elevations or flood depths (FEMA 2002).

**Environmental Consequences**
Hydrology would be affected only if water is channeled or otherwise controlled around the boat ramp area during construction. Water quality could be impacted during construction by leaks or spills from equipment and disturbance of sediments that affect siltation, turbidity, and the release of chemicals.
from sediments. If the disturbed sediments are anoxic, the biological oxygen demand in the water column would increase. Erosion should not occur due to the presence of docks and bulkheads; however, if these structures were altered or damaged during construction such that erosion could occur it would also affect water quality. With required mitigation in place, the effect on hydrology and water quality would be measurable or detectable but it would be small, short term, and localized. Water quality impacts would quickly become undetectable, and the area’s hydrology would be only temporarily altered during construction.

All permit conditions, including mitigation measures for siltation, erosion, turbidity, and release of chemicals, would be strictly adhered to. During construction, BMPs and boom placement along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts. FDEP permit conditions require erosion and turbidity mitigation measures, which may include the following:

- Installation of floating turbidity barriers.
- Installation of erosion control measures along the perimeter of all work areas.
- Stabilization of all filled areas with sod, mats, barriers, or a combination.
- Stoppage of work if turbidity thresholds are exceeded. The soils would then be stabilized, work procedures modified, and the FDEP would be notified.

The FDEP permit also constitutes a Certification of Compliance with State Water Quality Standards under Section 401 of the CWA, which indicates that the project would comply with state water quality standards and other aquatic resource protection requirements.

After construction, increased boat traffic at the two boat ramps could result in minimal impacts to surface water quality. Boat wakes created by additional boat traffic that could increase shoreline erosion would be controlled through no-wake or speed zones to mitigate shoreline erosion.

Impacts from chemicals that could be released from sources such as construction equipment and boats are expected to be negligible. Required spill containment measures would be implemented for applicable construction activities. FDEP permit conditions typically spill containment protection and mitigation measures such as:

- Prohibiting boat repair or fueling facilities over the water.
- Prohibiting vessels from being removed from the water for the purposes of maintenance or repair.
- Prohibited activities include hull cleaning and painting, discharges or release of oils or greases, and related metal-based bottom paints associated with hull scraping, cleaning, and painting.

This project would not impact groundwater.

Further, the proposed project is not anticipated to require authorization by the U.S. Army Corps of Engineers (Corps) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA).
12.55.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
The Clean Air Act (CAA) requires the Environmental Protection Agency (EPA) to set National Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to public health and the environment. NAAQS have been set for six common air pollutants (also known as criteria pollutants), consisting of particle pollution or particulate matter, ozone, carbon monoxide, sulfur dioxide (SO\textsubscript{2}), nitrogen dioxide, and lead. Particulate matter is defined as fine particulates with a diameter of 10 micrometers or less (PM\textsubscript{10}) and fine particulates with a diameter of 2.5 or less (PM\textsubscript{2.5}). When a designated air quality area or airshed within a state exceeds a NAAQS, that area may be designated as a “nonattainment” area. Areas with levels of pollutants below the health-based standard are designated as “attainment” areas. To determine whether an area meets the NAAQS, air monitoring networks have been established and are used to measure ambient air quality. The EPA also regulates 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health effects. Air quality in the Florida panhandle is in attainment with the NAAQs (EPA 2013a).

Greenhouse Gases
Gases that trap heat in the air are called greenhouse gases (GHGs). The primary GHGs are carbon dioxide (CO\textsubscript{2}), methane (CH\textsubscript{4}), nitrous oxide (NO\textsubscript{x}), and fluorinated gases. Over the past century, human activities have released large amounts of GHGs into the atmosphere, which are contributing to global warming. Global warming is defined as the ongoing rise in global average temperature near the Earth’s surface and is known to cause changes in climate patterns.

According to the EPA, the average annual temperature in the southeast portion of the United States has increased by approximately 2.0 degrees Fahrenheit (°F) since 1970. Winters, in particular, are getting warmer, and the average number of freezing days has decreased by 4 to 7 days per year since the mid-1970s. Most areas are getting wetter; autumn precipitation has increased by 30% since 1901 (EPA 2013b). In many parts of the region, the number of heavy downpours has increased. Despite the increases in fall precipitation, the area affected by moderate and severe drought has increased since the mid-1970s (EPA 2013b).

Average annual temperatures in the region are projected to increase from 4°F to 9°F by 2080. Hurricane-related rainfall is projected to continue to increase. Models suggest that rainfall will arrive in heavier downpours, with increased dry periods between storms. These changes would increase the risk of both flooding and drought. The coasts will likely experience stronger hurricanes and sea level rise. Storm surge could present problems for coastal communities and ecosystems (EPA 2013b).

Total GHG emissions in the state of Florida from 1990 to 2007 have increased at an average rate of 2.1% per year. Total GHG emissions in 2007 were 290 million metric tons of CO\textsubscript{2} equivalent (MMTCO\textsubscript{2}E). In 2007, 91% of GHG emissions in Florida were CO\textsubscript{2} emissions (FDEP 2010).

Environmental Consequences
Project implementation would require the use of heavy mechanized equipment, which would lead to temporary air pollution (e.g., criteria pollutants, HAPs, GHGs) due to emissions from the operation of construction vehicles and equipment. Any air quality impacts that occur would be minor due to their localized nature, short-term duration and the small size of the project. Available BMPs would be
employed to prevent, mitigate, and control potential air pollutants during project implementation. No air quality-related permits would be required.

In terms of construction equipment, a bulldozer and grader would likely contribute most of the GHG emissions; GHG emissions from the remaining equipment would be negligible. Using the operating assumption of 8 hours per day and 5 days per week for 4 months, GHG emissions from the bulldozer and grader have been estimated (Table 12-11).

At the completion of the project, visitor use (and therefore vehicle and boat use) could increase due to the improved access. Increased exhaust emissions could affect air quality over the long term. However, adverse impacts to air quality are expected to be minor because management actions could be taken to limit boat use.

12.55.5.3 Noise

Affected Resources

Noise can be defined as unwanted or nuisance sound. The Noise Control Act of 1972 (42 USC 4901–4918) was enacted to establish noise control standards and regulate noise emissions from commercial products such as transportation and construction equipment. Amplitude is the magnitude of a sound and is usually expressed in decibels (dB), a dimensionless ratio of sound pressure to that of a reference pressure. The A-weighted decibel (dBA) is the adjusted unit of sound used to describe the human response to noise from industrial and transportation sources. The threshold of hearing is 0 dB. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear.

Table 12-11. Estimated generation of greenhouse gas emissions during a 2-year construction period for the Highland View boat ramp.

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>NUMBER OF 8-HOUR DAYS</th>
<th>CO₂ (METRIC TONS)²</th>
<th>CH₄ (CO2E) (METRIC TONS)³</th>
<th>NOₓ (CO₂E ) (METRIC TONS)</th>
<th>TOTAL CO₂E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grader</td>
<td>40</td>
<td>0.39</td>
<td>0.0003</td>
<td>0.003</td>
<td>15.6</td>
</tr>
<tr>
<td>Bulldozer</td>
<td>160</td>
<td>0.38</td>
<td>0.0002</td>
<td>0.002</td>
<td>60.8</td>
</tr>
<tr>
<td>Track hoe</td>
<td>160</td>
<td>0.35</td>
<td>0.0002</td>
<td>0.002</td>
<td>76</td>
</tr>
<tr>
<td>Track hoe</td>
<td>18</td>
<td>0.34</td>
<td>0.0002</td>
<td>0.002</td>
<td>6.12</td>
</tr>
<tr>
<td>Pickup truck</td>
<td>320</td>
<td>0.16</td>
<td>0.0001</td>
<td>0.001</td>
<td>51.2</td>
</tr>
<tr>
<td>Concrete trucks</td>
<td>20</td>
<td>0.136</td>
<td>0.04</td>
<td>0.576</td>
<td>15.04</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>224.76</td>
</tr>
</tbody>
</table>

¹ Emissions assumptions for all equipment based on 8 hours of operation.
² CO₂ emissions assumptions for diesel and gasoline engines based on EPA (2009).
³ CH₄ and NOₓ emissions assumptions and CO₂e calculations based on EPA (2011).
⁴ Emissions assumptions for an 8-cylinder, 6.2-liter gasoline engine Ford F150 pickup and 18 gallon (half-tank) daily fuel consumption (U.S. Department of Energy 2013).

Table 12-12 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.
Table 12-12. Typical noise levels for common sources.

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (DBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawn mower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

*Source: Adapted from U.S. Department of Energy and Bonneville Power Administration (1986).*

Noise levels in the project area vary depending on the season, time of day, number and types of noise sources, and the distance of the receptor from noise sources. Existing sources of noise in the project area are from recreational boating, traffic on nearby roads and highways, overhead aircraft, and ambient natural sounds such as wind, waves, and wildlife.

Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the project. Noise-sensitive receptors in the project area include recreational users, nearby residences, and wildlife. There are residential and commercial properties directly adjacent to the Highland View boat ramp location. It is also located under the Tapper Bridge on Highway 98, which is the major road into Port St. Joe and on the Gulf County Canal that connects the waterway at White City, Florida, with St. Joseph Bay. There is also a large seafood processing facility nearby on the Gulf County canal.

**Environmental Consequences**

Instances of increased noise would occur during the project. Equipment and vehicles used during the replacement and enhancement of the boat ramps would generate noise. Construction equipment noise is known to disturb fish, marine mammals, and nesting shorebirds. The Highland View boat ramp is already subject to traffic noise; therefore, the short-term noise increases due to the construction could attract attention, but its contribution to the soundscape would be localized and not of consequence, nor would it affect current user activities.

After completion of the project, the soundscape would return to pre-project levels. The potential for increased vehicle and boat traffic exists due to the improved boat ramps, which would result in a slight increase in noise levels in the vicinity. Overall, long-term noise impacts from boating and other recreational activities would remain minor.
12.55.5.4  Biological Environment

12.55.5.4.1  Living Coastal and Marine Resources

Vegetation

Affected Resources
The Highland View boat ramp is located in a highly disturbed and industrial area. The existing boat ramp is adjacent to a paved parking lot and is surrounded by ruderal grasses. Based on aerial reviews, the project site appears to contain sparse palm trees (*Arecaceae* spp.) north of the site. Due to the disturbed nature of the Gulf County Canal, and the shallow extent of the existing ramp’s reach relative to the width of the canal, it is unlikely that submerged aquatic vegetation is present near the boat ramp. No listed plant species have the potential to occur within the project site.

Environmental Consequences
Construction of the potential projects would require the permanent removal of ruderal vegetation within the affected areas. The use of equipment and the disturbance of soil and existing vegetation would also introduce a risk of noxious weed or invasive vegetation species introduction. Due to the lack of vegetation present at both sites, impacts on native vegetation would not be expected.

Wildlife Habitat

Affected Resources
The project site is expected to support ruderal species such as raccoon, opossum, gray squirrel (*Sciurus carolinensis*), and other non-game mammals would be present in upland areas within the vicinity of each project.

St. Joseph Bay is a designated Important Bird Area of over 8,500 acres that is made up of several parcels: Black’s Island, Eglin Air Force Base Test Site, Palm Point, St. Joseph Bay Buffer, T.H. Stone Memorial Park, and St. Joseph Peninsula State Park. These five sites that surround and form St. Joseph Bay are regionally important for breeding brown pelicans (*Pelecanus occidentalis*) (Black’s Island), breeding snowy plovers (*Charadrius alexandrinus*) (Palm Point), wintering shorebirds, migrant raptors (St. Joseph Peninsula State Park), neotropical migrants (St. Joseph Peninsula State Park), and other species (National Audubon Society, Inc. 2002). The Highland View boat ramp is located within the St. Joseph Bay and, thus, the Important Bird Area. However, due to the highly disturbed nature of the habitat surrounding the Highland View boat ramp, it is unlikely that migratory birds would utilize the project area as nesting habitat.

At this time, no terrestrial wildlife (non-bird) surveys have been conducted in either of the project areas.

Environmental Consequences
Although common wildlife may be impacted, these species live in an area where regular use of boat ramps creates ambient noise levels similar to that of the project. Habitat conditions after construction would be similar to the existing conditions, and no long-term impacts to common wildlife would be anticipated.

The Highland View boat ramp enhancement project would include in-water activity that could disturb foraging birds or other wildlife due to turbidity, acoustical vibration, and noise impacts during the
removal efforts of existing infrastructure. This would be a short-term, minor impact and any wildlife or birds in the immediate project area would be expected to move away. Additionally, foraging habitat is abundant in the areas adjacent to the project areas. Activities for both projects would take place in only a small portion of these areas. Therefore, foraging birds or other wildlife would not be impacted as a result of the proposed projects.

Marine and Estuarine Fauna (fish, shell beds, and benthic organisms)

**Affected Resources**
The value of marine habitats adjacent to the Highland View boat ramp has been impacted by population growth and development. Unconsolidated substrate surrounding the boat ramp supports infaunal organism, as well as a transient phytoplankton and pelagic organisms (e.g., tube worms, sand dollars, mollusks, isopods, amphipods, burrowing shrimp, and an assortment of crabs) (FDEP 2008a). This unconsolidated substrate serves as feeding grounds for bottom feeding fish such as redfish (*Sciaenops ocellatus*), flounder, spot, and sheepshead. Common fish near the Highland View boat ramp include spotted seatrout (*Cynoscion nebulosus*), king mackerel (*Scomberomorus cavalla*), Spanish mackerel (*Scomberomorus maculatus*), red drum (*Scienops ocellatus*), southern flounder (*Paralichthys lethostigma*), red fish, tarpon (*Megalops atlanticus*), mullet (*Mugil cephalus, Mugil curema*) and bay scallops (*Argopecten irradians*) (FDEP 2008a).

**Environmental Consequences**
Infaunal organisms and transient and pelagic organisms supported by the unconsolidated substrate surrounding the boat ramps would potentially be impacted by compaction associated with vehicular traffic and disturbances associated with construction. This in turn, could have impacts on bottom-feeding fish. These impacts would be temporary and limited to construction. Infaunal organisms and transient and pelagic organisms would be able to recolonize disturbed areas quickly and return the community to its original state. Therefore, impacts to these species would be short term and minor.

**Protected Species**
Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

**Affected Resources**
The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees reviewed the species list for Gulf County, Florida.

---

9 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
Table 12-13 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

### Table 12-13. Potential Impacts to Species/Critical Habitats managed by DOI

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle, Leatherback turtle, Loggerhead turtle</td>
<td>All of the project areas are within existing developed areas associated with each of these boat ramps and no additional disturbance of existing habitat is proposed. The areas for proposed and current facilities do not support nesting habitat for sea turtles; however sea turtle nesting could occur on beaches adjacent to each of these projects. Additional lighting or visitor use could disrupt normal nesting behaviors of sea turtles in nearby habitats. Conservation measures below should reduce potential impacts to an insignificant and discountable level.</td>
</tr>
<tr>
<td>Loggerhead proposed critical habitat</td>
<td>The main risk to sea turtles during construction and use of these ramps would come from boat collisions which could result in harm or mortality. Consultation has been completed with NMFS, the agency that has jurisdiction to review impacts to sea turtles in their estuarine and marine habitats.</td>
</tr>
<tr>
<td></td>
<td>The Highland View component of the project borders currently proposed critical habitat area LOGG-N-32 encompassing nearshore reproductive habitat in Florida for Northwest Atlantic Distinct Population Segment of the loggerhead sea turtle (i.e., beaches and shorelines) (78 FR 18000) (Department of the Interior, 2013). PCEs for proposed loggerhead critical habitat include:</td>
</tr>
<tr>
<td></td>
<td>1) Suitable nesting beach habitat that: (a) has relatively unimpeded nearshore access from the ocean to the beach for nesting females and from the beach to the ocean for both post-nesting females and hatchlings and (b) is located above mean high water to avoid being inundated frequently by high tides.</td>
</tr>
<tr>
<td></td>
<td>2) Sand that: (a) allows for suitable nest construction, (b) is suitable for facilitating gas diffusion conducive to embryo development, and (c) is able to develop and maintain temperatures and moisture content conducive to embryo development.</td>
</tr>
<tr>
<td></td>
<td>3) Suitable nesting beach habitat with sufficient darkness to ensure that nesting turtles are not deterred from emerging onto the beach and hatchlings and post-nesting females orient to the sea.</td>
</tr>
<tr>
<td></td>
<td>No other proposed or designated critical habitat for sea turtles occurs within or adjacent to the project area. Conservation measures below should ensure that PCEs of proposed critical habitat continue to function to support recovery of the species and no adverse modification or destruction of critical habitat should occur.</td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>The counties in the project area are not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the project waters.</td>
</tr>
<tr>
<td></td>
<td>The main risk to manatees during implementation of this project is noise from in-water construction and risk to manatees during use of the new ramps from boat collisions which could result in harm or mortality. Conservation measures below are anticipated to reduce these potential impacts to an insignificant and discountable level.</td>
</tr>
<tr>
<td>Piping plover and Red knot</td>
<td>The main risk to Piping plovers and Red knots is from human disturbance while the birds are resting and foraging in habitats adjacent to work areas and from human disturbance if boaters choose to visit nearby islands. The proposed project could result in short term increases in noise during construction which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the individuals to move to a nearby area. Because other foraging/resting habitats are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns for either species and consider this effect insignificant and discountable. The proposed project will not result in any changes to shoreline habitats where either species is likely to forage or rest. Educational signage will be posted at all ramps reminding visitors of nearby bird resources and any protective</td>
</tr>
<tr>
<td>SPECIES/Critical Habitat</td>
<td>SPECIES/Critical Habitat Impacts</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------------</td>
</tr>
</tbody>
</table>
| Piping plover critical habitat | Measures that may be necessary when visiting nearby islands. This signage will be developed in coordination with FWC and the Panama City Ecological Services Field Office. Piping plover critical habitat is not designated in the project area but is nearby (where visitors may access it via these ramps) on St. Joe Peninsula. The primary constituent elements (PCEs) of wintering Piping plover critical habitat includes:  
  1) Intertidal flats with sand or mud flats (or both) with no or sparse emergent vegetation.  
  2) Adjacent unvegetated or sparsely vegetated sand, mud, or algal flats above high tide are also important, especially for roosting piping plovers. Such sites may have debris, detritus, or microtopographic relief (less than 50 cm above substrate surface) offering refuge from high winds and cold weather.  
  3) Important components of the beach/dune ecosystem include surf-cast algae, sparsely vegetated back beach and salterns, spits, and washover areas.  
  4) Washover areas are broad, unvegetated zones, with little or no topographic relief, that are formed and maintained by the action of hurricanes, storm surge, or other extreme wave action.  
Project construction will not adversely modify or destroy critical habitat for Piping plover because the construction work will not be taking place in any of the habitats listed above. Visitation of nearby area will not alter any of the PCEs or result in adverse modification or destruction of critical habitat because the changes in the ramps are not certain to result in clear increases visits to these habitat areas. |
| St. Andrews beach mouse | Neither the St. Andrews beach mouse nor its critical habitat occurs within the project areas. Therefore, construction activities will not affect this species or its critical habitat. However, both the mouse and its critical habitat occur on the St. Joe Peninsula which could be accessed by visitors using the improved ramps. Mice or critical habitat could be disturbed if visitors travel to St. Joe Peninsula from the ramps. Conservation measures below are expected to minimize the risk of disturbance such that impacts are insignificant and discountable. Primary constituent elements (PCEs) for St. Andrews beach mouse critical habitat are:  
  1) A contiguous mosaic of primary, secondary scrub vegetation, and dune structure, with a balanced level of competition and predation and few or no competitive or predaceous nonnative species present, that collectively provide foraging opportunities, cover, and burrow sites;  
  2) Primary and secondary dunes, generally dominated by sea oats that, despite occasional temporary impacts and reconfiguration from tropical storms and hurricanes, provide abundant food resources, burrow sites, and protection from predators;  
  3) Scrub dunes, generally dominated by scrub oaks, that provide food resources and burrow sites, and provide elevated refugia during and after intense flooding due to rainfall and/or hurricane induced storm surge;  
  4) Functional, unobstructed habitat connections that facilitate genetic exchange, dispersal, natural exploratory movements, and recolonization of locally extirpated areas; and  
  5) A natural light regime within the coastal dune ecosystem, compatible with the nocturnal activity of beach mice, necessary for normal behavior, growth and viability of all life stages.  
Project construction will not adversely modify or destroy critical habitat for the St. Andrews beach mouse because the construction work will not be taking place in any of the habitats listed above. Conservation measures below are expected to minimize impacts to PCEs such that no |
### Table: Species/Critical Habitat and Critical Habitat Impacts

<table>
<thead>
<tr>
<th>Species/Critical Habitat</th>
<th>Critical Habitat Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gulf sturgeon and its critical habitat</td>
<td>adverse modification or destruction of critical habitat occurs from visitor use.</td>
</tr>
<tr>
<td></td>
<td>NMFS was consulted on Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon was not considered in the consultation with the USFWS.</td>
</tr>
</tbody>
</table>

Additional information for some of these species is provided below.

**St. Andrews Beach Mouse and St. Andrews Beach Mouse Critical Habitat**

Primary, secondary, and occasionally tertiary sand dunes with moderate cover of grasses and forbs, including sea oats (*Uniola paniculata*), bitter panicum (*Panicum amarum*), Gulf bluestem (*Schizachyrium maritimum*), beach dropseed (*Sporobolus virginicus*), and telegraph weed (*Heterotheca subaxillaris*) are considered preferred habitat of the St. Andrews beach mouse (Florida Natural Areas Inventory 2001). High, stable areas supporting sand live oak (*Quercus geminata*) may be important following hurricanes that remove substantial dune habitat. Although the Highland View boat ramp occurs adjacent to critical habitat for the St. Andrews beach mouse, the boat ramp is entirely within an industrial area that lacks suitable habitat for the beach mouse. Critical habitat for the beach mouse is located west of the boat ramp, on the opposite side of Highway 98.

Based on the Trustees’ reviews of project materials in coordination with representatives from NOAA’s Protected Resource Division (PRD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that this project falls outside of NMFS Endangered Species Act (ESA) jurisdiction, as there was no identified route of affect. As a result, the project did not require further ESA evaluation from NOAA.

**Piping Plover**

Natural shorelines in the proposed project vicinity provide suitable winter migration resting habitat for the piping plover. Piping plover wintering habitat includes beaches, mudflats, and sandflats, as well as barrier island beaches and spoil islands (Haig 1992, as cited by USFWS 2013c). On the Gulf Coast, preferred foraging areas were associated with wider beaches, mudflats, and small inlets (USFWS 2013). While no piping plover critical habitat is located within the project sites.

**Red Knot**

The red knot, a federal candidate species, uses the state of Florida both for wintering habitat and migration stopover habitat for those that continue to migrate down to specific wintering locations in South America (Niles et al. 2008). Wintering and migrating red knots forage along sandy beaches, tidal mudflats, salt marshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms, and roost on high sand flats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008).

**Essential Fish Habitat**

EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as “those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan.
Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column.

Based on the Trustees’ reviews of project materials in coordination with representatives from NOAA’s Habitat Conservation Division (HCD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that this project will not affect EFH because there is no route of affect associated with the project. As a result, the project did not require further EFH evaluation.

**State-Listed Birds, MBTA, and BGEPA**

All migratory bird species are protected under the MBTA. The nesting season in Florida is from February 15 to August 31.

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-14 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

**Table 12-14. Potential project impacts to different migratory bird groups**

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>Foraging, feeding, resting, nesting</td>
<td>Shorebirds nest, forage, feed, and rest in the types of habitats consistent with some of the shoreline areas near the proposed project. As such, they may be impacted locally and temporarily by the project.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Resting, roosting, nesting</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats including dunes. Seabirds may nest nearby.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-15.

**Table 12-15. Conservation measures to minimize impacts to migratory bird groups**

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>The project area is not an optimal area for shorebird foraging. Therefore, the Trustees expect foraging and resting birds to move to another nearby location, likely with better habitat, to continue foraging and resting. If project activities occur during shorebird nesting season (February 15 to August 31), the FWC will be contacted to obtain the most recent guidance to protect nesting shorebirds or rookeries and their recommendations will be implemented. Signage described above in the protected species summary table under “All” will include information to make visitors aware of nesting birds in nearby areas and any protective measures that are necessary.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. If the level of project activity startles foraging or resting birds, the Trustees would expect them to move a short distance and resume behaviors as noise will be localized to the existing ramp areas. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting</td>
</tr>
<tr>
<td>SPECIES/SPECIES GROUP</td>
<td>CONSERVATION MEASURES TO MINIMIZE IMPACTS</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>should not be impacted because the project will occur during daylight hours only. If project activities occur during seabird nesting season (February 15 to August 31), the FWC will be contacted to obtain the most recent guidance to protect nesting seabirds or rookeries and their recommendations will be implemented.</td>
</tr>
<tr>
<td></td>
<td>Signage described above in the protected species summary table under “All” will include information to make visitors aware of nesting birds in nearby areas and any protective measures that are necessary.</td>
</tr>
</tbody>
</table>

There are two bald eagle nests within 5 miles of the Highland View boat ramp, one 3.23 miles away and the other 3.48 miles away. The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s Bald Eagle Management Plan guidelines would be followed (FWC 2008).

**Wildlife and Wildlife Habitat**

Primary, secondary, and occasionally tertiary sand dunes with moderate cover of grasses and forbs, including sea oats, bitter panicum, Gulf bluestem, beach dropseed, and telegraph weed are considered preferred habitat of the St. Andrews beach mouse (Florida Natural Areas Inventory 2001). High, stable areas supporting sand live oak may be important following hurricanes that remove substantial dune habitat. The sand dune area within the Highland View boat ramp offers habitat suitable for the St. Andrews beach mouse.

**Environmental Consequences**

**Protected Species**

The USFWS reviewed the proposed Highland View Boat Ramp project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On May 1, 2014 the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect, five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead), West Indian manatee, piping plover, and red knot (if listed), and St. Andrews beach mouse. The USFWS also concurred with the Trustees’ determination that the project will not adversely modify or destroy critical terrestrial habitat for the Loggerhead turtle (if designated), Piping plover, or St. Andrews beach mouse. These conclusions were reached based upon the the contiion that if any lighting is installed it willbe wildlife friendly and comply with the guidance provided in the current edition of the FWC’s Lighting Technical Manual. DEP and FWC will also coordinate with the USFWS Panama City Field Office to see if specific signage needs to be posted in the project area.
The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ *Sea Turtle and Smalltooth Sawfish Construction Conditions* (NMFS, 2006), *Standard Manatee Conditions for In-Water Work* (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

**State-Listed Birds, MBTA, and BGEPA**

Bald eagles are not present at the project location so will not be affected. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

**Invasive Species**

**Affected Resources**

Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

**Environmental Consequences**

Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

**12.55.5.5 Human Uses and Socioeconomics**

**12.55.5.1 Socioeconomics and Environmental Justice**

**Affected Resources**

The proposed projects are in Gulf County, which is Florida’s fifty-ninth most populous county (Table 12-16). Gulf County contains 0.084% of Florida’s population (Florida Office of Economic and Demographic Research 2013). Home to approximately 15,863 residents, Gulf County has an average density of 28.1 individuals per square mile. White represents the largest group, comprising approximately 78% of the population of Gulf County. The second largest group was the Hispanic or Latino, representing 23.2%.
Table 12-16. Population characteristics for Gulf County compared to the State of Florida (U.S. Census 2010).

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>FLORIDA</th>
<th>GULF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population, 2010</td>
<td>18,801,310</td>
<td>15,863</td>
</tr>
<tr>
<td>White alone</td>
<td>14,721,426</td>
<td>12,405</td>
</tr>
<tr>
<td>Black or African American</td>
<td>3,121,017</td>
<td>3,030</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone</td>
<td>94,007</td>
<td>79</td>
</tr>
<tr>
<td>Asian alone</td>
<td>507,635</td>
<td>63</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander alone</td>
<td>18,801</td>
<td>0</td>
</tr>
<tr>
<td>Two or more races</td>
<td>357,225</td>
<td>286</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>4,361,904</td>
<td>730</td>
</tr>
<tr>
<td>White alone, not Hispanic or Latino</td>
<td>10,716,747</td>
<td>11,723</td>
</tr>
<tr>
<td>Homeownership rate, 2007–2011</td>
<td>69%</td>
<td>74.8%</td>
</tr>
<tr>
<td>Median household income, 2007–2011</td>
<td>$47,827</td>
<td>$41,291</td>
</tr>
<tr>
<td>Persons below poverty level, percent, 2007–2011</td>
<td>14.7%</td>
<td>17.5%</td>
</tr>
</tbody>
</table>

Environmental Consequences

These projects would have a short-term, moderate, impact through the disruption of localized fishing, access to the St. Vincent National Wildlife Refuge, and the local retail sales (food, gasoline, or similar items). A few individuals, groups, businesses, properties, or institutions would be impacted. Impacts would be small and localized. These impacts are not expected to substantively alter social and/or economic conditions. Actions would not disproportionately affect minority populations and low-income populations.

Direct, short-term, moderate benefits through local job creation would result from construction activities. Long-term, indirect, moderate benefits would result from increasing recreational and fishing value of the area. Greater fishing success may increase the number of fishing trips in the area that could generate ancillary purchases such as license fees, fuel, equipment, or other ancillary purchases.

This project is not designated to create a benefit for any group or individual, but would provide benefits to a local and regional basis. Because the project occurs in an area that is not disproportionately minority or low income, there are no indications that the proposed living shoreline project would be contrary to the goals of Executive Order 12898 or would create disproportionate, adverse human health or environmental impacts on minority or low-income populations of the surrounding community.

12.55.5.5.2 Cultural Resources

Affected Resources

A review of the Florida Master Site File (FMSF) indicates that there is one previously recorded archaeological site located within the immediate vicinity of the proposed Highland View project area (FDHR 2013). This site, 8GU202, is the Gulf County Canal. As recorded, the site area begins at St. Joe Bay and terminates at the Intercostal Waterway, approximately 5.8 miles to the northeast. The canal was constructed in 1938 by Gulf County to aid in the development of the region. In 1943, the canal was incorporated into a Federal waterway project (FDHR 2013). While surveys have been completed in the vicinity of the canal, the canal itself has not yet formally been evaluated for listing on the National Register of Historic Places.
This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

**Environmental Consequences**
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

**Infrastructure**

**Affected Resources**
The Highland View boat ramp is an existing, single-lane boat ramp and is surrounded by an L-shaped boarding dock and parking with a 20-vehicle/trailer capacity.

**Environmental Consequences**
The replacement and enhancement of the boat ramp will have short-term and minor impacts on the existing infrastructure. Improvements to the existing infrastructure would improve the experience of boaters.

12.55.5.5.3  Land and Marine Management

**Affected Resources**
Land uses surrounding the Highland View boat ramp include commercial, industrial, and residential land uses (FDEP 2008b). The projects would be located in a coastal area that is regulated by the federal CZMA and the Florida Coastal Management Act of 1978.

**Environmental Consequences**
Due to the existing Highland View boat ramp, zoning changes, amendment to land-use area, or comprehensive management plans would not be required. The long-term impact of the project would be minor because it would not affect overall use and management beyond the local project area. It would be consistent with current land use.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).
12.55.5.4  Aesthetics and Visual Resources

Affected Resources
Directly east and west are public and private beaches that offer unobstructed views of the Gulf of Mexico and St. Vincent Island. The land use surrounding the Highland View boat ramp is commercial, industrial and residential (FDEP 2008b). The boat ramp is adjacent to the Highway 98 Bridge.

Environmental Consequences
Temporary impacts to visual resources would result from implementation of the proposed enhancement activities. Construction equipment would be temporarily visible to visitors and recreational users at the project access points (i.e., boat ramps and launch areas) and the surrounding area. Due to the Highland View boat ramp’s position along the Highway 98 bridge and location within an industrial area, impacts to visual resources at this site would be minor and short term because the boat ramp is an existing facility.

12.55.5.5  Tourism and Recreational Use

Affected Environment
Tourism and recreation are common activities throughout the Florida panhandle region. The Highland View boat ramp is one of many boat ramps that offer access to the Gulf County Canal and St. Joseph Bay.

Environmental Consequences
The duration of the boat ramp construction projects is approximately 2 years. Closure of the Highland View boat ramp would have minor impacts on tourist and recreation because of the plethora of boat ramps in proximity to the site.

12.55.5.6  Public Health and Safety and Shoreline Protection

Affected Resources
The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act (RCRA); the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); the Emergency Planning and Community Right-to-Know Act; and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of these materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

A review of the EPA’s EnviroMapper revealed that there is one RCRA sites adjacent to the Highland View boat ramp (EPA 2013c).

Environmental Consequences
Project construction would require mechanical equipment that uses oil, lubricants, and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of construction-related hazardous materials such as vehicle fuels, oil, hydraulic fluid, and other vehicle
maintenance fluids. Because the project would repair an existing boat ramp, no impacts related to the existing RCRA site would be anticipated.

12.55.6 Summary and Next Steps
The proposed Highland View Boat Ramp project would improve the existing Highland View boat ramp in Gulf County. The proposed improvements include repairing and enhancing the existing boat ramp, replacing existing access and termination piers, and improving the parking to provide better facilities. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. These projects would enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.55.7 References


Florida Natural Areas Inventory. 2001. Field Guide to the Rare Animals of Florida, Hipes, Jackson, NeSmith, Printiss, and Brandt.


Gulf of Mexico Fishery Management Council (GMFMC). 2005. FINAL Generic Amendment Number 3 for Addressing Essential Fish Habitat Requirements, Habitat Areas of Particular Concern, and Adverse Effects of Fishing in the following Fishery Management Plans of the Gulf of Mexico: Shrimp Fishery of the Gulf of Mexico, United States Waters; Red Drum Fishery of the Gulf of Mexico; Reef Fish Fishery of the Gulf of Mexico; Coastal Migratory Pelagic Resources (Mackerels) in the Gulf of Mexico and South Atlantic Stone Crab Fishery of the Gulf of Mexico; Spiny Lobster in the Gulf of Mexico and South Atlantic; Coral and Coral Reefs of the Gulf of Mexico. Tampa: Gulf of Mexico Fishery Management Council.


USFWS 2011 Standard Manatee Conditions for In-Water Work.

12.56 Gulf County Recreation Projects: Project Description C
(Improvements at Beacon Hill Veterans’ Memorial Park)

12.56.1 Project Summary
The proposed Gulf County Beacon Hill Veterans’ Memorial Park Improvements project would improve and enhance the existing facilities at the Beacon Hill Veterans’ Memorial Park Gulf County. The proposed project will improve the park, including: the construction of a small amphitheater, pavilions, upgrade/replace existing restrooms and possible development of a nature trail and additional area for vehicle parking. The total estimated cost of the project is $588,500.

12.56.2 Background and Project Description
The Trustees propose to improve and enhance an existing recreational area at the Beacon Hill Veterans’ Memorial Park (see Figure 12-15 for general project location). The objective of the Gulf County Beacon Hill Veterans’ Memorial Park Improvement project is to enhance and/or increase recreational beach use opportunities by improving the park. The restoration work proposed includes the construction of a small amphitheater, pavilions, upgrade/replace existing restrooms and possible development of a nature trail and additional area for vehicle parking.

Figure 12-15. Location of Gulf County recreation project – improvements at Beacon Hill Veterans’ Memorial Park.
12.56.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Gulf County Beacon Hill Veterans’ Memorial Park Improvements project is intended to enhance and/or increase recreational beach use opportunities by improving the park. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Agencies have successfully completed projects of similar scope throughout Florida over many years, including similar types of actions in earlier phases of the Deepwater Horizon Early Restoration. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.56, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.56 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Gulf County Recreation Project – Improvements at Beacon Hill Veterans’ Memorial Park project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.56.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational beach use opportunities by improving the Beacon Hill Veterans’ Memorial Park. Performance monitoring will evaluate: 1) the construction of pavilions; 2) the construction of restrooms; 3) the building of a nature trail; 4) the construction of a new parking area; and 5) the construction of a small amphitheater. Specific performance criteria include: 1)
the completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the park is open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by Gulf County as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by Gulf County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Gulf County will monitor the recreational use activity at the site. Gulf County staff will visit the site twice a year to count the number of users at the park. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.56.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. Combined NRD Offsets for the Gulf County Recreation Projects, of which this is a component, are $4,237,200 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.10

12.56.6 Costs
The total estimated cost to implement this project is $588,500. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---

10 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.57 Gulf County Recreation Projects: Environmental Review C (Beacon Hill Veteran’s Memorial Park)

12.57.1 Introduction and Background
Beacon Hill Veterans’ Memorial Park is located in Gulf County, Florida. The proposed project will improve the park, including: the construction of a small amphitheater, pavilions, upgrade/replace existing restrooms and possible development of a nature trail and additional area for vehicle parking. Detailed construction methods and plans have not yet been developed for the proposed project and would be subject to the final design and contractor approach.

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf Coast in advance of the completion of the injury assessment process. Early restoration is not intended to and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement, the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This project in Gulf County was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the requirements of the Oil Pollution Act (OPA), the project meets Florida criteria that Early Restoration projects occur in the eight-county panhandle area that deployed boom and was impacted by the Spill.

12.57.2 Project Location
Beacon Hill Veteran’s Memorial Park is located off U.S. Highway 98 (US-98) south of Mexico Beach and north of Port St. Joe. The park consists of approximately 39.93 acres of land. Although a portion of the park is developed as facilities and baseball diamonds, the rest is undeveloped. Figure 12-16 and Figure 12-17 illustrate the project area.
Figure 12-16. Illustration of the project area.
Figure 12-17. Project location map.
12.57.3 Construction and Installation
The proposed project involves the construction of park amenities at Beacon Hill Veterans’ Memorial Park. Facilities would include an amphitheater, pavilions, restrooms, a nature trail, and a parking area.

Detailed construction methods and plans have not yet been developed for the construction of the proposed project and would be subject to the final design and contractor approach. All of the project work is in upland areas. A range of heavy construction equipment and tools would be required for construction of this project. The specific equipment used would vary with the different phases of the project.

Up to several feet of ground would be disturbed during construction. In the area where land would be added, sediment and other material would be placed. The area to be covered would be determined by final design. Ground would need to be graded and in some cases removed as part of the construction activities. Material planned for removal includes soil, rubble, and vegetation in the area where facilities, trails, and the parking area would be built.

The timing of proposed construction has not been finalized. The selected contractor would provide a construction schedule prior to beginning work.

12.57.4 Operations and Maintenance
The Gulf County Parks Department operates a variety of parks for outdoor recreation and leisure activities, including Beacon Hill Veterans’ Memorial Park. Maintenance would fall under the purview of the Gulf County Parks Department, and would include tasks such as restroom checks and cleaning as well as removing debris and trash from the parking areas. No data are available at this time regarding any park-monitoring activities, such as tracking visitor usage.

12.57.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

12.57.5.1 No action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.
12.57.5.2 Physical Environment

12.57.5.2.1 Geology and Substrates

Affected Resources
The park is located in the Gulf Coast Lowlands physiographic unit. Specifically, the park is located within the Apalachicola Coastal Lowlands. The topography of the area is mostly flat, but there are some areas with moderate rolling dunes and high rolling hills (FDEP 2006). The entirety of Bald Point State Park is classified as Beach Ridge and Dune (Qdb) deposits of the Pleistocene and Holocene eras (Scott 2001). Table 12-17 identifies soils found within the park (NRCS 2004).

Table 12-17. Soils identified in the park.

<table>
<thead>
<tr>
<th>SOIL NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leon sand</td>
</tr>
<tr>
<td>Mandarin fine sand</td>
</tr>
<tr>
<td>Resota fine sand, 0%–5% slopes</td>
</tr>
<tr>
<td>Pickney-Pamlico Complex, depressional</td>
</tr>
<tr>
<td>Water</td>
</tr>
</tbody>
</table>

A sinkhole is a closed depression in the land surface that is formed by surficial solution or by subsidence or collapse of surficial materials due to the solution of near-surface limestone or other soluble rocks. Sinkholes are a natural and common geologic feature in areas underlain by limestone and other rock types soluble in natural water; they are one of the predominant landform features of Florida. The state has been classified into the Trustees’ areas of sinkhole occurrence. Gulf County is categorized as Area IV with a carbonate rock cover more than 200 feet thick. Area IV consists of cohesive sediments interlayered with discontinuous carbonate beds. Sinkholes are very rare, but several large-diameter, deep sinkholes do exist. Cover-collapse sinkholes dominate in Area IV; these occur when a solution cavity develops in limestone to such a size that the overlying cover material can no longer support its own weight (FDEP 2013b).

Environmental Consequences
Mechanized equipment and hand tools would be used to complete the construction of the project. Some excavation of soils would occur; however, adverse impacts to geology and substrates would be minor. Disturbance would be detectable, but would be short term, small, and localized. There would be no long-term changes to local geologic features or soil characteristics. Erosion and/or compaction may occur in localized areas.

12.57.5.2.2 Hydrology and Water Quality

Affected Resources
Northwest Florida has seven major watersheds, all of which have been identified as priorities under the Surface Water Improvement and Management (SWIM) program. Water quality protection is the underlying goal of SWIM, along with the preservation and restoration of natural systems and associated
public uses and benefits (Northwest Florida Water Management District [NWFWMD] 2011). The park is part of the St. Andrews Bay watershed system, which includes St. Andrews, West, East, and North bays; St. Joseph Bay; and Deer Point Reservoir; as well as the respective surface water basins of each of these waterbodies. The total drainage area covers nearly 749,663 acres. The waterways are primarily used for transportation, seafood harvesting, recreation, and waste disposal. Broad issues for the St. Andrews Bay system include degradation through point and nonpoint pollution sources, habitat quality that is threatened by and degraded through sedimentation and deposition, and public education and awareness (Thorpe 2000).

There are no designated Outstanding Florida Waters (OFWs) by the State of Florida (Rule 62-302.700, Fla. Admin. Code) in the project area. Surface waters in the project area have been classified as Class III waters by the FDEP (FDEP 2006). Class III waters have the designated uses of fish consumption, recreation, and propagation and maintenance of a healthy, well-balanced population of fish and wildlife.

Impaired waters are waters that are too polluted or otherwise degraded to meet the water quality standards set by states, territories, or authorized tribes. St. Andrews Bay has been listed as an impaired waterbody for mercury in fish tissue and fecal coliform; however, total maximum daily loads (TMDLs) have not yet been adopted (Environmental Protection Agency [EPA] 2010).

**Wetlands**

Based on the National Wetland Inventory data, there are freshwater forested/shrub wetlands in the project area (USFWS 2013), although no wetland areas will be disturbed or affected by project activity.

**Floodplains**

Based on Federal Emergency Management Agency (FEMA) flood insurance rate maps (Panel 12045C0217G), the project appears to be in Zone X and Zone A. Zone X is defined as other flood areas, consisting of areas with a 0.2% chance of flood, or a 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile, or areas protected by levees from a 1% annual chance flood. Zone A has no defined base flood elevations, and is an area of special flood hazard (FEMA 2009).

**Environmental Consequences**

The project plans for the park improvements have not yet been finalized. However, careful consideration would be given to the design of the park improvements to have the least effect on waters and wetlands within the park.

The effect on hydrology would be measurable but small and localized. Because project plans are not yet finalized, all efforts would be made to design the project elements to have the least possible effect on the local hydrology, and best management practices (BMPs) would be implemented. BMPs that may be implemented and would help avoid potential adverse impacts to water quality include:

- All construction would be performed in accordance with all local, state, and federal requirements and all permit requirements to protect the surrounding vegetation and natural condition.
• The contractor would submit a plan for control of surface water runoff in accordance with all local, state, and federal requirements and all permit requirements to protect the surrounding vegetation and natural condition.
• All construction adjacent to open water would be separated and confined by appropriate siltation screens and turbidity barriers to protect the quality of open water. However, for this project, no construction would occur adjacent to open water.
• Upon completion of construction, the site would be cleared of all construction materials and restored to its natural state as shown on the plan drawings.
• The contractor would be responsible for assuring compliance with all permit requirements.

In addition to construction BMPs, the contractor would implement BMPs for adequate erosion control. Erosion control is necessary to prevent damage to adjacent property, natural features, site property, and work in progress. Erosion control measures would be in place prior to any land alteration, and would be used throughout the construction process until soils are stabilized. Erosion control BMPs are as follows:

1. To protect against wind and stormwater runoff erosion, the contractor would place as appropriate hay bales and silt fencing with wire fence reinforcement, with sediment to be removed when it reaches approximately one-half the height of the barrier (see Figure 12-17).
2. Silt fences would be of optimal design and materials for adequate sediment control.
3. Side slopes created during construction would be stabilized at the earliest possible date to avoid erosion with adequate use of compacted soil and staked hay bales.
4. Any disturbed area not to be paved, sodded, or built upon would have a minimum vegetative cover of 80% and be mature enough to control soil erosion and survive severe weather conditions prior to final inspection.
5. Sod would be sufficiently grown and maintained to secure a dense stand of live grass.
6. The proposed road surface at the entrance would require a maintained condition of slope to prevent tracking or flow of mud onto the existing public roadway.

The project area is classified as multiple floodplain zones; these include the A and X zones. Impacts may result in a detectable change to natural and beneficial floodplain values, but the change would be expected to be small and localized. There would be no appreciable increased risk of flood loss, including impacts on human safety, health, and welfare.

The proposed project is not anticipated to require authorization by the U.S. Army Corps of Engineers (Corps) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA).

12.57.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources

The Clean Air Act (CAA) requires that the Environmental Protection Agency (EPA) set National Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to public health and the environment. NAAQS have been set for six common air pollutants (also known as criteria pollutants), consisting of particle pollution or particulate matter, ozone, carbon monoxide, sulfur dioxide (SO₂), nitrogen dioxide, and lead. Particulate matter is defined as fine particulat
tes with a diameter of 10 micrometers or less (PM₁₀), and fine particulates with a diameter of 2.5 micrometers or less (PM₂.₅). When a designated air
quality area or airshed in a state exceeds the NAAQS, that area may be designated as a “nonattainment” area. Areas with levels of pollutants below the health-based standard are designated as “attainment” areas. To determine whether an area meets the NAAQS, air monitoring networks have been established and are used to measure ambient air quality. The EPA also regulates 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health effects. Air quality in the Florida panhandle is in attainment with the NAAQS (EPA 2013a).

**Greenhouse Gases**

Gases that trap heat in the air are called greenhouse gases (GHGs). The primary GHGs are carbon dioxide (CO$_2$), methane (CH$_4$), nitrous oxide (NO$_x$), and fluorinated gases. Over the past century, human activities have released large amounts of GHGs into the atmosphere, which are contributing to global warming. Global warming is defined as the ongoing rise in global average temperature near the Earth’s surface, and is known to cause changes in climate patterns.

According to the EPA, the average annual temperature in the southeast portion of the United States has increased by approximately 2.0 degree Fahrenheit (°F) since 1970. Winters, in particular, are getting warmer, and the average number of freezing days has decreased by 4 to 7 days per year since the mid-1970s. Most areas are getting wetter; autumn precipitation has increased by 30% since 1901 (EPA 2013b). In many parts of the region, the number of heavy downpours has increased. Despite the increases in fall precipitation, the area affected by moderate and severe drought has increased since the mid-1970s (EPA 2013b).

Average annual temperatures in the region are projected to increase from 4°F to 9°F by 2080. Hurricane-related rainfall is projected to continue to increase. Models suggest that rainfall will arrive in heavier downpours, with increased dry periods between storms. These changes would increase the risk of both flooding and drought. The coasts will likely experience stronger hurricanes and sea level rise. Storm surge could present problems for coastal communities and ecosystems (EPA 2013b).

Total GHG emissions in Florida from 1990 to 2007 have increased at an average rate of 2.1% per year. Total GHG emissions in 2007 were 290 million metric tons of CO$_2$ equivalent (MMTCO$_2$E). In 2007, 91% of GHG emissions in Florida were CO$_2$ emissions (FDEP 2010).

**Environmental Consequences**

Project implementation would require the use of heavy mechanized equipment, which would lead to temporary air pollution (e.g., criteria pollutants, HAPs, GHGs) due to emissions from the operation of construction vehicles and equipment. Any air quality impacts that occur would be minor due to their localized nature, short-term duration, and the small size of the project. Available BMPs would be employed to prevent, mitigate, and control potential air pollutants during project implementation. No air quality–related permits would be required. The project area is currently in attainment with NAAQS parameters. The proposed action would not affect the attainment status of the project area or region. A State Implementation Plan conformity determination (42 USC 7506 (c) is not required because the project area is in attainment for all criteria pollutants.

Project plans have not been finalized for this project. As such, it is unclear what equipment would be used and the duration of use for that equipment. The following table provides GHG emissions estimates for a range of construction and transportation equipment types that may be used during proposed
construction of park improvements. Each of these emissions is based on use of the heavy equipment over an 8-hour day (Table 12-18).

Based on the assumptions described in Table 12-18 below, GHG emissions would not exceed 25,000 metric tons per year. Given the projected construction-phase GHG emissions, the small scale and short duration of the project, and increased park use, predicted impacts on air quality from GHGs emissions would be anticipated to be minor for both the short and long term.

At the completion of the project, visitor use could increase due to the improved access. Increased exhaust emissions could affect air quality over the long term. However, adverse impacts to air quality would be expected to be minor because management actions could be taken to limit boat use.

12.57.5.3 Noise

Affected Resources
Noise can be defined as unwanted sound and noise levels, and its impacts are interpreted in relation to impacts on nearby visitors to the recreational areas and wildlife in the project vicinity. The Noise Control Act of 1972 (42 USC 4901–4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale that approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-19 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.

Table 12-18. Greenhouse gas emissions for various types of mechanized equipment.

<table>
<thead>
<tr>
<th>EQUIPMENT DESCRIPTION</th>
<th>TOTAL HOURS USED</th>
<th>CO₂ FACTOR-MT/100HRS*</th>
<th>CO₂ (MT)</th>
<th>CH₄ FACTOR-MT/100HRS</th>
<th>CH₄ (MT)</th>
<th>N₂O FACTOR-MT/100HRS</th>
<th>N₂O (MT)</th>
<th>TOTAL CO₂ (MT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dump trucks/ flatbed trucks</td>
<td>216</td>
<td>1.7</td>
<td>3.762</td>
<td>0.5</td>
<td>1.08</td>
<td>7.2</td>
<td>15.55</td>
<td>20.304</td>
</tr>
<tr>
<td>Concrete trucks</td>
<td>24</td>
<td>1.7</td>
<td>0.408</td>
<td>0.5</td>
<td>0.12</td>
<td>7.2</td>
<td>1.728</td>
<td>2.256</td>
</tr>
<tr>
<td>Pickup trucks</td>
<td>2,304</td>
<td>1.1</td>
<td>25.344</td>
<td>0.35</td>
<td>8.064</td>
<td>4.4</td>
<td>101.376</td>
<td>134.784</td>
</tr>
<tr>
<td>Bobcat (bare and with auger mount)</td>
<td>480</td>
<td>2.65</td>
<td>12.72</td>
<td>0.9</td>
<td>4.32</td>
<td>10.6</td>
<td>50.88</td>
<td>67.92</td>
</tr>
<tr>
<td>Trackhoe (w/bucket/thumb or vibratory attachments)</td>
<td>24</td>
<td>2.55</td>
<td>0.612</td>
<td>0.85</td>
<td>0.204</td>
<td>10.2</td>
<td>2.448</td>
<td>3.264</td>
</tr>
<tr>
<td>Dozer</td>
<td>24</td>
<td>2.25</td>
<td>0.54</td>
<td>0.65</td>
<td>0.156</td>
<td>1.08</td>
<td>0.2592</td>
<td>0.9552</td>
</tr>
<tr>
<td>Total</td>
<td>3,072</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>229.48</td>
</tr>
</tbody>
</table>

*mt = metric tons

1 Emissions assumptions for all equipment types are based on 8 hours of operation.

2 CO2 emissions assumptions for diesel and gasoline engines are based on EPA 2009.

3 CH4 and NOx emissions assumptions and CO2e calculations are based on EPA 2011.

4 Emissions assumptions for an 8-cylinder, 6.2-liter gasoline-engine Ford F150 pickup are based on DOE 2013 and 18-gallon (half-tank) daily fuel consumption.
### Table 12-19. Common noise levels.

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (DBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawnmower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Adapted from U.S. Department of Energy (1986).

Noise levels in the project area vary depending on the season, time of day, number and types of noise sources, and distance from noise sources. Existing sources of noise in the project area are mainly from commercial traffic, with occasional overhead aircraft. Ambient natural sounds such as wind, waves, and wildlife also contribute to existing noise levels. Existing ambient noise levels in the project area would be generally low and predominantly result from daily boating activities.

Noise-sensitive receptors include sensitive land uses as well as individuals and/or wildlife that could be affected by changes in noise sources or levels due to the proposed project. Noise-sensitive receptors in the project vicinity include beach and park recreational use and wildlife. The project area is, for the most part, consistent with a developed urban environment. The shoreline of the project area supports a variety of residential and industrial developed areas, and the Gulf of Mexico supports commercial and recreational boat traffic.

**Environmental Consequences**

Machinery and equipment used during construction would generate noise. This noise may disturb wildlife and humans using the area, but would be kept to a minimum via BMPs such as working only during daytime hours, turning equipment off when idling, etc. Once constructed, the proposed project would not cause long-term noise impacts. Adverse impacts from noise would be minor and short term.

12.5.7.5.3.1 Biological Environment

Living Coastal and Marine Resources

Vegetation

**Affected Resources**

According to the Natural Vegetation of Florida, the project area is located on pine flatwoods vegetation type. This vegetation type is characterized by open woodlands of one of three species of pine: longleaf, slash, and pond pines. Many herbs, saw palmetto, shrubs, and small trees form an understory. Included
in general flatwoods are small hardwood forests, many kinds of cypress swamps, prairies, marshes, and bay tree swamps (Davis 1967).

A review of the Florida Department of Transportation’s Efficient Transportation Decision Making tool (https://etdmpub.fla-etat.org/est/) indicates that although submerged aquatic vegetation (corals, seagrasses) are present off the coastline, they are not present in the proposed project area (FDOT 2013). Listed plant species with potential to occur in the project area include bent golden aster (*Pityopsis flexuosa*), Gulf Coast lupine (*Lupinus westinouas*), Harper’s beauty (*Harpero callisflava*), Panhandle spider lily (*Hymenocallis henryae*), white birds in a nest (*Macbridea alba*), and yellow butterwort (*Pinguicula lutea*).

**Environmental Consequences**

There would be multiple, discreet construction activities associated with this project. During construction of the amphitheater, pavilions, the restrooms, the nature trail, and the parking area, vegetation would be disturbed by grading, foundation placement, and building construction.

Construction of the facilities would require the permanent removal of vegetation in the affected areas. The use of equipment and disturbance of soil and existing vegetation would also introduce a risk of noxious weed or invasive vegetation species introduction. Overall, impacts on native vegetation from the construction effort may be detectable but would not alter natural conditions and would be limited to localized areas. Infrequent disturbance to individual plants could be expected, but without affecting local or range-wide population stability. Infrequent or insignificant one-time disturbance to locally suitable habitat could occur, but sufficient habitat would remain functional at both the local and regional scales to maintain the viability of the species.

Improvement to the park would likely bring in additional visitors. The additional human presence in the park may pose a long-term, minor effect to vegetation there. The more people that enter the park, the greater the likelihood that humans would trample, pick, or otherwise disturb plants. These events would occur in areas where new construction takes place. Impacts on native vegetation in the immediate vicinity of the new park improvements would be measureable but limited to local and adjacent areas. Occasional disturbance to individual plants could be expected. These disturbances could affect local populations negatively, but would not be expected to affect regional population stability. Some impacts might occur in key habitats, but sufficient local habitat would retain functionality to maintain the viability of the species both locally and throughout its range.

Project plans for the park improvements have not yet been completed. Therefore, the presence of threatened or endangered plants would be considered during the design phase of the project. Care would be taken to site park improvements in areas that minimize disturbance to vegetation.

Soil disturbance may encourage the encroachment of invasive or nuisance species. Those undeveloped areas disturbed during construction would be monitored, and invasive species would be removed.
Wildlife Habitat

Affected Resources
All project work would take place in a terrestrial environment. Terrestrial species known to reside in the park include but are not limited to osprey, migration falcons, deer, bear, raccoon, opossums, bobcats, foxes, other migratory birds, reptiles, and amphibians.

Environmental Consequences
The proposed project would be constructed in an upland environment. The proposed action has been evaluated for potential short- and long-term impacts to state and federally listed threatened and endangered species that can occur in and adjacent to the project areas based on available suitable habitat and restoration goals.

Although common wildlife may be disturbed from construction activities, these species live in an urban environment where ambient noise levels are high. Habitat conditions after construction would be similar to existing conditions, and no impacts to common wildlife would be anticipated.

Marine and Estuarine Fauna (Fish, Shell Beds, and Benthic Organisms)

Affected Resources
The proposed project would take place in upland environments isolated from the marine environment.

Environmental Consequences
There would be no in-water construction associated with this project. Therefore, there would be no impacts to marine and estuarine fauna.

Protected Species
Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

Affected Resources
DOI reviewed the species list for Gulf County, Florida where the project area is located. No habitat for listed, proposed, or candidate species managed by DOI known from Gulf County, Florida is present in the action area and no listed, proposed, or candidate species are expected to be in the action area. Therefore, DOI made a no effect determination for all listed, proposed, and candidate species known from Gulf County, Florida (McClain, 2014). No terrestrial critical habitat is designated or proposed in or near the action area; therefore, none will be adversely modified or destroyed. The USFWS concurred with this determination on March 10, 2014.

---

11 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
Based on our reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Protected Resource Division (PRD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that this project falls outside of NMFS Endangered Species Act (ESA) jurisdiction, as it does not contain suitable habitat for species managed by NMFS. As a result, the project did not require further ESA evaluation from NOAA.

**Essential Fish Habitat**

Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Habitat Conservation Division (HCD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that this project will not affect EFH because there is no EFH in the project area. As a result, the project did not require further EFH evaluation.

**State-Listed Birds, MBTA, and BGEPA**

There are numerous State of Florida–listed bird species with potential to occur in and around the park. These include Arctic peregrine falcon (*Falco peregrinus tundrius*), least tern (*Sterna antillarum*), southeastern American kestrel (*Falco sparverius paulus*), southeastern/Cuban snowy plover (*Charadrius alexandrinus tenuirostris*), piping plover (discussed above), and wood stork (*Mycteria Americana*). All migratory bird species are protected under the MBTA. The nesting season in Florida is from February 15 to August 31.

The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s Bald Eagle Management Plan guidelines would be followed (FWC 2008).

The DOI species review also considered the presence of bald eagles (*Haliaeetus leucocephalus*) and migratory birds. No bald eagles or migratory birds are known to nest near the project area. However, migratory birds likely use the area for feeding, loafing, or resting. Because the project area is already used by the public for recreation and is adjacent to an active highway that will remain in operation throughout the project, construction activity is anticipated to represent a marginal source of additional disturbance to species already in the area. However, precautions during construction will be used to protect any migratory birds that may be feeding, loafing, or resting in or near the project area. Such precautions include minimizing construction noise to the extent practicable, using care to avoid birds when operating machinery or vehicles near birds, and general contractor awareness of bird presence. Therefore, no impacts to bald eagles and insignificant impacts to migratory birds are anticipated. The general measures to protect migratory birds should avoid take.
Invasive Species

Affected Resources
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

Environmental Consequences
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.57.5.3.2 Human Uses and Socioeconomics

Socioeconomics and Environmental Justice

Affected Resources
The population of Gulf County is 15,863. Table 12-20 contains population/minority data for Gulf County and Florida (U.S. Bureau of the Census 2010).

Environmental Consequences
Improvements to the park would have a direct, beneficial effect for people that live near the area. Improvements would encourage more people to visit the park and participate in outdoor activities. This benefit the health and wellbeing of the local population. The proposed improvements to the park would draw more visitors to the county. Long-term, indirect, moderate benefits would result from increasing recreational value of the area.

Direct, short-term, moderate benefits through local job creation would result from construction activities. This project is not designed to create a benefit for any group or individual, but rather would provide benefits to a local and regional basis. Because the proposed project would occur in an area that is not disproportionately minority or low income (see Table 12-20), there are no indications that it would be contrary to the goals of Executive Order 12898, or would create disproportionate, adverse human health or environmental impacts on minority or low-income populations of the surrounding community.
Table 12-20. Populations of Florida and project area county.

<table>
<thead>
<tr>
<th>POPULATION</th>
<th>FLORIDA</th>
<th>GULF COUNTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 total population</td>
<td>18,688,787</td>
<td>15,863</td>
</tr>
<tr>
<td>White alone</td>
<td>14,270,053</td>
<td>12,384</td>
</tr>
<tr>
<td>Black or African American alone</td>
<td>2,946,899</td>
<td>2,962</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone</td>
<td>58,192</td>
<td>63</td>
</tr>
<tr>
<td>Asian alone</td>
<td>455,403</td>
<td>46</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander alone</td>
<td>11,005</td>
<td>4</td>
</tr>
<tr>
<td>Some other race alone</td>
<td>564,351</td>
<td>119</td>
</tr>
<tr>
<td>Two or more races</td>
<td>382,884</td>
<td>285</td>
</tr>
<tr>
<td>Median household income, 2007–2011</td>
<td>$47,827</td>
<td>$41,291</td>
</tr>
<tr>
<td>Persons below poverty level, 2007–2011</td>
<td>14.7%</td>
<td>17.5%</td>
</tr>
</tbody>
</table>

Cultural Resources

Affected Resources
A review of the Florida Master Site File (FMSF) shows no previously recorded archaeological sites or other historic properties present in the project area at this time.

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Environmental Consequences
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

Land and Marine Management

Affected Resources
The park is maintained and operated by Gulf County Department of Maintenance. The land use surrounding the park is primarily public/semi-public (FDOT 2013). The proposed project would be located in a coastal area that is regulated by the federal CZMA and the Florida Coastal Management Act of 1978.

Environmental Consequences
Although the action would require several permits for the short-term construction period, it would not require a variance, zoning change, or amendment to a land-use area or comprehensive management plan. Improvements to the park would be consistent with current Gulf County land use. The long-term
impacts from the project would be minor because they would not affect overall use and management beyond the local project area.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

**Tourism and Recreational Use**
The park is situated along the coast with beach access. The park is used for swimming, sunbathing, and picnicking, and has paved parking lots. Numerous restaurants and bars are located near the park, with access to the beach. There is also opportunity for bird watching and nature appreciation.

**Environmental Consequences**
During the construction period, the visitor recreational experience would be adversely impacted by noise and visual disturbances associated with the use of construction equipment. The impact would be short term and minor because it would only affect some recreationalists in the areas where construction would be taking place. Users would likely be aware of the construction, but changes in use would be slight. The construction process would also limit recreational activities near construction areas for a short time to protect public safety. These limitations would be a minor inconvenience to visitors. Over the long term, minor beneficial impacts to tourism and recreational use would be expected due to the enhancement of recreational opportunities associated with improved facilities and accessibility.

**Aesthetics and Visual Resources**

**Affected Resources**
Existing aesthetics and visual resources from the project site are views of the beach, the trees, and the existing park facilities.

**Environmental Consequences**
Short-term impacts would occur to visual resources during construction activities due to the presence of equipment and materials. These impacts would be minor because they would only be visible from a small portion of the park, would not dominate the viewshed, or would not detract from current visitor activities. Long-term changes to visual resources would occur from the addition of an amphitheater, pavilions, restrooms, nature trail, and parking area. These changes would be readily apparent but minor because they are consistent with other park facilities and would not attract attention, dominate the view, or detract from visitor experiences.
Infrastructure

**Affected Resources**
Currently, the park has limited infrastructure. Although a portion of the park is developed as facilities and baseball diamonds, the rest is undeveloped. The park can be accessed by Beacon Hill Park Road. Utilities and public infrastructure facilities are currently available within the park.

**Environmental Consequences**
Because there is limited infrastructure at the park, adding to the facilities through construction of an amphitheater, pavilions, restrooms, nature trail, and parking area is anticipated to hook up to existing utilities and public infrastructure. Sewer lines or power lines may need to be extended to reach proposed new facilities. It is not anticipated that the proposed facilities would require an expansion of utilities that service the park. The improvements would have a beneficial, long-term impact because they would improve the visitor experience.

Public Health and Safety and Shoreline Protection

**Affected Resources**
The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act (RCRA); the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); the Emergency Planning and Community Right-to-Know Act; and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of these materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

A review of the EPA’s EnviroMapper revealed that there are no CERCLA, RCRA, or Permit Compliance System (PCS) sites on or immediately adjacent to the park (EPA 2013c).

**Environmental Consequences**
Project construction would require mechanical equipment that uses oil, lubricants, and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of construction-related hazardous materials such as vehicle fuels, oil, hydraulic fluid, and other vehicle maintenance fluids, and to avoid releases and spills.

12.57.6 Summary and Next Steps
The proposed Gulf County Recreation Project – Improvements at Beacon Hill Veterans’ Memorial Park project would improve and enhance the existing facilities at the Beacon Hill Veterans’ Memorial Park Gulf County. The proposed improvements include building, pavilions, restrooms, a nature trail, a parking area, and a small amphitheater. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.
NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational beach use opportunities by improving the park. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.57.7 References


Gulf of Mexico Fishery Management Council (GMFMC). 2005. FINAL Generic Amendment Number 3 for Addressing Essential Fish Habitat Requirements, Habitat Areas of Particular Concern, and Adverse Effects of Fishing in the following Fishery Management Plans of the Gulf of Mexico: Shrimp Fishery of the Gulf of Mexico, United States Waters; Red Drum Fishery of the Gulf of Mexico; Reef Fish Fishery of the Gulf of Mexico; Coastal Migratory Pelagic Resources (Mackerels) in the Gulf of Mexico and South Atlantic Stone Crab Fishery of the Gulf of Mexico; Spiny Lobster in the Gulf of Mexico and South Atlantic; Coral and Coral Reefs of the Gulf of Mexico. Tampa, Florida: Gulf of Mexico Fishery Management Council. Available at: http://www.gulfcouncil.org/Beta/GMFMCWeb/downloads/FINAL3_EFH_Amendment.pdf. Accessed on October 5, 2013.


12.58 Gulf County Recreation Projects: Project Description D (Windmark Beach Fishing Pier Improvements)

12.58.1 Project Summary
The proposed Gulf County Windmark Beach Fishing Pier Improvements project would construct a fishing pier at Windmark Beach in Gulf County. The proposed improvements include constructing a fishing pier into the Gulf of Mexico. The total estimated cost of the project is $1,353,550.

12.58.2 Background and Project Description
The Trustees propose to construct a large fishing pier at Windmark Beach in Gulf County (see Figure 12-18 for general project location). The objective of the Windmark Beach Fishing Pier Improvement project is to enhance and/or increase recreational fishing opportunities by constructing a fishing pier. The restoration work proposed includes constructing a large fishing pier into the Gulf of Mexico.

Figure 12-18. Location of Gulf County Recreation Project – Windmark Beach Fishing Pier Improvements.
**12.58.3 Evaluation Criteria**

This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of their natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Gulf County Windmark Beach Fishing Pier Improvements project is intended to enhance and/or increase recreational fishing opportunities by constructing a fishing pier. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Florida counties have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.58, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration with the exception of geology and substrates and hydrology and water resources which would be minor, localized and long term. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.58 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Gulf County Recreation Project – Windmark Beach Fishing Pier Improvements project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

**12.58.4 Performance Criteria, Monitoring and Maintenance**

As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational fishing opportunities by constructing a fishing pier at Windmark Beach. Performance monitoring will evaluate the construction of the fishing pier. Specific performance criteria include: 1) completion of the construction as designed and
permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the fishing pier is open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by Gulf County as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by Gulf County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Gulf County will monitor the recreational use activity at the site. Gulf County staff will visit the site twice a year to count the number of users at the fishing pier. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.58.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. Combined NRD Offsets for the Gulf County Recreation Projects, of which this is a component, are $4,237,200 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.¹²

12.58.6 Costs
The total estimated cost to implement this project is $1,353,550. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of publication of the Final Phase III ERP/PEIS. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

¹² For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:
- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.59 Gulf County Recreation Projects: Environmental Review D
(Windmark Beach Fishing Pier Improvements)

The purpose of this proposed project is to construct a new recreational fishing pier at Gulf County Windmark Beach Park at West Highway 98 (US-98) in Port St. Joe, Gulf County, Florida. The proposed project would provide improved public recreation fishing opportunities along the eastern shoreline of St. Joseph Bay.

12.59.1 Introduction and Background

In April 2011, the Trustees and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement, the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Final Phase III ERP/PEIS (ERP). This project in St. Joseph Bay within Gulf County was submitted as an Early Restoration project on the NOAA website and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the 8-county panhandle area that deployed boom and was impacted by the Spill.

The Florida Department of Environmental Protection (FDEP) proposes to construct a public fishing pier to provide Windmark Park visitors with recreational fishing opportunities. The proposed project would be located in St. Joseph Bay, Gulf County. The park currently does not have an over-water fishing facility. Surf fishing from the shoreline is currently offered to park visitors. Currently, visitors park their vehicles in the park’s parking facility, which is located west of US-98, and visitors use an existing wooded boardwalk to access an existing restroom and to cross the backdune areas east of old US-98 to access the beach. There is no existing dune cross-over west of old US-98. Currently, an established unimproved pathway though the beach dune area is used by visitors to access the beach. The existing parking lot consists of an impervious paved surface with approximately 75 parking spaces and vegetated median dividers.
12.59.2 Project Location

The proposed project would be located in St. Joseph Bay, a natural sound separated from the Gulf of Mexico by St. Joseph Peninsula in the Florida panhandle region. The specific project site would be located immediately south of St. Joe Beach at Windmark Beach Park, West U.S. Highway 98 (27° 42’ N; 80° 15’ 6 W), Port St. Joe, Class III Waters of St. Joseph Bay (Non-Aquatic Preserve), Gulf County, Florida (see Figure 12-19).

12.59.3 Construction and Installation

Final plans the proposed fishing pier have not been completed. However, considering conditions at the proposed site and plans for similar proposed and existing piers, the proposed fishing pier could be up to 1,200 feet long and 16 feet wide extending generally southwest from beach into the waters of St. Joseph Bay as indicated in Figure 12-20. At the end of the pier a small section would be oriented perpendicular to the rest of the pier and have dimensions of approximately 60 feet long by 16 feet wide. Based on these dimensions the pier would have an overall total area of 20,160 square feet.

Access to the pier will begin from the existing parking areas at Windmark Beach Park with the construction of dune walkovers. The dune crossover would be constructed using following current best practice guidelines (e.g., USFWS, 2013c) in accordance with the engineering requirements of the final project design to provide a clear means for visitors to access the pier without having to walk directly through the dunes between the parking area and beach at the project site. As a result of this controlled access the project would help minimize contact and potential adverse impacts to identified critical habitat for the St. Andrews Beach Mouse.

The final orientation of the pier will also be evaluated as part of the effort to develop final plans. As part of this assessment, a survey of submerged aquatic vegetation (SAV) in the area would be completed. Should the site assessment for the project identify SAV in the proposed project area, the conditions in the Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat (U.S. Army Corps of Engineers/National Marine Fisheries Service, 2001) would be implemented. Among other elements this would require placing pilings for the dock expansion a minimum of 10 feet apart. Orientation options for the fishing pier will also consider site specific features such as sand bars off the point and the bathymetry of the area.

Based on conceptual plans for similar fishing piers, it is assumed that the pier will be constructed using 8” diameter fiberglass pilings that are pre-filled with concrete. Based on the length and shape of the pier, up to 400 pilings may be required. These pilings will be placed using water-jetting to set the piles to within 5 feet of their desired final depth. Following the water jetting, a vibratory hammer will be used to lower the pilings the remaining 5 feet to their final depth. Final construction plans will also consider and account for options would minimize disruption to the aquatic environment including available BMPs (e.g., use of bubble curtains). All decking, cross members, and railings for the pier will be made of timber. Following placement of the pilings, the timber cross members will be placed from the water and then the rest of the pier will be built out from shore. When complete, all pier pilings will incorporate
pointed covers to discourage/minimize birds (e.g., laughing gulls) having a convenient perch from which to predate on nearby nesting birds.

During all in-water construction activity, the conditions and guidelines of the *Sea Turtle and Smalltooth Sawfish Construction Conditions* (NOAA, 2006) would be implemented and adhered to. Among the significant aspects of these provisions is the requirement to stop operation of any equipment if sea turtles or smalltooth sawfish come within 50 feet of the equipment until the time when animals leave the project area of their own volition. This provision would also apply to marine mammals such as dolphins.

During construction BMPs for erosion control would also be implemented and maintained at all times during upland activity to prevent siltation and turbid discharges into surface waters. Methods could include, but are not limited to, the use of staked hay bales, staked filter cloth, sodding, seeding, and mulching; staged construction; and installation of turbidity screens around the immediate project site. The direct goal of these actions is to limit sediment discharges into the water that would adversely affect turbidity. Staging of most construction materials would occur in the existing parking area although some materials may be delivered by barge.

Finally, prior to the opening of the pier to the public, fixed signs that are consistent with National Oceanic and Atmospheric Administration (NOAA) and State of Florida guidelines with instructions on what to do in the event of hooking a listed species (e.g., sea turtle) would be placed at the entrance to the fishing pier and strategically at fixed intervals along its length. Additionally, a kiosk/booth would be placed at the entrance to the pier with additional information for best practices on catch and release and other fishing practices (e.g., placing cut line and hooks for disposal in trash cans, not feeding dolphins) designed to limit potential adverse impacts to species. The signage in this kiosk would include the NMFS “Dolphin Friendly Fishing and Viewing Tips” sign with NMFS’ “Protect Dolphin” signs along the pier and signage/notices not feed gulls. Monofilament recycling bins will be installed at regular intervals along the pier. These would be emptied regularly by city/county staff as part of the project maintenance activities, and fishing line recycled. Further, any lighting installed on the pier or addressed as part of the project will be wildlife friendly and comply with the guidance provided in the current edition of the FWC’s *Lighting Technical Manual*. Finally, no fish cleaning stations will be included in the design and construction of these piers to help mitigate/avoid issues of species attraction to the pier.

Total construction time is estimated to take approximately 12 months.
Figure 12-19. Windmark Fishing Pier, Windmark Park, St. Joseph Bay, Gulf County, Florida.
12.59.4 Operations and Maintenance
This project would incorporate a mix of monitoring efforts to ensure that project designs and BMPs are correctly implemented during construction, and, in a subsequent period defined by contract, where corrective actions may be required.

BMPs, including those to prevent degradation of ambient water quality parameters, would be used throughout construction activities. These may include monitoring the integrity of turbidity control screens and/or other devices to control erosion, sedimentation, and turbidity during piling installation and any proposed excavation activities required for pier construction. Other water quality parameters that may be monitored during construction include greases and oils, dissolved oxygen, pH, salinity, and temperature. In addition, the project contractor and permittee would comply with the U.S. Army Corps of Engineers (USACE) and FDEP Standard Sea Turtle and Smalltooth Sawfish Construction Conditions and the Standard Manatee Conditions for In-Water Work (USFWS 2011) throughout construction to prevent accidental harm to these and other protected species that may enter the immediate project area. These standards require monitoring the construction area to prevent harm to manatees, sea turtles, and smalltooth sawfish should these species enter or be observed within the immediate project limits.
Post-construction performance monitoring of the actual levels of use of the proposed pier would be proposed by FDEP and implemented by Gulf County. Gulf County Parks and Recreation staff would be responsible for monitoring and maintenance of the proposed project during construction and post-construction phases.

Literature reviews indicate that several federally listed plants and that listed wildlife species may also occur in or adjacent to the project area (see Section 12.58.5.3). The project area is also adjacent to designated critical habitat for one wildlife species, and contains critical habitat for a second (see Section 12.58.5.3).

12.59.5  Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

12.59.5.1  No action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.59.5.2  Physical Environment
12.59.5.2.1  Geology and Substrates

Affected Resources
The proposed project site would be located on relic Younger Pleistocene – Holocene Beach Ridges of northeast Port St. Joe (Florida Department of Natural Resources 1991). St. Joseph Bay is a non-estuarine lagoon formed between St. Joseph Spit and the mainland of Gulf County. In addition, part of St. Joseph Bay is designated as a Florida Aquatic Preserve, meaning that the intent of the State of Florida is to preserve the bay in its natural state. The proposed project would be located in the northern portion of the mainland side of the bay, outside of the Aquatic Preserve. Water depths within St. Joseph Bay range from less than 5 feet at the southern, enclosed end to approximately 30 feet near the northern tip of the spit. Bottom sediments are predominantly sand, with localized areas of clayey silt, silty sand, and clay sand and gravel-sand mixtures.

The following soil associations (NRCS 2013) for Gulf County, Florida, were identified within the proposed project area:

- Lakeland-Eustis-Blanton: This association is described as well-drained to moderately well-drained soils with predominantly thick to moderately thick acid sands.
- Lakeland-Eustis-Norfolk: This association is described as well-drained to moderately well-drained soils with predominantly thick to moderately thick acid sands.
- Blanton-Klej: This association is described as well-drained to moderately well-drained soils with predominantly thick to thin acid sands, some of which overlie finer textured subsoils.
- Norfolk-Ruston-Orangeburg: This association is described as well-drained, undulating, upland soils with loamy fine sand surface soils and sandy clay loam subsoils.
- Magnolia-Faceville-Tifton: This association is described as well-drained, undulating, upland soils with loamy sand surface soils and fine sand to clay loam to fine sand clay subsoils.
- Shubuta-Cuthbert-Lakeland: This association is described as excessively drained to moderately well-drained, sloping to very-steep coarse sands, loamy sands, and sandy clay loams of the uplands that have a sandy clay to clay subsoil.
- Leon-Blanton-Plummer: This association is described as somewhat poorly drained soils, soil with predominantly thick acid sands with organic pans, interspersed with soil without pan formation.
- Scranton-Ona: This association includes somewhat poorly drained soils with predominantly thick acid sands with dark surface soils.
- Goldsboro-Lynchburg: This association includes well-drained to moderately well-drained soils with predominantly thick to thin acid sands, some of which overlie finer textured subsoils.
- Plummer-Rullege: This association includes poorly to very poorly drained soils, and soils with predominantly thick to thin sandy loam surface soils overlying finer textured subsoils.
- Tidal Marsh-Coastal Beach-Coastal Dune: This association is described as regularly flooded organic and mineral deposits and unstable sands along the seashore.
- Freshwater Swamp-Marsh: This association includes regularly flooded, very poorly drained soils with high organic and mineral deposits.

**Environmental Consequences**

Construction activities would involve ground disturbance, such as foundations and piles or piers placed in the upland portion of the project site. Submerged substrates would also be disturbed from placement of piles and riprap, which may be required for securing the pier to the shoreline. There would be short-term impacts to submerged sediments that were disturbed during construction. These sediments would settle back onto the sea floor shortly after construction was completed. Upland soils would be disturbed during construction as well, but those would be re-contoured and stabilized after construction was complete. Where infrastructure was placed, soils would be permanently removed or converted to hard substrate or features. This would be a long-term minor effect limited to the discreet areas where hard structures were placed.

12.59.5.2.2 Hydrology and Water Quality

**Affected Resources**

The proposed project area is located in Class III waters of the State, approximately 2 miles east-northeast of the St. Joseph Bay Aquatic Preserve as designated by the State of Florida. Nonetheless, the proposed project area has good ambient water quality conditions to promote public welfare and safety to those who use the waterbody for recreational purposes and to maintain natural resource enhancement. St. Joseph Bay is not markedly influenced by the inflow of freshwater, with salinity levels similar to those of the Gulf of Mexico.
Water depths, depending on tidal phases, within the project vicinity range from 5 to 30 feet deep. However, specific soundings within the immediate project area have not been collected to date. MHW and mean low water (MLW) depth soundings would be collected during the design phase of the project to determine whether water depths were adequate for barge access to the project area to prevent prop dredging of the submerged lands. In addition, water depths will be needed to design the pier walkway and terminus orientation and dimensions.

**Environmental Consequences**

Project installation activities would use BMPs, including impact avoidance of existing ambient water quality parameters. The timing of installation would depend on the timing of funding availability and the contract award along with any permit constraints required as a result of listed species considerations. Adverse impacts to hydrology and water quality would be minor because support pilings would be driven into place and dredging would not be proposed. Short-term turbidity levels above background may be expected as a result of sediment disturbance during piling installation. However, BMPs would be employed to contain suspended solids and as conditioned by state and federal permits, and all areas potentially disturbed by construction must be contained using turbidity screens or similar devices to protect ambient water quality parameters. Furthermore, the contractor would monitor water quality during construction to ensure that state water quality standards were being maintained. Long-term adverse impacts to water quality would not be expected as a result of the proposed project. Short- and long-term adverse impacts to the hydrology of the proposed project area as a result of structure installation would be expected to be minor.

In-water work would require authorization from the USACE and FDEP. Prior to construction, the proposed project would require a Clean Water Act Section 404/Rivers and Harbors Act Section 10 permit from the USACE to construct the pier over waters of the U.S. and for any proposed excavation waterward of MHW limits. Also, in accordance with Chapter 373 Florida Statutes (FS) and Rule 62-346, Florida Administrative Code (FAC), the project would require an ERP from the FDEP, and in accordance with Chapter 258, Fla. Stat., a Letter of Consent or State Submerged Lands Lease (SSL) would be required from the Board of Trustees of the Internal Improvement Trust Fund prior to construction to construct and operate the proposed fishing pier.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (Corps) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the Corps and final authorization pursuant to CWA/RHA will be completed prior to project implementation.

**12.59.5.2.3 Air Quality and Greenhouse Gas Emissions**

**Affected Resources**

The Clean Air Act (CAA) requires the Environmental Protection Agency (EPA) to set National Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to public health and the environment. NAAQS have been set for six common air pollutants (also known as criteria pollutants), consisting of particle pollution or particulate matter, ozone, carbon monoxide, sulfur dioxide (SO₂), nitrogen dioxide, and lead. Particulate matter is defined as fine particulates with a diameter of 10 micrometers or less (PM₁₀), and fine particulates with a diameter of 2.5 micrometers or less (PM₂.₅). When a designated air
quality area or airshed in a state exceeds the NAAQS, that area may be designated as a “nonattainment” area. Areas with levels of pollutants below the health-based standard are designated as “attainment” areas. To determine whether an area meets the NAAQS, air monitoring networks have been established and are used to measure ambient air quality. The EPA also regulates 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health effects.

Air quality in the Florida panhandle is in attainment with the NAAQS (EPA 2013a). The St. Andrew State Park, Bay County, is the closest Northwest District Air Program (NDAP) air monitor site currently operating near the proposed project area. The St. Andrew State Park monitor in Panama City records ozone and PM$_{2.5}$ concentrations. Readings at this monitor for the last 3 years show attainment with the NAAQS for ozone and PM$_{2.5}$ (FDEP 2013). SO$_2$ attainment data were not available (EPA 2013c).

**Greenhouse Gases**

Gases that trap heat in the air are called greenhouse gases (GHGs). The primary GHGs are carbon dioxide (CO$_2$), methane (CH$_4$), nitrous oxide (NO$_x$), and fluorinated gases. Over the past century, human activities have released large amounts of GHGs into the atmosphere, which are contributing to global warming. Global warming is defined as the ongoing rise in global average temperature near the Earth’s surface, and is known to cause changes in climate patterns.

According to the EPA, the average annual temperature in the southeast portion of the United States has increased by approximately 2.0 degree Fahrenheit (°F) since 1970. Winters, in particular, are getting warmer, and the average number of freezing days has decreased by 4 to 7 days per year since the mid-1970s. Most areas are getting wetter; autumn precipitation has increased by 30% since 1901 (EPA 2013b). In many parts of the region, the number of heavy downpours has increased. Despite the increases in fall precipitation, the area affected by moderate and severe drought has increased since the mid-1970s (EPA 2013b).

Average annual temperatures in the region are projected to increase from 4°F to 9°F by 2080. Hurricane-related rainfall is projected to continue to increase. Models suggest that rainfall will arrive in heavier downpours, with increased dry periods between storms. These changes would increase the risk of both flooding and drought. The coasts will likely experience stronger hurricanes and sea level rise. Storm surges could present problems for coastal communities and ecosystems (EPA 2013b).

Total GHG emissions in Florida from 1990 to 2007 have increased at an average rate of 2.1% per year. Total GHG emissions in 2007 were 290 million metric tons of CO$_2$ equivalent (MMTCO$_2$E). In 2007, 91% of GHG emissions in Florida were CO$_2$ emissions (FDEP 2010).

**Environmental Consequences**

The proposed project would include use of a barge supporting a crane to conduct in-water construction. In addition, a Bobcat or track hoe and dump truck would be used for shoreline excavations to accommodate the structure. A boat would be used to deploy construction workers to the in-water construction areas and for safety operations. Construction of the project would be anticipated to take approximately 2 years to complete. Given that the project location would be on the coastal shoreline of the Gulf of Mexico, onshore winds can be expected to dissipate emissions from heavy equipment and barge engines. Based on the estimated 1,400 days of combined equipment operation, the project would be estimated to contribute approximately 658.6 metric tons of total CO$_2$ equivalent emissions (see Table
12-21); well below the EPA threshold of 25,000 metric tons per year for GHG emissions. Therefore, the proposed project would result in a minor impact to ambient air quality.

**Table 12-21. Estimated greenhouse gas emissions during the 2-year construction period for the Windmark Fishing Pier.**

<table>
<thead>
<tr>
<th>CONSTRUCTION EQUIPMENT</th>
<th>NO. OF DAYS OPERATED¹</th>
<th>CO₂ (METRIC TONS)²</th>
<th>CH₄ (CO₂-E) (METRIC TONS)³</th>
<th>NOₓ (CO₂-E) (METRIC TONS)</th>
<th>TOTAL CO₂-E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barge/crane</td>
<td>400</td>
<td>116.0</td>
<td>0.04</td>
<td>0.4</td>
<td>116.44</td>
</tr>
<tr>
<td>Tractor trailer</td>
<td>400</td>
<td>140.0</td>
<td>0.08</td>
<td>0.8</td>
<td>140.88</td>
</tr>
<tr>
<td>Track hoe</td>
<td>200</td>
<td>70.0</td>
<td>0.04</td>
<td>0.4</td>
<td>70.44</td>
</tr>
<tr>
<td>Dump truck</td>
<td>200</td>
<td>68.0</td>
<td>0.04</td>
<td>0.4</td>
<td>68.44</td>
</tr>
<tr>
<td>Boat</td>
<td>200</td>
<td>260.0</td>
<td>0.4</td>
<td>2.0</td>
<td>262.4</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>658.6</strong></td>
</tr>
</tbody>
</table>

¹ Emissions assumptions for all equipment are based on 8-hour days (5 days per week) of operation per piece of equipment over a 6-month construction period.

² CO₂ emissions assumptions for diesel and gasoline engines are based on EPA (2009).

³ CH₄ and NOₓ emissions assumptions and CO₂-e calculations are based on EPA (2011).

### 12.59.5.2.4 Noise

**Affected Resources**

Noise levels in the proposed project areas vary depending on the season, time of day, number and types of noise sources, and distance from noise sources. The project vicinity would be mostly rural with private residential and retail commercial areas (Port St. Joe). Existing sources of noise in the project area are local traffic associated with Highway 98, recreational boating, and occasional overhead aircraft. Ambient natural sounds such as wind, waves, and wildlife also contribute to existing noise levels. Existing ambient noise levels in the Aquatic Preserve are generally low and predominantly result from daily boating activities.

Noise-sensitive receptors include sensitive land uses as well as individuals and/or wildlife that could be affected by changes in noise sources or levels due to the proposed project. Noise-sensitive receptors in the project vicinity include beach and park recreational use and wildlife. The project area would be, for the most part, remotely located.

**Table 12-22. Typical noise levels for common sources.**

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (DBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawnmower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

*Source: Adapted from U.S. Department of Energy (1986).*
**Environmental Consequences**

Instances of increased noise would be expected during the construction phases associated with the barge transport deliveries and in-water pier construction. The proposed project would generate construction noise associated with equipment used to drive piles into place and move stringer lumber for pier deck and terminus construction, shoreline excavation (if necessary), and use of watercraft for construction crew and materials transport. In the short term, machinery and equipment used during construction to deliver material and construct the pier would generate noise, which may disturb wildlife and humans using the area. These noise levels would be kept to a minimum by BMPs such as turning boats off during idling and working only during daylight hours. Noise generated from outboard motors and vessel maneuvering to transport and install the decking material and pilings would be no more than that of commercial watercraft in the general work area. Noise from driving pilings into place is expected to be the loudest during construction, and may be heard several miles away from the project site. Adverse impacts from noise during the construction phase would be temporary but may occur for up to 2 years with periods of temporary shut-down due to inclement weather, holiday seasons, weekends, etc. Port St. Joe is located approximately 1 mile north of the project area. Some housing developments and commercial retail areas (i.e., Highland View) are located within 5 miles south of the proposed project site. Considering the relatively open landscape of the immediate project vicinity, noise generated from the proposed project would be expected to be minor to moderate relative to the open landscape, and anticipated moderate noise levels, as a result of pile driving, would be short-term for the duration of the project. Once built, the proposed project would not cause any long-term noise impacts.

12.59.5.3  Biological Environment

12.59.5.3.1  Living Coastal and Marine Resources

Vegetation

**Affected Resources**

According to Ecosystems of Florida, the project area would be located on Dunes and Maritime Forests habitat. This habitat type is mostly on excessively drained deep quartz sands deposited by waves to form beaches fringing barrier islands and the mainland, which have been reworked by shore drift and wind forming partially vegetated sandy dunes (Myers and Ewel 1991). Based on aerial reviews, the proposed project site appears to contain mainly unvegetated sandy beach and coastal dunes.

The specific project site would be located on the mainland shoreline of St. Joseph Bay, north of the Aquatic Preserve limits. Waterward of MHW limits, the project area would consist of a gradually sloped, intertidal sandy bottom that is periodically exposed during extreme low tides. The intertidal and submerged lands habitat provides favorable conditions to support the occurrence of submerged aquatic vegetation (SAV).

The estuarine environment and shallow water conditions nearby may contain surveyed SAV habitat. Based on project site conditions, two state and federally listed plant species have the potential to occur in the project area: Gulf Coast lupine (*Lupinus westinios*) and Johnson’s seagrass (*Halophila johnsonii*).
Environmental Consequences
Based on the preliminary site plan proposed by Gulf County, the project area would not involve clearing of vegetation from the beach dunes. Some minor excavation is proposed on the non-vegetated areas of the beach shoreline to accommodate project construction. The proposed project’s in-water construction area would occur in intertidal and submerged areas of the coastline. Project impacts resulting from construction of the proposed action would be localized and not involve disturbances of existing dune vegetation. BMPs would include installation of protective barrier fencing to prevent construction disturbances (limited land clearing for project site access and work staging areas) to the existing dune systems. As a result, sufficient dune habitat would remain functional throughout and following completion of the proposed project construction. However, should project construction take place in SAV habitat, the project would be designed in a manner sensitive to seagrasses. Design modifications to reduce potential impacts to SAV habitat would include minimum 1-inch deck plank spacing, raising deck and pier terminus elevation to 5 feet above MHW, and aligning the main accessway in a manner to allow maximum sunlight penetration through the water column to reach SAV. Therefore, any potential impacts to dune vegetation and seagrasses within the project area would be considered minor.

The FDEP would require permits and impose reasonable conditions to assure that the construction would comply with the provisions of Chapter 62-346.050 (3), Fla. Admin. Code, which states in part that dredging and filling in, on, or over surface waters of the State remain subject to the requirements of Chapter 62-312, Fla. Admin. Code, including the need to obtain a separate permit under that chapter until the effective date of the rules adopted under Section 373.4145(1)(b), F.S. The FDEP permit also grants state-owned Submerged Lands Authorization from the Board of Trustees of the Internal Improvement Trust Fund, pursuant to Article X, Section 11 of the Florida Constitution, Section 253.77, F.S., and Chapter 258, F.S.

Wildlife Habitat
Affected Resources
The beach and dune communities in the proposed project area provide forage habitat for many species of wildlife, including marine and estuarine invertebrates, wading birds (herons and egrets), shoreline birds (gulls, terns, sandpipers), brown pelicans (*Pelecanus occidentalis*), and birds of prey that feed on juvenile and adult fish (FDEP 2008). Urban and open vacant land adjacent to the project vicinity may serve as a refuge and staging area for many common passerine birds during migration, and large concentrations of shorebirds are sometimes observed feeding on the shoreline and exposed intertidal areas during low tide. Protected wildlife (such as sea turtles and manatee, discussed in detail below) also forage on or within seagrass communities occurring in the vicinity of the proposed project.

St. Joseph Bay is a designated Important Bird Area of more than 8,500 acres that is made up of several parcels: Black’s Island, Eglin Air Force Base Test Site, Palm Point, St. Joseph Bay Buffer, T.H. Stone Memorial Park, and St. Joseph Peninsula State Park. These six sites that surround and form St. Joseph Bay are regionally important for breeding brown pelicans (Black’s Island), breeding snowy plovers (*Charadrius alexandrinus*) (Palm Point), wintering shorebirds, migrant raptors (St. Joseph Peninsula State Park), neotropical migrants (St. Joseph Peninsula State Park), and other species (National Audubon Society 2002). Wintering piping plovers occasionally visit the site, but do not nest on-site. No terrestrial wildlife (non-bird) surveys have been conducted in the project area; however, based on the types of
habitat present, elevation, and location, it would be expected that ruderal species such as raccoon 
(*Procyon lotor*), opossum (*Didelphimorphia*), gray squirrel (*Sciurus carolinensis*), and other non-game 
mammals may be present in upland areas of the project vicinity.

*Environmental Consequences*
The proposed project would occur over water near the shoreline and at the beach within the existing 
park boundaries. The proposed construction activities would include in-water work that would likely 
disturb foraging birds or other wildlife due to turbidity, acoustical vibration, and noise impacts during 
barge/crane operation, pile driving, pier deck construction, construction crew and equipment transport 
by small draft vessels, outboard engine operation, and shoreline excavation activities to accommodate 
pier construction. The proposed operation plans of the fishing pier include use of waste and recycling 
materials receptacles to encourage users to properly dispose of non-recyclable waste and recyclable 
metal such as monofilament and plastic bottles to reduce potential impacts to wildlife. Although 
construction of the pier may take up to 2 years to complete, potential impacts would be short-term and 
minor. Wildlife and birds would be expected to temporarily move away during construction phases, but 
would be expected to return after completion of the proposed project. Therefore, foraging birds or 
other wildlife would not be impacted as a result of the proposed fishing pier construction.

Placement of signage at the proposed kiosk at the foot of the main accessway of the pier would alert 
beach goers and fishermen to the types of wildlife in the project vicinity. This signage would provide 
guidance to pier users in the event of hooking wildlife, including listed species, with additional 
information on catch-and-release practices designed to limit potential impacts to wildlife. These 
construction measures and public outreach materials would be a moderate, long-term benefit to the 
overall ecosystem.

*Marine and Estuarine Fauna (Fish, Shell Beds, Benthic Organisms)*

*Affected Resources*
There are a number of aquatic species found in the proposed project area. Fish species are abundant 
and include sea trout (*Salmo trutta*), red drum (*Sciaenops ocellatus*), sea robins (*Triglidae*), flounders 
(*Paralichthys*), porgys (*Sparidae*), and a host of other estuarine and juvenile marine fish (FDEP 2008). 
Benthic organisms are also abundant in these waters, and include bivalves, gastropods and other 
mollusks, anemones, amphipods, annelids, crustaceans, and echinoderms.

*Environmental Consequences*
The proposed project would likely result in short-term, minor impacts due to placement of the pilings 
where invertebrates or sessile organisms may have established themselves. Small fish that may migrate 
through the intertidal zone and submerged shallows are highly mobile and would be displaced to more 
suitable habitat within the project vicinity. In addition, sessile invertebrates occupying the submerged 
substrate and fish may be disturbed or displaced from the project area in the short term. However, 
these species are typically numerous in Gulf waters and typically recolonize quickly. No long-term 
impacts would be expected as a result of implementation of the proposed project.

*Protected Species*
Protected species and their habitats include ESA-listed species and designated critical habitats, which 
are regulated by either the USFWS or the NMFS. Protected species also include marine mammals
protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

**Affected Resources**
The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Gulf County, Florida. Table 12-23 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

**Table 12-23. Potential Impacts to Species/Critical Habitats managed by DOI**

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle; Leatherback turtle, Loggerhead turtle</td>
<td>Should the work be conducted during the turtles’ nesting season from approximately May through October nesting turtles and their nests could be at risk through the disruption of nesting behaviors or destruction of nests and hatchlings (from machinery or lighting). Conservation measures below are expected to reduce these potential impacts to an insignificant and discountable level. Additionally, installation of pilings could result in harm or mortality during in water construction activities. Consultation will be initiated with NMFS to address this risk as this agency has jurisdiction to review impacts to sea turtles in the estuarine and marine environments.</td>
</tr>
<tr>
<td>Loggerhead proposed critical habitat</td>
<td>The project area overlaps with the currently proposed critical habitat area LOGG-N-32 encompassing nearshore reproductive habitat in Florida for Northwest Atlantic Distinct Population Segment of the loggerhead sea turtle as these habitats are terrestrial (i.e., beaches and shorelines) (78 FR 18000 ) Department of the Interior, 2013). PCE’s for proposed loggerhead critical habitat include: 1) Suitable nesting beach habitat that: (a) has relatively unimpeded nearshore access from the ocean to the beach for nesting females and from the beach to the ocean for both post-nesting females and hatchlings and (b) is located above mean high water to avoid being inundated frequently by high tides. 2) Sand that: (a) allows for suitable nest construction, (b) is suitable for facilitating gas diffusion conducive to embryo development, and (c) is able to develop and maintain temperatures and moisture content conducive to embryo development. 3) Suitable nesting beach habitat with sufficient darkness to ensure that nesting turtles are not deterred from emerging onto the beach and hatchlings and post-nesting females orient to the sea. Temporary use of heavy equipment to construct walkovers and place pilings for the fishing pier could change sand and beach access characteristics important to nesting activity, nest construction, and embryo development in the immediate area of work. Lighting could alter the darkness of the beach and deter nesting. Conservation measures will ensure PCEs are not altered and that no adverse modification or destruction of proposed critical habitat occurs. Permanent placement of pilings could impede access to and from the beach; though the area of impact is anticipated to be small compared to the size of the beach and proposed critical habitat unit. While turtles may not have unimpeded access to the beach under the pier, access would not be affected.</td>
</tr>
</tbody>
</table>

---

13 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>not be affected elsewhere on the beach due to the proposed project and the PCE within the unit would continue to support recovery of the species. Therefore, the Trustees do not consider this impact to be an adverse modification or destruction of proposed critical habitat.</td>
<td></td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>The counties in the project area are not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the project waters. The main risk to manatees during implementation of this project would come from in-water construction which could result in harm or mortality from noise or physical contact. Conservation measures below are designed to minimize potential impacts to an insignificant and discountable level.</td>
</tr>
<tr>
<td>Piping plover</td>
<td>The main risk to Piping plovers is from human disturbance while resting and foraging in habitats adjacent to work areas and the pier during visitor use. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the plovers to move to a nearby area. Because other foraging/resting habitats are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable.</td>
</tr>
<tr>
<td>Red knot</td>
<td>The main risk to Red knots is from human disturbance while resting and foraging in habitats adjacent to work areas and the pier during visitor use. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the red knots to move to a nearby area. Because other foraging/resting habitats are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable.</td>
</tr>
<tr>
<td>Gulf sturgeon</td>
<td>NMFS was consulted on Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon was not considered in the consultation with the USFWS.</td>
</tr>
<tr>
<td>St. Andrew beach mouse</td>
<td>The main risk to the St. Andrew Beach Mouse is the collapse of burrows during construction which can result in abandonment of the burrow by the adults leading to potential harm or mortality and mortality of any young within the burrow, and increased risk of predation on adults. Because of the conservation measures listed below (including those for critical habitat), the Trustees believe impacts to beach mice will be reduced to an insignificant and discountable level.</td>
</tr>
<tr>
<td>Critical habitat for St. Andrew beach mouse</td>
<td>The project area overlaps with St. Andrew Beach Mouse Critical Habitat Unit #2, the Palm Point Unit. The total acreage of this unit is 162 acres. Primary Constituent Elements for the St. Andrews beach mouse habitat are: 1) A contiguous mosaic of primary, secondary scrub vegetation, and dune structure, with a balanced level of competition and predation and few or no competitive or predaceous nonnative species present, that collectively provide foraging opportunities, cover, and burrow sites; 2) Primary and secondary dunes, generally dominated by sea oats that, despite occasional temporary impacts and reconfiguration from tropical storms and hurricanes, provide abundant food resources, burrow sites, and protection from predators; 3) Scrub dunes, generally dominated by scrub oaks, that provide food resources and burrow sites, and provide elevated refugia during and after intense flooding due to rainfall and/or hurricane induced storm surge; 4) Functional, unobstructed habitat connections that facilitate genetic exchange, dispersal, natural exploratory movements, and recolonization of locally extirpated areas; and 5) A natural light regime within the coastal dune ecosystem, compatible with the nocturnal activity of beach mice, necessary for normal behavior, growth and viability of all life stages. The proposed project is not expected to negatively impact PCE’s but rather may benefit PCE’s because the project area currently lacks a dune crossover in the project area. Instead, visitors and recreators currently access the beach habitat using uncontrolled informal trails from...</td>
</tr>
</tbody>
</table>
In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered
- Kemp’s Ridley Sea Turtle, *Lepidochelys kempii*, Endangered

Additional information on a number of these species and associated critical habitats follows.

**Sea Turtles and Marine Mammals**

There are five species of endangered or threatened sea turtles that may occur or have potential to occur in the project area. These include green turtle, hawksbill turtle, Kemp’s ridley turtle, leatherback turtle, and loggerhead turtle. Sea turtles forage in the waters of the coastal Florida panhandle region, and have potential to occur within the waters where in-water work is proposed. The project site contains suitable sea turtle nesting habitat along the sandy beach, and the area surrounding the project site is relatively open (undeveloped), which is preferred by nesting sea turtles to areas surrounded by urban development. It is proposed as critical habitat for the NWADPS of loggerhead.

The endangered West Indian manatee has the potential to occur in the project area waters. Manatees typically seek out shallow seagrass areas as preferred feeding habitat. Additionally, bottlenose dolphin (*Tursiops*) populations are known to migrate into bays, estuaries, and river mouths, and could be located in any of the proposed project areas (NMFS 2013b). Due to the project site proximity to the Gulf of Mexico, bottlenose dolphins are expected to occur in St. Joseph Bay.

**Smalltooth Saw, Gulf Sturgeon, and Gulf Sturgeon Critical Habitat**

Smalltooth sawfish (*Pristis pectinata*) do not typically utilize northern Gulf waters (NMFS 2013a). Gulf sturgeon (*Acipenser oxyrinchus*) are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Mississippi River to the Suwannee River, in Louisiana, Mississippi, Alabama, and Florida (NMFS 2009). Adult fish reside in rivers 8 to 9 months each year and in estuarine or Gulf waters...
during the 3 to 4 cooler months of each year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993).

Gulf sturgeon critical habitat was jointly designated by the NMFS and USFWS on April 18, 2003 (50 Code of Federal Regulations [C.F.R.] 226.214). The proposed project site is located within the Florida Nearshore Gulf of Mexico Critical Habitat Unit 11, which contains winter feeding and migration habitat for Gulf sturgeon. Critical habitat was designated based on seven primary constituent elements essential for its conservation, as defined in the 2003 Federal Register (See Figure 12-21 for critical habitat areas near the project site).

These seven elements are as follows:

1. Abundant food items such as detritus, aquatic insects, worms, and/or mollusks, within riverine habitats for larval and juvenile life stages; and abundant prey items such as amphipods, lancelets, polychaetes, gastropods, ghost shrimp, isopods, mollusks, and/or crustaceans within estuarine and marine habitats and substrates for subadult and adult life stages.
2. Riverine spawning sites with substrates suitable for egg deposition and development, such as limestone outcrops and cut limestone banks, bedrock, large gravel or cobble beds, marl, soapstone, or hard clay.
3. Riverine aggregation areas, also referred to as resting, holding, and staging areas, used by adult, subadult, and/or juveniles, and generally but not always located in holes below normal riverbed depths believed necessary for minimizing energy expenditures during freshwater residency and possibly for osmoregulatory functions.
4. A flow regime (i.e., the magnitude, frequency, duration, seasonality, and rate-of-change of freshwater discharge over time) necessary for normal behavior, growth, and survival of all life stages in the riverine environment, including migration, breeding site selection, courtship, egg fertilization, resting, and staging, and for maintaining spawning sites in suitable condition for egg attachment, egg sheltering, resting, and larval staging.
5. Water quality, including temperature, salinity, pH, hardness, turbidity, oxygen content, and other chemical characteristics necessary for normal behavior, growth, and viability of all life stages.
6. Sediment quality, including texture and chemical characteristics necessary for normal behavior, growth, and viability of all life stages.
7. Safe and unobstructed migratory pathways necessary for passage within and between riverine, estuarine, and marine habitats (e.g., an unobstructed river or a dammed river that still allows for passage).

**St. Andrews Beach Mouse**

Primary, secondary, and occasionally tertiary sand dunes with moderate cover of grasses and forbes, including sea oats, bitter panicum (*Panicum amarum*), Gulf bluestem, beach dropseed, and telegraph weed (*Heterotheca subaxillaris*) are considered preferred habitat of the St. Andrews beach mouse (*Peromyscus polionotus peninsularis*) (Hipes et al 2001). High, stable areas supporting sand live oak (*Q. geminata*) may be important following hurricanes that remove substantial dune habitat. The sand dune area within the project vicinity is designated critical habitat for the St. Andrews beach mouse. In addition, the maritime forest areas landward of the beach dunes provides suitable habitat for this
species as well. See Figure 12-21 for critical habitat near the project area for the St. Andrews beach mouse.

**Piping Plover**
The sandy beaches and shorelines adjacent to the project areas offer suitable foraging and resting habitat for the piping plover during the winter migratory season, and piping plover may forage in the shallow waters of the project area. Natural shorelines in the proposed project vicinity provide suitable winter migration resting habitat for the piping plover. Piping plover wintering habitat includes beaches, mudflats, and sandflats, as well as barrier island beaches and spoil islands (Haig 1992). On the Gulf Coast, preferred foraging areas are associated with wider beaches, mudflats, and small inlets (USFWS 2013a).
Figure 12-21. Gulf sturgeon critical habitat in the Windmark Fishing Pier project area, St. Joseph Bay.
Red Knot

The red knot (*Calidris canutus rufa*), a federal proposed species, uses Florida both for wintering habitat and migration stopover habitat for those migrating down to specific wintering locations in South America (Niles et al. 2008). Wintering and migrating red knots forage along sandy beaches, tidal mudflats, salt marshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms, and roost on high sand flats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008).

Essential Fish Habitat (EFH)

EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as "those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity." The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column.

Table 12-24 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Gulf County Windmark Beach Park Fishing Pier site and St. Joseph’s Bay.

Table 12-24. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.
<table>
<thead>
<tr>
<th>EFH Category</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lemon Shark - Neonate</td>
<td></td>
</tr>
<tr>
<td>Nurse Shark - Adult</td>
<td></td>
</tr>
<tr>
<td>Nurse Shark - Juvenile</td>
<td></td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark - Adult</td>
<td></td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark - Juvenile</td>
<td></td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark - Neonate</td>
<td></td>
</tr>
<tr>
<td>Spinner Shark - Adult</td>
<td></td>
</tr>
<tr>
<td>Spinner Shark - Juvenile</td>
<td></td>
</tr>
<tr>
<td>Spinner Shark - Neonate</td>
<td></td>
</tr>
<tr>
<td>Tiger Shark - Juvenile</td>
<td></td>
</tr>
<tr>
<td><strong>Coastal Migratory Pelagics of the Gulf of Mexico and South Atlantic</strong></td>
<td></td>
</tr>
<tr>
<td>Cobia</td>
<td></td>
</tr>
<tr>
<td>King Mackerel</td>
<td></td>
</tr>
<tr>
<td>Spanish Mackerel</td>
<td></td>
</tr>
<tr>
<td><strong>Gulf of Mexico Red Drum</strong></td>
<td></td>
</tr>
<tr>
<td>Red Drum</td>
<td></td>
</tr>
<tr>
<td><strong>Gulf of Mexico Shrimp</strong></td>
<td></td>
</tr>
<tr>
<td>Brown Shrimp</td>
<td></td>
</tr>
<tr>
<td>Pink Shrimp</td>
<td></td>
</tr>
<tr>
<td>White Shrimp</td>
<td></td>
</tr>
<tr>
<td><strong>Reef Fish Resources of the Gulf of Mexico</strong></td>
<td></td>
</tr>
<tr>
<td>Almaco Jack</td>
<td></td>
</tr>
<tr>
<td>Banded Rudderfish</td>
<td></td>
</tr>
<tr>
<td>Black Grouper</td>
<td></td>
</tr>
<tr>
<td>Blackfin Snapper</td>
<td></td>
</tr>
<tr>
<td>Blueline Tilefish</td>
<td></td>
</tr>
<tr>
<td>Cubera Snapper</td>
<td></td>
</tr>
<tr>
<td>Gag</td>
<td></td>
</tr>
<tr>
<td>Goldface Tilefish</td>
<td></td>
</tr>
<tr>
<td>Gray (Mangrove) Snapper</td>
<td></td>
</tr>
<tr>
<td>Gray Triggerfish</td>
<td></td>
</tr>
<tr>
<td>Greater Amberjack</td>
<td></td>
</tr>
<tr>
<td>Hogfish</td>
<td></td>
</tr>
<tr>
<td>Lane Snapper</td>
<td></td>
</tr>
<tr>
<td>Lesser Amberjack</td>
<td></td>
</tr>
<tr>
<td>Mutton Snapper</td>
<td></td>
</tr>
<tr>
<td>Nassau Grouper</td>
<td></td>
</tr>
<tr>
<td>Queen Snapper</td>
<td></td>
</tr>
<tr>
<td>Red Grouper</td>
<td></td>
</tr>
<tr>
<td>Red Snapper</td>
<td></td>
</tr>
<tr>
<td>Scamp</td>
<td></td>
</tr>
<tr>
<td>Silk Snapper</td>
<td></td>
</tr>
<tr>
<td>EFH Category</td>
<td>Species</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Snowy Grouper</td>
</tr>
<tr>
<td></td>
<td>Speckled Hind</td>
</tr>
<tr>
<td></td>
<td>Tilefish</td>
</tr>
<tr>
<td></td>
<td>Vermilion Snapper</td>
</tr>
<tr>
<td></td>
<td>Warsaw Grouper</td>
</tr>
<tr>
<td></td>
<td>Wenchman</td>
</tr>
<tr>
<td></td>
<td>Yellowedge Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowmouth Grouper</td>
</tr>
</tbody>
</table>

**State-Listed Birds, MBTA, and BGEPA**

There are numerous State of Florida–listed bird species with potential to occur in and around the Norriegeois Point Restoration Site. These include Arctic peregrine falcon (*Falco peregrinus tundrius*), least tern (*Sterna antillarum*), southeastern American kestrel (*Falco sparverius paulus*), Florida sandhill crane (*Grus canadensis pratensis*), American oystercatcher (*Haematopus palliates*), Southeastern/Cuban snowy plover (*Charadrius alexandrinus tenuirostris*), piping plover (discussed above), and wood stork (*Mycteria Americana*). All migratory bird species are protected under the MBTA. The nesting season in Florida is from February 15 to August 31.

The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s Bald Eagle Management Plan guidelines would be followed (FWC 2008).

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-25 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.
### Table 12-25. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>Foraging, feeding, resting, nesting</td>
<td>Shorebirds nest, forage, feed, and rest, and in the types of habitats consistent with some of the shoreline areas near the proposed project. As such, they may be impacted locally and temporarily by the project. Visitor use could also impact nesting birds.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmer, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Resting, roosting, nesting</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats including dunes like those on the project site.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-26.

### Table 12-26. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>Habitat in and around the project area is optimal for shorebird foraging and resting; while the Trustees expect shorebirds to move if disturbed, displacement could result in greater densities of shorebirds in other areas. If other areas are less optimal for foraging or resting inter and intra-species competition could occur. Therefore, care will be taken to minimize noise and physical disruptions near where foraging or resting birds are encountered. Nesting shorebird colonies are known in the Windmark area. During the design phase of the project coordination with the Panama City Ecological Services Field Office and FWC will occur so that the pier and the boardwalk can be sited and designed to avoid being placed in the nesting colony habitats. Nesting shorebirds could be affected by visitor use. If FWC or PCFO determines that visitor use may impact nesting shorebirds, additional BMPs (e.g., signage or roping a protective area that excludes visitors) will be provided. If project activities occur during shorebird nesting season (February 15 to August 31), the FWC will be contacted to obtain the most recent guidance to protect nesting shorebirds or rookeries and their recommendations will be implemented.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmer, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Habitat in and around the project area is optimal for seabird foraging and resting; while the Trustees expect seabirds to move if disturbed, displacement could result in greater densities of birds in other areas. If other areas are less optimal for foraging or resting inter and intra-species competition could occur. Therefore, care will be taken to minimize noise and physical disruptions near where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. If project activities occur during seabird nesting season (February 15 to August 31), the FWC will be contacted to obtain the most recent guidance to protect nesting seabirds or rookeries and their recommendations will be implemented. Nesting seabirds could be affected by visitor use. If FWC or PCFO determines that visitor use may impact nesting seabirds, additional BMPs (e.g., signage or roping a protective area that excludes visitors) will be provided.</td>
</tr>
</tbody>
</table>
Environmental Consequences

Protected Species
The USFWS reviewed the proposed Windmark Beach Fishing Pier project in Gulf County, Florida for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On May 1, 2014 the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead), St. Andrew beach mouse, piping plover, red knot (if listed), and West Indian manatee.

USFWS also concurred with the Trustees’ determination that the proposed projects would not result in adverse modification or destruction of critical habitat for St. Andrew’s beach mouse or loggerhead sea turtle (if designated) based upon the successful implementation of the identified conservation measures in Table 12-27.

Table 12-27. Conservation measures to be implemented in order to minimize impacts to species/critical habitats managed by DOI

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle, Leatherback turtle, Loggerhead turtle</td>
<td>Should work be undertaken between May 1 and October 31 the following conservation measures will be followed:</td>
</tr>
<tr>
<td></td>
<td>1) All construction personnel will be notified of the potential presence of sea turtles and reminded of the criminal and civil penalties associated with harassing, harming, or killing sea turtles (all life stages).</td>
</tr>
<tr>
<td></td>
<td>2) The local sea turtle nesting surveyor will conduct daily sea turtle nesting surveys and will assess the need for the relocation of sea turtle nests that could be affected by the project construction prior to project implementation each day.</td>
</tr>
<tr>
<td></td>
<td>3) If a sea turtle (either adult or hatchling) is observed, maintain at least 200 feet between the turtle and personnel.</td>
</tr>
<tr>
<td></td>
<td>4) All actions shall observe a 10-foot buffer from marked sea turtle nests. Between May 1 and August 31, actions with mechanized equipment or vehicles shall not begin prior to 9:00 am to ensure sea turtle monitoring surveys are completed for the day.</td>
</tr>
<tr>
<td></td>
<td>5) If altered, beach topography shall be restored in all areas to the natural beach profile by 20:00 hours each day. Restoring beach topography includes raking of tire ruts, filling pits or holes.</td>
</tr>
<tr>
<td></td>
<td>6) Avoid driving over the wrack line or areas of dense seaweed, as these habitats may contain sea turtle hatchlings or baby birds that are difficult to see.</td>
</tr>
<tr>
<td></td>
<td>7) Sea turtle nests are regularly monitored and marked, thereby allowing visitors the opportunity to avoid impacting any nests.</td>
</tr>
<tr>
<td></td>
<td>8) In addition, any lighting will be required to be consistent with the guidance provided in the current edition of the FWC’s Lighting Technical Manual.</td>
</tr>
</tbody>
</table>

To maintain PCE’s for proposed loggerhead critical habitat, the following measures shall be implemented (regardless of seasonality):

1. All construction personnel will be notified of the presence of proposed critical habitat and reminded of the criminal and civil penalties associated with modifying critical habitat.

---

Turtle nesting season is May 1 to August 31, while turtle hatching continues until October 31. Crawl protection is necessary during nesting season only. The remaining turtle BMPs should be implemented May 1 through October 31 and BMPs for proposed critical habitat should be implemented all year.
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. The nearest, existing staging, access and egress areas, travel corridors, pathways, and roadways shall be used (including those provided by the State, local governments, land managers, trustee, or private property owner, with proper permissions).</td>
</tr>
<tr>
<td></td>
<td>3. No new staging areas, access or egress, or travel corridors shall be created.</td>
</tr>
<tr>
<td></td>
<td>4. If driving equipment or vehicles on the beach, enter at designated access, proceed directly to the hard-packed sand near or below the high tide line and stay below the tide line when driving long distances.</td>
</tr>
<tr>
<td></td>
<td>5. Avoid driving on the upper beach whenever possible, and never drive over any dunes or beach vegetation.</td>
</tr>
<tr>
<td></td>
<td>6. Use the smallest footprint possible to complete the proposed project.</td>
</tr>
<tr>
<td></td>
<td>7. If altered, beach topography shall be restored in all areas to the natural beach profile by 20:00 hours each day. Restoring beach topography includes raking of tire ruts, filling pits or holes.</td>
</tr>
<tr>
<td></td>
<td>8. Any installed lighting on the pier or dune crossover will be turtle friendly (limits on lighting required for the pier as a navigation hazard may exist).</td>
</tr>
<tr>
<td></td>
<td>To minimize risks to all sea turtle species in the aquatic environment, all construction conditions identified in the Sea Turtle and Smalltooth Construction Conditions (NOAA, 2006) would be implemented an adhered to.</td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>All construction conditions identified in the Standard Manatee Conditions for In-water Work (USFWS, 2011) would be implemented an adhered to during project construction.</td>
</tr>
<tr>
<td>Piping plover and Red knot</td>
<td>If construction occurs within the period from August to May: Surveys for these species will be conducted regularly. Where either species congregates, an exclusion zone will be placed around the birds and no work will occur within 150 feet of the exclusion zone until the birds move on their own volition.</td>
</tr>
<tr>
<td>Gulf sturgeon</td>
<td>See note in above table about the review of potential Gulf sturgeon impacts being coordinated through NMFS instead of through the USFWS.</td>
</tr>
<tr>
<td>St. Andrew beach mouse</td>
<td>Conservation measures that will be implemented to avoid impacts to the St. Andrew Beach Mouse include:</td>
</tr>
<tr>
<td></td>
<td>1. All construction personnel will be notified of the potential presence of St. Andrew Beach Mice and reminded of the criminal and civil penalties associated with harassing, injuring, or killing St. Andrew Beach Mice.</td>
</tr>
<tr>
<td></td>
<td>2. To minimize impacts to St. Andrew Beach Mice in burrows, a qualified, permitted, biologist will survey the project site before work commences and flag potential burrows and tracks so that they can be avoided.</td>
</tr>
<tr>
<td></td>
<td>3. Construction noise will be kept to the minimum feasible.</td>
</tr>
<tr>
<td></td>
<td>4. Construction will occur during the day to minimize disturbance to nocturnal patterns.</td>
</tr>
<tr>
<td></td>
<td>5. Equipment, vehicles, and project debris will not be stored in a manner or location where it could be colonized by mice.</td>
</tr>
<tr>
<td></td>
<td>6. Prior to bringing any equipment (including personal gear, machinery, vehicles or vessels) to the work site, inspect each item for mud or soil, seeds, and vegetation. If present, the equipment, vehicles, or personal gear shall be cleaned until they are free from mud, soil, seeds, and vegetation. This inspection will occur each time equipment, vehicles, and personal gear are being prepared to go to a site or prior to transferring between sites to avoid spreading exotic, nuisance species.</td>
</tr>
<tr>
<td></td>
<td>7. Sites will be periodically inspected to identify and control new colonies-individuals of an invasive species not previously observed prior to construction.</td>
</tr>
<tr>
<td></td>
<td>8. Remove trash or anything that would attract nuisance wildlife to work areas daily.</td>
</tr>
<tr>
<td></td>
<td>9. Project related trash or debris shall not be allowed to blow into open water, onto beaches or in the dunes.</td>
</tr>
<tr>
<td></td>
<td>10. Appropriate waste/trash receptacles will be installed and maintained at boardwalks so that predators are not attracted to the area.</td>
</tr>
<tr>
<td></td>
<td>11. Any lighting installed will be wildlife friendly to prevent changes to the lighting regime.</td>
</tr>
<tr>
<td>SPECIES</td>
<td>CONSERVATION MEASURES TO MINIMIZE IMPACTS</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>St. Andrew beach mouse</td>
<td>Conservation measures that will be implemented to avoid impacts to the St. Andrew beach mouse critical habitat include:</td>
</tr>
<tr>
<td>critical habitat</td>
<td>1. The project will occur in very localized locations for very short periods of time, allowing the mosaic of primary, secondary scrub vegetation and dune structure to remain unchanged or increase after implementation.</td>
</tr>
<tr>
<td></td>
<td>2. If native dune plants are destroyed during the project, appropriate native plants will be planted in the same location to minimize impacts to the vegetative composition of the area. The Panama City Field Office will be contacted regarding dune plantings to balance habitat for listed and migratory birds and beach mouse.</td>
</tr>
<tr>
<td></td>
<td>3. If necessary (due to food source removal during construction and growing periods for replacement plants), supplemental beach mouse food sources will be provided.</td>
</tr>
<tr>
<td></td>
<td>4. Project work will only occur during daylight hours, as such it will not alter the natural light regime of the area. Any lighting installed will be wildlife friendly to prevent changes to the lighting regime.</td>
</tr>
<tr>
<td>All</td>
<td>In addition to the species-specific measures identified above, the project Florida trustees agree to constructing the new dune walkovers associated with the in a manner consistent with the recent guidance for such work issued by the USFWS Panama City field office (USFWS, 2013).</td>
</tr>
<tr>
<td></td>
<td>Further, to the extent possible (i.e., navigational lighting may have specific requirements), any lighting installed as part of the project will be wildlife friendly.</td>
</tr>
<tr>
<td></td>
<td>Educational signage at the kiosks will remind visitors of sensitive species and habitats and how they can enjoy the area while protecting wildlife. Signage will discuss minimizing impacts from fishing gear entanglement to turtles, manatees, and birds.</td>
</tr>
</tbody>
</table>

Consultation of potential impacts on protected species managed by NMFS from this project was initiated on April 9, 2014. NMFS Protected Resources Division reviewed the Biological Assessment and determined that there was a potential for adverse impacts to threatened and endangered species. NMFS Protected Resources Division is currently preparing a Biological Opinion that evaluates the potential effects this project may have on gulf sturgeon, gulf sturgeon critical habitat and sea turtles.

The procedures contained within the ESA consultation for West Indian manatee\textsuperscript{15} constitute appropriate and responsible steps to promote compliance with MMPA prohibitions on take by requiring the proposed activities to achieve a standard of No Effect or May Affect, Not Likely to Adversely Affect for manatees. As such, the Trustees do not anticipate any take, incidental or otherwise, under the MMPA for West Indian manatee due to implementation the proposed project. The Trustees are continuing to coordinate with NMFS Office of Protected Resources to evaluate the potential and magnitude of take or harassment of marine mammals under NMFS jurisdiction.

**Essential Fish Habitat**

Project installation activities would use BMPs to limit potentially adverse impacts to EFH associated with changes in water quality (e.g., turbidity) as well as noise and vibrations from the placement of pilings. In the short-term, machinery and equipment used during construction to deliver material and construct the pier would also generate noise. These noise levels would be kept to a minimum by BMPs such as

\textsuperscript{15} Implementing of the Service’s most recent version of the Standard Manatee Conditions for In-water Work (USFWS, 2011)
turning boats off during idling and working only during daylight hours. Noise generated from outboard motors and vessel maneuvering to transport and install the decking material and pilings would be minimal and temporary.

Adverse impacts to hydrology and water quality would be minor and temporary because support pilings would be driven into place and dredging would not be proposed. Short-term turbidity levels above background may be expected as a result of sediment disturbance during piling installation. No long-term adverse impacts to the hydrology of the proposed project area as a result of structure installation would be expected to be minor.

The proposed project would likely result in short-term, minor adverse impacts due to placement of the pilings where invertebrates or sessile organisms may have established themselves and with the loss of up to 15 square yards of bottom habitat to the pilings. Small fish that may migrate through the intertidal zone and submerged shallows are highly mobile and could move to more suitable habitat within the project vicinity. Sessile invertebrates occupying the submerged substrate and fish may be disturbed or displaced from the project area in the short term. However, these species are typically numerous in Gulf waters and recolonize quickly.

Finally, should the pre-construction survey identify areas of submerged aquatic vegetation where the pier is planned design adjustments (e.g., spacing of deck planking, pier height over water) would be incorporated to minimize impacts and continue to support SAV growth. During construction, adjacent areas with equivalent or better habitat will be available and undisturbed and organisms could move away from disturbed areas. As a result, no long-term adverse impacts would be expected to EFH or federally managed HMS as a result of implementation of the proposed project.

As a result, the Trustees concluded Impacts to EFH or the natural processes sustaining them may be detectable in the short run, but would be localized and would not measurably alter natural conditions in the longer run. Small changes to local population numbers, population structure, and other demographic factors would be unlikely to occur. There would be minimal absolute impacts in terms of the project footprint converting habitat relative to the Gulf of Mexico management area with the placing of pilings. Sufficient habitat would remain functional at both the local and range-wide scales to maintain the viability of the species. BMPs for construction and in-water work would be followed to minimize impacts and disturbance to species will be minor and brief. Therefore, the project is not likely to adversely affect EFH.

On April 17, 2014, NOAA concurred with the Trustees’ conclusion that the project is not likely to adversely affect EFH and any disturbance to species will be minor and brief (Fay, 2014).

Invasive Species

Affected Resources
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this
time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

**Environmental Consequences**

Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

**12.59.5.4 Human Uses and Socioeconomics**

**12.59.5.4.1 Socioeconomics and Environmental Justice**

**Affected Resources**

The population of Gulf County is 15,863. Table 12-28 contains population/minority data for Gulf County and Florida (U.S. Bureau of the Census 2010).

**Table 12-28. Population of Florida and Bay, Gulf, and Franklin Counties.**

<table>
<thead>
<tr>
<th>POPULATION</th>
<th>FLORIDA</th>
<th>GULF COUNTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 total population</td>
<td>18,688,787</td>
<td>15,863</td>
</tr>
<tr>
<td>White alone</td>
<td>14,270,053</td>
<td>76.4%</td>
</tr>
<tr>
<td>Black or African American alone</td>
<td>2,946,899</td>
<td>15.8%</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone</td>
<td>58,192</td>
<td>0.3%</td>
</tr>
<tr>
<td>Asian alone</td>
<td>455,403</td>
<td>2.4%</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander alone</td>
<td>11,005</td>
<td>0.1%</td>
</tr>
<tr>
<td>Some other race alone</td>
<td>564,351</td>
<td>3.0%</td>
</tr>
<tr>
<td>Two or more races</td>
<td>382,884</td>
<td>2.0%</td>
</tr>
<tr>
<td>Median household income, 2007–2011</td>
<td>$47,827</td>
<td>$41,291</td>
</tr>
<tr>
<td>Persons below poverty level, 2007–2011</td>
<td>14.7%</td>
<td>17.5%</td>
</tr>
</tbody>
</table>

**Environmental Consequences**

There are no indications that the proposed fishing pier construction project would be contrary to the goals of Executive Order 12898, or would create disproportionate, adverse human health or environmental impacts on minority or low-income populations of the surrounding community. Therefore, no adverse impacts to the socioeconomics of the regional population in Bay, Gulf, or Franklin Counties would be anticipated as a result of the proposed project.
The proposed fishing pier construction project would potentially provide indirect minor beneficial impacts to the local economy due to increased recreational activity in response to fishing and bird-watching opportunities provided by the restoration effort. Furthermore, it is estimated that approximately 15 construction positions would be generated by providing construction crews including marine contractors and heavy equipment and barge operators needed to construct the project.

12.59.5.4.2 Cultural Resources

Affected Resources
A review of the Florida Master Site Files indicates that there are four previously recorded archaeological sites located within 1 mile of the project area. However, none of these sites are located within the proposed project area. There are archaeological sites located in similar contexts in the region.

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Environmental Consequences
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.59.5.4.3 Infrastructure

Affected Resources
Port St. Joe, which is located on St. Joseph Bay, is one of three state-designated deep-water ports on North Florida’s Gulf Coast. Access to the Gulf of Mexico is accomplished by an approximate 7-mile channel from the Port to the north end of the bay. The Port has two bulkheads and can accommodate ships with a 27-foot draft. Ships can directly access the Intracoastal Waterway from the Port. St. Joseph Peninsula State Park maintains a marina and boat ramp on the west side of St. Joseph Bay.

St. Joseph Bay is a relatively remote natural estuarine system with no services or infrastructure. The project waters are not located within the immediate vicinity of urban service centers. St. Joe Beach and Highland View are relatively small urbanized service centers located approximately 1 mile north and 3.5 miles south of Windmark Park, respectively. US-98 follows the shoreline of St. Joseph Bay and the Gulf of Mexico both north and south of Windmark Park.

Environmental Consequences
Port St. Joe is located approximately 5 miles south of the proposed project area. Since the Port would be outside the proposed project area, traffic from the Port would not affect the users of Windmark Park (project site), nor would construction activities pertaining to the project have any adverse impacts to the Port. Additionally, the proposed project would not be designed to attract boaters to moor to the fishing pier; therefore, the proposed project would not be expected to impose navigational hazards. In
addition, the proposed project would not be expected to impact transportation, utilities, or any or other infrastructure.

12.59.5.4.4 Land and Marine Management

Affected Resources
The proposed Windmark Fishing Pier project area would be located in and over sovereign submerged lands (SSL) owned and governed by the State of Florida; therefore, any projects undertaken on those lands must receive authorization from the Board of Trustees of the Internal Improvement Trust Fund, pursuant to Article X, Section 11 of the Florida Constitution as well as Section 253.77, F.S., and Chapter 258, F.S. An Environmental Resource Permit to construct the fishing pier and a Letter of Consent to use SSL lands must be attained from FDEP.

Environmental Consequences
Under the proposed project, no changes would occur to the current land use at the St. Joseph Bay and Windmark Park. Land use and management authority of Windmark Park would remain under the purview of Gulf County with cooperation from the FDEP, and no development at the project site would occur. The proposed project would be consistent with existing management and plans of Windmark Park. Ultimately, the proposed project would continue to provide public recreational fishing opportunities and maintain essential fisheries habitat and sanctuary for wildlife, including threatened and endangered species dependent on the beach and dune habitat available in the park for much of their life cycle. The proposed fishing pier construction would be conducted and maintained in accordance with state and federal permits for the project area in Gulf County. All permit conditions and requirements would be implemented. Therefore, potential adverse impacts to land and marine management resources would not be expected.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

12.59.5.4.5 Aesthetics and Visual Resources

Affected Resources
The land use of the proposed project site and vicinity would be either county park land, sparsely populated residential areas, or retail commercial. The general visual character of Windmark Park and immediate surrounding natural areas can be described as undeveloped or open space consisting of native upland terrestrial, wetland, and estuarine habitat separated from the Gulf of Mexico by barrier islands. Unobstructed views of open water characterizing the project area exist from the existing park and surrounding uplands at higher land elevations.
Environmental Consequences
Temporary impacts to visual resources would result throughout the duration of the proposed fishing pier construction activities. Construction equipment would be visible to visitors and recreational users at the project access points (i.e., beach) for approximately 2 years. These construction-related impacts to visual resources would be minor to moderate to park and beach users until construction is completed. Although the proposed fishing pier construction would be anticipated to result in relatively minor to moderate minor visual impacts to beach and park users, the recreational fishing opportunities to access available fisheries would be enhanced in the long term. Nonetheless, the proposed project would be expected to result in temporary minor to moderate impacts to current aesthetics or visual resources.

12.59.5.4.6 Tourism and Recreational Use

Affected Resources
According to the economic development organization Enterprise Florida (2013), the primary recreational opportunities in Gulf County are boating, fishing, swimming, diving, snorkeling, and golfing. St. Joseph Peninsula State Park is located west of the project area (opposite the shoreline of the bay), and the proposed project site is Windmark Park, a public facility owned and operated by Gulf County.

Environmental Consequences
The duration of the proposed fishing pier construction project would be approximately 2 years. Therefore, adverse impacts to recreational experience of the use of the beach would be minor and short term as a result of noise and visual disturbances. Public access to the beach would be maintained and there would be no beach restrictions other than those prohibiting human entry into the project construction area. While temporary inconveniences would result in short-term minor to moderate negative impacts to tourism, recreational use of the beach for fishing and swimming would remain available. Over the long term, the project would not result in adverse impacts to tourism and recreational use. Opportunities for recreational activity in the project waters would be enhanced as a result of improved fishing and bird-watching opportunities. Enhancement of the visual and solidarity experiences offered by the open water environment of St. Joseph Bay would provide additional beneficial community use. Over the long term, the project would result in minor beneficial impacts to tourism and recreational uses.

12.59.5.4.7 Public Health and Safety and Shoreline Protection

Affected Resources
There are no known hazardous waste disposal facilities or active water discharge sites permitted in the proposed project vicinity.

Environmental Consequences
The project would have no impact on public health and safety in the area. The project would incorporate solid waste and recyclable material collection receptacles to enhance or encourage proper solid waste disposal practices to prevent pollution of the waters located in the project area.

12.59.6 Summary and Next Steps
The proposed Gulf County Recreation Project – Windmark Beach Fishing Pier Improvements project would construct a fishing pier at Windmark Beach in Gulf County. The proposed improvements include
constructing a fishing pier into the Gulf of Mexico. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational fishing opportunities by constructing a fishing pier. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

**References**


Fay, V. 2014. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for the construction of the Florida Windmark Fishing Pier project in St. Joseph Bay, at St. Joe Beach, Gulf County, Florida. April, 17.


Gulf of Mexico Fishery Management Council (GMFMC). 2005. FINAL Generic Amendment Number 3 for Addressing Essential Fish Habitat Requirements, Habitat Areas of Particular Concern, and Adverse Effects of Fishing in the following Fishery Management Plans of the Gulf of Mexico: Shrimp Fishery of the Gulf of Mexico, United States Waters; Red Drum Fishery of the Gulf of Mexico; Reef Fish Fishery of the Gulf of Mexico; Coastal Migratory Pelagic Resources (Mackerels) in the Gulf of Mexico and South Atlantic Stone Crab Fishery of the Gulf of Mexico; Spiny Lobster in the Gulf of Mexico and South Atlantic; Coral and Coral Reefs of the Gulf of Mexico. Tampa, Florida: Gulf of Mexico Fishery Management Council.


National Oceanic and Atmospheric Administration (NOAA). 2009. Amendment 1 to the Consolidated Atlantic Highly Migratory Species Fishery Management Plan Essential Fish Habitat and EIS.


2001. Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat. August.


USFWS 2011 Standard Manatee Conditions for In-Water Work.


12.60 Bald Point State Park Recreation Areas: Project Description

12.60.1 Project Summary
The proposed Bald Point State Park Recreation Areas project would improve the existing visitor areas at Bald Point State Park in Franklin County. The project activity would involve constructing a visitor day-use area including picnic pavilions, a restroom with an aerobic treatment system and associated septic system drainfield, and an integrated system of boardwalks providing access through the area to a new floating dock, and a canoe/kayak launch area on Chaires Creek. The total estimated cost of the project is $470,800.

12.60.2 Background and Project Description
The Trustees propose to improve the visitor use areas at Bald Point State Park in Franklin County (See Figure 12-22 for general project location). The objective of the Bald Point State Park project is to enhance and/or increase recreational boating and beach use opportunities by improving the existing visitor areas. The restoration work proposed includes construction of a visitor day-use area with picnic pavilions, a restroom with an aerobic treatment system and associated septic system drainfield, and an integrated system of boardwalks providing access through the area to a new floating dock, and a canoe/kayak launch area on Chaires Creek.

![Figure 12-22. Location of Bald Point State Park Recreation Areas Project.](image-url)
12.60.3 Evaluation Criteria

This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Bald Point State Park Recreation Areas project is intended to enhance and/or increase recreational boating and beach use opportunities by improving the existing visitor areas. The project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results and can be implemented with minimal delay. Florida agencies have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.60, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.60 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Bald Point State Park Recreation Areas project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area that was impacted by SCAT and response activities, including boom deployment.

12.60.4 Performance Criteria, Monitoring and Maintenance

As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational boating and beach use opportunities by improving the existing visitor areas. Performance monitoring will evaluate: 1) the construction of the visitor day-use are including picnic pavilions; 2) the construction of an integrated system of boardwalks; 2) the construction of a restroom with an aerobic treatment system and associated septic system drainfield; and 4) the construction of a floating dock and a canoe/kayak launch area. Specific success criteria include: 1) the completion of the construction as designed and permitted, and 2) enhanced
and/or increased access is provided to the natural resources, which will be determined by observation that the visitor area is open and available.

Long term maintenance of the improved facilities will be completed by Bald Point State Park staff as part of their regular public facilities maintenance activities. Corrective actions necessary after completion and signoff of the project will also be undertaken by park staff. Funding for this post-construction maintenance is not included in the project cost estimate and will be assumed by Bald Point State Park.

During and following the post construction performance monitoring period, the State of Florida park staff will monitor the recreational use activity at the site. Park staff keeps track of visitation and usage at the park and will provide visitation numbers by the month. This use information is kept by the Florida Department of Environmental Protection.

### 12.60.5 Offsets

The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $941,600 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.\(^\text{16}\)

### 12.60.6 Costs

The total estimated cost to implement this project is $470,800. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---

\(^{16}\) For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.61 Bald Point State Park Recreation Areas: Environmental Review
The Florida Park Service (FPS) and the Florida Department of Environmental Protection (FDEP) propose to install improvements to the currently existing and utilized Bald Point State Park located in Franklin County, Florida. The park features waterfront access for swimming, sunbathing, fishing, canoeing, kayaking, and upland activities such as hiking and wildlife viewing.

The proposed project would provide improvements to visitor recreation areas within the park. The project activity would involve constructing a visitor day-use area including picnic pavilions, a restroom with an aerobic treatment system and associated septic system drainfield, and an integrated system of boardwalks providing access through the area to a new floating dock, and a canoe/kayak launch area on Chaires Creek.

12.61.1 Introduction and Background
In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is under way. The Framework Agreement is intended to expedite the start of restoration in the Gulf of Mexico in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement, after public review of a draft, the Trustees released a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, NOAA issued a public notice in the Federal Register on behalf of the Trustees, announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP).

This park improvement in Franklin County was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the eight-county panhandle area that deployed boom and was affected by the Spill.

12.61.2 Project Location
Bald Point State Park is located on the east end of St. James Island. The park can be accessed from County Road 370 via US Highway 98 (FDEP 2006) (Figure 12-23).
Figure 12-23. Bald Point State Park is located in Franklin County, Florida.
12.61.3 Construction and Installation
There are multiple project components associated with the park improvements that would be spread out within the defined project area, generally in upland areas. There would be multiple picnic pavilions installed and the locations of these installations would be determined once the final project plans are approved. Factors that would be taken into account during the design process include the avoidance of sensitive or protected habitat, sensitive or protected species, and cultural resources. The same holds true for the construction of a restroom and associated installation of the aerobic treatment system and drainage field, and the boardwalks.

The proposed canoe/kayak launch and floating dock would be constructed along Chaires Creek which is part of the estuarine tidal system through Chaires Creek. As part of this construction approximately 23 cubic yards of material would be excavated from Chaires Creek, which has been dredged previously, to connect the creek to Lake Tucker, and to facilitate installation of a pier (See Figure 12-23). This work has been approved in a US Army Corps of Engineers permit. Work would be completed almost entirely from the uplands and would, according to the current conceptual plan, require placing roughly 10-15 pilings in the river for the construction of the roughly 520 square foot dock and canoe/kayak launch. Piling placement/construction methods would be delineated in the final project design. All permit conditions and best management practices (BMPs) would be followed to ensure potential impacts to species and habitat are minimized. In-water project work is expected to take 12 to 18 months, including permitting and construction.

12.61.4 Operations and Maintenance
Long-term maintenance of the various park improvements would be performed by Bald Point State Park staff and the Florida Park Service. During the construction process, areas may be monitored and subjected to site visits as needed.

12.61.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

12.61.5.1 No action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.
12.61.5.2 Physical Environment

12.61.5.2.1 Geology and Substrates

Affected Resources
The park is located in the Gulf Coast Lowlands physiographic unit. Specifically, the park is located within the Apalachicola Coastal Lowlands. The topography of the area is mostly flat, but there are some areas with moderate rolling dunes and high rolling hills (FDEP 2006). The entirety of Bald Point State Park is classified as beach ridge and dune (Qdb) deposits of the Pleistocene and Holocene eras.

There are 16 soil types that have been identified within the park. These are identified in Table 12-29. These areas are composed of Spodosols and Entisols. Briefly, Spodosols are soils that are composed of mixtures of organic matter and aluminum, with or without iron. Entisols are soils that have little or no evidence of soil horizons (i.e., they lack stratigraphy).

Table 12-29. Soils identified within Bald Point State Park (from FDEP 2006).

<table>
<thead>
<tr>
<th>SOIL NAME</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaches</td>
<td>Mandarin fine sand</td>
</tr>
<tr>
<td>Dirego and Bayvi soils, tidal</td>
<td>Duckston sand, occasionally flooded</td>
</tr>
<tr>
<td>Ridgewood sand, 0-5% slopes</td>
<td>Resota fine sand, 0-5% slopes</td>
</tr>
<tr>
<td>Corolla Sand, 0-5% slopes</td>
<td>Rutlege loamy fine sand, depressional</td>
</tr>
<tr>
<td>Dorovan-Pamlico complex, depressional</td>
<td>Rutlege fine sand</td>
</tr>
<tr>
<td>Hurricane sand</td>
<td>Scanton fine sand</td>
</tr>
<tr>
<td>Ortega fine sand, 0-5% slopes</td>
<td>Pickney-Pamlico complex, depressional</td>
</tr>
<tr>
<td>Kershaw sand, 5-12% slopes</td>
<td>Water</td>
</tr>
<tr>
<td>Leon sand</td>
<td></td>
</tr>
</tbody>
</table>

Environmental Consequences
A range of hand tools and mechanized equipment would likely be used to complete construction and improvements to the state park. There are ground disturbing activities associated with each of the project components; these activities are local and specific to the particular project elements (such as the installation of a picnic pavilion or restroom). Furthermore, with the exception of the removal of soils from Chaires Creek (which would be permitted separately by USACE), the ground disturbance would be limited to the upper soils and would not likely exceed 3 to 5 feet in depth. Once construction is complete in a particular area, there would no longer be any disturbance to soils or geology in the area.

The effect to soils and geology would be minor and short term with no known adverse impacts. Disturbance to geologic features or soils would be detectable, but would be small and localized. There would be no changes to local geologic features or soil characteristics. Erosion and/or compaction would occur in localized areas.

12.61.5.2.2 Hydrology and Water Quality

Affected Resources
The waters surrounding the park area located on Bald Point.
Hydrology
The project area is situated on Bald Point, which is surrounded by water. These waters are designated as the Ochlockonee Bay, Apalachee Bay, Alligator Harbor, and the Gulf of Mexico. In addition to these waterbodies, there are several smaller creeks, drainages, and lakes within the park.

The park is underlain by the Floridian Aquifer; this aquifer is the source of most of the public water for Franklin County. In addition to the large, named waterbodies, there are numerous natural wetlands and drainages located in the park. These include estuarine tidal marsh, flatwoods lakes, depressional marsh, and marsh lakes. Chaires Creek is nearly 7 miles in length and is connected to an extensive estuarine tidal system. The largest lake in the park is Tucker Lake. Tucker Lake is drained by Chaires Creek. Chaires Creek was dredged in the past to connect it to Lake Tucker. This dredged area is narrow and shallow. Additional small-scale dredging was conducted to connect Little Tucker Lake to the western portion of Chaires Creek. Little Tucker Lake is very deep, nearly 60 feet, and has a sharp drop-off (FDEP 2006).

Water Quality
The waters surrounding Bald Point are designated as a Class II Shellfish Harvesting Area. They have excellent water quality and the waters of the bay are tested regularly. The Alligator Harbor Aquatic Preserve is designated as an Outstanding Florida Water; this area is located just southwest of the park.

Floodplains
The project is located in multiple flood zones. Portions of the park are located in the 100-year floodplain (Zones A and AE), the 500-year floodplain (Zone X), and high velocity flood zone (VE). The base flood elevations range from 10 to 17 feet above mean sea level (AMSL). Project plans are not yet finalized, so it is unclear which facilities would be constructed in the various flood zones.

Wetlands
Within Bald Point State Park there are multiple and various types of wetlands. The National Wetlands Inventory Mapper shows that there are areas of freshwater emergent wetlands, freshwater forested/shrub wetlands, estuarine and marine wetlands, and estuarine and marine deep waters present within the park (USFWS 2013).

Environmental Consequences
The project plans for the park improvements have not yet been finalized. However, careful consideration would be given to the design of the park improvements to have the least effect on waters and wetlands within the park.

The effect on hydrology would be measurable, but it would be small and localized. As the project plans are not yet finalized, all efforts would be made to design the project elements to have the least effect possible on the local hydrology.

Most of the project elements would be constructed in upland areas away from beaches and water bodies. The exception is the floating boat/kayak launch. The final project plans for the floating dock have not been completed; therefore the size of the pilings and method of installation have not yet been determined. During the construction of the floating dock, sandy soils would be disturbed as the piers/pilings were placed in the water. Additionally, there would be approximately 23 cubic yards of soils removed from the area where the dock would be constructed. A USACE permit for the construction of
the floating dock and associated soil removal is required; all conditions of this permit would be followed during the in-water construction period. After the floating dock is installed, there would be additional human activity in Chaires Creek. There would be a long-term, minor effect to water quality in the area as there would be some minor turbidity associated with the launching of human-powered kayaks or canoes. This would result in a detectable change to water quality, but the change would be expected to be small and localized. Impacts would quickly become undetectable. State water quality standards as required by the Clean Water Act would not be exceeded. The FDEP Wetland and Environmental Resource Field permits require the implementation of best management practices for turbidity and erosion.

All dredging activities would be done in compliance with FDEP and USACE permit conditions. These would typically include the following:

- Taking measures to prevent spoil material from entering waters of the state
- Monitoring turbidity at the dredge and spoil disposal sites
- Taking immediate corrective actions if a disposal site leaks or breaks
- After recontouring, replanting vegetation of the size, densities, and species as is present in the adjacent areas if the area dredged is vegetated

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (Corps) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the Corps and final authorization pursuant to CWA/RHA will be completed prior to project implementation.

The project area is classified as multiple floodplain zones; these include the A, AE, VE, and X zones. Impacts may result in a detectable change to natural and beneficial floodplain values, but the change would be expected to be small and localized. There would be no appreciable increased risk of flood loss, including impacts on human safety, health, and welfare.

There are multiple wetland areas throughout Bald Point State Park. The construction of the floating dock and associated boardwalk is a previously permitted project and all construction activities associated with the dock would comply with the appropriate federal laws. The remaining project elements (picnic pavilions, restroom, aerobic treatment system and drainfield) have not been permitted. During the construction of these project elements, the effect on wetlands would be measurable but small in terms of area and the nature of the impact. A small impact on the size, integrity, or connectivity would occur; however, wetland function would not be affected and natural restoration would occur if left undisturbed. Final design plans have not yet been completed for these project elements. Consideration would be given to the location of wetlands and the siting of project elements during the design process.

Construction activities would use best management practices and are anticipated to last 12 to 18 months from the time the permit process is initiated to the completion of construction. The calendar year timing would depend on the timing of funding availability and the contract award along with any permit constraints required as a result of listed species considerations. BMPS may include, but would not necessarily be limited to the following:
- Installation of floating turbidity barriers
- Installation of erosion control measures along the perimeter of all work areas
- Stabilization of all filled areas with sod, mats, barriers, or a combination
- Storing and fueling vehicles away from aquatic areas
- Re-vegetation of exposed soils when construction activities are complete

12.6.1.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
The current air quality index in the project area is good in terms of both National Ambient Air Quality Standards and CO₂ emissions. Air quality within the Florida panhandle is in attainment with the National Ambient Air Quality Standards [http://www.epa.gov/airquality/urbanair/sipstatus/reports/fl_areabypoll.html].

Project plans have not been finalized for this project. As such, it is unclear what equipment would be used and the duration of use for that equipment. The following table provides greenhouse gas emissions estimates for a variety of construction and transportation equipment that may be used for the construction of park improvements. Each of these emissions is based on use of the heavy equipment over an 8-hour day (Table 12-30).

Table 12-30. Greenhouse gas emissions for various mechanized equipment.

<table>
<thead>
<tr>
<th>EQUIPMENT DESCRIPTION</th>
<th>TOTAL HOURS USED</th>
<th>CO₂ FACTOR: MT*/100HRS</th>
<th>CO₂ (MT)</th>
<th>CH₄ FACTOR-MT/100HRS</th>
<th>CH₄ (MT)</th>
<th>N₂O FACTOR-MT/100HRS</th>
<th>N₂O (MT)</th>
<th>TOTAL CO₂ (MT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dump Trucks / Flatbed Truck</td>
<td>216</td>
<td>1.7</td>
<td>3.70</td>
<td>0.5</td>
<td>1.08</td>
<td>7.2</td>
<td>15.55</td>
<td>20.336</td>
</tr>
<tr>
<td>Concrete Trucks</td>
<td>24</td>
<td>1.7</td>
<td>0.40</td>
<td>0.5</td>
<td>0.12</td>
<td>7.2</td>
<td>1.72</td>
<td>2.248</td>
</tr>
<tr>
<td>Pickup Trucks</td>
<td>2304</td>
<td>1.1</td>
<td>25.34</td>
<td>0.35</td>
<td>8.06</td>
<td>4.4</td>
<td>10.13</td>
<td>43.53</td>
</tr>
<tr>
<td>Bobcat (bare and w/ auger mount)</td>
<td>480</td>
<td>2.65</td>
<td>12.72</td>
<td>0.9</td>
<td>4.32</td>
<td>10.6</td>
<td>50.88</td>
<td>67.92</td>
</tr>
<tr>
<td>Trackhoe (w/ Bucket/ Thumb or Vibratory Attachments)</td>
<td>24</td>
<td>2.55</td>
<td>0.61</td>
<td>0.85</td>
<td>0.2</td>
<td>10.2</td>
<td>2.44</td>
<td>3.252</td>
</tr>
<tr>
<td>Dozer</td>
<td>24</td>
<td>2.25</td>
<td>0.54</td>
<td>0.65</td>
<td>0.16</td>
<td>1.08</td>
<td>0.26</td>
<td>0.96</td>
</tr>
<tr>
<td>Total</td>
<td>4131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>138.24</td>
</tr>
</tbody>
</table>

*mt = metric tons

1 Emissions assumptions for all equipment based on 8 hours of operation
2 CO₂ emissions assumptions for diesel and gasoline engines based on EPA 2009
3 CH₄ and NOx emissions assumptions and CO₂e calculations based on EPA 2011
4 Construction equipment emission factors based on USEPA NONROAD emission factors for 250hp pieces of equipment. Data was accessed through the California Environmental Quality Act Roadway Construction Emissions Model
5 Emissions assumptions for an 8-cylinder, 6.2-liter gasoline engine Ford F150 pickup based on DOE 2013 and 18 gallon (half-tank) daily fuel consumption.
**Environmental Consequences**

Project implementation would require the use of some mechanized equipment that could temporarily lead to air pollution from equipment exhaust. Project plans have not yet been finalized for the various park improvements. However, available best management practices would be employed to prevent, mitigate, and control potential air pollutants during project implementation. Any minor pollution that does occur would be localized and short in duration. No air quality related permits would be required. Adverse impacts to air quality would be minor.

12.61.5.2.4 Noise

**Affected Resources**

Existing ambient noise levels within the park are generally low and predominantly result from daily recreational activities. Noise can be defined as unwanted sound and noise levels, and its impacts are interpreted in relationship to impacts on nearby visitors to the recreational areas and wildlife in the project vicinity. The Noise Control Act of 1972 (42 U.S.C. 4901 to 4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale which approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-31 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.

**Table 12-31. Common noise levels.**

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawnmower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Adapted from BPA 1986, 1996

Noise levels in the project areas vary depending on the season, time of day, number, types of noise sources, and distance from noise sources. Existing sources of noise in the project area are from vehicles, recreational boating, overhead aircraft, and ambient natural sounds such as wind, waves, and wildlife.

**Environmental Consequences**

Machinery and equipment used during construction would generate noise. This noise may disturb wildlife and humans using the area but would be kept to a minimum using best management practices. Once built, the proposed project would not cause long-term noise impacts. Adverse impacts from noise would be minor and short term.
12.61.5.3 Biological Environment
There are 13 distinct natural communities along with ruderal and developed areas located within the park (FDEP 2006). Each of these natural communities hosts a variety of animal and plant species.

Living Coastal and Marine Resources

Wildlife Habitat

Affected Resources
All of the project work with the exception of the floating boat dock would take place in a terrestrial environment. Terrestrial species known to reside in the park include, but are not limited to bald eagles, osprey, migrating falcons, deer, bear, raccoon, opossums, bobcats, foxes, other migrating birds, reptiles, and amphibians (FDEP n.d.).

Environmental Consequences
Most of the proposed project would be constructed within an upland environment. Only one project element would be constructed in the water, i.e., the floating boat dock. The proposed action has been evaluated for potential short- and long-term impacts to state and federally listed threatened and endangered species that can occur within and adjacent to the project areas, based on available suitable habitat and restoration goals.

A floating dock and associated boardwalk is planned that has in-water work associated with it. However, there is an existing USACE permit for this portion of the project; all conditions and mitigation measures contained in the permit would be followed for installation of the floating boat dock/kayak launch. No submerged aquatic vegetation, which is habitat for species such as manatees, sea turtles, or invertebrates, is present at the site and it was determined that fish and wildlife resources would most likely be only minimally impacted (FDEP 2006)

Vegetation

Affected Resources
Within Bald Point State Park, there are more than 360 varieties of plants (FDEP n.d.). A review of the General Map of Natural Vegetation (Davis 1967) shows that the park has both Sand Pine (Pinus clausa) scrub forests and forests of Long leaf pine (Pinus palustris) and Xerophytic oaks. The park is described as having coastal marshes, pine flat woods, and oak thickets. A list of natural communities is found in Table 12-32. A list of rare plant species known or believed to occur in Franklin County can be found in Table 12-33.

There are four listed plant species that occur within the park as described in the park’s management plan (FDEP 2006). These include Geoffrey’s blazing star (Liatris provincialis), large-leaved jointweed (Polygonella macrophylla), spoon-leaf sundew (Drosera spatulata), and bent golden aster (Pityopsis flexuosa).
Table 12-32. Natural communities within Bald Point State Park (FEDP 2006).

<table>
<thead>
<tr>
<th>NATURAL COMMUNITIES</th>
<th>ACRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beach Dune</td>
<td>57.59</td>
</tr>
<tr>
<td>Maritime Hammock</td>
<td>15.43</td>
</tr>
<tr>
<td>Mesic Flatwoods</td>
<td>1553.25</td>
</tr>
<tr>
<td>Scrub</td>
<td>163.05</td>
</tr>
<tr>
<td>Scrubby Flatwoods</td>
<td>935.54</td>
</tr>
<tr>
<td>Basin Marsh</td>
<td>245.48</td>
</tr>
<tr>
<td>Basin Swamp</td>
<td>319.5</td>
</tr>
<tr>
<td>Baygall</td>
<td>44.28</td>
</tr>
<tr>
<td>Depression Marsh</td>
<td>68.31</td>
</tr>
<tr>
<td>Wet Flatwoods</td>
<td>447.83</td>
</tr>
<tr>
<td>Flatwood/Prairie Lake</td>
<td>255.03</td>
</tr>
<tr>
<td>Marsh Lake</td>
<td>21.9</td>
</tr>
<tr>
<td>Estuarine Tidal Marsh</td>
<td>707.32</td>
</tr>
<tr>
<td>Ruderal</td>
<td>3.35</td>
</tr>
<tr>
<td>Developed</td>
<td>21.42</td>
</tr>
</tbody>
</table>

Geoffrey’s blazing star is an endangered plant known to be present within the park (park brochure). This plant is a flowering aster that is limited to Wakulla and Franklin Counties; its habitat is limited to the areas between Lighthouse Point and Peninsular Point. The plant grows in scrub and sandhill environments and prefers open space. As the species is rare and limited to coastal dunes, habitat would be protected by limited disturbance in areas where the plant grows (NatureServe Explorer 2013).

Large-leaved jointweed is found in both Florida and Alabama. It is a slender perennial with a woody base and herbaceous stems. Its preferred habitat includes open, unshaded sand dunes and scrub ridges near the coast (NatureServe Explorer 2013b).

Spoon-leaf sundew is a carnivorous plant that grows in bogs and wet, sandy shorelines. This plant can survive long periods of submersion (USDA 2013).
Table 12-33. Rare plant species within Bald Point State Park (USFWS, 2013c).

<table>
<thead>
<tr>
<th>RESOURCE CATEGORY</th>
<th>COMMON NAME</th>
<th>SCIENTIFIC NAME</th>
<th>USFWS STATUS</th>
<th>STATE STATUS</th>
<th>NATURAL COMMUNITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants</td>
<td>Bent golden aster</td>
<td><em>Pityopsis flexuosa</em></td>
<td></td>
<td>E</td>
<td>• Terrestrial: sandhill, upland pine forest, ruderal</td>
</tr>
<tr>
<td>Plants</td>
<td>Florida beargrass</td>
<td><em>Nolina atopocarpa</em></td>
<td></td>
<td>T</td>
<td>• Terrestrial: mesic flatwoods grassy areas</td>
</tr>
<tr>
<td>Plants</td>
<td>Florida skullcap</td>
<td><em>Scutellaria floridana</em></td>
<td>T</td>
<td>E</td>
<td>• Palustrine: seepage slope, wet flatwoods, grassy openings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Terrestrial: mesic flatwoods</td>
</tr>
<tr>
<td>Plants</td>
<td>Godfrey's (violet) butterwort</td>
<td><em>Pinguicula ionantha</em></td>
<td>T</td>
<td>E</td>
<td>• Palustrine: wet flatwoods, wet prairie, bog; in shallow water</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Riverine: seepage slope; in shallow water.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Also, roadside ditches and similar habitat.</td>
</tr>
<tr>
<td>Plants</td>
<td>Geoffreys’s blazing star</td>
<td><em>Liatris provincialis</em></td>
<td></td>
<td>E</td>
<td>• Terrestrial: sandhill, scrub, coastal grassland; disturbed areas</td>
</tr>
<tr>
<td>Plants</td>
<td>Gulf coast lupine</td>
<td><em>Lupinus westianus</em></td>
<td></td>
<td>T</td>
<td>• Terrestrial: beach dune, scrub, disturbed areas, roadides, blowouts in dunes</td>
</tr>
<tr>
<td>Plants</td>
<td>Harper’s beauty</td>
<td><em>Harperocallis flava</em></td>
<td></td>
<td>E</td>
<td>• Palustrine: wet prairie, seepage slope, roadsides, edges of titi swamps</td>
</tr>
<tr>
<td>Plants</td>
<td>Harper’s grooved yellow flax</td>
<td><em>Linum sulcatum var. harperi</em></td>
<td></td>
<td>T</td>
<td>• Palustrine: wet flatwoods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Terrestrial: mesic flatwoods; in site-prepped areas</td>
</tr>
<tr>
<td>Plants</td>
<td>Harper’s yellow-eyed grass</td>
<td><em>Xyris scabrifolia</em></td>
<td>T</td>
<td>E</td>
<td>• Palustrine: seepage slope, wet prairie, bogs</td>
</tr>
<tr>
<td>Plants</td>
<td>Hooded pitcher plant</td>
<td><em>Sarracenia minor</em></td>
<td></td>
<td>T</td>
<td>• Palustrine: wet flatwoods, wet prairie, seepage slope</td>
</tr>
<tr>
<td>Plants</td>
<td>Hummingbird flower</td>
<td><em>Macranthera flammea</em></td>
<td>E</td>
<td></td>
<td>• Palustrine: seepage slope, dome swamp edges, floodplain swamps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Riverine: seepage stream banks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Terrestrial: seepage slopes</td>
</tr>
<tr>
<td>Plants</td>
<td>Large-flowered grass of parnassus</td>
<td><em>Parnassia grandifolia</em></td>
<td>E</td>
<td></td>
<td>• Palustrine: dome swamp margins, seepage slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Riverine: spring-run stream edge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Terrestrial: mesic flatwoods</td>
</tr>
<tr>
<td>Plants</td>
<td>Large-leaved jointweed</td>
<td><em>Polygonella macrophylla</em></td>
<td></td>
<td>T</td>
<td>• Terrestrial: scrub, sandpine/oak scrub ridges</td>
</tr>
<tr>
<td>Plants</td>
<td>Meadowbeauty</td>
<td><em>Rhexia parviflora</em></td>
<td>E</td>
<td></td>
<td>• Palustrine: dome swamp margin, seepage slope, depression marsh; on slopes; with hypericum</td>
</tr>
<tr>
<td>Plants</td>
<td>Panhandle spiderlily</td>
<td><em>Hymenocallis henryae</em></td>
<td>E</td>
<td></td>
<td>• Palustrine: dome swamp edges, wet prairie, wet flatwoods, baygall edges, swamp edges</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Terrestrial: wet prairies and flatwoods</td>
</tr>
<tr>
<td>Plants</td>
<td>Parrot pitcher plant</td>
<td><em>Sarracenia psittacina</em></td>
<td>T</td>
<td></td>
<td>• Palustrine: wet flatwoods, wet prairie, seepage slope</td>
</tr>
<tr>
<td>Plants</td>
<td>Pinewoods aster</td>
<td><em>Eurybia spinulosa</em></td>
<td>E</td>
<td></td>
<td>• Palustrine: seepage slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Terrestrial: sandhill, scrubby and mesic flatwoods</td>
</tr>
<tr>
<td>Plants</td>
<td>Scare-weed</td>
<td><em>Baptisia simplicifolia</em></td>
<td>T</td>
<td></td>
<td>• Terrestrial: mesic flatwoods, sand hill; on disturbed sites</td>
</tr>
<tr>
<td>RESOURCE CATEGORY</td>
<td>COMMON NAME</td>
<td>SCIENTIFIC NAME</td>
<td>USFWS STATUS</td>
<td>STATE STATUS</td>
<td>NATURAL COMMUNITIES</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| Plants            | Southern milkweed    | Asclepias viridula      |              | T            | Palustrine: wet prairie, seepage slope edges  
|                   |                      |                         |              |              | Riverine: seepage stream banks  
|                   |                      |                         |              |              | Terrestrial: mesic flatwoods, drainage ditches  |
| Plants            | Southern red lily     | Lilium catesbaei        |              | T            | Palustrine: wet prairie, wet flatwoods, seepage slope  
|                   |                      |                         |              |              | Terrestrial: mesic flatwoods, seepage slope; usually with grasses  |
| Plants            | Spoon-leaved sundew  | Drosera spatulata       |              | T            | Lacustrine: sinkhole lake edges Palustrine: seepage slope, wet flatwoods, depression marsh  
|                   |                      |                         |              |              | Riverine: seepage stream banks, drainage ditches  |
| Plants            | Sweet shrub          | Calycanthus floridus    |              | E            | Terrestrial: upland hardwood forest, slope forest, bluffs  
|                   |                      |                         |              |              | Palustrine: bottomland forest, stream banks, floodplains  |
| Plants            | Telephus spurge      | Euphorbia telephioides  | T            | E            | Terrestrial: mesic flatwoods; disturbed wiregrass (Aristida stricta) areas, coastal scrub.  
|                   |                      |                         |              |              | All known sites are within 4 miles of Gulf of Mexico.  |
| Plants            | Thick-leaved water-willow | Justicia crassifolia    | E            |              | Palustrine: dome swamp, seepage slope  
|                   |                      |                         |              |              | Terrestrial: mesic flatwoods  |
| Plants            | Tropical waxweed     | Cuphea aspera           |              |              | Palustrine: wet prairie, seepage slope  
|                   |                      |                         |              |              | Terrestrial: mesic flatwoods  |
| Plants            | West’s flax          | Linum westii            | E            |              | Palustrine: dome swamp, depression marsh, wet flatwoods, wet prairie, pond margins  |
| Plants            | White birds-in-a nest | Macbridea alba          | T            | E            | Palustrine: seepage slope  
|                   |                      |                         |              |              | Terrestrial: grassy mesic pine flatwoods, savannas, roadsides, and similar habitat  |
| Plants            | White-top pitcher plant | Sarracenia leucophylla | E            |              | Palustrine: wet prairie, seepage slope, baygall edges, ditches  |
| Plants            | Wiregrass gentian    | Gentiana pennelliana    | E            |              | Palustrine: seepage slope, wet prairie, roadside ditches  
|                   |                      |                         |              |              | Terrestrial: mesic flatwoods, planted slash pine  |
| Plants            | Yellow butterwort    | Pinguiicula lutea       | T            |              | Palustrine: flatwoods, bogs  |
| Plants            | Yellow fringeless orchid | Platanthera integra     | E            |              | Palustrine: wet prairie, seepage slope  
|                   |                      |                         |              |              | Terrestrial: mesic flatwoods  |

E=endangered, T=threatened
Bent golden aster is found in various places within the Florida panhandle and is a fibrous, rooted perennial with a flexible stem. Its habitat is threatened due to the expansion of residential homes and pine plantations (NatureServe Explorer 2013c).

A review of Florida’s Efficient Transportation Decision Making tool indicates that while submerged marine aquatic vegetation (corals, seagrasses) are present off the coastline, they are not present within the park (FDOT 2013d). There is potential for other submerged aquatic vegetation to be present in some of the lakes within the park, notably Tucker Lake, Little Tucker Lake, Sand Pond, and Western Mullet Pond.

**Environmental Consequences**
There are multiple, small construction events associated with this project. During the construction of the various picnic pavilions, the restrooms, the aerobic treatment system/drainfield, and the boardwalks vegetation would be disturbed in order to complete the construction.

Construction of the facilities would require the permanent removal of vegetation within the affected areas. The use of equipment and disturbance of soil and existing vegetation would also introduce a risk of noxious weed or invasive vegetation species introduction. Over all, impacts on native vegetation from the construction effort may be detectable, but would not alter natural conditions and would be limited to localized areas. Infrequent disturbance to individual plants could be expected, but without affecting local or range-wide population stability. Infrequent or insignificant one-time disturbance to locally suitable habitat could occur, but sufficient habitat would remain functional at both the local and regional scales to maintain the viability of the species.

Improvement to the park would likely bring in additional visitors. The additional human presence in the park may pose a long-term, minor effect to vegetation in the park. The more people who enter the park, the greater the likelihood that humans would trample, pick, or otherwise disturb plants. These events would occur in areas where new construction takes place. Impacts on native vegetation in the immediate vicinity of the new park improvements would be measureable but limited to local and adjacent areas. Occasional disturbance to individual plants could be expected. These disturbances could affect local populations negatively, but would not be expected to affect regional population stability. Some impacts might occur in key habitats, but sufficient local habitat would retain functionality to maintain the viability of the species both locally and throughout its range.

Due to the prevalence of both weeds and rare plants in the park, preconstruction vegetation surveys and pre/post-construction weed treatments would likely be required. Precautions would be taken to avoid colonies of Geoffrey’s blazing star plants, which are listed as endangered in Florida. Project plans for the park improvements have not yet been completed. Therefore, the presence of threatened or endangered plants would be considered during the design phase of the project, including avoidance and minimization of impacts wherever feasible. Care would be also be taken to site any park improvements where disturbance to vegetation would be minimized.

Soil disturbance may encourage the encroachment of invasive or nuisance species. Those undeveloped areas disturbed during construction would be monitored and invasive species removed.
Marine and Estuarine Fauna (fish, shell beds, and benthic organisms)

Affected Resources
As most of the project work would take place in the uplands and because the passage between Chaires Creek and Tucker Lake is a very narrow and shallow freshwater lake, it is not likely that marine species occur in the project area. However, the Gulf and Bay waters that surround Bald Point Park provide habitat for a multitude of marine species. Tucker Lake provides habitat to a multitude of common wildlife species and common bird species.

Environmental Consequences
A floating dock and associated boardwalk is planned for Chaires Creek. In-water work associated with this aspect would result in short-term impacts to common wildlife or fish present in the lake. These impacts would be short term and minor. However, there is an existing USACE permit for this portion of the project; all conditions and mitigation measures contained in the permit would be followed for installation of the floating boat dock/kayak launch.

Protected Species
Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

Affected Resources
The Trustees reviewed the species list for Franklin County, Florida where the project is located and also considered the presence of bald eagles (Haliaeetus leucocephalus) and migratory birds. No habitat for listed, proposed, or candidate species managed by USFWS known from Franklin County, Florida is present in the action area and no listed, proposed, or candidate species are expected to be in the action area.

With respect to protected species managed by NMFS, the Bald Point project has been reviewed and approved under a State Programmatic General Permit (Permit IV-R1). Based on conversations with representatives from NOAA’s PRD in SERO, the NOAA Restoration Center determined that while the Bald Point project falls within NMFS ESA jurisdiction but have current consultations with PRD SERO as part of the State Programmatic General Permit. These proposed projects have not changed in scope since the previous determinations were made, therefore the project will not require further ESA consultations with NMFS.

17 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
Essential Fish Habitat
Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Habitat Conservation Division (HCD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that with the existing State Programmatic General Permit (Permit IV-R1), the project did not require further EFH evaluation.

Environmental Consequences

Protected Species
Based on a consideration of the available information, including a site visit on January 10, 2014, the Trustees made a no effect determination for all listed, proposed, and candidate species known from Franklin County, Florida. Similarly, with no terrestrial critical habitat designated or proposed in or near the action area; the Trustees concluded none will be adversely modified or destroyed. The USFWS concurred with this determination on March 10, 2014 for the species it manages.

State-listed Birds, MBTA, and BGEPA
No bald eagles are known to nest near the project area. However, migratory birds likely use the area for feeding, loafing, nesting, and resting. Because the project area is already used by the public for recreation short-term construction activity is anticipated to represent a marginal source of additional disturbance to species already in the area. However, precautions during construction will be used to protect any migratory birds that may be feeding, loafing, or resting in or near the project area. Such precautions include minimizing construction noise to the extent practicable, using care to avoid birds when operating machinery or vehicles near birds, and general contractor awareness of bird presence.

Vegetation will need to be removed to develop facilities associated with this project. Vegetation that could be used for nesting will be removed during the non-breeding season. If visitors are likely to approach migratory bird nesting areas through use of the project area after implementation (as determined by Park staff, Florida Fish and Wildlife Conservation Commission or the U.S. Fish and wildlife Service), educational signage will be posted at strategic locations. Signage will remind visitors of important migratory bird areas within the Park and any necessary precautions to avoid impacts to the species and their habitats. Signage will be coordinated with the Florida Fish and Wildlife Conservation Commission and the Panama City Ecological Services Field Office. The Trustees anticipate these measures should avoid any take of migratory birds. Therefore, no impacts to bald eagles or migratory birds are anticipated.

12.61.5.3.1 Invasive Species

Affected Resources
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.
Environmental Consequences

Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.61.5.4 Human Uses and Socioeconomics

12.61.5.4.1 Socioeconomics and Environmental Justice

Affected Resources

The population of Franklin County is approximately 11,686. The following table shows population data for Franklin County and Florida (Table 12-34). There are no human residents that live in the park.

Table 12-34. Census data for Franklin County and the State of Florida.

<table>
<thead>
<tr>
<th>PEOPLE QUICKFACTS</th>
<th>FRANKLIN COUNTY</th>
<th>FLORIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population, 2010 (April 1) estimates base</td>
<td>11,549</td>
<td>18,802,690</td>
</tr>
<tr>
<td>Population, percent change, April 1, 2010 to July 1, 2012</td>
<td>1.2%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Population, 2010</td>
<td>11,549</td>
<td>18,801,310</td>
</tr>
<tr>
<td>Persons under 5 years, percent, 2012</td>
<td>4.6%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Persons under 18 years, percent, 2012</td>
<td>16.5%</td>
<td>20.7%</td>
</tr>
<tr>
<td>Persons 65 years and over, percent, 2012</td>
<td>18.9%</td>
<td>18.2%</td>
</tr>
<tr>
<td>Female persons, percent, 2012</td>
<td>42.4%</td>
<td>51.1%</td>
</tr>
</tbody>
</table>

Environmental Consequences

Improvements to Bald Point State Park would have a direct, beneficial effect for people that live near the park. Park improvements would encourage more people to visit the park and participate in outdoor activities, which might benefit the health and well-being of the local population. Improvements to the park would draw more visitors to the county. Long-term, indirect, moderate benefits would result from increasing recreational and fishing value of the area. Greater fishing success may increase the number of fishing trips in the area, which could generate ancillary purchases such as license fees, fuel, equipment, or other ancillary purchases.

Direct, short-term, moderate benefits through local job creation would result from construction activities. This project is not designed to create a benefit for any group or individual, but rather would provide benefits on a local and regional basis. Because the project occurs in an area that is not disproportionately minority or low income (see Table 12-34), there are no indications that the proposed
living shoreline project would be contrary to the goals of Executive Order 12898, or would create disproportionate, adverse human health or environmental impacts on minority or low income populations of the surrounding community.

12.61.5.4.2   Cultural Resources

Affected Resources
A review of the Florida Master Site File’s online information for the park area shows that there are numerous previously recorded archaeological sites that are located within or immediately adjacent to the park. There are prehistoric, historic-era, and multicomponent sites represented. Of note are two prehistoric shell middens that contain multiple human internments (8FR4 and 8FR5) that are located immediately adjacent to the park and may extend into the western portion of the park. Site 8FR5 (Yent Mound) is listed on the NRHP. In addition to the prehistoric resources, there are historic era (mid-1800s to late 1900s) fishing camps/sienne yards to repair fishing nets. There is also evidence of twentieth-century turpentine activity, as pine trees in the park have been marked with the cat face scars that were placed to collect sap. Based on the presence of multiple, previously recorded archaeological sites within the park and extended use of the park and park areas by historic-era groups, it is likely that additional resources are present in similar contexts throughout the park (FDEP 2006).

Site 8FR900 (Camp Gordon Johnston) encompasses a large area along Alligator Harbor and the entire Bald Point State Park. Camp Gordon Johnston served as an amphibious training base for World War II soldiers from 1941 to 1946. As many as 30,000 troops were trained at the camp. This site is in the process of becoming listed on the NRHP as an archaeological district.

Environmental Consequences
The area currently occupied by Bald Point State Park has been used by humans for thousands of years. The area is culturally rich and has a diversity of previously recorded archaeological sites that range from prehistoric to modern era. As the entire park is part of the Camp Gordon Johnston Archaeological District (8FR900), any ground-disturbing activities that take place within the district (e.g., the park) would have the potential for moderate to severe adverse effect to historic properties listed on the NRHP (FDEP 2006).

The proposed project includes multiple construction events throughout the park that involve ground disturbing activities. Project plans for the park improvements have not been finalized and the exact location of the project facilities has not been designated. Once the locations of the various park improvements are selected, the area(s) would be subjected to a Phase I cultural resources survey. Based on the results of the survey, project plans would be altered to avoid any historic properties that would be adversely affected by the project work (ground disturbance and construction).

A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.
12.61.5.4.3 Infrastructure

Affected Resources
Currently, Bald Point State Park has limited infrastructure and is not serviced by utilities except at the entryway. The park can be accessed by County Road 370 (Alligator Road) and Bald Point. Currently the park has the following facilities:

<table>
<thead>
<tr>
<th>North Point Beach Access</th>
<th>Maritime Beach Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paved Parking</td>
<td>Paved Parking</td>
</tr>
<tr>
<td>Paved Cul-de-sac and Loading Zone</td>
<td>Restroom</td>
</tr>
<tr>
<td>Marsh Boardwalk and Overlook</td>
<td>Self-service fee Collection Station</td>
</tr>
<tr>
<td>Small Picnic Shelters (2)</td>
<td>Universally Accessible Walkway</td>
</tr>
<tr>
<td>Fishing Pier</td>
<td>Small picnic shelters (2)</td>
</tr>
<tr>
<td>Canoe/Kayak Launch</td>
<td>Beach Boardwalk</td>
</tr>
<tr>
<td>Interpretive Sign</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sunrise Beach Access</th>
<th>Shop and Maintenance Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilized Parking</td>
<td>Staff Residence</td>
</tr>
<tr>
<td>Small Picnic Shelter</td>
<td>Pole Barns (2)</td>
</tr>
<tr>
<td>Beach Boardwalk</td>
<td>Storage Buildings (4)</td>
</tr>
<tr>
<td>Interpretive Sign</td>
<td>Volunteer Host Sites</td>
</tr>
</tbody>
</table>

Environmental Consequences
Construction of facilities such as picnic pavilions, a restroom, a floating dock and boardwalks, and an aerobic treatment system/drainfield would have no adverse effect on utilities or existing infrastructure. The improvements would have a beneficial, long-term impact because they would enhance the visitor experience.

12.61.5.4.4 Land and Marine Management

Affected Resources
The park is managed by the FDRP, Florida Division of Recreation and Parks, under the 2006 Bald Point State Park Unit Management Plan. Under the plan, public outdoor recreation is the designated single use of the property. Major emphasis is placed on maximizing the recreational potential of the area; however, preservation of resources is also important (FDEP 2006).

To the east and south of the park, there are single-family residences and small subdivisions. There is a marina and additional homes along Alligator Harbor to the southwest of the park. The park is also part of a regional network of conservation lands.

The project area would be located in a coastal area that is regulated by the federal Coastal Zone Management Act (CZMA) of 1972 and the Florida Coastal Management Act of 1978.

Environmental Consequences
Although the action would require several permits for the short-term construction period, it would not require a variance, zoning change, or amendment to a land-use area or comprehensive management plan. The long-term impact of the project would be minor because it would not affect overall use and
management beyond the local park area. It would be consistent with current land use and would be consistent with and support the Bald Point State Park Unit Management Plan.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

12.61.5.4.5 Aesthetics and Visual Resources

Affected Resources
Existing aesthetics and visual resources from the project site are views of a minimally developed area. Views include those of a sandy shoreline, park vegetation such as trees, the bays, an access road, and park facilities.

Environmental Consequences
Short-term impacts would occur to visual resources during construction activities due to the presence of equipment and materials. These impacts would be minor because they would only be visible from a small portion of the park, would not dominate the viewshed, or would not detract from current visitor activities. Long-term changes to visual resources would occur from the addition of a boat ramp, restroom, and the expansion of boat trailer parking. These changes would be readily apparent but minor because they are consistent with other park facilities and would not attract attention, dominate the view, or detract from visitor experiences.

12.61.5.4.6 Tourism and Recreational Use

Affected Environment
Recreation at the park includes boating, swimming, fishing, canoeing/kayaking, hiking, camping, picnicking, wildlife viewing, and nature appreciation. There are hiking trails throughout the park that are used by both hikers and cyclists. The park has a series of interpretive programs focusing on birds, sea turtles, and natural communities (FDEP 2006). Brochures and kiosks with information are placed in strategic places in the park.

Environmental Consequences
During the construction period, the visitor’s recreational experience would be negatively affected by noise and visual disturbances associated with the use of construction equipment. The impact would be short term and minor because it would only affect some recreationalists in the discreet areas where construction is taking place. Users would likely be aware of the construction, but changes in use would be slight. The construction process would also limit recreational activities near construction areas for a short time to protect public safety. These limitations would be a minor inconvenience to visitors. Over the long term, minor beneficial impacts to tourism and recreational use would be expected due to the enhancement of recreational opportunities associated with improved facilities and accessibility.
12.61.5.4.7  Public Health and Safety and Shoreline Protection

Affected Resources
The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act (RCRA); the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); the Emergency Planning and Community Right-to-Know Act; and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of these materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

A review of the EPA’s EnviroMapper revealed that there are no CERCLA sites on or immediately adjacent to the park. There is one RCRA site and one permit compliance system (PCS) site; both are located at the park’s entrance.

Environmental Consequences
Project construction would require mechanical equipment that uses oil, lubricants, and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of construction-related hazardous materials such as vehicle fuels, oil, hydraulic fluid, and other vehicle maintenance fluids, and to avoid releases and spills. If a release should occur, it would be contained and cleaned up promptly in accordance with all applicable regulations and the incident would be reported to appropriate agencies. As a result, no impacts associated with construction-related hazardous materials would be anticipated. The period of time during which a release could occur from construction activities would be short term and any release would be expected to be minor.

12.61.6  Summary and Next Steps
The proposed Bald Point State Park Recreation Areas project would improve the existing visitor areas at Bald Point State Park in Franklin County. The proposed improvements would include construction of picnic pavilions, boardwalks, restroom and aerobic treatment system and drainfield, and a boardwalk and floating dock for use as a canoe/kayak launch. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational boating and beach use opportunities by improving the existing visitor areas. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.
12.61.7 References


Florida Department of Environmental Protection. [n.d.] Bald Point State Park Brochure.


Gulf of Mexico Fishery Management Council. 2005. Generic Amendment Number 3 for Addressing Essential Fish Habitat Requirements, Habitat Areas of Particular Concern, and Adverse Effects of Fishing


NatureServe Explorer. Large Leaf Joint weed. Available online at:

Nature Serve Explorer. Bent leaf golden Aster. Available online at:


Enhancement of Franklin County Parks and Boat Ramps: Project Description A (Abercrombie Boat Ramp Project)

The Enhancement of Franklin County Parks and Boat Ramps: Abercrombie Boat Ramp Project component is being dropped from the Final Phase III ERP/PEIS. Franklin County requested the Trustees to withdraw this project since the County was awarded funding from other sources to construct this project. Total funds allocated to the Abercrombie Boat Ramp project component were $176,550.00.

A portion of the funds from the Enhancement of Franklin County Parks and Boat Ramps: Abercrombie Boat Ramp Project component will be re-allocated to the Enhancement of Franklin County Parks and Boat Ramps: Waterfront Park Improvements project component. (see Section 12.62). During NEPA review of and additional visits to Waterfront Park project site, it was determined that several issues will need to be addressed in the final designs and permitting of this project that will increase the project costs. Increased cost to the project would include accessibility improvements for approximately $9,550.00 and stormwater management improvements for approximately $20,000.00. Total estimated cost to address the above issues will be $29,550.00. None of the proposed improvements would change the footprint of the originally proposed Waterfront Park project component.

A portion of the funds from the Enhancement of Franklin County Parks and Boat Ramps: Abercrombie Boat Ramp Project component will be re-allocated to the Enhancement of Franklin County Parks and Boat Ramps: Indian Creek Boat Ramp project component. (see Section 12.63). After the public meetings, the Indian Creek Boat Ramp project site was revisited and it was determined that several issues need to be addressed in the final design and permitting of this project that will increase the project costs. Increased costs would include stormwater management improvements for approximately $30,000.00, alternative piling installation technique and accessibility issues for approximately $36,000.00 and environmental permitting issues for approximately $10,000.00. Total estimated costs to address the above issues will be $76,000.00. None of the proposed improvements would change the footprint of the originally proposed Indian Creek Boat Ramp project component.

A portion of the funds from the Enhancement of Franklin County Parks and Boat Ramps: Abercrombie Boat Ramp Project will be re-allocated to the Enhancement of Franklin County Parks and Boat Ramps: St. George Island Fishing Pier project. (see Section 12.65). During the NEPA compliance review of the St. George Island Fishing Pier project, it has been determined that engineering and environmental concerns would warrant using a different pilings installation method at the site. It is now being proposed to revise the extraction and installation of pilings from traditional hammer type construction to press type construction. Increased costs to the project would be alternative piling installation technique for $71,000.00. The proposed change in technique would not change the footprint of the originally proposed St. George Island Fishing Pier project component.

The re-allocation of funds from the Abercrombie Boat Ramp project component to the Waterfront Park project component, Indian Creek Boat Ramp project component, and the St. George Island Fishing Pier project component does not affect the BCR that was negotiated with BP for Enhancement of Franklin County Parks and Boat Ramps suite of projects.
12.63     Enhancement of Franklin County Parks and Boat Ramps: Project Description B (Waterfront Park)

12.63.1     Project Summary
The proposed Franklin County Waterfront Park project would improve the existing Waterfront Park in Apalachicola. The proposed improvements include enhancing existing parking and adjacent tie-up docks to enhance water access. In addition an existing onsite building would be enhanced to serve as an information center and dockmaster office. The total estimated cost of the project is $323,800.

12.63.2     Background and Project Description
The Trustees propose to improve and enhance the Apalachicola Waterfront Park in Franklin County (see Error! Reference source not found. for project location information). The objective of the proposed Franklin County Waterfront Park project is to enhance and/or increase recreational boating and fishing opportunities by improving the waterfront park. The restoration work proposed includes enhancing the existing parking and tie-up docks. In addition an existing onsite building would be enhanced to serve as an information center and dockmaster office. Finally, a kiosk describing fishing ethics, litter control, and the important resources surrounding the area (primarily commercial oyster bars and coastal marshes) would also be added.

12.63.3     Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Franklin County Waterfront Park project is intended to enhance and/or increase recreational boating and fishing opportunities by improving the waterfront park. The project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Agencies have successfully completed projects of similar scope throughout Florida over many years, including in earlier phases of the Deepwater Horizon Early Restoration. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.66, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.66 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.
Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Enhancement of Franklin County Parks and Boat Ramps – Waterfront Park project also meets Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

### 12.63.4 Performance Criteria, Monitoring and Maintenance

As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational boating and fishing opportunities by improving the waterfront park. Performance monitoring will evaluate: 1) the improvements to the existing parking area and tie-up docks; 2) the enhancement of an existing building onsite to serve as an information area and dockmaster office at Waterfront Park; and 3) the construction of the kiosk. Specific success criteria include: 1) completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the waterfront park is open and available.
Long-term monitoring and maintenance of the improved facilities, after completion of the project, will be undertaken by Franklin County as part of their regular public facilities maintenance activities. Franklin County will also be responsible for long-term maintenance of parking area, docks, and enhanced facility and will inspect them regularly. Franklin County will also be responsible for contracting for or control of garbage pick-up and litter control at the site. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be assumed by Franklin County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Franklin County will monitor the recreational use activity at the site. Franklin County will visit the site twice a year to count the number of users at the boat ramp. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

The State of Florida Trustees and the Department of the Interior recognize the need to evaluate the effectiveness of conservation measures designed to avoid or minimize impacts to sensitive species or their habitats. To assess the public’s awareness of the educational signage intended to minimize impacts of use associated with the improved facilities, readers will be invited to take an online survey accessed via a QR code on the sign. The Florida Trustees and DOI will determine the adequacy of this method of assessing public awareness six months after the completion of construction. If the online surveying is insufficient, concurrent with the twice annual performance monitoring, and performed by the same party, a survey will be taken of a sample of recreational users at the project location.

12.63.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Enhancement of Franklin County Parks and Boat Ramps project, of which this is a component, are $3,542,770 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.¹⁸

12.63.6 Costs
The total estimated cost to implement this project is $323,800. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of publication of the Final Phase III ERP/PEIS. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

¹⁸ For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.64  Enhancement of Franklin County Parks and Boat Ramps: Project Description C (Indian Creek Park)

12.64.1  Project Summary
The proposed Franklin County Indian Creek Park project would improve the existing Indian Creek Park boat launch facility in Franklin County. The proposed improvements include constructing restroom facilities, connecting them to an existing central wastewater facility nearby, and renovating the existing boat ramp, bulkhead, and parking area to enhance water access. The total estimated cost of the project is $429,100.

12.64.2  Background and Project Description
The Trustees propose to improve and enhance the existing Indian Creek Park Boat launch facility in Franklin County (see Figure 12-25 for project location information). The objective of the Franklin County Indian Creek Park project is to enhance and/or increase recreational boating and fishing opportunities by improving the existing boat launch facility. The restoration work proposed includes constructing restroom facilities, connecting them to an existing central wastewater facility nearby, and renovating an existing boat ramp and bulkhead that is currently deteriorating and revamping the parking area to enhance water access. Furthermore, a kiosk describing fishing ethics, litter control, and the important resources surrounding the area (primarily commercial oyster bars, submerged aquatic vegetation and marshes) would also be added.

Figure 12-25. Location of enhancement of Franklin County parks and boat ramps – Indian Creek Park facilities improvements.
12.64.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Franklin County Indian Creek Park project is intended to enhance and/or increase recreational boating and fishing opportunities by improving the existing boat launch facility. The project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Agencies have successfully completed projects of similar scope throughout Florida over many years, including in earlier phases of the Deepwater Horizon Early Restoration. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects, and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.66, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.66 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Enhancement of Franklin County Parks and Boat Ramps – Indian Creek Park Boat Ramp project also meets Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.64.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational boating and fishing opportunities by improving the existing boat ramp. Performance monitoring will evaluate: 1) the construction of the new restrooms and connecting them to a nearby existing central wastewater facility; 2) the renovation of the existing boat ramp and bulkhead; 3) the renovation of the existing parking area to enhance access and use; and 4) the construction of the kiosk. Specific success criteria include: 1) the completion of the
construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the boat ramp facility is open and available.

Long-term monitoring and maintenance of the improved facilities, after completion of the project, will be undertaken by Franklin County as part of their regular public facilities maintenance activities. Franklin County will also be responsible for long-term maintenance of boat ramp and its restored bulkhead associated with the boat ramp and will inspect it regularly. Franklin County will also be responsible for contracting for or control of garbage pick-up and litter control at the site. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be assumed by Franklin County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Franklin County will monitor the recreational use activity at the site. Franklin County staff will visit the site twice a year to count the number of users at the boat ramp. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.64.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Enhancement of Franklin County Parks and Boat Ramps project, of which this is a component, are $3,542,770 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.\(^\text{19}\)

12.64.6 Costs
The total estimated cost to implement this project is $429,100. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of publication of the Final Phase III ERP/PEIS. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

\(^{19}\) For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees' assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.65 Enhancement of Franklin County Parks and Boat Ramps: Project Description D (Eastpoint Fishing Pier Improvements)

12.65.1 Project Summary
The proposed Franklin County Eastpoint Fishing Pier Improvement project would add restroom facilities to the base of the existing public East Point Fishing Pier in Franklin County. The proposed improvements include not only constructing new restrooms, but a holding tank that would be pumped out regularly. In addition, signage will be installed/updated to provide users of the ramp with information on sensitive species and areas and appropriate actions to take with species interactions (e.g., what to do if a sea turtle or nesting migratory bird is encountered). The total estimated cost of the project is $294,250.

12.65.2 Background and Project Description
The Trustees propose to improve and enhance the Eastpoint Fishing Pier in Franklin County (see Figure 12-26 for project location information). The objective of the Franklin County Eastpoint Fishing Pier Improvement project is to enhance and/or increase recreational fishing opportunities by improving the fishing pier. The restoration work proposed includes constructing a restroom facility at the base of the public fishing pier. A Kiosk describing fishing ethics, litter control, and the important resources surrounding the pier (primarily commercial oyster bars) would also be added.

12.65.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Franklin County Eastpoint Fishing Pier Improvement project is intended to enhance and/or increase recreational fishing opportunities by improving the fishing pier. The project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses caused by the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Agencies have successfully completed projects of similar scope throughout Florida over many years, including in earlier phases of the Deepwater Horizon Early Restoration. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.66, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.66 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not
inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Figure 12-26. Location of enhancement of Franklin County parks and boat ramps – Eastpoint Fishing Pier improvements.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Enhancement of Franklin County Parks and Boat Ramps – Eastpoint Fishing Pier Improvements project also meets Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.65.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational fishing opportunities by improving the public fishing pier. Performance monitoring will evaluate: 1) the construction of the new restrooms and
holding tank, and 2) construction of the kiosk. Specific success criteria include: 1) the completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the visitor area is open and available.

Long-term monitoring and maintenance of the improved facilities, after completion of the project, will be undertaken by Franklin County as part of their regular public facilities maintenance activities. Regular pump-out of the holding tank will be contracted out and paid for by Franklin County. In addition in the event of a tropical storm or hurricane the facility’s holding tank will be pumped out and the restrooms closed to public use to prevent discharge of sewage into the bay. Franklin County will also be responsible for contracting for garbage pick-up and litter control at the site. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be assumed by Franklin County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Franklin County will monitor the recreational use activity at the site. Franklin County will visit the site twice a year to count the number of users at the pier. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.65.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Enhancement of Franklin County Parks and Boat Ramps project, of which this is a component, are $3,542,770 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.  

12.65.6 Costs
The total estimated cost to implement this project is $294,250. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---

20 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.66 Enhancement of Franklin County Parks and Boat Ramps: Project Description E (St. George Island Fishing Pier Improvements)

12.66.1 Project Summary
The proposed Franklin County St. George Island Fishing Pier Improvements project would enhance the existing public St. George Island public Fishing Pier in Franklin County. The proposed improvements include constructing restrooms and a holding tank that would be pumped out regularly since there is no central wastewater facility on the island. The proposed improvements also include renovating the existing bulkhead that leads up to the pier and protects the road to the pier. The total estimated cost of the project is $724,235.

12.66.2 Background and Project Description
The Trustees propose to enhance the St. George Island Fishing Pier in Franklin County (see Figure 12-27 for project location information). The objective of the Franklin County St. George Island Fishing Pier Improvements project is to enhance and/or increase recreational fishing opportunities by improving the fishing pier. The restoration work proposed includes constructing a restroom facility and holding tank at the base of the public fishing pier and repairing the bulkhead to maintain access. A Kiosk describing fishing ethics, litter control, and the important resources surrounding the pier (primarily commercial oyster bars) would also be added.

12.66.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Franklin County St. George Island Fishing Pier Improvements project is intended to enhance and/or increase recreational fishing opportunities by improving the fishing pier. The project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Agencies have successfully completed projects of similar scope throughout Florida over many years, including in earlier phases of the Deepwater Horizon Early Restoration. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.66, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.66 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed
project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Enhancement of Franklin County Parks and Boat Ramps – St. George Island Fishing Pier Improvements project also meets Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

![Location of Enhancement of Franklin County Parks and Boat Ramps – St. George Island Fishing Pier Improvements](image)

**Figure 12-27. Location of Enhancement of Franklin County Parks and Boat Ramps – St. George Island Fishing Pier Improvements.**

### 12.66.4 Performance Criteria, Monitoring and Maintenance

As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational fishing opportunities by improving the
existing fishing pier. Performance monitoring will evaluate: 1) the construction of the restrooms and holding tank; 2) the renovation of the bulkhead; and 3) the construction of the kiosk. Specific success criteria include: 1) the completion of the construction as designed and permitted, 2) and enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the fishing pier is open and available.

Long-term monitoring and maintenance of the improved facilities, after completion of the project, will be undertaken by Franklin County as part of their regular public facilities maintenance activities. Franklin County will also be responsible for long-term maintenance of the restored bulkhead and will inspect it regularly. Regular pump-out of the holding tank will be contracted out and paid for by Franklin County. In addition in the event of a tropical storm or hurricane the facility’s holding tank will be pumped out and the restrooms closed to public use to prevent discharge of sewage into the bay. Franklin County will also be responsible for contracting for or control of garbage pick-up and litter control at the site. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be assumed by Franklin County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Franklin County will monitor the recreational use activity at the site. Franklin County staff will visit the site twice a year to count the number of users at the fishing pier. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.66.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Enhancement of Franklin County Parks and Boat Ramps project, of which this is a component, are $3,542,770 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.21

12.66.6 Costs
The total estimated cost to implement this project is $724,235. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of publication of the Final Phase III ERP/PEIS. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

21 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.67 Enhancement of Franklin County Parks and Boat Ramps: Environmental Review

The project consists of construction activities at five existing recreation areas within Franklin County, Florida, that provide water-based recreation opportunities. The four parks where the proposed improvements would occur include:

- Franklin County Waterfront Park
- Indian Creek Park
- Eastpoint Fishing Pier
- St. George Island Fishing Pier

12.67.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement), the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This boat ramp project was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

The proposed project is part of that larger effort to address the impacts of the DWH oil spill and its impacts on damaged natural resources and human uses of those resources within the Gulf of Mexico. The project consists of construction activities at four existing recreation areas within Franklin County, Florida, that provide water-based recreation opportunities. The four parks and the proposed improvements include:

- Waterfront Park— Improve the existing Waterfront Park in Apalachicola. The proposed improvements include enhancing existing parking and adjacent tie-up docks to enhance water
access. In addition an existing onsite building would be enhanced to serve as an information center and dockmaster office. The total estimated cost of the project is $323,800.

- **Indian Creek Park**— Improve the existing Indian Creek Park boat launch facility in Franklin County. The proposed improvements include constructing restroom facilities, connecting them to an existing central wastewater facility nearby, and renovating the existing boat ramp, bulkhead, and parking area to enhance water access. The total estimated cost of the project is $429,100.

- **Eastpoint Fishing Pier**— Add restroom facilities to the base of the existing public Eastpoint Fishing Pier in Franklin County. The proposed improvements include not only constructing new restrooms, but a holding tank that would be pumped out regularly. The total estimated cost of the project is $294,250.

- **St. George Island Fishing Pier**— Enhance the existing public St. George Island public Fishing Pier in Franklin County. The proposed improvements include constructing new restrooms and a holding tank that would be pumped out regularly since there is no central wastewater facility on the island. The proposed improvements also include renovating the existing bulkhead that leads up to the pier and protects the road to the pier. The total estimated cost of the project is $724,235.

The proposed projects would enhance recreation access (through specific site improvements); improve parking at existing sites; improve visitor comfort with the addition of new restrooms, enhance visitor amenities; and protect existing public recreation infrastructure into the future.

### 12.67.2 Project Location

The four proposed project sites are located in Franklin County, Florida, and provide water based recreational access and opportunities to Apalachicola Bay, St. George Sound, and the Gulf of Mexico. The sites include: Franklin County Waterfront Park, Indian Creek Park, Eastpoint Fishing Pier, and St. George Island Fishing Pier. The four Franklin County sites are all located within the Apalachicola National Estuarine Research Reserve (ANERR). The National Estuarine Research Reserve System is administered by the National Oceanic and Atmospheric Administration (NOAA) and the coastal states. The ANERR was designated in 1979 because of its pristine nature and valued habitat for commercially and recreationally important species. Public lands within the ANERR include the St. Vincent Island National Wildlife Refuge, St. George Island State Park, Apalachicola River Wildlife and Environmental Area, Apalachicola River Water Management Area, and Little St. George Island. The Florida Department of Environmental Protection (FDEP) Office of Coastal and Aquatic Managed Areas administers the ANERR. Figure 12-30 shows the ANERR boundary and the locations of the four proposed project sites.

### 12.67.3 Construction and Installation

The construction for each project element is described separately in this section.

**Waterfront Park**

The proposed improvements this project would provide include enhancing existing parking and adjacent tie-up docks to enhance water access. In addition, an existing onsite building would be enhanced to serve as an information center and dockmaster office. A kiosk describing fishing ethics, litter control,
coastal marshes, migratory bird and listed species protection\textsuperscript{22} at St. Vincent’s National Wildlife Refuge and St. George Island) among other topics would also be added as part of this project.

Final plans for the project have not been developed for the installation of floating docks to provide a transition zone to the current docks. Constructing this floating dock will require the placement of up to 12 pilings to anchor the floating dock and link it to the existing dock. The piles would be emplaced by some combination of water jetting and mechanical auguring. The pilings themselves would be up to 8” in diameter and would be made of wood. Figure 12-28 provides a more detailed view of the site. In this figure the floating dock would be attached to the “L” shaped dock located in the Western part of the indicated project area.

As part of this engineering and site assessment for the dock placement, a survey of submerged aquatic vegetation (SAV) in the area would be completed. Should SAV be identified in the project area, the conditions in the Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat (U.S. Army Corps of Engineers/National Marine Fisheries Service, 2001) would be implemented. Among other elements this would require pilings for the dock expansion be placed a minimum of 10 feet apart.

\textsuperscript{22} Information for migratory bird and listed species protection will be developed in cooperation with FWC and the USFWS Panama City Field Office.
Figure 12-28. Detailed view of the Waterfront Park project site.

During all in-water construction activity, the conditions and guidelines of the Sea Turtle and Smalltooth Sawfish Construction Conditions (NOAA, 2006) would be implemented and adhered to along with the conditions identified in the Standard Manatee Conditions for In-water Work (USFWS, 2011) would be followed. Significant aspects of these provisions include stopping operation of any equipment if sea turtles or smalltooth sawfish come within 50 feet of the equipment until the time when animals leave the project area of their own volition.

BMPs for erosion control would also be implemented and maintained at all times during upland construction to prevent siltation and turbid discharges into surface waters. Methods could include but are not limited to the use of staked hay bales, staked filter cloth, sodding, seeding, and mulching; staged construction; and installation of turbidity screens around the immediate project site.

Indian Creek Park

The proposed Franklin County Indian Creek Park project would improve the existing Indian Creek Park boat launch facility at North Bayshore Drive in Franklin County. The proposed improvements include constructing restroom facilities constructed away from the shoreline in a developed area of the park and
to ease access connecting them to an existing central wastewater facility nearby, installing an informational kiosk, and renovating the existing boat ramp, bulkhead, and parking area to enhance water access.

While final plans have not been developed for this project, the construction work associated with repairs/replacement of a boat ramp can be summarized in terms of executing a number of specific tasks and subtasks including:

Task 1. Site Preparation

a. Prior to beginning any waterward work at the boat ramp site the project area needs to be surveyed and marked. Turbidity curtains are then installed to encapsulate the work area and other erosion control methods are put in place on the landward side of the project (e.g., placement of hay bales) to prevent erosion into the water from equipment movement and any work being performed on the upland areas.

Task 2. Ramp Repairs/Construction

a. The area for the ramp is surveyed in and marked by stake or pole (typically small diameter 2” or less PVC).

b. A coffer or bladder dam is installed and the water within the dam, between the waterward extent of the ramp and the land, is pumped out to upland storage ponds or run through a filter system to remove any sediment in the water before returning it to the receiving waterbody. The work area is kept dry by use of dewater pumps (ground water to be pumped is first sampled and tested for water quality) and disposed of in the same manner as the pumped surface water. This dewatering operation is run continuously throughout the construction of the ramps. Once the ramps are completed the dewatering pumps are shut down and the dams are removed.

c. Construction of the ramps begins once the area is sufficiently dry to remove unsuitable soils, if necessary, and replaced with suitable soil. This soil is then compacted to specification. Then the base material for the ramp is placed, usually a rock material. After placement and compaction of the base the ramp is formed, reinforcing steel placed and then the concrete poured and finished. Once curing of the concrete is complete the forms are removed and the coffer or bladder dams are removed.

Task 3. Monitoring

a. Every day, before the start of construction activities, the turbidity screen is checked and repaired if necessary.

b. The foreman or other designated individual checks the area inside the screen and the screen itself to see if any protected species (manatees, dolphins, small tooth sawfish etc.) have gotten trapped within the work area or in the screen. If so then appropriate (FWC) personnel are notified to request removal. No work is begun until the animal, fish or bird is removed.

c. During the work day the work area and area adjacent to the work area is monitored to make sure protected species have not ventured into the area. If so then work is stopped until the animal moves out of the area.

d. At the end of the day the area is checked for debris, sediment and possible spillage and these are properly removed and disposed of before shutting down the site.
e. If a storm is anticipated that might damage the turbidity screen it is removed and stored until the storm event has passed and seas have resided.

When work being constructed in water requires it to be performed in a dry environment a cofferdam or bladder dam is installed. These are often employed when building boat ramps where the forming, pouring, finishing and curing of the concrete ramps is required to be constructed in a dry area. More often than not, along the coastal areas where tides and wave action occurs, a cofferdam is utilized. A coffer dam is most often constructed of welded steel sheet piles, whales and cross bracing. The sheet piles are usually jetted in to a set depth and then driven in the last 3-5 feet to provide a secure fitting. The sheet piling will usually encompass the entire work area being installed in a “U” shape with the ends of the system connected into the uplands. The cofferdam then provides a barrier to keep out water during the work of placing the ramp.

Once the sheet piles are in place the surface water is pumped out to either upland constructed holding ponds or more often through a filtration system in order to remove any sediment which may be disturbed during the pumping operation. To keep the work area dry throughout construction of the ramp a dewatering system will also be installed by the contractor to lower and keep water levels below any depth from which soils or sediment may need to be removed in order to provide a firm foundation for the ramp. Prior to starting the dewatering system, water quality tests will be performed to insure the suitability of discharging groundwater back into the receiving water body. If the groundwater is found to not meet water quality criteria for the receiving water body then further treatment may be required before it is released. If the ground water meets water quality standards then it will be filtered through the same system as the surface water. The dewatering system will be run 24 hours a day continuously throughout the construction period required to install the water ward facilities, i.e. ramp. Once all work is completed the dewatering system is shut down and removed and then the sheet piles are removed as well. All coffer dam installation and removal tasks are performed by a qualified contractor thoroughly experienced in this type of work.

A bladder dam follows basically a similar approach but is less intensive where the bottom is anchored in the sediment and then the dam creating the watertight barrier is created by inflating a durable bladder wall vs installing sheet piles. The less invasive nature of the bladder dam makes it more appealing for use in situations, like the Indian Creek Boat Ramp project where there is a limited amount of in-water work in a focused area for a limited duration of time.

Similarly, plans for the bulkhead work have not been finalized but are likely to involve some combination of removing parts of the existing, failing, concrete structure and then rebuilding the bulkhead using isolated concrete forms to meet the final design specifications. The bulkhead work in question is effectively the concrete retaining wall holding back the soil along the ramp as it progresses from grade to the waterline. This bulkhead/wall is failing and needs to be replaced. Most of this work is above the waterline and the remaining portion would be incorporated within the area enclosed by the bladder dam described above. All removed material would be appropriately removed and disposed of along with the ramp materials.

Neither the boat ramp or bulkhead repairs would involve the placing of pilings and the in-water portion of this work will be completed within three months.
Critically, during any in-water construction activity, the conditions and guidelines of the *Sea Turtle and Smalltooth Sawfish Construction Conditions* (NOAA, 2006) would be implemented and adhered to. These provisions include stopping operation of any equipment if sea turtles or smalltooth sawfish come within 50 feet of the equipment until the time when animals leave the project area of their own volition. This work would not expand the developed footprint of the finished ramp and bulkhead.

Best management practices (BMPs) for erosion control would be implemented and maintained at all times during construction to prevent siltation and turbid discharges into waters of the state. This may include the use of filter fences (staked or floating), sedimentation screens, erosion control blankets or other appropriate erosion and turbidity control measures.

**Eastpoint Fishing Pier**

This project would add restroom facilities to the base of the existing Eastpoint public fishing pier with a holding tank that would be pumped out regularly. See Figure 12-29 for the project location. All work for this project would take place in developed upland areas. No in-water work would be required.

In addition, as part of this project, signage will be installed/updated to provide users of the ramp with information on sensitive species and areas and appropriate actions to take with species interactions (e.g., what to do if a sea turtle or nesting migratory bird is encountered).

![Figure 12-29. Location of the Eastpoint Fishing Pier Project](image-url)
St. George Island Fishing Pier
The proposed Franklin County St. George Island Fishing Pier Improvements project would include constructing new restrooms and a holding tank that would be pumped out regularly since there is no central wastewater treatment facility on the island. The proposed improvements also include completing renovation work to the existing bulkhead that leads up to the pier and protects the road to the pier that was begun under an earlier separate funding stream. In addition, an informational kiosk would be constructed. This kiosk would be used to distribute information describing fishing ethics and litter control and provide contacts and information for specific topics (e.g., hooking a sea turtle).

Constructing the restroom facility at the fishing pier would require excavation to place a 1,500 gallon primary septic and 1,050 gallon overflow tank underneath the buildings. However, this work and the informational kiosk’s construction would take place in the developed upland area and have no associated in-water work components. However, as part of the construction activity sediment/erosion controls would be implemented to ensure there are no turbidity impacts to nearby waters. BMPs for erosion control could include but are not limited to the use of staked hay bales, staked filter cloth, sodding, seeding, and mulching; staged construction; and installation of turbidity screens around the immediate project site.

Repair of the approximately 275 foot long section of degraded bulkhead would be performed from upland and in-water locations. In general, the repairs would consist of removing existing, damaged/collapsed sections of the concrete sheet bulkhead that need to be replaced and placing new sections and constructing a new cap. As part of this work the rip-rap behind the existing bulkhead would be removed along with the degraded sections and then new sections would be placed and the riprap replaced. This construction work would mainly take place using heavy equipment located in upland areas. However, the entire project area would be enclosed by an in-water turbidity barrier that would be secured to shore.

Sections of the sheet pile being replaced would likely be push-driven or water jetted most of the way and then a vibratory hammer would be used, if needed, to place the sheet piles to their final depth. After bulkhead installation, construction crews of two to three persons would install approximately 100 feet of rubber bumpers to the open water side of the bulkhead using hand held tools from a combination of upland areas and work skiffs in the water.

Best management practices (BMPs) for erosion control associated with the bulkhead work would be implemented and maintained at all times during construction to prevent siltation and turbid discharges into waters of the state. Upland silt and sedimentation control measures would be installed and properly maintained at all points where runoff from disturbed areas could result in water quality impacts. This may include the use of filter fences (staked or floating), sedimentation screens, erosion control blankets or other appropriate erosion and turbidity control measures. The in-water use of silt curtains and the dewatering of work areas would further help limit the scope, nature, and extent, of any turbidity impacts. The temporary staging area for the project materials, supplies, and equipment during construction would be located within the existing paved parking lot and material would be loaded directly onto the barge.
Figure 12-30. Map of Apalachicola National Estuarine Research Reserve and proposed project elements.

Source: ANERR 2013
During all in-water construction activity, the conditions and guidelines of the *Sea Turtle and Smalltooth Sawfish Construction Conditions* (NOAA, 2006) would be implemented and adhered to. Significant aspects of these provisions include stopping operation of any equipment if sea turtles or smalltooth sawfish come within 50 feet of the equipment until the time when animals leave the project area of their own volition.

This project could require up to a year of cumulative in-water work.

12.67.4 Operations and Maintenance

Franklin County would be responsible for operation and maintenance of the new amenities and enhancements within the parks consistent with their existing park management maintenance schedules.

The State of Florida Trustees and the Department of the Interior recognize the need to evaluate the effectiveness of conservation measures designed to avoid or minimize impacts to sensitive species or their habitats. To assess the public’s awareness of the educational signage intended to minimize impacts of use associated with the improved facilities, readers will be invited to take an online survey accessed via a QR code on the sign. The Florida Trustees and DOI will determine the adequacy of this method of assessing public awareness six months after the completion of construction. If the online surveying is insufficient, concurrent with the twice annual performance monitoring, and performed by the same party, a survey will be taken of a sample of recreational users at the project location.

12.67.5 Affected Environment and Environmental Consequences

Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

12.67.5.1 No action

Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.67.5.2 Physical Environment

12.67.5.2.1 Geology and Substrates

**Affected Resources**

The project area is located within the Gulf Coastal Plain physiographic region. The basic geomorphology surrounding the project area has been primarily determined by geologic processes which ended about 15,000 years before present. Landforms throughout Franklin County are predominantly comprised of Holocene sediments, alluvium, or beach ridge and dune geology (USGS 2013). The Florida Geological Survey Open Report (No. 80) recognizes the characteristic landscape of Florida is relatively to extremely
flat resulting in few large, natural exposures and limited smaller exposures that geologists can investigate.

Soils in the area are classified within the Apalachicola Delta physiographic subdivision (University of Florida 2013). Located in the south-central portion of the Panhandle, this district is built with sediments deposited by the Apalachicola River. Landscapes range from relic deltas, ridges, and lagoons to river terraces, delta plains, and barrier islands. Karst topography is absent and soil materials are sandy to loamy. The Eastpoint Fishing Pier and the St. George Island Fishing Pier make use of the historic causeway across Apalachicola Bay and comprise impervious surfaces of asphalt, concrete, and stacked rip-rap.

Apalachicola Bay has a sandy/soft-sediment bottom with numerous oyster bars throughout. Almost all of the soils in the project area present high water tables and instability due to wind and water activity. The substrates present along the shorelines comprise stable slopes containing fine sand and beach sediment, while substrates in the submerged off-shore portions include soft sediments and hard reef substrates.

**Environmental Consequences**

Project enhancements would involve minor modifications to soils. The depth of ground disturbance would depend on final construction design and repairs required; however all construction activities would require at least some ground disturbances up to several feet deep. Soils would be excavated for new pilings for courtesy docks and foundations and septic tanks associated with new restrooms including any excavation to install sewer or utility lines. These activities would be temporary, localized in a footprint a fraction of each park, and any in-water piling work would be performed behind silt curtains to isolate construction impacts. Given that there would be no substantial change in uses at the project sites following implementation of the proposed enhancement activities, it is anticipated there would be no long-term negative impacts to soils. The implementation of the proposed project would therefore result in short-term minor negative and long-term beneficial impacts on soils.

12.67.5.2.2  **Hydrology and Water Quality**

**Affected Resources**

**Hydrology**

Project sites are located and within the Apalachicola Bay. The Apalachicola River is the largest in Florida and ranks 21st in the United States, in terms of volume of flow (FDEP 2013). The Apalachicola River is formed by the confluence of the Chattahoochee and Flint Rivers at the Jim Woodruff Dam and flows 106 miles to Apalachicola Bay. The Apalachicola River can be classified as a large, alluvial river characterized by heavy sediment loads, turbid water, large watersheds, sustained periods of high flow, and substantial annual flooding (FDEP 2013). The mean annual discharge at Sumatra, Florida (River Mile 21), is approximately 25,000 cubic feet per second (cfs).Edmiston (2008) reporting the findings of McNulty et al. (1972) estimates that the Apalachicola River discharge accounts for 35 percent of the total freshwater runoff on the west coast of Florida. The Apalachicola River is tidally influenced up to approximately (RM) 25.
The Apalachicola Bay has a watershed surface area of about 32,000 square miles while the surface area of the estuarine portion is approximately 368 square miles. The Apalachicola Bay has an average depth of about 7.5 feet and a tidal range of about 2 feet. The mean water residence time varies between 6 to 8.5 days.

**Water Quality**

The Apalachicola River is designated by Florida Surface Water Quality Standards Rule 62-302.530, Fla. Admin. Code, as “Class III: Recreation, Propagation and Maintenance of a Healthy, Well-Balanced Population of Fish and Wildlife” (FDEP 1996) while Apalachicola Bay is a Class II waterbody (approved for shellfish harvesting). The Bay has been designated as an Outstanding Florida Water (OFW), a National Estuarine Research Reserve, a Florida Aquatic Preserve, a U.S. Environmental Protection Agency (USEPA) Gulf of Mexico Ecological Management Site (GEM), and a United Nations Educational, Scientific and Cultural Organization (UNESCO) Biosphere Reserve. The draft ANERR management plan (2013) classifies the surface waters for shellfish harvesting or propagation or recreation and wildlife.

Although tidal influence in the Apalachicola River extends up past Sumatra (RM 21), salinity is not thought to affect the lower river past RM 6.6 (Edmiston 2008). Salinities throughout the Apalachicola Bay are dependent upon river flow, local rainfall, basin configuration, wind speed and direction, and water currents. They can range from 0 to 33 ppt. Dissolved oxygen values usually range from 4 to 14 mg/L, but most fall between 5 and 12 mg/L (Edmiston 2008).

Water quality concerns have also resulted in the listing of Apalachicola Bay on the 303(d) list of impaired waters under the CWA. States are required to identify waters that do not meet requirements of their designated use. With the exception of one chlorophyll listing for one segment of the Apalachicola Bay, all of the listings are related to mercury in fish or coliforms.

**Environmental Consequences**

The proposed projects would not increase the amount of impervious surfaces at the parks above existing conditions resulting in minor changes to water resources. BMPs along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts associated with construction activities. BMPs for erosion control would be implemented and maintained at all times during construction to prevent siltation and turbid discharges into waters of the state. Silt and sedimentation control measures would be installed and properly maintained to protect water quality resources. Given that there would be no substantial change in uses at the project sites following implementation of the proposed enhancement activities, it is anticipated that there would be no long-term negative impacts to water resources. The implementation of the proposed project would result in short-term minor negative and long-term beneficial impacts on water resources.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (USACE) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the USACE and final authorization pursuant to CWA/RHA will be completed prior to implementation.
## 12.67.5.2.3 Air Quality and Greenhouse Gas Emissions

### Affected Resources

The USEPA calculates the Air Quality Index (AQI) for five major air pollutants regulated by the Clean Air Act: ground-level ozone, particle pollution (also known as particulate matter), carbon monoxide, sulfur dioxide, and nitrogen dioxide. The AQI is an index for reporting daily air quality. AQI values are divided into six categories: Good, Moderate, Unhealthy for Sensitive Groups, Unhealthy, Very Unhealthy, and Hazardous. AQI values for Apalachicola, Florida (centrally located in Franklin County where the Apalachicola River meets the Apalachicola Bay) recorded for the past 5 years show air quality is very good. During 2012, the last full year on record at the time of writing, 97.5 percent of the days were reported as ‘Good’ with the remainder as ‘Moderate’. Within the AQI values in these categories represent pollutant levels below the national air quality standard for the pollutants.

Implementation of the project would include transportation and heavy construction equipment, which may include bulldozer, barge, truck, backhoe, tractor trailer, crane, small trucks, and hand tools.

### Environmental Consequences

Project implementation would require the use of heavy equipment which would temporarily affect air quality in the project vicinity due to construction vehicle emissions. Demolition and excavation associated with the removal and construction of existing courtesy dock pilings may produce fine particulate matter. BMPs would be employed to prevent, mitigate, and control potential air pollutants during project implementation. Any air quality impacts that would occur would be localized and short in duration. Therefore, any adverse impacts to air quality would be short-term and minor.

Engine exhaust from bulldozers, excavators, trucks, backhoes and other vehicles would contribute to an increase in greenhouse gases (GHG). Table 12-35 describes the likely GHG emission scenario for the implementation of this project.

Based on the assumptions described in Table 12-35 below, and the small scale and short duration of the construction portion of the project, predicted GHG emissions would be short-term and minor and would not exceed 25,000 metric tons per year. Available BMPs would be employed to reduce the release of GHGs during implementation. Based on the small scale and short duration of the project, GHG emissions in the project staging and deployment areas would be minimal. Therefore, any increase in GHG emissions would be short-term and minor.
Table 12-35. Greenhouse gas emission estimates.

<table>
<thead>
<tr>
<th>PROJECT ACTIVITY</th>
<th>CONSTRUCTION EQUIPMENT</th>
<th>NO. OF HOURS OPERATED</th>
<th>NO. FOR PROJECT</th>
<th>TOTAL CO2E EMISSION RATE¹ (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courtesy Docks, Boat Ramp, and Bulkhead Repair</td>
<td>Small barge w/ crane (pile driving)</td>
<td>8 hours/day, 5 days/week, 1 month</td>
<td>4</td>
<td>23.2 (used crane .29 equipment for calculating total)</td>
</tr>
<tr>
<td></td>
<td>tractor trailer (material delivery)</td>
<td>3 trips</td>
<td>4</td>
<td>4.1 (used dump truck .34)</td>
</tr>
<tr>
<td></td>
<td>small power tools (nail guns, saws, drills)</td>
<td>8 hr/day, 5 day/week, 4 month</td>
<td>4</td>
<td>51.2 (used pickup truck .16)</td>
</tr>
<tr>
<td></td>
<td>generator (small tools)</td>
<td>8 hr/day, 5 day/week, 4 month</td>
<td>4</td>
<td>64 (used .8 as conversion)</td>
</tr>
<tr>
<td>Parking Improvements &amp; Restrooms</td>
<td>Small tools (nail guns, saws, drills)</td>
<td>8 hr/day, 5 day/week, 6 months</td>
<td>3</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>Tractor trailer (material delivery)</td>
<td>1 trip / week, 6 months</td>
<td>3</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td>generator (small tools)</td>
<td>8 hr/day, 5 day/week, 6 months</td>
<td>3</td>
<td>96</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>277.4</td>
</tr>
</tbody>
</table>

Note: 1. Includes CO2, CH4, and NOx

12.67.5.2.4 Noise

Affected Resources
The primary sources of ambient (background) noise in the project area are operation of vehicles, humans, recreational vessels, and natural sounds such as wind and wildlife. City noise is mainly from vehicles and also occasional human activities. The levels of noise in the project area vary, depending on the season, and/or the time of day, the number and types of sources of noise, and distance from the sources of noise.

Environmental Consequences
Park visitors and wildlife may be sensitive to changes in noise sources or levels due to the project construction. The proposed project would generate construction noise associated with equipment during construction of the boat docks, parking areas, restrooms, and other amenities. Construction equipment and pile driving noise is known to disturb nesting shorebirds. Construction noise can also be a nuisance to residents living on the shorelines adjacent to project construction activities or to park visitors.

Mitigation measures that serve to limit noise during construction include: limiting activity at project sites to daytime hours; limiting truck traffic ingress/egress to the site to daytime hours; promoting awareness that producing prominent discrete tones and periodic noises (e.g., excessive dump truck gate banging) should be avoided as much as possible; and requiring that work crews seek pre-approval for any weekend activities, or activities outside of daytime hours. Because construction noise is temporary, any
negative impacts to the human environment during construction activities would be short-term and minor.

Once facilities are constructed, noise can be generated from facility operations and the vehicles associated with these facilities. However, these noise levels would be representative of existing levels and similar in nature to those generated prior to construction of the project. Overall, long-term noise impacts from personal vehicle use, boating, fishing, and other recreational activities would be minor.

12.67.5.3 Biological Environment

12.67.5.3.1 Living Coastal and Marine Resources

Affected Resources
The ANERR habitats include barrier island, estuarine, riverine, floodplain, and upland environments. Major estuarine habitats found within the ANERR include oyster bars, submerged vegetation, tidal flats, soft sediment, marshes and open water. Upland habitats include sandhills, coastal scrub, pine flatwoods, and mixed hardwood communities. Wetland habitats include freshwater marsh, salt marsh, riverine, lacustrine, palustrine, open bay, and the Gulf of Mexico.

Flora
More than 1,500 plant species have been identified within the Apalachicola drainage basin with 107 of them listed as protected under State or Federal law. A variety of vegetative communities, such as coastal scrub, dunes, pine flatwoods, oak hammocks, marshes, ponds, and sloughs are found on the ANERR islands. Vegetation in the salt marshes is made up primarily of black needlerush, smooth cordgrass, and saltgrass.

Fauna
The area is also home to 308 species of birds, 186 species of fish, 57 species of mammals, and it boasts the highest species density of amphibians and reptiles in all of North America, north of Mexico (ANERR 1998). Among the many species of reptiles and amphibians are the southern dusky salamander, the gopher frog, Barbour’s map turtle (which is endemic to the Apalachicola River), loggerhead turtle northwest Atlantic distinct population segment, Apalachicola kingsnake, and eastern indigo snake. More than 50 species of mammals found within the Apalachicola basin. Opossum, bats, shrews, mice, moles, voles, rabbits, and other small mammals are plentiful in the ANERR. Other mammals sighted include foxes, weasels, black bears, mink, bobcats, coyotes, deer, feral pigs, bottlenose dolphin, and the West Indian manatee.

Protected Species
Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).
**Endangered Species Act**

The Trustees have reviewed the proposed projects for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Franklin County, Florida. Table 12-36 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

**Table 12-36. Potential Impacts to Species/Critical Habitats managed by USFWS**

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle; Leatherback turtle; Loggerhead turtle</td>
<td>The main risk to sea turtles during implementation of this project would come from in-water construction activities which could result in harm or mortality. Consultation has been initiated with NMFS the agency that has jurisdiction to review impacts to sea turtles in the estuarine and marine environments. No sea turtle nesting habitat is present at any of the proposed project locations. Sea turtles do not nest on the Gulf side of nearby locations (i.e., St. Vincent’s NWR and St. George Island). Educational signage or information at kiosks will remind visitors of any necessary measures to protect nesting sea turtles. Therefore, the Trustees expect no impacts from construction and potential impacts from use of ramps to be minimized to an insignificant and discountable level.</td>
</tr>
<tr>
<td>Loggerhead proposed critical habitat</td>
<td>No critical habitat is designated within any of the project sites. Proposed critical habitat for loggerhead sea turtles is on the Gulf side of St. Vincent’s NWR and St. George Island. PCEs for proposed loggerhead critical habitat include: 1) Suitable nesting beach habitat that: (a) has relatively unimpeded nearshore access from the ocean to the beach for nesting females and from the beach to the ocean for both post-nesting females and hatchlings and (b) is located above mean high water to avoid being inundated frequently by high tides. 2) Sand that: (a) allows for suitable nest construction, (b) is suitable for facilitating gas diffusion conducive to embryo development, and (c) is able to develop and maintain temperatures and moisture content conducive to embryo development. 3) Suitable nesting beach habitat with sufficient darkness to ensure that nesting turtles are not deterred from emerging onto the beach and hatchlings and post-nesting females orient to the sea. Visitors to nearby islands using the ramps in this project are not expected to alter the PCEs for proposed critical habitat; therefore, no proposed critical habitat will be adversely affected or modified.</td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>Franklin County is not one of the 36 Florida counties in which manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the project waters. The main risk to manatees during implementation of this project would come from use of erosion control measures during construction, construction noise and boat collision during use which could result in harm or mortality. Conservation measures below are designed to avoid impacts from erosion control measures and noise, and information at kiosks and signage will minimize impacts from boaters to manatees potentially present in the area such that impacts are insignificant and discountable.</td>
</tr>
</tbody>
</table>

---

23 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/speclist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
Piping plover and red knot

Piping plover and red knot are not expected to be using habitats present at any of the proposed project locations. However, both use nearby areas (i.e., St. Vincent’s NWR and St. George Island). Piping plover critical habitat is present on the bay side of St. George Island. Visitors will be informed of any necessary protective measures for these species through information available at kiosks, signage, or staff (waterfront park). The educational signage is expected to inform visitors such that impacts from their presence is minimized to an insignificant and discountable level.

PCEs of piping plover critical habitat include:
1) Intertidal flats with sand or mud flats (or both) with no or sparse emergent vegetation.
2) Adjacent unvegetated or sparsely vegetated sand, mud, or algal flats above high tide are also important, especially for roosting piping plovers. Such sites may have debris, detritus, or microtopographic relief (less than 50 cm above substrate surface) offering refuge from high winds and cold weather.
3) Important components of the beach/dune ecosystem include surf-cast algae, sparsely vegetated back beach and salterns, spits, and washover areas.
4) Washover areas are broad, unvegetated zones, with little or no topographic relief, that are formed and maintained by the action of hurricanes, storm surge, or other extreme wave action.

The proposed project will not alter any PCEs within the critical habitat as activities will not extend into critical habitat or influence the way PCE’s are formed or maintained. Visitors to nearby islands using the ramps in this project area are not expected to alter the PCEs for proposed critical habitat as visitors would not be building/constructing on the beaches in a way that changes the shoreline and how it is formed; therefore, no destruction or adverse modification of piping plover critical habitat is anticipated. Critical habitat PCEs include low/no disturbance to areas. Signs and enforcement can alter or remove potential impacts.

Gulf sturgeon

NMFS was consulted on Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon was not considered in the consultation with the USFWS.

In addition to the protected species managed by DOI the Trustees reviewed the proposed projects and associated actions for potential impacts to protected species managed by NMFS.

The exception to this review was the proposed Eastpoint Fishing Pier Improvements project. Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Protected Resource Division (PRD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that the proposed Eastpoint Fishing Pier Improvements project falls outside of NMFS Endangered Species Act (ESA) jurisdiction, as it does not contain suitable habitat for species managed by NMFS. As a result, this project component of the larger Enhancement of Franklin County Boat Ramps project did not require further ESA evaluation from NOAA.

For the remaining project components (Waterfront Park Improvement Project, Indian Creek Park Boat Ramp Project, and St. George Island Fishing Pier Improvement) the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
• Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered
• Kemp’s Ridley Sea Turtle, *Lepidochelys kempii*, Endangered

**Submerged Habitats and Vegetation**

Oyster bars cover more than 10,600 acres of submerged bottom within the ANERR boundaries. The American oyster is the dominant component on the bars which cover approximately 10 percent of the Bay bottom. Important associated organisms include oyster predators such as southern oyster drills, stone crabs, blue crabs, crown conchs, flatworms, and boring clams. Other organisms which inhabit oyster bars include mussels, mud crabs, flat crabs, blennies, toadfish, gastropods, and many other transitory organisms that are commercially important species (Menzel et al. 1966, as summarized by ANERR 1998). St. George Island fishing pier and Eastpoint Fishing pier are in proximity to these oyster bars.

According to the Draft Apalachicola Reserve Management Plan (2013), submerged vegetation found in the Apalachicola Bay includes fresh water, brackish, and marine species. Their distribution is confined to the shallow perimeters of the system because of high turbidity which limits the depth of the photic zone. The shallow bayside regions of St. George and the mainland areas of St. George Sound support seagrasses with shoal grass the dominant species. Turtle-grass and manatee-grass are found in deeper, higher salinity waters in the eastern reaches of the Bay. Widgeon-grass and tapegrass are found near the mouth of the river and in the upper reaches of the Bay.

Tidal marshes are extensive along the East Bay and along the lower reaches of the Apalachicola River. The marshes in the higher salinity regions in proximity to the open Bay are dominated by black needlerush, cordgrasses, and saltgrass (ANERR 2013, modified from Livingston 1984). Marshes fed by tidal creeks and bayous northward of the Bay support predominantly fresh to brackish water vegetation consisting primarily of sawgrass, cattails, and bulrushes.

**Essential Fish Habitat (EFH)**

EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as “those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. Table 12-37 through Table 12-39 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Waterfront Park, Indian Creek Park, and St. George Island Fishing Pier sites respectively because of slight differences in the species covered across the locations.

Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Protected Resource Division (PRD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that the Eastpoint Fishing Pier project falls outside of NMFS Endangered Species Act (ESA) jurisdiction, as it does not contain suitable habitat for species managed by NMFS. As a result, the project did not require further ESA evaluation from NOAA.
Table 12-37. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed Waterfront Park project area.

<table>
<thead>
<tr>
<th>EFH_Category</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Highly Migratory Species</td>
<td>Atlantic Sharpnose Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Bonnethead Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Bonnethead Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Bonnethead Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Bull Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Bull Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Finetooth Shark - Adult and - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Great Hammerhead Shark - All</td>
</tr>
<tr>
<td></td>
<td>Nurse Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark - Neonate</td>
</tr>
<tr>
<td>Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic</td>
<td>Spanish Mackerel</td>
</tr>
<tr>
<td></td>
<td>Cobia</td>
</tr>
<tr>
<td></td>
<td>King Mackerel</td>
</tr>
<tr>
<td>Gulf of Mexico Red Drum</td>
<td>Red Drum</td>
</tr>
<tr>
<td>Gulf of Mexico Shrimp</td>
<td>Pink Shrimp</td>
</tr>
<tr>
<td></td>
<td>White Shrimp</td>
</tr>
<tr>
<td></td>
<td>Brown Shrimp</td>
</tr>
<tr>
<td>Reef Fish Resources of the Gulf of Mexico</td>
<td>Lane Snapper</td>
</tr>
<tr>
<td></td>
<td>Lesser Amberjack</td>
</tr>
<tr>
<td></td>
<td>Mutton Snapper</td>
</tr>
<tr>
<td></td>
<td>Nassau Grouper</td>
</tr>
<tr>
<td></td>
<td>Queen Snapper</td>
</tr>
<tr>
<td></td>
<td>Red Grouper</td>
</tr>
<tr>
<td></td>
<td>Red Snapper</td>
</tr>
<tr>
<td></td>
<td>Scamp</td>
</tr>
<tr>
<td></td>
<td>Silk Snapper</td>
</tr>
<tr>
<td>EFH_Category</td>
<td>Species</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Atlantic Highly Migratory Species</td>
<td>Atlantic Sharpnose Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Bonnethead Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Bull Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Finetooth Shark-Adult-and-Juv</td>
</tr>
<tr>
<td></td>
<td>Great Hammerhead Shark-All</td>
</tr>
<tr>
<td></td>
<td>Nurse Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark-Neonate</td>
</tr>
<tr>
<td>Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic</td>
<td>Spanish Mackerel</td>
</tr>
<tr>
<td></td>
<td>Cobia</td>
</tr>
<tr>
<td></td>
<td>King Mackerel</td>
</tr>
<tr>
<td>Gulf of Mexico Red Drum</td>
<td></td>
</tr>
</tbody>
</table>

Table 12-38. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed Indian Creek Park project area.
<table>
<thead>
<tr>
<th>EFH Category</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Drum</td>
<td></td>
</tr>
<tr>
<td>Gulf of Mexico Shrimp</td>
<td>Pink Shrimp</td>
</tr>
<tr>
<td></td>
<td>White Shrimp</td>
</tr>
<tr>
<td></td>
<td>Brown Shrimp</td>
</tr>
<tr>
<td>Reef Fish Resources of the Gulf of Mexico</td>
<td>Lane Snapper</td>
</tr>
<tr>
<td></td>
<td>Lesser Amberjack</td>
</tr>
<tr>
<td></td>
<td>Mutton Snapper</td>
</tr>
<tr>
<td></td>
<td>Nassau Grouper</td>
</tr>
<tr>
<td></td>
<td>Queen Snapper</td>
</tr>
<tr>
<td></td>
<td>Red Grouper</td>
</tr>
<tr>
<td></td>
<td>Red Snapper</td>
</tr>
<tr>
<td></td>
<td>Scamp</td>
</tr>
<tr>
<td></td>
<td>Silk Snapper</td>
</tr>
<tr>
<td></td>
<td>Snowy Grouper</td>
</tr>
<tr>
<td></td>
<td>Speckled Hind</td>
</tr>
<tr>
<td></td>
<td>Tilefish</td>
</tr>
<tr>
<td></td>
<td>Vermilion Snapper</td>
</tr>
<tr>
<td></td>
<td>Warsaw Grouper</td>
</tr>
<tr>
<td></td>
<td>Wenchman</td>
</tr>
<tr>
<td></td>
<td>Yellowedge Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowmouth Grouper</td>
</tr>
<tr>
<td></td>
<td>Almaco Jack</td>
</tr>
<tr>
<td></td>
<td>Banded Rudderfish</td>
</tr>
<tr>
<td></td>
<td>Black Grouper</td>
</tr>
<tr>
<td></td>
<td>Blackfin Snapper</td>
</tr>
<tr>
<td></td>
<td>Blueline Tilefish</td>
</tr>
<tr>
<td></td>
<td>Cubera Snapper</td>
</tr>
<tr>
<td></td>
<td>Gag</td>
</tr>
<tr>
<td></td>
<td>Goldface Tilefish</td>
</tr>
<tr>
<td></td>
<td>Gray (Mangrove) Snapper</td>
</tr>
<tr>
<td></td>
<td>Gray Triggerfish</td>
</tr>
<tr>
<td></td>
<td>Greater Amberjack</td>
</tr>
<tr>
<td></td>
<td>Hogfish</td>
</tr>
</tbody>
</table>

Table 12-39. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed St. George Island Fishing Pier project area.

<table>
<thead>
<tr>
<th>EFH Category</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Highly Migratory</td>
<td>Atlantic Sharpnose Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark - Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark - Adult</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark - Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark - Neonate</td>
</tr>
<tr>
<td>EFH Category</td>
<td>Species</td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td>----------------------------------------------</td>
</tr>
<tr>
<td>Bonnethead Shark - Adult</td>
<td></td>
</tr>
<tr>
<td>Bonnethead Shark - Juvenile</td>
<td></td>
</tr>
<tr>
<td>Bonnethead Shark - Neonate</td>
<td></td>
</tr>
<tr>
<td>Bull Shark - Adult</td>
<td></td>
</tr>
<tr>
<td>Bull Shark - Juvenile</td>
<td></td>
</tr>
<tr>
<td>Finetooth Shark - Adult and Juvenile</td>
<td></td>
</tr>
<tr>
<td>Great Hammerhead Shark - All</td>
<td></td>
</tr>
<tr>
<td>Nurse Shark - Juvenile</td>
<td></td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark - Juvenile</td>
<td></td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark - Neonate</td>
<td></td>
</tr>
<tr>
<td>Spinner Shark - Juvenile</td>
<td></td>
</tr>
<tr>
<td>Spinner Shark - Neonate</td>
<td></td>
</tr>
<tr>
<td><strong>Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic</strong></td>
<td></td>
</tr>
<tr>
<td>Cobia</td>
<td></td>
</tr>
<tr>
<td>King Mackerel</td>
<td></td>
</tr>
<tr>
<td>Spanish Mackerel</td>
<td></td>
</tr>
<tr>
<td><strong>Gulf of Mexico Red Drum</strong></td>
<td></td>
</tr>
<tr>
<td>Red Drum</td>
<td></td>
</tr>
<tr>
<td><strong>Gulf of Mexico Shrimp</strong></td>
<td></td>
</tr>
<tr>
<td>Brown Shrimp</td>
<td></td>
</tr>
<tr>
<td>Pink Shrimp</td>
<td></td>
</tr>
<tr>
<td>White Shrimp</td>
<td></td>
</tr>
<tr>
<td><strong>Reef Fish Resources of the Gulf of Mexico</strong></td>
<td></td>
</tr>
<tr>
<td>Almaco Jack</td>
<td></td>
</tr>
<tr>
<td>Banded Rudderfish</td>
<td></td>
</tr>
<tr>
<td>Black Grouper</td>
<td></td>
</tr>
<tr>
<td>Blackfin Snapper</td>
<td></td>
</tr>
<tr>
<td>Blueline Tilefish</td>
<td></td>
</tr>
<tr>
<td>Cubera Snapper</td>
<td></td>
</tr>
<tr>
<td>Gag</td>
<td></td>
</tr>
<tr>
<td>Goldface Tilefish</td>
<td></td>
</tr>
<tr>
<td>Gray (Mangrove) Snapper</td>
<td></td>
</tr>
<tr>
<td>Gray Triggerfish</td>
<td></td>
</tr>
<tr>
<td>Greater Amberjack</td>
<td></td>
</tr>
<tr>
<td>Hogfish</td>
<td></td>
</tr>
<tr>
<td>Lane Snapper</td>
<td></td>
</tr>
<tr>
<td>Lesser Amberjack</td>
<td></td>
</tr>
<tr>
<td>Mutton Snapper</td>
<td></td>
</tr>
<tr>
<td>Nassau Grouper</td>
<td></td>
</tr>
<tr>
<td>Queen Snapper</td>
<td></td>
</tr>
<tr>
<td>Red Grouper</td>
<td></td>
</tr>
</tbody>
</table>
The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-40 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

Table 12-40. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>Foraging, feeding, resting, nesting</td>
<td>Shorebirds forage, feed, and rest in the types of habitats at the project sites and nest on nearby islands that may be accessed by visitors using the ramps. As such, they may be impacted locally and temporarily by the project.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Resting, roosting, nesting</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats including dunes. However, the level of project activity in open water is unlikely to startle resting birds and because activities will occur during the day roosting should not be impacted.</td>
</tr>
<tr>
<td>Upland birds (Passerines and near passerines)</td>
<td>Feeding, resting, nesting</td>
<td>These species may be using habitats adjacent to the project site for feeding, resting, and nesting. As such, they may be impacted locally and temporarily by construction noise and noise from visitors in the project areas.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-41.
Table 12-41. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Care will be taken to minimize noise and physical disruptions during construction near areas where foraging or resting birds are encountered. All construction disturbances will be localized and temporary. Signage will be installed/updated to provide users of the ramps with information on sensitive species and areas and appropriate actions to take with species interactions (e.g., what to do if a sea turtle or nesting migratory bird is encountered).</td>
</tr>
<tr>
<td>Shorebirds</td>
<td>The Trustees expect foraging and resting birds will be able to move to another nearby location to continue foraging and resting if disturbed.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only.</td>
</tr>
<tr>
<td>Upland birds (Passerines and near passerines)</td>
<td>No work will occur in adjacent vegetated areas where upland birds could be nesting. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only.</td>
</tr>
</tbody>
</table>

**Environmental Consequences**

The USFWS reviewed the proposed Enhancement of Franklin County Parks and Boat Ramps Project (Waterfront Park Improvement Project, Indian Creek Park Boat Ramp Project, Eastpoint Fishing Pier Improvement Project, and St. George Island Fishing Pier Improvement Project) in Franklin County, Florida for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On March 24, 2014, the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead), piping plover, red knot (if listed), and West Indian manatee.

USFWS also concurred with the Trustees’ determination that the proposed projects would not result in adverse modification or destruction of critical habitat for piping plover or loggerhead sea turtle (if designated) based upon the successful implementation of the identified conservation measures.

Consultations of potential impacts on protected species managed by NMFS from these projects, excluding the Eastpoint Fishing Pier, were initiated on February 9, 2014 for the St. George Island Fishing Pier and on February 11, 2014 for Indian Creek Park and the Franklin County Waterfront Park. The Trustees’ review of the potential impacts of these projects for protected species managed by NMFS determined the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the project implementation area:

- Gulf Sturgeon Critical Habitat- The proposed project footprint falls within an identified Gulf sturgeon critical habitat unit (Critical Habitat Unit 13 – Apalachicola Bay); however, it has been
determined that the construction activities associated with this project will not adversely affect the PCE’s associated with this habitat or modify designated Gulf sturgeon critical habitat.

- Gulf Sturgeon - The proposed may project affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Smalltooth Sawfish – The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Green Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Loggerhead Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Hawksbill Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Leatherback Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Kemp’s Ridley Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.

Concurrence from NMFS with the Trustees’ conclusions for these species and associated critical habitats is still pending.

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

**Essential Fish Habitat (EFH)**

In their assessments of potential impacts to EFH, the Trustees concluded the projects were unlikely to adversely affect EFH as the work was taking place within existing developed footprints and would be minor and brief. Further, no habitat would be converted as part of these projects.

NMFS reached the following conclusions with respect to the potential impacts on EFH for the proposed project elements:

- Waterfront Park Improvement Project: On March 17, 2014 NMFS concurred with the Trustees’ assessment that the impacts of the proposed project are not likely to adversely affect EFH (Fay, 2014a).
- Indian Creek Park Boat Ramp Project: On March 24, 2014 NMFS concurred with the Trustees’ assessment that the impacts of the proposed project are not likely to adversely affect EFH and any disturbance to species would be minor and brief (Fay, 2014b).
- St. George Island Fishing Pier Improvement Project: On March 17, 2014 NMFS concurred with the Trustees’ assessment that the short-term and long-term impacts of the proposed project on EFH would be minor (Fay, 2014c).
State-listed Birds, MBTA, and BGEPA
Bald eagles are not present at the project location so will not be affected. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

12.67.5.3.2 Invasive Species

Affected Resources
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project areas, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project sites or could be introduced through the projects have not yet been identified.

Environmental Consequences
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the projects will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.67.5.4 Human Uses and Socioeconomics

12.67.5.4.1 Socioeconomics and Environmental Justice

Affected Resources
In 2012, the population of Franklin County was estimated at 11,686, which ranks 65th among Florida’s 67 counties and accounts for less than one percent of the Florida population (US Census 2013). Approximately 79 percent of the population in Franklin County is white (not Hispanic or Latino), 14 percent is black or African American, 5 percent is Hispanic or Latino, and 1.6 percent consider themselves more than two races. Around 7 percent of the county speaks a language other than English at home. Median household income (2007-2011) in Franklin County and the state is $37,017 and $47,827, respectively with 24 percent of the county and 15 percent of the state living below the poverty level (Census 2012). Apalachicola and Carrabelle are the only municipalities within Franklin County.

Historically more than 65 percent of the Franklin County work force has been employed by the commercial fishing industry, although this has been changing with the increasing importance of tourism to the area (ANERR 2013). Oysters, shrimp, blue crab, and finfish continue to make up the bulk of the
catch with an estimated value of more than $134 million in economic output annually and an additional $71 million in value-added benefits (Crist 2007, as reported by ANERR 2013).

**Environmental Consequences**
The estimated cost to construct the proposed project at the five parks is just under $1.8M. There would be direct financial benefits to the contractors supplying the labor, oversight, project management, and monitoring to construct the new amenities as well as the material suppliers. Direct, short-term, moderate benefits through local job creation would result from construction activities. There would be minor indirect beneficial impacts to the local economy due to possible increased recreational and activity in response to improvements at the Parks. These economic benefits would be concentrated in the service and retail industry sectors. Beneficial economic impacts would accrue to local recreational supply retailers, restaurants, and hospitality providers. The proposed project would not adversely affect any low income or minority populations. Overall, no adverse impacts would occur to socioeconomics and environmental justice as a result of the proposed project.

12.67.5.4.2 Cultural Resources

**Affected Resources**
People have lived in the coastal region of the Gulf of Mexico for more than 10,000 years. Today many unique and diverse cultures call the Gulf coast home. These cultures, past and present, are often closely linked to the environmental and natural resources which comprise the Gulf Coast ecosystem and which this project seeks to restore.

The Franklin County Comprehensive Plan identifies the Indian Creek Park as a County Archaeological Site.

The different components of the overall Enhancement of Franklin county Parks and Boat Ramps project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

**Environmental Consequences**
A complete review of the elements of this overall project under Section 106 of the NHPA is ongoing and would be completed prior to any component-specific project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. The individual project elements of the overall project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.67.5.4.3 Infrastructure

**Affected Resources**
Current facilities include parking, boat ramps, courtesy docks, and existing bulkheads. Temporary porta-john type facilities currently serve as restrooms for the recreating public.
Environmental Consequences
During the construction activities, there would be short-term disruptions of parking and public access to facilities within the Parks, but over the long-term the project would enhance public use of the facilities and recreational opportunities. Aside from improvements to basic sanitation facilities there would be no changes to infrastructure or additional public utility requirements under the proposed project. Construction waste would be removed by the contractor to an appropriate landfill using dump trucks, roll-off dumpsters, or trailers. The current closest landfill is the Franklin County Central Landfill located in Eastpoint. The landfill capacity has not been reached. Any adverse impacts would be short-term and minor.

12.67.5.4.4 Land and Marine Management

Affected Resources
Land use characteristics influence runoff patterns, types of pollutants, water quality and quantity, and virtually all aspects of riverine and river-dominated estuarine systems. Franklin County is predominantly rural with 93 percent of the total county area of 348,800 acres zoned either forestry conservation, forestry agriculture, preservation, recreation, or submerged bottomlands (ANERR 1998; Table 12-42). Franklin County has a relatively sparse population density of 21 persons per square mile (US Census Bureau 2013).

Table 12-42. Franklin County land use.

<table>
<thead>
<tr>
<th>LAND USE</th>
<th>TOTAL ACRES</th>
<th>PERCENTAGE OF COUNTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorporated Areas</td>
<td>1,760</td>
<td>5</td>
</tr>
<tr>
<td>Residential</td>
<td>16,071</td>
<td>4.7</td>
</tr>
<tr>
<td>Commercial</td>
<td>840</td>
<td>0.2</td>
</tr>
<tr>
<td>Industrial</td>
<td>1,325</td>
<td>0.4</td>
</tr>
<tr>
<td>Public Facilities</td>
<td>560</td>
<td>0.2</td>
</tr>
<tr>
<td>Recreation</td>
<td>1,894</td>
<td>0.5</td>
</tr>
<tr>
<td>Conservation</td>
<td>40,608</td>
<td>11.6</td>
</tr>
<tr>
<td>Agricultural</td>
<td>265,347</td>
<td>76.0</td>
</tr>
<tr>
<td>Water</td>
<td>20,395</td>
<td>5.9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>348,800</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: ANERR 1998

All five project sites provide water access for the recreating public. Franklin County identifies the existing land use at the five parks as either residential, commercial, or conservation lands. Shoreline uses adjacent to the parks include residential access (e.g., private docks), armored shorelines (e.g., riprap or bulkhead), or undeveloped shorelines.

Environmental Consequences
The project would not change the current land use, zoning, or cause any amendments to management plans that relate to the project area. The action areas would remain zoned for recreational use, which allows for structures related to outdoor activities such as boating and fishing. Thus, no impacts would occur to Land Management under the proposed Project.
Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

12.67.5.4.5  Aesthetics and Visual Resources

Affected Resources
The general visual character of the region can be described as semi-rural, with residential and commercial areas concentrated in Apalachicola, East Point and St. George Island and along major roads and highways in the area. Residential communities in this region are interspersed with commercial developments located along major roadways, with some larger areas remaining in agricultural use or as undeveloped open space. The topography is flat. Most recreational activities at the parks involve the use of the natural setting. For example, activities such bird watching and fishing benefit from the natural settings to enhance experiences. During the construction of the improvements, the materials, workers, and equipment would be staged adjacent to the worksites, on site within existing parking areas. The proposed construction is consistent with the surrounding structures and typical of amenities located within the neighboring areas.

Environmental Consequences
Temporary impacts to visual resources would result from construction of the proposed project. Large construction equipment such as backhoes for demolition and excavation would temporarily obstruct the shoreline views for visitors and recreational users at the site. The addition of the restrooms would change the sightlines at Indian Creek Park, Eastpoint Fishing Pier, and St. George Fishing Pier, but the construction would be consistent with neighboring land uses and structures. The structures would not negatively attract attention, dominate the view, or detract from the current user activities or experiences. Any adverse impacts to aesthetic and visual resources would be short-term and minor.

12.67.5.4.6  Tourism and Recreational Use

Affected Environment
The proposed project action areas provide recreational access for boaters and anglers to Apalachicola Bay and River. Recreation is an important activity within ANERR; however, the supply of recreation opportunities is provided by other entities such as Franklin County, State of Florida, or other federal agencies. These opportunities include boat and shoreline saltwater fishing, boat and shoreline fresh water fishing, hunting, hiking, camping, nature study, birding, canoeing, kayaking, boating, shelling, beach activities, swimming, and nature photography.

Waterfront Park and Indian Park provide boat launch opportunities in residential and light commercial type settings to Apalachicola Bay. Each ramp is designed to accommodate between 10-20 vehicles with trailers at one time. Given the limited amount of space annual visitation is modest compared to larger, multi-amenity, recreation opportunities in the region such as the St. George Island State Park. The
Eastpoint and St. George Fishing Piers each provide more than 3,000 feet of pier for angling; however, the parking at each site is limited to between 20 to 30 spaces.

**Environmental Consequences**

During the construction period, recreational experience would be impacted from noise and visual disturbances associated with the use of heavy equipment. Access to certain areas could also be restricted or impacted to some degree during construction activities. During construction, it would be necessary to close portions of the parks to public access to ensure public safety. However, this would be limited to the amount of time necessary to complete the construction and would be reopened after completion. To the maximum extent practicable, parking lots would remain open to allow for public use during construction until the new parking areas are completed. The construction may have moderate impacts to public access and use of the boat ramps. While these temporary inconveniences would result in minor short-term impacts recreational use during the construction and rehabilitation activities at the shoreline, over the long term improved access and enhanced facilities would result in minor benefits to recreational use and enjoyment of the facilities. Overall, the implementation of the proposed project would contribute positively to visitor experience and public access. Any adverse impacts to tourism and recreational use would be short-term and minor.

12.67.5.4.7 Public Health and Safety and Shoreline Protection

**Affected Resources**

The project and its construction are not anticipated to generate hazardous waste or the need for disposal of hazardous waste. All waste generated during the construction of the amenities would be disposed in the appropriate waste or recycle collection receptacles in the park or hauled off to an approved waste disposal site. All occupational and safety regulations and laws would be followed to ensure safety of all workers and the public.

**Environmental Consequences**

No hazardous waste would be created during construction of the improvements. All hazardous materials handled during construction would be contained and appropriate barriers would be in place to ensure the protection of adjacent water resources from potential spills and leaks. BMPs in accordance with OSHA and state and local requirements would be incorporated into construction activities on site to ensure the proper handling, storage, transport and disposal of all hazardous materials. Personal protective equipment would be required for all construction personnel and authorized access zones would be established at the perimeter of the worksite during construction. Soil and sediment stabilization measures would be incorporated into project design as needed in areas where the potential exists for erosion to occur in order to protect resources and ensure public health and safety. No adverse impacts to public health and safety and shoreline protection are expected as a result of this project.

New restroom facilities would have a beneficial impact to human exposure and sanitation issues as the public would be provided an upgrade to their sanitary facility options.

12.67.6 Summary and Next Steps

The proposed Enhancement of Franklin County Parks and Boat Ramps – Indian Creek Park project would improve the existing Indian Creek Park boat launch facility in Franklin County. The proposed
improvements include constructing restroom facilities, connecting them to an existing central wastewater facility nearby, and renovating the existing boat ramp, bulkhead, and parking area to enhance water access. The proposed Enhancement of Franklin County Parks and Boat Ramps – Eastpoint Fishing Pier Improvement project would add restroom facilities to the base of the existing public East Point Fishing Pier in Franklin County. The proposed improvements include not only constructing new restrooms, but a holding tank that would be pumped out regularly. The proposed improvements include constructing additional docks to enhance water access. The proposed Enhancement of Franklin County Parks and Boat Ramps – Waterfront Park project would improve the existing Waterfront Park in Apalachicola. The proposed improvements include enhancing existing parking and adjacent tie-up docks to enhance water access. In addition an existing onsite building would be enhanced to serve as an information center and dockmaster office. The proposed Enhancement of Franklin County Parks and Boat Ramps – St. George Island Fishing Pier Improvements project would enhance the existing public St. George Island public Fishing Pier in Franklin County. The proposed improvements include constructing restrooms and a holding tank that would be pumped out regularly since there is no central wastewater facility on the island. The proposed improvements also include renovating the existing bulkhead that leads up to the pier and protects the road to the pier. These projects are consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. These projects would enhance and/or increase recreational boating and fishing opportunities by improving the existing boat ramp area, fishing piers, and the waterfront park. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.67.7 References


Fay, V. 2014a. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for improvements to the Franklin County Waterfront Park in and adjacent to Apalachicola Bay, Franklin County, Florida. March 17.

Fay, V. 2014b. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for improvements at the Indian Creek Park, Apalachicola Bay, Franklin County, Florida. March 27.
Fay, V. 2014c. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for improvements to the Franklin County St. George Island Fishing Pier in Apalachicola Bay, Franklin County, Florida. March 17.


2001. Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat. August.


USFWS 2011 Standard Manatee Conditions for In-Water Work.
12.68 Apalachicola River Wildlife and Environmental Area Fishing and Wildlife Viewing Access Improvements: Project Description A (Cash Bayou)

12.68.1 Project Summary
The proposed Apalachicola River Wildlife and Environmental Area Fishing and Wildlife Viewing Access Improvements: Cash Bayou project would improve public access at Cash Bayou in the Apalachicola River Wildlife and Environmental Area. The proposed improvements include constructing a fishing and wildlife observation structure and parking area. The total estimated cost of the project is $209,171.

12.68.2 Background and Project Description
The Trustees propose to improve public access at Cash Bayou in the Apalachicola River Wildlife and Environmental Area (see Figure 12-31 for project location). The objective of the Apalachicola Cash Bayou project is enhance and/or increase recreational use and wildlife viewing opportunities by improving access to the wildlife and environmental area. The restoration work proposed includes constructing a fishing and wildlife observation structure and parking area.

Figure 12-31. Location of Apalachicola River Wildlife and Environmental area fishing and wildlife viewing access improvements project, Cash Bayou location.
### 12.68.3 Evaluation Criteria

This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Apalachicola River Wildlife and Environmental Area Fishing and Wildlife Viewing Access Improvements: Cash Bayou project is intended to enhance and/or increase recreational use and wildlife viewing opportunities by improving access to the wildlife and environmental area. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented. Further, the project can be implemented with minimal delay. The Florida Fish and Wildlife Conservation Commission’s Wildlife Management Areas program has successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.69, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration with the exception of noise which will be minor, localized and long term. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.69 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Apalachicola River Wildlife and Environmental Area Fishing and Wildlife Viewing Access Improvements, Cash Bayou Location project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

### 12.68.4 Performance Criteria, Monitoring and Maintenance

As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational use and wildlife viewing opportunities by improving access to the Apalachicola River Wildlife and Environmental Area. Performance monitoring will evaluate: 1) the construction of a 700 square-foot fishing and wildlife observation structure, and 2)
the construction of a parking area. Specific success criteria include: 1) the completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the facility is open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by Florida Fish and Wildlife Conservation Commission (FWC) and Franklin County as part of their regular public facilities maintenance activities. FWC or Franklin County will also be responsible for contracting for or control of garbage pick-up and litter control at the site. Franklin County will also be responsible for long-term maintenance of the observation platform and parking area and will inspect them regularly. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be assumed by FWC and Franklin County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, FWC and Franklin County will monitor the recreational use activity at the site. FWC and Franklin County staff will visit the site twice a year to count the number of users at the new fishing and wildlife observation structure. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.68.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Apalachicola River Wildlife and Environmental Area Fishing and Wildlife Viewing Access Improvements project, of which this is a component, are $525,978 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.24

12.68.6 Costs
The total estimated cost to implement this project is $209,171. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---

24 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees' assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.69 Apalachicola River Wildlife and Environmental Area Fishing and Wildlife Viewing Access Improvements: Project Description B (Sand Beach)

12.69.1 Project Summary
The proposed Apalachicola River Wildlife and Environmental Area Fishing and Wildlife Viewing Access Improvements: Sand Beach project would improve public access at Sand Beach in the Apalachicola River Wildlife and Environmental Area. The proposed improvements include constructing an elevated boardwalk that would be built on an existing, periodically wet interpretative trail. The total estimated cost of the project is $53,818.

12.69.2 Background and Project Description
The Trustees propose to improve public access at Sand Beach in the Apalachicola River Wildlife and Environmental Area (see Figure 12-32 for project location). The objective of the Apalachicola Sand Beach project is to enhance and/or increase recreational use and wildlife viewing opportunities by improving access to the wildlife and environmental area. The restoration work proposed includes constructing an elevated boardwalk that would be built on an existing, periodically wet interpretative trail.

12.69.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Apalachicola River Wildlife and Environmental Area Fishing and Wildlife Viewing Access Improvements: Sand Beach project is intended to enhance and/or increase recreational use and wildlife viewing opportunities by improving access to the wildlife and environmental area. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.
The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. The Florida Fish and Wildlife Conservation Commission’s Wildlife Management Areas program has successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement.

Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.69, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration with the exception of noise which will be minor, localized and long term. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.69 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively
affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Apalachicola River Wildlife and Environmental Area Fishing and Wildlife Viewing Access Improvements, Sand Beach Location project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.69.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational use and wildlife viewing opportunities by improving access to the wildlife and environmental area. Performance monitoring will evaluate the construction of a 6-foot-wide boardwalk on the periodically wet 1/4-mile Sand Beach interpretive trail. Specific success criteria include: 1) completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the boardwalk is open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by Florida Fish and Wildlife Conservation Commission (FWC) and Franklin County as part of their regular public facilities maintenance activities. FWC or Franklin County will also be responsible for contracting for or control of garbage pick-up and litter control at the site. Franklin County will also be responsible for long-term maintenance of the boardwalk and will inspect it regularly. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be assumed by FWC and Franklin County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, FWC and Franklin County will monitor the recreational use activity at the site. FWC and Franklin County staff will visit the site twice a year to count the number of users at the new boardwalk. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.69.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets for the entire Apalachicola River Wildlife and Environmental Area Fishing and Wildlife Viewing Access Improvements project, of which this is a component, are $525,978 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the
Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.\textsuperscript{25}

12.69.6 Costs
The total estimated cost to implement this project is $53,818. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

\textsuperscript{25} For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.70 Apalachicola River Wildlife and Environmental Area Fishing and Wildlife Viewing Access Improvements: Environmental Review

The proposed Apalachicola Cash Bayou project would improve public access at Cash Bayou in the Apalachicola River Wildlife and Environmental Area. The proposed improvements include constructing a fishing and wildlife observation structure and parking area. The proposed Apalachicola Sand Beach project would improve public access at Sand Beach in the Apalachicola River Wildlife and Environmental Area. The proposed improvements here include constructing an elevated boardwalk that would be built on an existing, periodically wet interpretative trail.

12.70.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement), the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This public access improvement project was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

The Trustees propose to:

- improve public access at Cash Bayou in the Apalachicola River Wildlife and Environmental Area (Figure 12-33). The objective of the Apalachicola Cash Bayou project is enhance and/or increase recreational use and wildlife viewing opportunities by improving access to the wildlife and environmental area. The restoration work proposed includes constructing a fishing and wildlife observation structure and parking area. The total estimated cost of the project is $209,171.
- improve public access at Sand Beach in the Apalachicola River Wildlife and Environmental Area (Figure 12-34). The objective of the Apalachicola Sand Beach project is enhance and/or increase recreational use and wildlife viewing opportunities by improving access to the wildlife and environmental area. The restoration work proposed includes constructing an elevated
boardwalk along an existing, periodically wet interpretative trail. The total estimated cost of the project is $53,818.

12.70.2 Project Location
The proposed project is located in the State of Florida, Franklin County, in the Apalachicola River Wildlife and Environmental Area. The project area is located along the East Bay portion of Apalachicola Bay, with the main portion of Apalachicola Bay being located approximately 5 miles to the southwest. Figure 12-33 and Figure 12-34 illustrate the project locations for Cash Bayou and Sand Beach respectively.

Figure 12-33. Cash Bayou Project location map.
12.70.3 Construction and Installation

Proposed construction and installation activities are summarized below for each of the projects.

Cash Bayou

The proposed improvements for Cash Bayou include constructing a parking area with an entrance kiosk and information station along State Route 65 in the area generally to the southwest of the bridge that crosses Cash Creek (see Figure 12-33 for project location and Figure 12-35 for an example of the kiosk). In addition, the project would construct a roughly 700’ (i.e., 35’ by 20’) fishing and wildlife observation structure or fishing dock (see Figure 12-36 and Figure 12-37 for an example of each structure respectively) both of which have been used at other Florida Wildlife Management Areas.

Final designs have not been prepared but during a site visit in January, 2014 it was discussed that the parking area and area with the fishing and wildlife observation structure could be developed in nearby but separate areas along State Route 65 because of space constraints. While, the design and exact location for each of the above-mentioned aspects is not yet known, the maximum footprint needed for the sum of all the project elements is approximately 1.5 acres.

Figure 12-34. Sand Beach Project location map.
The fishing dock or elevated wildlife viewing structure would be sited along the bank of Cash Bayou based upon a wildlife viewing analysis of the site and connected to land by a dock. The proposed structure is expected to disturb approximately 0.2 acre.

Construction of the fishing and wildlife viewing structure would require some limited in-water work to place no more than 20 8’ diameter wood pilings for the structure along the creek. These pilings will be placed either by water jetting or mechanical auguring. Once pilings are placed the initial cross pieces for the pier and dock would be placed by workers using the same type of small workboats (e.g., 20’ skiffs) that would be used for the piling placement. The rest of the structure would then be build out from shore (note: no fish cleaning stations would be constructed). Either the final structure or associated parking lot would also include educational signage (e.g., actions to take if a sea turtle is caught/hooked). During all in-water construction activity, the best management practices identified within the *Sea Turtle and Smalltooth Sawfish Construction Conditions* (NOAA, 2006) will be implemented.

During the rest of the construction process typical site maintenance BMPs (e.g., hay bailing to control runoff, fueling vehicles and equipment away from the water) will be followed to avoid runoff-related impacts to the aquatic environment.

![Figure 12-35. Entrance Package Example.](image-url)
Figure 12-36. Wildlife Viewing Structure Example.

Figure 12-37. Fishing Dock Example.
Sand Beach
As part of the Sand Beach project an elevated boardwalk would be built on an existing, periodically wet interpretative trail. This boardwalk would reduce visitor impact to the forest floor. No new trail would be constructed and no trees will need to be removed to build the boardwalk. The walkway would be approximately 6 feet wide and approximately 1,000-1,800 feet long to extend across approximately 6,000 to 11,000 square feet of existing trail. Figure 12-38 shows an example of an existing elevated walkway used at other Florida Wildlife Management Areas similar to the one envisioned for Sand Beach.

![Elevated Walkway Example](image)

*Figure 12-38. Elevated Walkway Example.*

Project construction is expected to begin 90 days after funding is received, with construction to start in summer/fall of 2014 and finish in the summer of 2016.

12.70.4 Operations and Maintenance
Long-term monitoring and maintenance of the improved facilities would be completed by Florida Fish and Wildlife Conservation Commission (FWC) and Franklin County as part of their regular public facilities maintenance activities. FWC or Franklin County would also be responsible for contracting for or control of garbage pick-up and litter control at the site. Franklin County would be responsible for long-term maintenance of the observation platform and parking area and inspect them regularly. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and would be assumed by FWC and Franklin County. Following construction, FWC and Franklin County would monitor recreational use of the site and will conduct visitor counts of the boardwalk and at the fishing and wildlife viewing structure.
12.70.5  Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

12.70.5.1  No action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.70.5.2  Physical Environment
12.70.5.2.1  Geology and Substrates

Affected Resources
The project area is located in Franklin County, Florida, along the East Bay portion of Apalachicola Bay. The majority of project area is predominantly flat with project and adjacent area elevations ranging from sea level to 6 feet above sea level. The majority of the proposed project areas and soils have been previously disturbed, while much of the surrounding areas are void of development and are undisturbed. Soils in the project area have been classified by Department of Agriculture Natural Resources Conservation Services (USDA NRCS) as Bohicket and Plummer soil types. Each of these soil groups are composed primarily of sand with some portions of clay, are flat with slight slopes, are poorly drained and have a low erosion potential. The Bohicket soil type found at the Sand beach site is flooded twice daily by sea water. Typical vegetation on the Bohicket soil type is smooth cordgrass with the Plummer soil type being covered by forest (FWC 2002).

Environmental Consequences
Construction and construction activities associated with the development of improved access and enhanced recreational activities would disturb modify and expose soils in the direct footprint of the project sites, approximately 2 acres. Construction activities would likely include the use of a backhoe, grader, skid steer, and tractors. Construction equipment and materials staging have not been identified but would likely be located on previously disturbed sites or sites that would be disturbed as a result of construction. Impacts to soils would occur primarily through the clearing and grading of sites, the removal of existing vegetation and the placement of structures including pilings and foundations. Soils in the direct footprint of structures, the parking area, and trails would lose all productivity; however, based on the relatively small amount of soils impacted and previous disturbances to the soils, impacts would be long-term, minor and adverse. Specific mitigation measures would be implemented during construction to minimize erosion and overall soil impacts. These would include following established best management practices (BMPs) such as the implementation of an erosion control and storm water...
management plan, the installation of sediment traps prior to commencement of construction activities; and ongoing construction monitoring to ensure compliance.

Given that there would likely be increased visitation to the area as a result of the proposed project, soils in the footprints of the project areas would see continued impacts; however, based on the nature of impacts (vehicle and foot traffic) and the relatively small area impacted, impacts would be long-term and negligible as a result of site use.

12.70.5.2.2  Hydrology and Water Quality

Affected Resources
The principal water bodies associated with the project area are the East Bay portion of Apalachicola Bay. Both bodies of water have been designated as outstanding Florida waters (OFWs), indicating these bodies of water are worthy of special protection due to natural attributes. An OFW is designated by the Florida Department of Environmental Protection after the Environmental Regulation Commission determines that the environmental, social, and economic benefits of the Special Water status outweigh the environmental, social, and economic costs (62-302.700(5), Fla. Admin. Code). The Florida Department of Environmental Protection (FDEP) is granted the authority by Section 403.061(27), Florida Statutes, to establish rules for OFWs. The purpose of the designation as an OFW is to protect existing water quality and to preserve the exceptional ecological and recreational significance of the waterbody. The FDEP will not issue permits for direct pollutant discharges to OFWs, which would lower ambient (existing) water quality, or for indirect discharge, which would significantly degrade the OFW.

Previous silviculture use of the Sand Beach site as well as ditching, bedding, and tram or road development have worked as a point source of pollution to water quality in the area and in some instances have adversely impacted water quality in the localized area. Both project sites are located within a coastal floodplain.

Environmental Consequences
Based on construction activities on-land it is possible that some impacts via turbidity and the potential for increased sediment released into water could occur. It is anticipated that all potential impacts would be short-term in nature occurring only during construction resulting in short-term, negligible, adverse impacts to water quality. BMPs along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts. It is not anticipated that based on the construction requirements of the proposed project that impacts to groundwater would occur.

Long-term, the planned enhancement of recreational opportunities could result in some in-water recreation, increasing turbidity of water in the project area, resulting in long-term, negligible adverse impacts. Based on the details and construction requirements of the proposed project, impacts to floodplains and groundwater are not anticipated.
The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (USACE) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the USACE and final authorization pursuant to CWA/RHA will be completed prior to implementation of the project.

12.70.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
The U.S. Environmental Protection Agency (USEPA) defines ambient air in 40 C.F.R. Part 50 as “that portion of the atmosphere, external to buildings, to which the general public has access.” In compliance with the 1970 Clean Air Act (CAA) and the 1977 and 1990 Clean Air Act Amendments (CAAA), the USEPA has promulgated National Ambient Air Quality Standards (NAAQS). The NAAQS include primary standards which set limits to protect public health, including the health of "sensitive" populations such as asthmatics, children, and the elderly. To date, the USEPA has issued NAAQS for seven criteria pollutants: carbon monoxide (CO), sulfur dioxide (SO\textsubscript{2}), particles with a diameter less than or equal to a nominal 10 micrometers (PM10), particles with a diameter less than or equal to a nominal 2.5 micrometers (PM\textsubscript{2.5}), ozone (O\textsubscript{3}), nitrogen dioxide (NO\textsubscript{2}), and lead (Pb). Individual states may promulgate their own ambient air quality standards for these “criteria” pollutants, provided that they are at least as stringent as the federal standards. In Table 12-43, below, both State of Florida and federal primary ambient air quality standards for criteria air pollutants are presented.

The project is located in a primarily undeveloped area with few sources of emissions. In 2013, Franklin County was in attainment of the NAAQS for all criteria pollutants as designated by the USEPA.

Greenhouse gases (GHGs) are chemical compounds found in the Earth’s atmosphere that absorb and trap infrared radiation as heat. Global atmospheric GHG concentrations are a product of continuous emission (release) and removal (storage) of GHGs over time. In the natural environment, this release and storage is largely cyclical. For instance, through the process of photosynthesis, plants capture atmospheric carbon as they grow and store it in the form of sugars. Human activities such as deforestation, soil disturbance, and burning of fossil fuels disrupt the natural cycle by increasing the GHG emission rate over the storage rate, which results in a net increase of GHGs in the atmosphere. The principal GHGs emitted into the atmosphere through human activities are CO\textsubscript{2}, methane, nitrous oxide, and fluorininated gases, such as hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. CO\textsubscript{2} is the major GHG emitted, and the burning of fossil fuels accounts for 81 percent of all U.S. GHG emissions (USEPA 2010).
Table 12-43. State and Federal ambient standards for criteria air pollutants.

<table>
<thead>
<tr>
<th>POLLUTANT</th>
<th>AVERAGING PERIOD</th>
<th>FEDERAL PRIMARY STANDARD</th>
<th>STATE OF FLORIDA STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone</td>
<td>8-hour</td>
<td>0.075 ppm</td>
<td>Same as Federal</td>
</tr>
<tr>
<td></td>
<td>1-hour (daily max.)</td>
<td>0.12 ppm</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>PM2.5</td>
<td>Annual (arithmetic mean)</td>
<td>15.0 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>35 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>PM10</td>
<td>Annual (arithmetic mean)</td>
<td>NA</td>
<td>50 µg/m³</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>150 µg/m³</td>
<td>150 µg/m³</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>8-hour</td>
<td>9 ppm</td>
<td>9 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>35 ppm</td>
<td>35 ppm</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>Annual (arithmetic mean)</td>
<td>0.053 ppm</td>
<td>0.05 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.100 ppm</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>Annual (arithmetic mean)</td>
<td>0.03 ppm</td>
<td>0.02 ppm</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>0.14 ppm</td>
<td>0.10 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour (per annum)</td>
<td>NA</td>
<td>0.40 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour (per 7 days)</td>
<td>NA</td>
<td>0.25 ppm</td>
</tr>
<tr>
<td></td>
<td>5-minute</td>
<td>NA</td>
<td>0.80 ppm</td>
</tr>
<tr>
<td>Lead</td>
<td>Rolling 3-month average</td>
<td>0.15 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td></td>
<td>Quarterly average</td>
<td>1.5 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>Total Suspended</td>
<td>Annual (geometric mean)</td>
<td>NA</td>
<td>60 µg/m³</td>
</tr>
<tr>
<td>Particulate</td>
<td>24-hour</td>
<td>NA</td>
<td>150 µg/m³</td>
</tr>
</tbody>
</table>

Implementation of the proposed project would include transportation and heavy construction equipment which may include a backhoe, grader, skid steer, dump trucks, and tractors.

**Environmental Consequences**

Project implementation would require the use of heavy equipment which would temporarily affect air quality in the project vicinity due to construction vehicle emissions. Excavation activities associated with the construction portions of the project may produce fine particulate matter. Available BMPs would be employed to prevent, mitigate, and control potential air pollutants during project implementation. Any air quality impacts that would occur would be localized, short in duration and minimal based on the small scale of construction with overall impacts to air quality would be short-term and minor. Long-term, the site may experience some increase in use by the public potentially resulting in increased emissions and impacts to air quality from visitors passenger vehicles; however, the increase in visitor use is not expected to be substantial enough to cause any evident impacts to air quality or GHG, with impacts being long-term, minor and adverse.

The use of gasoline and diesel-powered construction vehicles and equipment, including cars, trucks, bulldozers, dump trucks, and backhoes, would contribute to an increase in GHG emissions. Table 12-44 describes the high end of a potential likely GHG emission scenario for the implementation of this project.
Based on the assumptions described in Table 12-44 below, and the small scale and short duration of the construction portion of the proposed project, predicted GHG emissions would be short-term and minor and would not exceed 25,000 metric tons of CO\textsubscript{2}e per year. Available BMPs would be employed to reduce the release of GHGs during implementation. Based on the small scale and short duration of the project, GHG emissions in the project staging and deployment areas would be minimal. Therefore, any increase in GHG emissions would be short-term and minor.

12.70.5.2.4 Noise

Affected Resources
Noise can be defined as unwanted sound and noise levels, and impacts are interpreted in relationship to its impacts on nearby residents. Noise associated with visitors and recreational land uses, such as boating, can be of concern to surrounding communities. Noise also emanates from vehicular traffic associated with new facilities and from project sites during construction. Ambient noise (the existing background noise environment) can be generated by a number of noise sources, including mobile sources, such as airplanes, automobiles, trucks, and trains; and stationary sources such as construction sites, machinery, or industrial operations.

The Noise Control Act of 1972 (42 U.S.C. 4901 to 4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale which approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-45 presents some familiar sounds and their decibel levels.

The project area is primarily void of development with the primary sources of ambient (background) noise in the project area coming from the operation of vehicles, commercial and recreational vessels, the nearby SR 65 and the Apalachicola Regional Airport and natural sounds such as wind and wildlife. The levels of noise in the project area varies, depending on the season, and/or the time of day, the number and types of sources of noise, and distance from the sources of noise. Noise levels fluctuate with highest levels usually occurring during the spring and summer months due to the increased boating and coastal beach activities.

Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the project. Noise-sensitive land uses in the project area include visitors and wildlife to the area.

Environmental Consequences
Project area visitors and wildlife may be sensitive to changes in noise sources or levels due to the project. Instances of increased noise are expected during construction of the project. The proposed project would generate construction noise associated with equipment during the construction period. Construction noise can also be a nuisance to those visitors and wildlife in the area.
### Table 12-44. Projected project GHG emissions.

<table>
<thead>
<tr>
<th>VESSEL/CONSTRUCTION EQUIPMENT</th>
<th>NO. OF HOURS OPERATED</th>
<th>CO₂ (METRIC TONS)</th>
<th>CH₄ (CO₂-E) (METRIC TONS)</th>
<th>NOX (CO₂-E) (METRIC TONS)</th>
<th>TOTAL CO₂E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trackhoe</td>
<td>1,680</td>
<td>588</td>
<td>.34</td>
<td>3.36</td>
<td>591.70</td>
</tr>
<tr>
<td>Crane</td>
<td>720</td>
<td>209</td>
<td>.07</td>
<td>.72</td>
<td>209.79</td>
</tr>
<tr>
<td>Grader</td>
<td>720</td>
<td>281</td>
<td>.22</td>
<td>2.16</td>
<td>283.38</td>
</tr>
<tr>
<td>Dumptruck (2)</td>
<td>1,680</td>
<td>1,142</td>
<td>.67</td>
<td>6.72</td>
<td>1,215.72</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,300.59</td>
</tr>
</tbody>
</table>

### Table 12-45. Familiar sounds and their decibel levels (dB).

<table>
<thead>
<tr>
<th>SOUND</th>
<th>DECIBEL LEVEL (DB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whisper</td>
<td>30</td>
</tr>
<tr>
<td>Normal Conversation</td>
<td>50-65</td>
</tr>
<tr>
<td>Vacuum cleaner at 10 feet</td>
<td>70</td>
</tr>
<tr>
<td>Midtown Manhattan Traffic Noise</td>
<td>70-85</td>
</tr>
<tr>
<td>Lawnmower</td>
<td>85-90</td>
</tr>
<tr>
<td>Train</td>
<td>100</td>
</tr>
<tr>
<td>Nearby Jet Takeoff</td>
<td>130</td>
</tr>
</tbody>
</table>

Source: Occupational Health and Safety Administration 2012

Mitigation measures that serve to limit noise during construction include: limiting activity at project sites to daytime hours; limiting truck traffic ingress/egress to the site to daytime hours; promoting awareness that producing prominent discrete tones and periodic noises (e.g., excessive dump truck gate banging) should be avoided as much as possible; and requiring that work crews seek pre-approval for any weekend activities, or activities outside of daytime hours. Because construction noise is temporary, any negative impacts to the human environment during construction activities would be short-term and minor.

---

26 Construction estimates from an email from the Florida Fish and Wildlife Conservation Commission on 9/30/2013

27 Emissions assumptions for all equipment based on 240 10-hour days of operation per piece of equipment over a 12-month construction period.

28 CO₂ emissions assumptions for diesel and gasoline engines based on USEPA 2009.

29 CH₄ and NOx emissions assumptions and CO₂e calculations based on USEPA 2011.

30 GHG emission estimates were not available for skid steers. In order to present the highest estimate, GHG emissions for a backhoe were used.

31 GHG emission estimates were not available for a tractor trailer. In order to present the highest estimate, GHG estimates for a dumptruck were used.

32 Construction equipment emission factors based on USEPA NONROAD emission factors for 250hp pieces of equipment. Data were accessed through the California Environmental Quality Act Roadway Construction Emissions Model.
Once project components are constructed, noise can be generated from operations, the vehicles associated with site use and visitor use of the site. This would add a slight amount of noise and notably change the noise environment of the area. However, it is not anticipated that noise levels would be bothersome for visitors or wildlife in the area, with overall impacts being long-term, minor and adverse.

12.70.5.3 Biological Environment

12.70.5.3.1 Living Coastal and Marine Resources

Affected Resources
Coastal and marine resources at the site include open water habitat of the East Bay portion of the Apalachicola Bay, the existing coastline and the inward project areas. Vegetation in both project areas can be classified as pinelands and freshwater marsh. Freshwater marshes are some of the most productive systems and are vital habitats for a variety of species including sawgrasses (Cladium jamaicense), bulrushes (Scirpus ssp.), cattails (Typha ssp.), cordgrasses (Spartina ssp.), and needlerushses (Juncus ssp.). Typical species occupying these environments include ducks, wading birds, shore birds, otters, mink, raccoon, alligators, turtles, snakes and frogs. Pinelands are characterized by an open canopy forest of widely spaced pine trees, with little or no understory and dense ground cover or herbs and shrubs. Based on existing literature and information obtained through the USFWS, the Bald eagle (Haliaeetus leucocephalus) has been noted to occur in the Cash Bayou project area. The only threatened or endangered species located in the project areas is the candidate species of unnamed beard grass also being located in Cash Bayou.

Environmental Consequences
Impacts to living coastal and marine resources are expected to be short-term and minor. The proposed project is not anticipated to require any in-water work, and the project area already sees some recreational use. All appropriate conditions permit requirements, and BMPs would be followed. The development of the site would result in some short-term noise increased and increases in the human presence of the area. This could result in the displacement of some wildlife and the removal of existing vegetation. However, based on the relatively small areas to be developed and the abundance of suitable habitat and vegetation in the vicinity of the project area, impacts are not expected to be substantial and would likely be long-term, minor and adverse. The continued use of the site by visitor as a result of construction could result in some long-term disturbances. However, it is expected that with the types of activities likely to occur at the site, previous interactions of wildlife with humans in the area and the relatively small area impacted, impacts are likely to be long-term, minor and adverse.

Affected Resources

Protected Species
The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Franklin County,
Florida where both project areas are located and also considered the presence of bald eagles (*Haliaeetus leucocephalus*) and migratory birds. No habitat for listed, proposed, or candidate species known from Franklin County, Florida is present in the action area and no listed, proposed, or candidate species are expected to be in the action area.

Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Protected Resource Division (PRD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that the Sand Beach project falls outside of NMFS Endangered Species Act (ESA) jurisdiction, as it does not contain suitable habitat for species managed by NMFS. As a result, the project did not require further ESA evaluation from NOAA.

In addition to the protected species managed by USFWS, for the Cash Bayou project, the Trustees reviewed implementation actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered
- Kemp’s Ridley Sea Turtle, *Lepidochelys kempii*, Endangered

**Environmental Consequences**

Based a consideration of the available information, including a site visit on January 9, 2014, the Trustees made a no effect determination for all listed, proposed, and candidate species known from Franklin County, Florida managed by DOI. Similarly, with no terrestrial critical habitat designated or proposed in or near the action area; the Trustees concluded none will be adversely modified or destroyed. The USFWS concurred with this determination on February 18, 2014 (McClain, 2014).

Further, no bald eagles are known to nest near the project area. Migratory birds including passerines and marsh birds are present in the action area and may be feeding, resting, or nesting in the nearby marsh vegetation or the large trees on site. However, precautions during construction will be used to protect any migratory birds that may be in or near the project area. Such precautions include: avoiding the removal of trees and shrubbery during nesting season, minimizing construction noise to the extent practicable, using care to avoid birds when operating machinery or vehicles near birds, and general contractor awareness of bird presence. These measures should ensure that any take of migratory birds is avoided. Therefore, no impacts to bald eagles or migratory birds are anticipated.

Consultation of potential impacts on protected species managed by NMFS from the Cash Bayou project was initiated on February 10, 2014. The Trustees’ review of the potential impacts of the project for

---

33 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
protected species managed by NMFS for the Cash Bayou project concluded the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the project implementation area:

- Gulf Sturgeon - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Green Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Loggerhead Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Hawksbill Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Leatherback Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Kemp’s Ridley Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.

Concurrence from NMFS with the Trustees’ conclusions for these species and associated critical habitats is still pending.

For the Cash Bayou project, the Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

**Affected Resources**

**Essential Fish Habitat**

EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as “those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column.

Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Habitat Conservation Division (HCD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that the Sand Beach project will not affect EFH because there is no EFH in the project area. As a result, the project did not require further EFH evaluation.

**Error! Reference source not found.** provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Apalachicola River Cash Bayou site and East Bay portion of Apalachicola Bay that are relevant for consideration as part of the Cash Bayou project implementation.
Table 12-46. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.

<table>
<thead>
<tr>
<th>EFH_Category</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Highly Migratory Species</td>
<td>Atlantic Sharpnose Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Atlantic Sharpnose Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacknose Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Bonnethead Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Bull Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Finetooth Shark-Adult-and-Juv</td>
</tr>
<tr>
<td></td>
<td>Great Hammerhead Shark-All</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark-Neonate</td>
</tr>
<tr>
<td>Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic</td>
<td>Spanish Mackerel</td>
</tr>
<tr>
<td></td>
<td>Cobia</td>
</tr>
<tr>
<td></td>
<td>King Mackerel</td>
</tr>
<tr>
<td>Gulf of Mexico Red Drum</td>
<td>Red Drum</td>
</tr>
<tr>
<td>Gulf of Mexico Shrimp</td>
<td>Pink Shrimp</td>
</tr>
<tr>
<td></td>
<td>White Shrimp</td>
</tr>
<tr>
<td></td>
<td>Brown Shrimp</td>
</tr>
<tr>
<td>Reef Fish Resources of the Gulf of Mexico</td>
<td>Lane Snapper</td>
</tr>
<tr>
<td></td>
<td>Lesser Amberjack</td>
</tr>
<tr>
<td></td>
<td>Mutton Snapper</td>
</tr>
<tr>
<td></td>
<td>Nassau Grouper</td>
</tr>
<tr>
<td></td>
<td>Queen Snapper</td>
</tr>
<tr>
<td></td>
<td>Red Grouper</td>
</tr>
<tr>
<td></td>
<td>Red Snapper</td>
</tr>
<tr>
<td></td>
<td>Scamp</td>
</tr>
<tr>
<td></td>
<td>Silk Snapper</td>
</tr>
<tr>
<td></td>
<td>Snowy Grouper</td>
</tr>
<tr>
<td>EFH_Category</td>
<td>Species</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td></td>
<td>Speckled Hind</td>
</tr>
<tr>
<td></td>
<td>Tilefish</td>
</tr>
<tr>
<td></td>
<td>Vermilion Snapper</td>
</tr>
<tr>
<td></td>
<td>Warsaw Grouper</td>
</tr>
<tr>
<td></td>
<td>Wenchman</td>
</tr>
<tr>
<td></td>
<td>Yellowedge Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowmouth Grouper</td>
</tr>
<tr>
<td></td>
<td>Almaco Jack</td>
</tr>
<tr>
<td></td>
<td>Banded Rudderfish</td>
</tr>
<tr>
<td></td>
<td>Black Grouper</td>
</tr>
<tr>
<td></td>
<td>Blackfin Snapper</td>
</tr>
<tr>
<td></td>
<td>Blueline Tilefish</td>
</tr>
<tr>
<td></td>
<td>Cubera Snapper</td>
</tr>
<tr>
<td></td>
<td>Gag</td>
</tr>
<tr>
<td></td>
<td>Goldface Tilefish</td>
</tr>
<tr>
<td></td>
<td>Gray (Mangrove) Snapper</td>
</tr>
<tr>
<td></td>
<td>Gray Triggerfish</td>
</tr>
<tr>
<td></td>
<td>Greater Amberjack</td>
</tr>
<tr>
<td></td>
<td>Hogfish</td>
</tr>
</tbody>
</table>

**Environmental Consequences**

**Essential Fish Habitat**
In reviewing potential impacts to EFH as a result of the Cash Bayou project the Trustees determined that the project is not likely to adversely affect EFH. Implementing the project would result in an extremely limited conversion of existing substrate with the placement of the project pilings. Disturbance to any EFH and species using the habitat in areas adjacent to locations where the proposed project is to take place would be brief and insignificant with risks further mitigated by following identified best management practices during construction. No adverse impacts to other EFH types would result from the proposed restoration techniques.

On March 17, 2014 NOAA concurred that as long as the proposed structure complied with the the *Dock Construction Guidelines in Florida for Docks or Other Minr Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat (U.S. Army Corps of Engineers/National Marine Fisheries Service, 2001)* the project is not likely to adversely affect EFH and disturbance to any EFH would be brief and insignificant (Fay, 2014).

**12.70.5.3.2 Invasive Species**

**Affected Resources**
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project areas, and possibly expand out into adjacent areas after the initial introduction. The invasive species
threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project sites or could be introduced through the projects have not yet been identified.

**Environmental Consequences**
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

**12.70.5.4 Human Uses and Socioeconomics**

**12.70.5.4.1 Socioeconomics and Environmental Justice**

**Affected Resources**
The population of Franklin County was 11,596 in 2012, accounting for less than one percent of the state’s total population. In 2013, median household income in Franklin County was $27,040, which was approximately 35 percent lower than median household income in the State of Florida. Franklin County contains both minority and low-income populations; however, no communities of environmental justice concern are located adjacent to the project area (Bureau of Labor Statistics 2013).

**Environmental Consequences**
Based on the relatively small scale of construction activities it is not anticipated that the proposed project would create jobs nor would it have substantial impacts to the socioeconomic environment as a result of construction. It is likely that there would be direct beneficial impacts to the local economy as a result of construction and from increased recreational and tourist activity in response to the project components. These economic benefits would be concentrated to the local economy as well as in the service and retail industry sectors. Beneficial economic impacts would accrue to local recreational supply retailers, restaurants, and hospitality providers. The proposed project would not adversely affect any low income or minority populations. Overall, no adverse impacts would occur to socioeconomics and environmental justice as a result of the proposed project.

**12.70.5.4.2 Cultural Resources**

**Affected Resources**
The area of potential effect (APE) for reviews under Section 106 of the National Historic Preservation Act includes the areas of direct and indirect impact. For this component of the proposed project, the APE
consists of the entire project areas as identified in Figure 12-33 and Figure 12-34 respectively for Cah Bayou and Sand Beach.

Currently within the Apalachicola River Wildlife and Management Area there are 24 cultural sites, 13 historic and 11 prehistoric. However, none of the proposed sites occur within the project area (FWC 2002).

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

**Environmental Consequences**
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.70.5.4.3 **Infrastructure**

**Affected Resources**
Infrastructure for the purpose of this analysis includes both transportation and utility networks. Vehicle use (for both transportation and maintenance) constitutes the primary source of energy consumption in the vicinity of the proposed project area, primarily stemming from SR 65. The proposed project would not prevent access to any known energy resources in the project vicinity, such as coal, oil, or natural gas. The project would have no such impacts on the availability of these resources.

**Environmental Consequences**
Construction of parking lots and enhancements to existing trails would lead to long-term beneficial impacts to existing transportation infrastructure. Based on the nature of proposed improvements there would be no additional public utility requirements because project components would not require utilities. A construction phase solid waste management plan would be implemented to manage the collection, recycling, and disposal of all construction and demolition waste and non-construction related waste generated during construction activities.

12.70.5.4.4 **Land and Marine Management**

**Affected Resources**
The area surrounding the proposed project site is primarily void of development and consists of forests and shoreline. The proposed project area is currently used for recreational activities.

**Environmental Consequences**
Improvements to access and the enhancement of recreational activities at Cash Bayou would alter existing land management because the site would change from undeveloped to developed. However, the development of the site would not affect land and marine management because the site is already
approved for recreational use; project plans would not change the nature of land use or management but would improve the function of the existing site, resulting in no impacts. Trail enhancements at Sand Beach would not alter existing land use at the site because it already is used for recreational activities, and as a result no impacts would occur.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

12.70.5.4.5 Aesthetics and Visual Resources

Affected Resources
The project area can be described as undeveloped and primarily consists of wetlands and existing vegetation. The topography of the area is flat to gently sloping and the existing landscape in the vicinity of the proposed project areas is characterized by a mosaic of marsh wetlands with patches of mature coastal forest. There are no designated protected viewsheds in the vicinity of the project site.

Environmental Consequences
Temporary impacts to visual resources would result from construction of the proposed project components. Large construction equipment such as backhoes removal would temporarily obstruct the views for visitors and recreational users at the site. These short-term construction-related impacts to visual resources would be minor.

12.70.5.4.6 Tourism and Recreational Use

Affected Resources
The proposed project area is a public site that provides opportunities for recreation, including use of the recreational path and fishing. While, the site is currently accessed by the public, exact visitation is not known because visitor counts and monitoring are not conducted (FWC 2002).

Environmental Consequences
During the construction period, recreational experience would be impacted from noise and visual disturbances associated with the use of heavy equipment. While these temporary inconveniences would result in minor short-term impacts on tourism and recreational use of the project area during the construction at the project areas, it is not anticipated that these impacts would be substantial because visitor use of the site as it currently exists is not substantive. Over the long-term, it is expected that the development of enhanced recreation activities would result in a long-term beneficial impact to overall visitor experience as a result of improved access to the sites, improved viewsheds, and an overall improved recreational experience.
Public Health and Safety and Shoreline Protection

Affected Resources
No hazardous materials currently exist at the project site where the potential for human exposure to natural or man-made hazards does not present a substantial risk. The project area is situated along an area of stable coastline not prone to significant shoreline erosion under normal conditions. Other natural hazards do not occur in any great abundance within the boundaries of the park.

Environmental Consequences
No hazardous wastes would be created during restoration and construction activities. All hazardous materials handled during construction including paints, solvents, chemicals, and petroleum products would be contained, and appropriate barriers would be in place to ensure the protection of adjacent water resources from potential spills and leaks. In the event of a discharge of oil or release of hazardous substances, all spills would be reported to the FDEP and all federal and state regulations would be followed during the cleanup. BMPs in accordance with the Occupational Safety and Health Administration (OSHA) and state and local requirements would be incorporated into construction activities to ensure proper handling, storage, transport and disposal of all hazardous materials. All waste generated during construction would be disposed of in the appropriate waste or recycling receptacles on-site would be taken off-site and disproved in an approved waste disposal site by the construction contractor. All occupational and safety regulations would be followed to ensure safety of all workers and the public. Construction and construction related activities would lead to the development of areas that are currently maintained as natural habitat. During construction, soil and sediment stabilization measures would be incorporated into project design as needed in areas where the potential for erosion exists in order to protect resources and public health and safety. No adverse impacts to public health and safety are anticipated as a result of this construction of this project.

Summary and Next Steps
The Apalachicola River Wildlife and Environmental Area Fishing and Wildlife Viewing Access Improvements: Sand Beach project would improve public access at Sand Beach in the Apalachicola River Wildlife and Environmental Area. The proposed improvements include constructing a boardwalk. The Apalachicola River Wildlife and Environmental Area Fishing and Wildlife Viewing Access Improvements Cash Bayou project would improve public access at Cash Bayou in the Apalachicola River Wildlife and Environmental Area. The proposed improvements include constructing a fishing and wildlife observation structure and parking area. These projects are consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts may occur to some resource categories, no moderate to major adverse impacts are anticipated to result. These projects would enhance and/or increase recreational use and wildlife viewing opportunities by improving access to the wildlife and environmental area. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.
12.70.7 References


2001. Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat. August.


CHAPTER 12: PROPOSED PHASE III EARLY RESTORATION PROJECTS: FLORIDA (continued)

12.71 Navarre Beach Park Coastal Access and Dune Restoration: Project Description ............................................. 1
   12.71.1 Project Summary............................................................................................................................................ 1
   12.71.2 Background and Project Description ........................................................................................................... 1
   12.71.3 Evaluation Criteria ....................................................................................................................................... 1
   12.71.4 Performance Criteria, Monitoring and Maintenance .................................................................................... 3
   12.71.5 Offsets......................................................................................................................................................... 4
   12.71.6 Costs............................................................................................................................................................ 4

12.72 Navarre Beach Park Gulfside Walkover Complex: Project Description .............................................................. 5
   12.72.1 Project Summary............................................................................................................................................ 5
   12.72.2 Background and Project Description ........................................................................................................... 5
   12.72.3 Evaluation Criteria ....................................................................................................................................... 6
   12.72.4 Performance Criteria, Monitoring and Maintenance .................................................................................... 6
   12.72.5 Offsets......................................................................................................................................................... 7
   12.72.6 Costs............................................................................................................................................................ 7

12.73 Navarre Beach Park Gulfside Walkover Complex, Coastal Access and Dune Restoration:
   Environmental Review ............................................................................................................................................... 8
   12.73.1 Introduction and Background ....................................................................................................................... 8
   12.73.2 Project Location .......................................................................................................................................... 9
   12.73.3 Construction and Installation .................................................................................................................... 13
   12.73.4 Operations and Maintenance .................................................................................................................... 19
   12.73.5 Affected Environment and Environmental Consequences ....................................................................... 19
   12.73.5.5 Noise ....................................................................................................................................................... 27
   12.73.6 Summary and Next Steps ............................................................................................................................ 46
   12.73.7 References ................................................................................................................................................. 46

12.74 Gulf Breeze Wayside Park Boat Ramp: Project Description ................................................................................. 51
   12.74.1 Project Summary............................................................................................................................................ 51
   12.74.2 Background and Project Description ........................................................................................................... 51
   12.74.3 Evaluation Criteria ....................................................................................................................................... 52
12.79 Norriego Point Restoration and Recreation Project: Environmental Review

12.79.1 Introduction and Background ................................................................. 119
12.79.2 Project Location ................................................................................. 119
12.79.3 Construction and Installation ............................................................... 120
12.79.4 Operations and Maintenance ............................................................... 125
12.79.5 Affected Environment and Environmental Consequences .................. 125
12.79.6 Summary and Next Steps ...................................................................... 145
12.79.7 References ......................................................................................... 146

12.80 Deer Lake State Park Development: Project Description

12.80.1 Project Summary ................................................................................... 149
12.80.2 Background and Project Description .................................................... 149
12.80.3 Evaluation Criteria .............................................................................. 151
12.80.4 Performance Criteria, Monitoring and Maintenance ......................... 151
12.80.5 Offsets ............................................................................................... 152
12.80.6 Costs .................................................................................................. 152

12.81 Deer Lake State Park Development: Environmental Review

12.81.1 Introduction and Background ............................................................... 153
12.81.2 Project Location ................................................................................... 154
12.81.3 Construction and Installation ............................................................... 157
12.81.4 Operations and Maintenance ............................................................... 161
12.81.5 Affected Environment and Environmental Consequences .................. 161
12.81.6 Summary and Next Steps ...................................................................... 187
12.81.7 References ......................................................................................... 188

12.82 City of Parker- Oak Shore Drive Pier: Project Description

12.82.1 Project Summary ................................................................................... 192
12.82.2 Background and Project Description .................................................... 192
12.82.3 Evaluation Criteria .............................................................................. 193
12.82.4 Performance Criteria, Monitoring and Maintenance ......................... 193
12.82.5 Offsets ............................................................................................... 194
12.82.6 Costs .................................................................................................. 194

12.83 City of Parker- Oak Shore Drive Pier: Environmental Review

iii
12.84 Panama City Marina Fishing Pier, Boat Ramp, and Staging Docks: Project Description 222
12.84.1 Project Summary 222
12.84.2 Background and Project Description 222
12.84.3 Evaluation Criteria 223
12.84.4 Performance Criteria, Monitoring and Maintenance 223
12.84.5 Offsets 224
12.84.6 Costs 224

12.85 Panama City Marina Fishing Pier, Boat Ramp, and Staging Docks: Environmental Review 225
12.85.1 Introduction and Background 225
12.85.2 Project Location 227
12.85.3 Construction and Installation 229
12.85.4 Operations and Maintenance 236
12.85.5 Affected Environment and Environmental Consequences 236
12.85.6 Summary and Next Steps 255
12.85.7 References 255

12.86 Wakulla Mashes Sands Park Improvements: Project Description 259
12.86.1 Project Summary 259
12.86.2 Background and Project Description 259
12.86.3 Evaluation Criteria 260
12.86.4 Performance Criteria, Monitoring and Maintenance 261
12.86.5 Offsets 262
12.86.6 Costs 262

12.87 Wakulla Mashes Sands Park Improvements: Environmental Review 263
12.87.1 Introduction and Background 263
12.87.2 Project Location 263
12.87.3 Construction and Installation 264
12.87.4 Operations and Maintenance ................................................................. 270
12.87.5 Affected Environment and Environmental Consequences ...................... 270
12.87.6 Summary and Next Steps ...................................................................... 290
12.87.7 References .......................................................................................... 290

12.88 NW Florida Estuarine Habitat Restoration, Protection and Education: Fort Walton Beach: Project Description ........................................................................ 295
12.88.1 Project Summary ................................................................................... 295
12.88.2 Background and Project Description ...................................................... 295
12.88.3 Evaluation Criteria ................................................................................ 296
12.88.4 Performance Criteria, Monitoring and Maintenance .............................. 297
12.88.5 Offsets .................................................................................................. 298
12.88.6 Costs ..................................................................................................... 298

12.89 NW Florida Estuarine Habitat Restoration, Protection and Education: Fort Walton Beach: Environmental Review ............................................................... 299
12.89.1 Introduction and Background ................................................................ 299
12.89.2 Project Location .................................................................................... 300
12.89.3 Construction and Installation ................................................................. 303
12.89.4 Operations and Maintenance ................................................................ 305
12.89.5 Affected Environment and Environmental Consequences .................. 305
12.89.6 Summary and Next Steps .................................................................... 326
12.89.7 References .......................................................................................... 326

12.90 Cumulative Impacts .................................................................................. 331

12.91 Beach Enhancement Project at Gulf Islands National Seashore - Cumulative Impacts Analysis. 416
12.91.1 Introduction ........................................................................................ 416
12.91.2 Physical Environment ......................................................................... 420
12.91.3 Biological Environment - Living Coastal and Marine Resources .......... 425
12.91.3.1 Potential Impacts to Coastal and Submerged Aquatic Vegetation ....... 425
12.91.3.2 Potential Impacts to Marine and Estuarine Fauna, including Related Protected Species and Critical Habitats .................................................. 430
12.91.3.3 Potential Impacts because of Non-Native Species ......................... 432
12.91.4 Human Uses and Socioeconomics ....................................................... 433
12.91.4.1 Potential Impacts to Cultural Resources ......................................... 436
12.91.4.2 Potential Impacts to Infrastructure .................................................. 437
12.91.4.3 Potential Impacts to Land and Marine Management ........................ 438
12.91.4.4 Potential Impacts to Aesthetics and Visual Resources ........................................ 440
12.91.4.5 Potential Impacts to Tourism and Recreational Use ........................................ 441
12.91.4.6 Potential Impacts to Public Health and Safety and Shoreline Protection .......... 443

12.92 Ferry Purchase (and Dock Facility Improvements) Project at Gulf Islands National Seashore - Cumulative Impacts Analysis ................................................................. 446
12.92.1 Introduction ........................................................................................................ 446
12.92.2 Physical Environment ....................................................................................... 450
12.92.2.1 Potential Impacts to Geology and Substrates .............................................. 450
12.92.2.2 Potential Impacts to Hydrology, Water Quality, and Floodplains ............... 450
12.92.2.3 Potential Impacts to Air Quality and Greenhouse Gas Emissions ............... 452
12.92.2.4 Potential Impacts to Noise/Natural Soundscape ......................................... 455
12.92.3 Biological Environment - Living Coastal and Marine Resources .................. 457
12.92.3.1 Potential Impacts to Coastal and Submerged Aquatic Vegetation ............... 457
12.92.3.2 Potential Impacts to Terrestrial Wildlife Species, Migratory Birds, Bald Eagles, Protected Terrestrial Species, and Critical Terrestrial Habitats .............................. 458
12.92.3.3 Potential Impacts to Marine and Estuarine Fauna, including Related Protected Species and Critical Habitats ............................................................... 459
12.92.3.4 Potential Impacts because of Non-Native Species ...................................... 462
12.92.4 Human Uses and Socioeconomics ................................................................ 463
12.92.4.1 Potential Impacts to Socioeconomics and Environmental Justice ................ 463
12.92.4.2 Potential Impacts to Cultural Resources ...................................................... 466
12.92.4.3 Potential Impacts to Infrastructure ............................................................... 467
12.92.4.4 Potential Impacts to Land and Marine Management ................................... 468
12.92.4.5 Potential Impacts to Aesthetics and Visual Resources ................................ 470
12.92.4.6 Potential Impacts to Tourism and Recreational Use ................................... 472
12.92.4.7 Potential Impacts to Public Health and Safety and Shoreline Protection .... 474
12.71 Navarre Beach Park Coastal Access and Dune Restoration: Project Description

12.71.1 Project Summary
The proposed Navarre Beach Park Coastal Access project would improve access for the public seeking to access the beach and water of Santa Rosa Sound from the existing pavilion/parking lot areas. In addition, construction of a new canoe/kayak launch would increase access opportunities to the waters of the sound for recreational boaters. The enhancement of the recreational experience from these infrastructure improvements would also be complemented by the restoration of a roughly 1 acre parcel of degraded dune habitat in the project area. The estimated cost for this project is $614,630.

12.71.2 Background and Project Description
The Trustees propose to enhance the Navarre Beach Park in Santa Rosa County (See Figure 12-1 for the project location and Figure 12-2 for a conceptual design of the proposed project highlighting the new access structures and the area for dune restoration). The objective of the Navarre Beach Park Coastal Access project is to enhance and/or increase recreational boating and beach use opportunities by constructing new infrastructure for recreational opportunities. The restoration work proposed includes construction of two new beach access boardwalks from existing pavilion/parking lot areas to the Santa Rosa Sound. Additionally, a new kayak/canoe launch and boardwalk would be constructed to increase opportunities/access for recreational boating in the waters of the Sound. The project would also restore a roughly 1 acre area of degraded dune habitat to enhance the recreational experience by helping return the area to a more natural state. This restoration would involve planting gaps in the existing dune within the project area. All plants will be grown from seeds or cuttings from the Alabama or North Florida coast to ensure appropriate genetic stocks are used in the project.

12.71.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Navarre Beach Coastal Access project is intended to enhance and/or increase recreational boating and beach use opportunities by constructing new infrastructure for recreational opportunities. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Agencies have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.
A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.72, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.72 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Figure 12-1. Location of Florida Navarre Beach Park coastal access project.
Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Florida Navarre Beach Park Coastal Access project also meets Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area that was impacted by SCAT and response activities, including boom deployment.

12.71.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational boating and beach use opportunities by constructing new infrastructure for recreational opportunities. Performance monitoring will evaluate: 1) the construction of the two new beach access boardwalk; 2) the construction of a new canoe/kayak boat launch facility and boardwalk; and 3) the restoration of approximately 1 acre of degraded beach dune habitat. Specific success criteria include: 1) the completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the new visitor use infrastructure is open and available.
Long-term monitoring and maintenance of the improved facilities will be completed by Santa Rosa County as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by Santa Rosa County.

During the one year construction performance period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the construction performance monitoring period, Santa Rosa County will monitor the recreational use activity of the site. Santa Rosa County will visit the site twice a year to count the number of users at the boardwalks and the canoe/kayak launching facility. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.71.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $1,229,260 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.¹

12.71.6 Costs
The total estimated cost to implement this project is $614,630. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---

¹ For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.72 Navarre Beach Park Gulfside Walkover Complex: Project Description

12.72.1 Project Summary
The proposed Navarre Beach Park Gulfside Walkover Complex project would enhance access to the shoreline at Navarre Beach Park to enhance recreational use of the natural resources. The proposed improvements include constructing an entrance, driveway, and parking area; constructing a restroom facility; constructing pavilions with boardwalk connections; lifeguard tower; and constructing a dune walkover that will provide access to the beach. The total estimated cost of the project is $1,221,847.

12.72.2 Background and Project Description
The Trustees propose to improve public access to the beach and allow more visitors to enjoy access to the shoreline at Navarre Beach Park in Santa Rosa County (see Figure 12-3 for general project location). The objective of the Navarre Beach Park Gulfside Walkover Complex project is to enhance and/or increase recreational beach use opportunities by improving beach access. The restoration work proposed includes constructing an entrance, driveway, and parking area; constructing a restroom facility; constructing pavilions with boardwalk connections; lifeguard tower; and constructing a dune walkover that will provide access to the beach.

Figure 12-3. Location of Navarre Beach Park Gulfside Walkover Complex project.
12.72.3 Evaluation Criteria

This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Navarre Beach Park Gulfside Walkover Complex project is intended to enhance and/or increase recreational beach use opportunities by improving beach access. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Florida counties have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.72, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.72 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Navarre Beach Park Gulfside Walkover Complex project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.72.4 Performance Criteria, Monitoring and Maintenance

As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational beach use opportunities by improving beach access. Performance monitoring will evaluate: 1) the construction of an entrance, driveway, and parking area; 2) the construction of a restroom facility; 3) the construction of pavilions with boardwalk connections; 4) construction of a lifeguard tower; and 5) the construction a dune walkover that will provide access to the beach. Specific success criteria include: 1) the completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources,
which will be determined by observation that the walkover complex and associated facilities are open and available.

Long term monitoring and maintenance of the improved facilities will be completed by Santa Rosa County as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be assumed by Santa Rosa County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Santa Rosa County will monitor the recreational use activity at the site. Santa Rosa County staff will visit the site twice a year to count the number of users at the park walkover complex. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.72.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $2,443,694 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.²

12.72.6 Costs
The total estimated cost to implement this project is $1,221,847. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---
² For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.73 Navarre Beach Park Gulfside Walkover Complex, Coastal Access and Dune Restoration: Environmental Review

The proposed Navarre Beach Marine Park projects would construct and restore infrastructure to increase and improve opportunities for the public to safely access coastal resources affected by the Deepwater Horizon oil spill.

12.73.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit, while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf Coast in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully, address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement, the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III ERP. This marine park project was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the state of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and Oil Pollution Act (OPA), the project meets Florida criteria that Early Restoration projects occur in the eight-county panhandle area that deployed boom and was impacted by the Spill.

Because of the loss of recreational opportunities for both local residents and tourists as a result of the oil spill, the project in this proposal provides for enhancement of current public access to the gulf beach and sound by protecting dunes and improving infrastructure at Navarre Beach in Santa Rosa County, Florida.

This project has two components, as described below:

Santa Rosa Sound Coastal Access and Dune Restoration Project: The Santa Rosa Sound Coastal Access and Dune Restoration Project would improve infrastructure, restore dune habitat, and increase access to recreation opportunities in Navarre Beach Marine Park on the Santa Rosa Sound side of the park (north side). The project would include design, permitting, and construction of two new beach access boardwalks from existing pavilions and a new canoe and kayak launch and boardwalk on Santa Rosa Sound. This project would improve park infrastructure for visitors and increase access opportunities to the waters of the sound for recreational boaters. Lastly, the enhancement of the recreational experience would be complemented by the restoration of five patches of degraded dune habitat in the project area totaling approximately 1 acre.
Gulfside Walkover Complex Coastal Access Project: The Gulfside Walkover Complex Coastal Access Project would create new infrastructure and increase access to recreation areas in Navarre Beach Marine Park on the Gulf of Mexico side of the park (south side). The project would involve design, permitting, and construction of a dune walkover complex, which would include a driveway, parking area, restroom facility, lifeguard tower, and three pavilions with boardwalk connections to a dune walkover with access to the shoreline of the Gulf of Mexico. The project would improve public access to the beach and allow more visitors to safely access the shoreline in a convenient location.

12.73.2 Project Location
The proposed project area is located in the state of Florida, on Navarre Beach Marine Park, Santa Rosa Island, Santa Rosa County (Figure 12-4). Navarre Beach Marine Park is a county-owned and operated park. Figure 12-5 shows an aerial view of Navarre Beach Marine Park, while Figure 12-6 shows existing facilities at the park and Figure 12-7 and Figure 12-5 show conceptual designs for the proposed improvement projects at Navarre Beach Marine Park.

Figure 12-4. Navarre Beach Marine Park vicinity map.
Figure 12-5. Navarre Beach Marine Park aerial photo.
Figure 12-6. Navarre Beach Marine Park and existing facilities on Santa Rosa Island, Florida.
Figure 12-7. Conceptual plan for proposed soundside access improvements at Navarre Beach Marine Park on the Santa Rosa Sound.
Figure 12-8. Conceptual plan for the proposed gulfside walkover complex structures at Navarre Beach Marine Park on the Gulf of Mexico side.

12.73.3 Construction and Installation
Conceptual plans have been developed for the construction of and improvements to infrastructure described below for each project elements.

Santa Rosa Sound Coastal Access and Dune Restoration Project
Santa Rosa Sound Coastal Access and Dune Restoration Project would improve infrastructure, restore dune habitat, and increase access to recreation opportunities in Navarre Beach Marine Park on the Santa Rosa Sound side of the park (north side). The project would include design, permitting, and construction of two new beach access boardwalks from existing pavilions and a new canoe and kayak launch and boardwalk on Santa Rosa Sound. This project would improve park infrastructure for visitors and increase access opportunities to the waters of the sound for recreational boaters. Lastly, the enhancement of the recreational experience would be complemented by the restoration of five patches of degraded dune habitat in the project area totaling approximately 1 acre (see Figure 12-8 above for the conceptual plan for the work to be addressed as part of this action).
As part of this effort, signage will be posted at the Santa Rosa sound side information kiosks and the canoe/kayak launch and the adjacent piping plover critical habitat that describes how visitors should avoid impacts to piping plovers and their critical habitat. If USFWS or FWC determines visitors are impacting piping plovers areas of high use will need to be roped and posted to prevent visitor access. Further, in areas identified in surveys where piping plovers and red knots congregate from August through May an exclusion zone will be placed around the birds and no work can occur within 150 feet of the exclusion zone until the birds move on their own.

The proposed dune restoration component of this action would involve planting native dune vegetation where there are gaps in the existing vegetation in the project area. Current estimates are that approximately 4,000 plants would be planted. Among the species to be planted are: *Uniola paniculata* (sea oats), *Panicum amarum* (panic grass), *Iva imbricata* (Dune elder), *Scoparium littorale* (blue steam), and potentially others. All plants would be grown from seeds or cuttings from the Alabama or North Florida coasts to ensure appropriate genetic stocks are used in the project. The planting of dune vegetation over approximately one acre would require some soil/sand removal to place the plants (e.g., following use of a hand auger) but excavated material would be incorporated on site to help support the plantings. Equipment associated with planting may be placed temporarily on sand near the dunes but not within the dunes. No movement of sand is envisioned for the planting project, but sand fencing may be installed to protect the plants for dune restoration purposes. Appropriate signs to designate and indicate the purpose of the conservation area may be used if necessary. If dunes are impacted during the proposed project, they shall be restored by planting the appropriate vegetation or installing sand fence. All dune vegetation to be used in dune restoration shall be native to the specific County dunes and grown from northwest Florida plant stock. If seedlings are to be planted, they shall be at least 1 inch by 1 inch with a 2.5-inch pot. Vegetation shall be planted with an appropriate amount of fertilizer and anti-desiccant material, as appropriate, for the plant size. Planting must be on 18-inch centers throughout the dune; however, 24-inch centers may be acceptable depending on the area to be planted. No irrigation lines or pipes shall be installed.

The extent of the in-water work with this component of the project is limited to the construction of the new canoe-kayak launch. Final project plans, including plans for this launch have not been developed. However, the conceptual designs in Figure 12-7 indicate this launch could be 120 feet long based on the relative length of the pier to structures that are already in place and measurable (e.g., the parking lot). A maximum of 30 piles would be required to construct this dock. These piles, which would be a maximum 8” diameter and made of wood, would be placed using water jetting or mechanical auguring. Final design and location of the pier would reflect, among other things, the results of a submerged aquatic vegetation (SAV) survey in the potential placement areas. This survey typically involves an initial review of aerial photos and existing seagrass maps. Initial results are then confirmed with an onsite visual survey typically conducted from a boat. In areas with visibility issues the assessment may involve attaching a small rake head to a line and dragging it through the area of interest to see if seagrasses are present. Snorkel assessments would then be used to verify results. Should SAV be identified in the potential project area where pilings would need to be placed, the conditions in the *Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat* (U.S. Army Corps of Engineers/National Marine Fisheries
Service, 2001) would be implemented. Among other elements this would require pilings for the canoe/kayak launch be placed a minimum of 10 feet apart.

During all in-water construction activity, the conditions and guidelines of the *Sea Turtle and Smalltooth Sawfish Construction Conditions* (NOAA, 2006) would be implemented and adhered to. Significant aspects of these provisions include stopping operation of any equipment if sea turtles or smalltooth sawfish come within 50 feet of the equipment until the time when animals leave the project area of their own volition. In-water work would be completed using shallow draft workboats – generally skiffs less than 20 feet long. The maximum in-water period of work to place the pilings and initial cross members for the dock would be 3 months.

**Gulfside Walkover Complex Coastal Access Project**

The Gulfside Walkover Complex Coastal Access Project would create new infrastructure and increase access to recreation areas in Navarre Beach Marine Park on the Gulf of Mexico side of the park (south side). The project would involve design, permitting, and construction of a dune walkover complex, which would include a driveway, parking area, restroom facility, lifeguard tower, and a new pavilion. There are two dune walkover complexes already on site, with boardwalk connections to a dune walkover with access to the shoreline of the Gulf of Mexico. The project would improve public access to the beach and allow visitors to safely access the shoreline in a convenient location. Figure 12-8 provides a revised conceptual plan for this action based on a site visit conducted in mid-February 2014 to review different options for providing the desired increase in Gulfside access facilities while minimizing impacts to wildlife.

Construction of the dune walkover complex would require the disturbance of several feet of soil depth. Pilings would need to be placed to support the new boardwalks, dune walkover, and kayak/canoe launch. Pilings would most likely be placed by mechanically auguring holes (using a bobcat-mounted auger) to place pre-formed pilings or place forms that would be filled with pumped concrete to produce new pilings. The depth of ground disturbance for this activity could be several feet for pilings and other structures placed to support the access boardwalk and kayak/canoe launch. The footprint of the disturbed area would depend on final design. Crossover construction would also follow and comply with the guidance in *Conservation Measures for Dune Walkover Construction* (USFWS, 2013).

The Florida Department of Environmental Protection (FDEP) and Santa Rosa County would build on experience with similar efforts, both in the state and at neighboring sites within Navarre Beach Marine Park, to ensure successful design and construction of the project. The proposed project would employ accepted protocols and BMPs in construction of a dune walkover complex, a driveway, parking area, restroom facility, lifeguard tower, pavilions, kayak/canoe launch, and beach access boardwalks. See Table 12-1 for the proposed construction footprint and lengths of boardwalks adapted from the conceptual designs shown in Figure 12-7 and Figure 12-8.
Table 12-1. Proposed Navarre Beach Marine Park construction footprint detail.

<table>
<thead>
<tr>
<th>PROJECT AREA</th>
<th>INFRASTRUCTURE TYPE</th>
<th>LENGTH (FEET)</th>
<th>AREA (ACRES)</th>
<th>AREA (SQUARE FEET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Rosa Sound Side</td>
<td>Boardwalk</td>
<td>673</td>
<td>0.19</td>
<td>8,403</td>
</tr>
<tr>
<td>Santa Rosa Sound Side</td>
<td>Canoe Launch</td>
<td></td>
<td>0.01</td>
<td>542</td>
</tr>
<tr>
<td>Santa Rosa Sound Side</td>
<td>Educational Area</td>
<td></td>
<td>0.02</td>
<td>864</td>
</tr>
<tr>
<td>Santa Rosa Sound Side</td>
<td>Dune Restoration</td>
<td></td>
<td>1.0</td>
<td>43,560</td>
</tr>
<tr>
<td>Gulf Coast Side</td>
<td>Roadway and Parking</td>
<td>1.37</td>
<td>0.16</td>
<td>6,949</td>
</tr>
<tr>
<td>Gulf Coast Side</td>
<td>Dune Walkover and Boardwalk</td>
<td>848</td>
<td>0.16</td>
<td>6,949</td>
</tr>
<tr>
<td>Gulf Coast Side</td>
<td>Restroom</td>
<td></td>
<td>0.04</td>
<td>1,957</td>
</tr>
<tr>
<td>Gulf Coast Side</td>
<td>Pavilion</td>
<td></td>
<td>0.05</td>
<td>2,185</td>
</tr>
<tr>
<td>Gulf Coast Side</td>
<td>Pavilion</td>
<td></td>
<td>0.03</td>
<td>1,254</td>
</tr>
<tr>
<td>Gulf Coast Side</td>
<td>Pavilion</td>
<td></td>
<td>0.00</td>
<td>107</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1,521</td>
<td>2.93</td>
<td>127,769</td>
</tr>
</tbody>
</table>

A range of hand tools and mechanized equipment would likely be used to complete construction of the access boardwalks and kayak/canoe launch areas. New pilings would need to be placed for the boardwalk and kayak/canoe launch. Plants would be placed at the dune restoration sites; methods used would likely be standard planting methods and would likely not involve significant disturbance or placement of permanent structures. Heavier equipment such as backhoes, graders, or other earth-moving equipment may be required for construction of access roads, a parking lot, pavilions, and dune walkover structures.

Assumed equipment usage and manpower requirements are detailed in Table 12-2.

Table 12-2. Assumed equipment usage and worker needs.

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>NO. OF DAYS USED</th>
<th>NO. OF WORKER DAYS</th>
<th>ASSUMPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dump truck</td>
<td>10</td>
<td>10</td>
<td>One week excavation; one week paving</td>
</tr>
<tr>
<td>Flatbed truck</td>
<td>52</td>
<td>52</td>
<td>One trip per week for 12 months</td>
</tr>
<tr>
<td>Concrete truck</td>
<td>5</td>
<td>5</td>
<td>One week use</td>
</tr>
<tr>
<td>Pickup truck</td>
<td>792</td>
<td>792</td>
<td>Three pickups per day for 12 months</td>
</tr>
<tr>
<td>Bobcat</td>
<td>20</td>
<td>20</td>
<td>One week excavation; one week paving; one week boardwalk work, one week dune work</td>
</tr>
<tr>
<td>Grader</td>
<td>5</td>
<td>5</td>
<td>One week grading</td>
</tr>
<tr>
<td>Paving machine</td>
<td>5</td>
<td>5</td>
<td>One week paving</td>
</tr>
<tr>
<td>Roller</td>
<td>5</td>
<td>5</td>
<td>One week paving</td>
</tr>
<tr>
<td>Trackhoe</td>
<td>5</td>
<td>5</td>
<td>One week excavation</td>
</tr>
<tr>
<td>Dozer</td>
<td>10</td>
<td>10</td>
<td>One week excavation; one week grading</td>
</tr>
<tr>
<td>Forklift</td>
<td>52</td>
<td>52</td>
<td>One delivery per week for 12 months</td>
</tr>
</tbody>
</table>

At least 10 small tools (e.g., nail guns, saws, drills) would be needed and would be operated approximately 8 hours per day, 5 days per week, for up to 12 months. A generator would be needed to power the small tools, which would operate for about 8 hours per day, 5 days per week, for up to 12 months.
Construction materials would be staged for building the boardwalk and boat launch. Construction materials will be staged in nearby developed/paved areas (e.g., existing parking lots to minimize habitat disturbance). As construction work proceeds, project areas may be isolated by construction fencing to prevent incidental access. This fencing material would be placed by hand-driving (e.g., with a sledge hammer or post driver) stakes as necessary. This fencing would be removed as soon as access controls are no longer required for an area.

12.73.3.1  Best Management Practices and Conservation Measures

The following conservation measures for dune walkover construction would be implemented at each site:

- **Boardwalks.** Dune walkover shall be constructed at a height (minimum 3 feet above grade) that will accommodate natural dune growth and associated vegetation.
- **Equipment storage.** No storage of equipment or materials shall occur on the beach or dunes throughout the entire year.
- **Sand fence.** Minimal use of sand fences is encouraged. When used, the fence must be used for restoration of dune blowouts. Post and rope are preferred for beach visitor access, pedestrian traffic control, and wildlife exclusion zones (i.e., bird wintering areas). If used for dune restoration, any fence shall be placed in a sea turtle–compatible design and be made of biodegradable material.
- **Dune protection.** No activity, except as needed to repair the walkover, shall occur on existing healthy dunes during any time of the year. Limit activities in this area to maintenance and restoration of the habitat. Use appropriate signs to designate and indicate the purpose of the conservation area, if necessary. If dunes are impacted, they should be restored by planting the appropriate vegetation or installing a sand fence.
- **Native landscaping.** Maximize the habitat quality of all non-developed areas and connect the habitats by landscaping with native dune plants. The landscaping plan should be reviewed and approved by the US Fish and Wildlife Service. A native plant list and a nursery supplier list have been provided.
- **Dune vegetation.** All dune vegetation to be used in dune restoration shall be native to the specific county dunes and grown from northwest Florida plant stock. Vegetation shall be planted with an appropriate amount of fertilizer (if needed) and anti-desiccant material, as appropriate, for the plant size. Planting must be on 18-inch centers throughout the created dune; however, 24-inch centers may be acceptable depending on the area to be planted. No irrigation lines or pipes shall be installed.
- **Refuse.** Install and maintain sturdy animal-proof garbage containers to prevent the invasion of house mice and predators (such as cats, raccoons, fox, and coyotes).
- **Lighting.** No lighting shall be used on the dune walkover.

In addition, Florida Administrative Rule 62B-41.007, “Design, Siting and Other Requirements,” requires additional measures to protect beaches and dunes, as described below:

To protect the environmental functions of Florida’s beaches, only beach compatible fill shall be placed on the beach or in any associated dune system. Beach compatible fill is material that maintains the general character and functionality of the material occurring on the beach and in the adjacent dune and
coastal system. Such material shall be predominately of carbonate, quartz or similar material with a particle size distribution ranging between 0.062mm (4.0\(\times\)) and 4.76mm (-2.25\(\times\)) (classified as sand by either the Unified Soils or the Wentworth classification), shall be similar in color and grain size distribution (sand grain frequency, mean and median grain size and sorting coefficient) to the material in the existing coastal system at the disposal site and shall not contain:

1) Greater than 5 percent, by weight, silt, clay or colloids passing the #230 sieve (4.0\(\times\));
2) Greater than 5 percent, by weight, fine gravel retained on the #4 sieve (2.25\(\times\));
3) Coarse gravel, cobbles or material retained on the 3/4 inch sieve in a percentage or size greater than found on the native beach;
4) Construction debris, toxic material or other foreign matter; and
5) Not result in cementation of the beach.

If rocks or other non-specified materials appear on the surface of the filled beach in excess of 50% of background in any 10,000 square foot area, then surface rock should be removed from those areas. These areas shall also be tested for subsurface rock percentage and remediated as required. If the natural beach exceeds any of the limiting parameters listed above, then the fill material shall not exceed the naturally occurring level for that parameter.

In addition to construction BMPs and dune walkover conservation measures, the proposed sites are located within the “Coastal Construction Control Line” (CCCL). An essential part of Florida’s coastal management program, the CCCL program is designed to protect the coastal system from improperly sited and designed structures, which can erode, destabilize, or destroy the beach and dune system, with the overall goal of balancing development and the health of these natural systems (FDEP 2013a). The CCCL is defined as “that portion of the beach-dune system subject to severe fluctuations based on a 100-year storm surge, storm waves, or other forces such as wind, wave, or water level changes” (FDEP 2012b). The following environmental-related permit obligations/BMPs would be followed for the above referenced projects:

1) The contractor would use extreme care to prevent any adverse impacts to the beach and dune system, marine turtles, their nests, and habitat, or adjacent property and structures.
2) The construction would not result in removal or destruction of native vegetation that would either destabilize a frontal, primary, or significant dune or cause a significant adverse impact to the beach and dune system due to increased erosion by wind or water.
3) The construction would not direct discharges of water or other fluids in a seaward direction and in a manner that would result in significant adverse impacts. For the purposes of this rule section, construction shall be designed so as to minimize erosion-induced surface water runoff within the beach and dune system and to prevent additional seaward or off-site discharges associated with a coastal storm event.
4) Construction traffic shall not occur, and building materials shall not be stored on vegetated areas seaward of the control line unless specifically authorized by the permit.
5) The contractor shall not disturb existing beach and dune topography and vegetation except as expressly authorized in the permit, and would restore any disturbed topography or vegetation prior to completing the project.
6) All fill material placed seaward of the control line shall be sand that is similar in both coloration
and grain size to material already existing on the site.

7) The construction would not result in removal or disturbance of in situ sandy soils of the beach and dune system to such a degree that a significant adverse impact to the beach and dune system would result from either reducing the existing ability of the system to resist erosion during a storm or lowering existing levels of storm protection to upland properties and structures.

8) If not specifically authorized elsewhere in the permit, no operation, transportation, or storage of equipment or materials is authorized seaward of the dune crest or rigid coastal structure during the marine turtle nesting season. The marine turtle nesting season is May 1 through October 31 (FDEP 2012b).

12.73.3.2 Construction Time Frame
Preliminary design has been completed for the dune walkovers and canoe/kayak launch. Final design, permitting, and construction of the dune walkovers and canoe launch would take approximately 1 year. Implementation of the dune plantings could occur within 6 months. The following schedule is currently planned:

- Design Complete: Summer 2015
- Permitting Complete: FDEP/CCCL and any local permits would be obtained once funding is secured
- Contract Bid: Summer 2015
- Construction Start: Summer/Fall 2015
- Construction Complete: Summer/Fall 2016

12.73.4 Operations and Maintenance
Long-term monitoring and maintenance of the improved facilities would be completed by Santa Rosa County as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the project cost and would be provided by Santa Rosa County.

As part of the project cost, monitoring would be conducted to ensure project plans and designs have been correctly implemented. Performance monitoring would evaluate the construction of the dune walkover complex, boardwalks, boat ramp, and dune revegetation to ensure successful completion as designed and permitted. Post-construction performance monitoring in the restored dunes would initially focus on plant survival. Plants that do not survive to 90 days post-planting would be replaced. At least 80% of plants must survive after 6 months or replanting would occur.

Following the construction performance monitoring period, human use and activity at the site would be monitored through the local government’s regular maintenance activities. This assessment would not be directly undertaken by the Florida Trustees.

12.73.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.
12.73.5.1  **No Action**
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.73.5.2  **Physical Environment**

12.73.5.2.1  **Geology and Substrates**

**Affected Resources**
The proposed project area is located on a barrier island with a gently sloping sandy beach and dune system, between the Gulf of Mexico and the Santa Rosa Sound. Santa Rosa Sound is a waterway in the Pensacola Bay system connecting Pensacola Bay and Choctawhatchee Bay in Florida. The project area has a gently sloping sandy beach and dune system along the Gulf of Mexico side of Navarre Beach Marine Park, and a gently sloping sandy beach and dune system on the Santa Rosa Sound side.

According to the Geologic Map of Florida, Navarre Beach Marine Park is located on the Quaternary system, Holocene series, Holocene sediments stratigraphic unit. This stratigraphic unit consists of quartz sands, carbonate sands and muds, and organics. These sediments occur near the present coastline, typically at an elevation 5 feet above mean sea level (MSL) or lower. General soil map units show that the entire site is characterized as medium fine sand and silt (FDEP 2013b, 2013c).

The FDEP Bureau of Beaches and Coastal Systems identifies and manages beaches of the state that are critically eroding. Navarre Beach Marine Park is identified as a state-designated critically eroded beach. A critically eroded area is a “segment of the shoreline where natural processes or human activity have caused or contributed to erosion and recession of the beach or dune system to such a degree that upland development, recreational interests, wildlife habitat, or important cultural resources are threatened or lost” (FDEP 2012a). Navarre Beach is the only critically eroded area in Santa Rosa County, and its erosion threatens both development and recreational interests, prompting dune restoration projects following hurricanes in 1995 and 1998. A beach restoration project was completed in 2006 (FDEP 2012a).

**Environmental Consequences**
Mechanized equipment and hand tools would be used to complete the construction of the dune walkover complex, boardwalks, pavilions, kayak/canoe launch, driveway, parking area, plantings, and lifeguard tower. Permit-required erosion control measures would be implemented at all of the proposed sites, and contractors would use BMPs to control erosion, turbidity, and minimize compaction.

Some excavation of soils would occur; however, adverse impacts to geology and substrates in the form of erosion and/or compaction would be minor, as disturbance would be detectable but short-term and localized because of the limited construction period and footprint and due to adherence to the construction BMPs outlined in the Construction and Installation section above. Erosion and/or
compaction may occur in localized areas, but would be minimized by the erosion control BMPs specified above.

12.73.5.3  Hydrology and Water Quality

Affected Resources

Watersheds
Northwest Florida has seven major watersheds, all of which have been identified as priorities under the Surface Water Management and Improvement (SWIM) program. Water quality protection is the underlying goal of SWIM, along with the preservation and restoration of natural systems and associated public uses and benefits (Northwest Florida Water Management District[NFWMD] 2011). According to the Northwest Florida Water Management District Plan, the project area is part of the Pensacola Bay watershed system.

The Pensacola Bay watershed system includes three major river systems (Escambia, Blackwater, and Yellow Rivers), which discharge into the watershed’s major estuaries, which include Escambia Bay, Blackwater Bay, Pensacola Bay, Blackwater Bay, East Bay, and Santa Rosa Sound. The watershed encompasses approximately 450,000 acres, 30% of which are in the state of Florida. The system discharges to the Gulf of Mexico, primarily via Pensacola Bay. The watershed system has a rich history and supports an array of aquatic species, productive fisheries, aesthetic scenery, and considerable recreational opportunities over diverse ecological systems. It also provides important resources to commercial shipping and military activities. Broad issues for the Pensacola Bay watershed system include many years of point and nonpoint source pollution and habitat destruction. Cumulatively, these impacts have degraded the health and productivity of much of the Pensacola Bay system and have diminished the benefits it provides (NFWMD 2002).

Impaired Waters
Impaired waters are waters that are too polluted or otherwise degraded to meet the water quality standards set by states, territories, or authorized tribes. In 2002, 32% of Florida’s lakes and 84% of its bays were impaired. The Santa Rosa Sound is listed as impaired by the Environmental Protection Agency (EPA) for mercury in fish tissue. A total maximum daily load (TMDL) has not yet been adopted for the Santa Rosa Sound and is listed as being needed by the EPA (EPA 2010; FDEP 2013e).

Wetlands
According to the National Wetlands Inventory, the proposed construction and development sites do not appear to overlap any wetlands, but are bordered by various types of multiple small wetlands to the east (Santa Rosa County 2013b). Figure 12-9 shows wetlands near the project site.

Floodplains
According to Federal Emergency Management Agency(FEMA) flood information, the project site is located in flood zones AE and VE (FEMA 2013a). Based on FEMA flood insurance rate maps (Panel 12113C0588G), the project appears to be located primarily in Zone AE on the Santa Rosa Sound side, with the Gulfside located in Zone VE. Zone AE is categorized as a high-risk area, defined as areas with a 1% annual chance of flooding over the life of a 30-year mortgage. Zone VE is categorized as a high-risk
coastal area, with a 1% or greater chance of flooding and an additional hazard associated with storm waves. These areas have a 26% chance of flooding over the life of a 30-year mortgage (FEMA 2013b).

**Environmental Consequences**

With required mitigation in place, anticipated impacts to water quality, such as erosion caused by construction, would be minimal and short in duration at the proposed site. This project would use the construction BMPs outlined in the Construction and Installation section above to minimize erosion-related construction impacts as well as impacts to surface water, groundwater, and wetlands. Contractors would take special precautions when working within the CCCL and around coastal dune lake habitats. Floodplain status would not be affected. Adverse impacts to hydrology and water quality would therefore be minor and shortterm.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with the Navarre Beach Coastal Access and Dune Restoration project is currently being coordinated with the U.S. Army Corps of Engineers (USACE) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the USACE and final authorization pursuant to CWA/RHA will be completed prior to project implementation.
12.7.3.4 Air Quality and Greenhouse Gas Emissions

Affected Resources
The Clean Air Act (CAA) requires the EPA to set National Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to public health and the environment. NAAQS have been set for six common air pollutants (also known as criteria pollutants)—particle pollution or particulate matter, ozone, carbon monoxide, sulfur dioxide, nitrogen dioxide, and lead. Particulate matter is defined as fine particulates with a diameter of 10 micrometers or less (PM$_{10}$), and fine particulates with a diameter of 2.5 micrometers or less (PM$_{2.5}$). When a designated air quality area or airshed in a state exceeds a NAAQS, that area may be designated as a “nonattainment” area. Areas with levels of pollutants below the health-based standard are designated as “attainment” areas. To determine whether an area meets the NAAQS, air monitoring networks have been established and are used to measure ambient air.
quality. The EPA also regulates 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health effects.

Air quality in the Florida panhandle is in attainment with the NAAQS (EPA 2013).

**Greenhouse Gases**

Gases that trap heat in the air are called greenhouse gases (GHGs). The primary GHGs are carbon dioxide (CO$_2$), methane, nitrous oxide, and fluorinated gases. Over the past century, human activities have released large amounts of GHGs into the atmosphere, which are contributing to global warming. Global warming is defined as the ongoing rise in global average temperature near the Earth’s surface. Global warming is causing climate patterns to change.

According to the EPA, the average annual temperature in the southeast portion of the United States has increased by approximately 2.0 degrees Fahrenheit ($^\circ$F) since 1970. Winters, in particular, are getting warmer, and the average number of freezing days has decreased by 4 to 7 days per year since the mid-1970s. Most areas are getting wetter; autumn precipitation has increased by 30% since 1901 (EPA 2013). In many parts of the region, the number of heavy downpours has increased. Despite the increases in fall precipitation, the area affected by moderate and severe drought has increased since the mid-1970s (EPA 2013).

Average annual temperatures in the region are projected to increase from 4 to 9°F by 2080. Hurricane-related rainfall is projected to continue to increase. Models suggest that rainfall would arrive in heavier downpours, with increased dry periods between storms. These changes would increase the risk of both flooding and drought. The coasts would likely experience stronger hurricanes and sea level rise. Storm surge could present problems for coastal communities and ecosystems (EPA 2013).

Total GHG emissions in the state of Florida from 1990 to 2007 have increased at an average rate of 2.1% per year. Total GHG emissions in 2007 were 290 million metric tons of CO$_2$ equivalent (MMTCO$_2$E). In 2007, 91 percent of GHG emissions in Florida were CO$_2$ emissions (FDEP 2010).

**Environmental Consequences**

Project implementation would require the use of heavy mechanized equipment, which would lead to temporary air pollution (e.g., criteria pollutants, HAPs, GHGs) due to emissions from the operation of construction vehicles and equipment. Any air quality impacts (such as the release of ozone, carbon monoxide, sulfur dioxide, nitrogen dioxide, or particulate matter) that would occur would be measurable but minor as they would not exceed the NAAQS due their localized nature, short-term duration, and the small size of the project. Available BMPs would be employed to prevent, mitigate, and control potential air pollutants during project implementation. No air quality–related permits would be required.

The major pieces of construction equipment that would contribute to GHG emissions for this project are listed in Table 12-3, below, along with their estimated emissions. GHG emissions from the remaining (hand) equipment would be negligible. The emissions estimates are based on the operating assumptions in Table 12-2.
Based on the assumptions detailed in Table 12-3, the project would generate approximately 479 metric tons of GHGs over the duration of all phases. The following mitigation measures have been identified to reduce or eliminate GHG emissions from the project.

- Shut down idling construction equipment, if feasible.
- Locate staging areas as close to construction sites as practicable to minimize driving distances between staging areas and construction sites.
- Encourage the use of the proper size of equipment for the job to maximize energy efficiency.
- Encourage the use of alternative fuels for generators at construction sites, such as propane or solar, or use electrical power where practicable.

The project would have short-term, minor impacts but no long-term impacts on GHG emissions. Mitigation measures would minimize GHG emissions.

At the completion of the project, visitor use (and therefore vehicle use) could increase due to the improved access and facilities. Increased exhaust emissions could affect air quality over the long term. However, adverse impacts to air quality are expected to be minor because management actions could be taken if necessary to limit park visits, and because they would be negligible in the context of the total number of miles travelled in the regional airshed. In addition, park visitors would likely be parked for the duration of their visit, therefore only producing emissions when coming and going from the site.
Table 12-3. Greenhouse Gas impacts of the proposed project for major construction equipment.

<table>
<thead>
<tr>
<th>EQUIPMENT DESCRIPTION</th>
<th>TOTAL HOURS USED</th>
<th>CO₂ FACTOR- MT*/100 HRS</th>
<th>CO₂ (METRIC TONS)</th>
<th>CH₄** FACTOR- MT/100 HRS</th>
<th>CH₄ (MT)</th>
<th>N₂O*** FACTOR- MT/100 HRS</th>
<th>N₂O (MT)</th>
<th>TOTAL CO₂ (MT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dump Trucks/ Flatbed Truck</td>
<td>496</td>
<td>1.7</td>
<td>8.4</td>
<td>0.5</td>
<td>2.5</td>
<td>7.2</td>
<td>35.7</td>
<td>46.6</td>
</tr>
<tr>
<td>Concrete Trucks</td>
<td>40</td>
<td>1.7</td>
<td>0.7</td>
<td>0.5</td>
<td>0.2</td>
<td>7.2</td>
<td>2.9</td>
<td>3.8</td>
</tr>
<tr>
<td>Line Truck</td>
<td>-</td>
<td>1.25</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>5.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pickup Trucks</td>
<td>6,336</td>
<td>1.1</td>
<td>69.7</td>
<td>0.35</td>
<td>22.2</td>
<td>4.4</td>
<td>278.8</td>
<td>370.7</td>
</tr>
<tr>
<td>Bobcat (bare and with auger mount)</td>
<td>160</td>
<td>2.65</td>
<td>4.2</td>
<td>0.9</td>
<td>1.4</td>
<td>10.6</td>
<td>17.0</td>
<td>22.6</td>
</tr>
<tr>
<td>Moto Grader</td>
<td>40</td>
<td>2.25</td>
<td>0.9</td>
<td>0.65</td>
<td>0.3</td>
<td>1.08</td>
<td>0.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Milling Machine</td>
<td>-</td>
<td>2.55</td>
<td>0.0</td>
<td>0.85</td>
<td>0.0</td>
<td>10.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Paving Machine</td>
<td>40</td>
<td>2</td>
<td>0.8</td>
<td>0.5</td>
<td>0.2</td>
<td>8</td>
<td>3.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Rollers</td>
<td>40</td>
<td>2</td>
<td>0.8</td>
<td>0.5</td>
<td>0.2</td>
<td>8</td>
<td>3.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Trackhoe (with bucket/thumb or vibratory attachments)</td>
<td>40</td>
<td>2.55</td>
<td>1.0</td>
<td>0.85</td>
<td>0.3</td>
<td>10.2</td>
<td>4.1</td>
<td>5.4</td>
</tr>
<tr>
<td>Dozer</td>
<td>80</td>
<td>2.25</td>
<td>1.8</td>
<td>0.65</td>
<td>0.5</td>
<td>1.08</td>
<td>0.9</td>
<td>3.2</td>
</tr>
<tr>
<td>Forklift</td>
<td>416</td>
<td>2.25</td>
<td>9.4</td>
<td>0.65</td>
<td>2.7</td>
<td>1.08</td>
<td>4.5</td>
<td>16.6</td>
</tr>
<tr>
<td>Ditchwitch</td>
<td>-</td>
<td>0.75</td>
<td>0.0</td>
<td>0.35</td>
<td>0.0</td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Crane (bare and with clamshell attachment)</td>
<td>-</td>
<td>2.55</td>
<td>0.0</td>
<td>0.85</td>
<td>0.0</td>
<td>10.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tug Boat (8 trips)</td>
<td>-</td>
<td>65</td>
<td>0.0</td>
<td>20</td>
<td>0.0</td>
<td>260</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Georgia Buggies</td>
<td>-</td>
<td>1.35</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>5.75</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>7,688</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>479</strong></td>
</tr>
</tbody>
</table>

*mt = metric tons
**CH₄ = methane
***N₂O = nitrogen dioxide
12.73.5.5 Noise

Affected Resources
Noise can be defined as unwanted or nuisance sound. The Noise Control Act of 1972 (42 USC 4901 to 4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. Amplitude is the magnitude of a sound and is usually expressed in decibels (dB), a dimensionless ratio of sound pressure to a reference pressure. The A-weighted decibel (dBA) is the adjusted unit of sound used to describe the human response to noise from industrial and transportation sources. The threshold of hearing is 0 dB. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-4 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.

Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the project. Noise-sensitive receptors in the project area include tourists staying at hotels near the site, recreational users, and wildlife. Noise levels in the project area vary depending on the season, time of day, number and types of noise sources, and the distance of the receptor from noise sources. Existing ambient noise levels in Navarre Beach Marine Park are generally low and primarily result from vehicle traffic, tourism, and recreational boating. The proposed project location is not adjacent to any residential neighborhoods. The project area is located approximately 0.25 mile away from the closest hotels, vacation rental homes, and condominiums in the resort community that extends approximately 4 miles to the west. Open space constitutes Santa Rosa Island to the east for approximately 20 miles until reaching the town of Destin. Existing sources of noise in the project area are from recreational activities, nearby hotels and vacation rentals (lawn care, etc.), boats and other watercraft on the Gulf of Mexico and in Santa Rosa Sound, traffic on nearby roads and highways, overhead aircraft, and ambient natural sounds such as wind, waves, and wildlife.

Table 12-4. Typical noise levels for common sources.

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet take-off (at 25 meters)</td>
<td>150</td>
</tr>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Jet flyover at 1,000 feet</td>
<td>100</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawnmower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Adapted from Purdue 2013; U.S. Department of Energy (1986).
**Environmental Consequences**

Instances of increased noise would occur during project and construction activities at the site. Construction activities, including use of heavy equipment such as graders and backhoes and smaller handheld tools such as saws and nail guns, would cause an increase in noise during the day for the duration of construction and would be heard at noise-sensitive receptors near the site. Construction equipment noise is known to disturb fish, marine mammals, and nesting shorebirds. Construction noise would also negatively affect tourists in areas near project construction activities.

Standard state contract provisions include restricting work to weekdays, normally from 7am to 7pm unless in a hospital or strictly residential area. Contractors are normally not allowed to work outside these limits unless it is for safety, traffic, or highly restricted schedules. In addition, state contracts require that all equipment used on-site must be properly muffled and in good repair. As a result, noise impacts are expected to be minor. The noise impacts would be short term, since the construction period is anticipated to last 12 months, but would be mitigated due to adherence to state-required construction BMPs. Negative impacts to the soundscape would be of a level that is likely to attract visitor attention but not cause changes in visitor or tourist activities.

After completion of the project, the soundscape would return to pre-project levels. The potential for increased vehicle traffic exists due to the improved access and facilities at the site, which would result in a slight increase in noise levels in the vicinity. Overall, long-term noise impacts from traffic, beach use, boating, picnicking, and other recreational activities would remain minor.

**12.73.5.6 Biological Environment**

The Gulf of Mexico is one of the nation’s most valuable ecosystems. Florida’s barrier islands, estuaries, coral reefs, beaches, seagrass meadows, coastal wetlands, and mangrove forests are world-renowned natural resources and attractions. These habitats provide a range of ecosystem services including fisheries, wildlife-related activities, food production, energy production, infrastructure protection, and recreational opportunities (Gulf Coast Ecosystem Restoration Task Force [GCERTF] 2011). In Santa Rosa County, beaches are an integral part of the coastal system and represent one of the most valuable natural resources in the county, providing protection to adjacent upland properties, recreational areas, and habitat for wildlife.

**12.73.5.7 Living Coastal and Marine Resources**

**Vegetation**

**Affected Resources**

The Florida Gap Project uses the recently enacted United States National Vegetation Classification System (NVCS) to classify its vegetation map of the state of Florida. The land cover mapping technique developed by the Florida Fish and Wildlife Cooperative Unit synergizes existing geospatial information with current Landsat imagery and ground-truthed data (Florida Cooperative Fish and Wildlife Research Unit [FCFWRC] 2000). Currently, the park hosts little vegetation and is primarily made up of sand and dune environment. The only protected species of vegetation that could occur in the project area is the Gulf Coast lupine (*Lupinus westianus*), which is listed as “threatened” in the state of Florida. The Gulf
Coast lupine is a terrestrial plant whose habitat consists of beach dunes, scrub disturbed areas, roadsides, and blowouts in dunes.

**Environmental Consequences**
The proposed infrastructure improvements would have minor adverse impacts to vegetation because the park hosts little vegetation and is primarily made up of a sand and dune environment. Impacts on existing vegetation would be detectable but would not alter overall natural conditions and would be limited to localized areas. Infrequent disturbance and destruction of some individual plants would be expected, but would not affect local or range-wide population stability. The opportunity for the increased spread of non-native species would be temporary and localized, and is not expected to displace native species populations and distributions. Infrequent or one-time disturbance to locally suitable habitat could occur, but sufficient habitat would remain functional at both the local and regional scales to maintain the viability of the species. If Gulf Coast lupine were to occur in the project area, measures would be taken in coordination with the USFWS to adequately manage the species in the context of the proposed project.

The proposed dune restoration project would have major beneficial impacts to vegetation on the Santa Rosa Sound side as a result of planting 4,000 native dune plant species where there are gaps in the existing vegetation in the project area.

**Wildlife and Wildlife Habitat**

**Affected Resources**
The project is located at existing coastal access sites in an existing county marine park in a Gulf Coast beach, dune, and urban environment. Santa Rosa Sound and its prolongation, The Narrows, form a 37.5-mile-long inland waterway connecting Pensacola Bay with Choctawhatchee Bay. It is separated from the Gulf of Mexico by the 40-mile-long, narrow barrier island, Santa Rosa Island, on which Navarre Beach Marine Park sits. The non-ESA protected Santa Rosa beach mouse (*Peromyscus polionotus leucocephalus*) occurs within the project area. Santa Rosa beach mouse (P.p. leucocephalus), like other beach mice, is a small, white and buff colored mouse that occupies coastal dune habitat during all life stages of its life cycle. The range of the Santa Rosa beach mouse is limited to Santa Rosa Island, Florida including: areas near East Pass, Fort Walton Beach, Navarre Beach, Fort Pickens, Eglin Air Force Base, and east of Pensacola Beach. Currently, this species is not afforded protection under the ESA, like other beach mice subspecies, because of landowner implementation of voluntary conservation measures, and protected areas of habitat.

**Environmental Consequences**
The project would be located at existing coastal access sites in an existing county marine park in an urban environment. Although common wildlife may be disturbed by construction activities, these species live in an urban environment where ambient noise levels are high. Habitat conditions after construction would be similar to existing conditions, and no long-term impacts to common wildlife would be anticipated. Construction and operations would cause only minimal alteration and/or damage to habitats, and therefore a minor, short-term impact. The dune habitat in the project area would be moderately improved over the longterm as a result of dune restoration.
The impacts to the Santa Rosa beach mouse would be short-term and minor because of the implementation of the following conservation measures described in Chapter 12 Appendix A: Dune Walkovers, Construction, and Other Measures for Beach Mice. FDEP Wetland and Environmental Resource field permits would require BMPs for turbidity and erosion control to be implemented. This would help minimize the damage and loss of habitats through the same mitigation measures mentioned in the Construction and Installation section above.

**Marine and Estuarine Fauna**

**Affected Resources**

The Santa Rosa Sound and Gulf of Mexicoprovide habitat for numerous fish and other marine species. The value of marine habitats at the project site has been affected by population growth, development, and wastewater disposal. Increased coastal development, in particular, has contributed to displaced habitats, loss of wetlands, and greater amounts of stormwater runoff entering the sound and its tributaries (NFWMD 2011). Nonetheless, the marine environment at the project site provides habitat to an array of aquatic species including spotted seatrout (*Cynoscion nebulosus*), sheephead (*Archosargus probatocephalus*), and southern flounder (*Paralichthys lethostigma*). The sound supports populations of Spanish mackerel (*Scomberomorus maculates*), crevalle jack (*Caranx hippos*), king mackerel (*Scomberomorus cavalla*), and gag grouper (*Mycteroperca microlepis*). Red drum (*Sciaenops ocellatus*) can be found in inshore inlets and channels. King mackerel, cobia (*Rachycentron canadum*), amberjacks (*Seriola* spp.), grouper, and red snapper (*Lutjanus campechanus*) are present in artificial reefs, ledges, and offshore high areas (Santa Rosa Sound 2013). Benthic organisms such as bivalves, gastropods and other mollusks, anemones, amphipods, annelids, crustaceans, and echinoderms are also abundant in these waters (Florida Fish and Wildlife Conservation Commission [FWC] 2001).

**Environmental Consequences**

Fish and benthic organisms are not expected to be impacted by the Gulf side project because construction would take place only in upland areas and because of the BMPs listed in the Construction and Installation section above. Construction on the Santa Rosa Sound side, however, includes building a dock onto the water. Construction activities are expected to have a minor, short-term impact on fish due to the small project footprint and short (2-month) temporal time scale, in addition to adherence to BMPs listed above. Over the long term, increases in recreational swimming, canoeing, and kayaking are expected to occur due to the improved access and facilities at the site. These recreational activities are generally of low impact for fish and are expected to have a negligible impact on fish populations.

**Protected Species**

Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).
**Affected Resources**

The Gulf Coast beaches host a wide variety of resident and migratory birds, especially during spring and fall migrations. Gulf sturgeon (*Acipenser oxyrinchus desotoi*), West Indian manatees (*Trichechus manatus latirostris*), smalltooth sawfish (*Pristis pectinata*), sea turtles (Kemp’s ridley [*Lepidochelys kempii*], loggerhead [*Caretta caretta*], leatherback [*Dermochelys coriacea*], green [*Chelonia mydas*]), and Hawksbill (*Eretmochelys imbricata*), piping plover (*Charadrius melodus*), and red knot (*Calidris canutus rufa*) may occur within or near the project location. The project is located near designated piping plover and Gulf sturgeon critical habitat (see Figure 12-10).

There are no wading bird rookeries and bald eagles are not present at the site; however, solitary nesting birds and other migratory birds occur in the project area. Additional state-listed species may also occur in the area. Nearby wetlands may attract some avian species, and the small hammock communities would receive some periodic use by birds. No bird rookeries or other nests are known to be present at the site.

The Trustees have reviewed the proposed projects for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Santa Rosa County, Florida. Table 12-5 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from the projects’ implementation.

---

3 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
<table>
<thead>
<tr>
<th>SPECIES/Critical Habitat</th>
<th>Species/Critical Habitat Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle; Leatherback turtle, Loggerhead turtle</td>
<td>Consultation has been initiated with NMFS, the agency that has jurisdiction to review impacts to sea turtles in the estuarine and marine environments. Sea turtles are not known to nest on the sounds side of Navarre beach but can nest on the Gulf side. A large berm that cannot be navigated by sea turtles separates the majority of the action area from sea turtle habitat. Walkovers are the only proposed construction that could occur in sea turtle habitat. Increased visitor use is not expected to change sea turtle nesting behaviors at this project location. Nesting at the project site is currently very limited, if it occurs at all, because the beach is very narrow and currently there is little habitat between the high water mark and the berm which is where turtles need to nest to be successful (nests below high water are inundated frequently and not expected to survive). No lighting is proposed. Due to the sea turtle existing behaviors at the site and the proposed conservation measures, the Trustees expect any potential impacts to be minimized such that they are insignificant and discountable. No designated or proposed critical habitat for sea turtles occurs within the action area; therefore, none will be adversely affected or modified.</td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>The county in the project area are not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the project waters (i.e., during kayak/canoe launch construction). The main risk to manatees during implementation of this project would come from debris and noise during construction of the canoe/kayak launch on the sound side of the action area. Based upon the implementation of conservation measures, the Trustees expect any impacts to be minimized to an insignificant or discountable level.</td>
</tr>
<tr>
<td>Piping plover</td>
<td>The main risk to Piping plovers is from human disturbance while resting or foraging in habitats adjacent to work areas. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the plovers to move to a nearby area. Increased visitor use in the project area could cause disturbance to piping plovers as just described or via increased predation. Because other foraging/resting habitats are nearby (less than two miles, critical habitat within 400 meters) the Trustees would expect this temporary displacement to be within normal movement patterns. Conservation measures will further minimize impacts to this species such that they are insignificant and discountable. Piping plover critical habitat is within 400 meters of the action area though it is not directly adjacent to or within the action area. PCE’s for critical habitat include: 1) Intertidal flats with sand or mud flats (or both) with no or sparse emergent vegetation. 2) Adjacent unvegetated or sparsely vegetated sand, mud, or algal flats above high tide are also important, especially for roosting piping plovers. Such sites may have debris, detritus, or microtopographic relief (less than 50 cm above substrate surface) offering refuge from high winds and cold weather. 3) Important components of the beach/dune ecosystem include surf-cast algae, sparsely vegetated back beach and salterns, spits, and washover areas. 4) Washover areas are broad, unvegetated zones, with little or no topographic relief, that are formed and maintained by the action of hurricanes, storm surge, or other extreme wave action. The proposed project will not alter any PCE’s within the critical habitat as activities will not extend into critical habitat or influence the way PCE’s are formed or maintained. Signage will be posted to advise visitors to avoid the critical habitat area. Therefore no destruction or adverse modification of piping plover critical habitat is anticipated.</td>
</tr>
<tr>
<td>Red knot</td>
<td>The main risk to Red knots is from human disturbance while resting and foraging in habitats adjacent to work areas. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within</td>
</tr>
<tr>
<td>SPECIES/Critical Habitat</td>
<td>SPECIES/Critical Habitat Impacts</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Gulf sturgeon</td>
<td>NMFS was consulted on Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon was not considered in the consultation with the USFWS.</td>
</tr>
<tr>
<td>Santa Rosa beach mouse</td>
<td>The Santa Rosa beach mouse is not a federally listed species but its consideration is encouraged by the Panama City Field Office and the State of Florida when relevant as is the case for this project. The main risk to the Santa Rosa beach mouse would be the collapsing of existing burrows during construction of dune walkovers and increase in predators due to increased visitor use.</td>
</tr>
</tbody>
</table>

In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to protected species managed by NOAA.

Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Protected Resource Division (PRD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that the Gulfside Walkover Complex Coastal Access project falls outside of NMFS Endangered Species Act (ESA) jurisdiction, as it does not contain suitable habitat for species managed by NMFS. As a result, the project did not require further ESA evaluation from NOAA.

For the Santa Rosa Sound Coastal Access and Dune Restoration Project, which does involve in-water work, the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS were considered:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered
- Kemp’s Ridley Sea Turtle, *Lepidochelys kempii*, Endangered

Additional discussion of some of these species managed by USFWS and NMFS follows.

**Sea Turtles and Marine Mammals**

There are five species of endangered or threatened sea turtles that may occur or have potential to occur in the project area. These are the green turtle, hawksbill turtle, Kemp’s ridley turtle, leatherback turtle, and loggerhead turtle. Sea turtles forage in the waters of the coastal Florida panhandle region and have the potential to occur in the waters where in-water work is proposed. Although the beach is in a fairly developed area, potentially suitable sea turtle nesting habitat along the sandy beach is present.

Twenty-two marine mammals are native to the Gulf of Mexico: 21 pelagic species of whales and dolphins, and the West Indian manatee. The endangered West Indian manatee has the potential to occur in the project area waters. Manatees typically seek out shallow seagrass areas as preferred feeding
habitat. Additionally, bottlenose dolphins (*Tursiops*) populations are known to migrate into bays, estuaries, and river mouths, and could be located in the proposed project area (NMFS 2013). Bottlenose dolphins have been observed entering and leaving nearshore coastal waters (NMFS 2012).

**Gulf Sturgeon**
Both the Gulf Coast near the project site and the Santa Rosa Sound are considered critical habitat for the Gulf sturgeon (see Figure 12-10). Gulf sturgeons are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Pearl River, Louisiana to the Suwannee River, Florida (NMFS 2009). Adult fish reside in rivers for 8 to 9 months each year and in estuarine or Gulf of Mexico waters during the 3 to 4 cooler months of each year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993).

Gulf sturgeon critical habitat was jointly designated by the NMFS and USFWS on April 18, 2003 (50 Code of Federal Regulations [C.F.R.] 226.214). The proposed project site is located adjacent to Critical Habitat for Gulf sturgeon. Critical habitat was designated based on seven primary constituent elements (PCEs) essential for its conservation, as defined in the 2003 *Federal Register* and listed below. PCE’s 1, 5, 6, and 7 are present in the project area. The PCE’s are:

1. Abundant food items, such as detritus, aquatic insects, worms, and/or mollusks, within riverine habitats for larval and juvenile life stages; and abundant prey items, such as amphipods, lancelets, polychaetes, gastropods, ghost shrimp, isopods, mollusks, and/or crustaceans, within estuarine and marine habitats and substrates for subadult and adult life stages;
2. Riverine spawning sites with substrates suitable for egg deposition and development, such as limestone outcrops and cut limestone banks, bedrock, large gravel or cobble beds, marl, soapstone, or hard clay;
3. Riverine aggregation areas, also referred to as resting, holding, and staging areas, used by adult, subadult, and/or juveniles, generally, but not always, located in holes below normal riverbed depths; these are believed necessary for minimizing energy expenditure during freshwater residency and possibly for osmoregulatory functions;
4. A flow regime (i.e., the magnitude, frequency, duration, seasonality, and rate-of-change of freshwater discharge over time) necessary for normal behavior, growth, and survival of all life stages in the riverine environment, including migration, breeding site selection, courtship, egg fertilization, resting, and staging, and for maintaining spawning sites in suitable condition for egg attachment, egg sheltering, resting, and larval staging;
5. Water quality, including temperature, salinity, pH, hardness, turbidity, oxygen content, and other chemical characteristics necessary for normal behavior, growth, and viability of all life stages;
6. Sediment quality, including texture and chemical characteristics, necessary for normal behavior, growth, and viability of all life stages; and
7. Safe and unobstructed migratory pathways necessary for passage within and between riverine, estuarine, and marine habitats (e.g., an unobstructed river or a dammed river that still allows for passage).
**Piping Plover**

Piping plovers are federally threatened, but considered endangered by the state of Florida. Piping plovers do not breed in Florida but winter along the Gulf Coast and can be found on open, sandy beaches and on tidal mudflats and sandflats along the Gulf Coast. Their diet consists of insects, crustaceans, and marine worms. The main threat to piping plovers is habitat loss, and beach development has reduced its available wintering habitat. Protection from disturbance of high-use wintering habitat is critical due to the rarity of the species and fragile nature of its habitat. Disturbance by humans and domestic animals during wintering and migration can cause the birds to increase their energy expenditure needed for migration, nesting, and brood rearing. Florida protects piping plover wintering grounds by posting signs in known wintering grounds (FWC 2012). The project is located near designated piping plover critical habitat (see Figure 12-10). PCE’s for piping plover critical habitat include: 1) Intertidal flats with sand or mud flats (or both) with no or sparse emergent vegetation. 2) Adjacent unvegetated or sparsely vegetated sand, mud, or algal flats above high tide are also important, especially for roosting piping plovers. Such sites may have debris, detritus, or microtopographic relief (less than 50 cm above substrate surface) offering refuge from high winds and cold weather. 3) Important components of the beach/dune ecosystem include surf-cast algae, sparsely vegetated back beach and salterns, spits, and washover areas. 4) Washover areas are broad, unvegetated zones, with little or no topographic relief, that are formed and maintained by the action of hurricanes, storm surge, or other extreme wave action.
Figure 12-10. Project area Gulf sturgeon and piping plover critical habitat.

Red Knot
The red knot, a federal proposed species, uses the state of Florida both for wintering habitat and migration stopover habitat for those that continue to migrate down to specific wintering locations in South America (Niles et al. 2008). Wintering and migrating red knots forage along sandy beaches, tidal mudflats, saltmarshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms, and roost on high sand flats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008).
**Essential Fish Habitat**

EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as "those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column.

Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Habitat Conservation Division (HCD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that the Gulfside Walkover Complex Coastal Access Project will not affect EFH because there is no EFH in the project area. As a result, the project did not require further EFH evaluation.

Information on designated EFH in the Gulf of Mexico was obtained in September, 2013 from the NMFS’ EFH web site at [http://www.habitat.noaa.gov/protection/efh/newInv/index.html](http://www.habitat.noaa.gov/protection/efh/newInv/index.html). Table 12-6 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Santa Rosa Sound Coastal Access and Dune Restoration Project.

**Table 12-6. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.**

<table>
<thead>
<tr>
<th>EFH CATEGORY</th>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Atlantic Highly Migratory Species</strong></td>
<td></td>
</tr>
<tr>
<td>Atlantic Sharpnose Shark-Neonate</td>
<td></td>
</tr>
<tr>
<td>Bull Shark-Adult</td>
<td></td>
</tr>
<tr>
<td>Bull Shark-Juvenile</td>
<td></td>
</tr>
<tr>
<td>Sandbar Shark-Adult</td>
<td></td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark-Neonate</td>
<td></td>
</tr>
<tr>
<td>Silky Shark-All</td>
<td></td>
</tr>
<tr>
<td>Spinner Shark-Adult</td>
<td></td>
</tr>
<tr>
<td>Spinner Shark-Juvenile</td>
<td></td>
</tr>
<tr>
<td>Tiger Shark-Juvenile</td>
<td></td>
</tr>
<tr>
<td><strong>Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic</strong></td>
<td></td>
</tr>
<tr>
<td>Spanish Mackerel</td>
<td></td>
</tr>
<tr>
<td>Cobia</td>
<td></td>
</tr>
<tr>
<td>King Mackerel</td>
<td></td>
</tr>
<tr>
<td><strong>Gulf of Mexico Red Drum</strong></td>
<td></td>
</tr>
<tr>
<td>Red Drum</td>
<td></td>
</tr>
<tr>
<td><strong>Gulf of Mexico Shrimp</strong></td>
<td></td>
</tr>
<tr>
<td>Pink Shrimp</td>
<td></td>
</tr>
<tr>
<td>White Shrimp</td>
<td></td>
</tr>
<tr>
<td>Brown Shrimp</td>
<td></td>
</tr>
<tr>
<td><strong>Reef Fish Resources of the Gulf of Mexico</strong></td>
<td></td>
</tr>
<tr>
<td>Lane Snapper</td>
<td></td>
</tr>
<tr>
<td>Lesser Amberjack</td>
<td></td>
</tr>
<tr>
<td>Mutton Snapper</td>
<td></td>
</tr>
<tr>
<td>Nassau Grouper</td>
<td></td>
</tr>
<tr>
<td>Queen Snapper</td>
<td></td>
</tr>
<tr>
<td>EFH CATEGORY</td>
<td>SPECIES</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Red Grouper</td>
</tr>
<tr>
<td></td>
<td>Red Snapper</td>
</tr>
<tr>
<td></td>
<td>Scamp</td>
</tr>
<tr>
<td></td>
<td>Silk Snapper</td>
</tr>
<tr>
<td></td>
<td>Snowy Grouper</td>
</tr>
<tr>
<td></td>
<td>Speckled Hind</td>
</tr>
<tr>
<td></td>
<td>Tilefish</td>
</tr>
<tr>
<td></td>
<td>Vermilion Snapper</td>
</tr>
<tr>
<td></td>
<td>Warsaw Grouper</td>
</tr>
<tr>
<td></td>
<td>Wenchman</td>
</tr>
<tr>
<td></td>
<td>Yellowedge Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowmouth Grouper</td>
</tr>
<tr>
<td></td>
<td>Almaco Jack</td>
</tr>
<tr>
<td></td>
<td>Banded Rudderfish</td>
</tr>
<tr>
<td></td>
<td>Black Grouper</td>
</tr>
<tr>
<td></td>
<td>Blackfin Snapper</td>
</tr>
<tr>
<td></td>
<td>Blueline Tilefish</td>
</tr>
<tr>
<td></td>
<td>Cubera Snapper</td>
</tr>
<tr>
<td></td>
<td>Gag</td>
</tr>
<tr>
<td></td>
<td>Goldface Tilefish</td>
</tr>
<tr>
<td></td>
<td>Gray (Mangrove) Snapper</td>
</tr>
<tr>
<td></td>
<td>Gray Triggerfish</td>
</tr>
<tr>
<td></td>
<td>Greater Amberjack</td>
</tr>
<tr>
<td></td>
<td>Hogfish</td>
</tr>
</tbody>
</table>

**Migratory Birds and Bald Eagles**

There are numerous state of Florida–listed bird species with potential for occurrence in and around the project site. These include Arctic peregrine falcon (*Falco peregrinus tundrius*), least tern, southeastern American kestrel (*Falco sparverius paulus*), Florida sandhill crane (*Grus canadensis pratensis*), American oystercatcher, and southeastern/Cuban snowy plover (*Charadrius alexandrinus tenuirostris*). Migratory bird species are protected under the MBTA. The nesting season in Florida is from February 15 to August 31. General precautions would be implemented to avoid feeding and resting birds while operating equipment to minimize overall disturbance. Special precautions would also be taken to avoid piping plover habitat in the winter. If nesting migratory birds are encountered at any time of year, construction would be halted and further coordination with USFWS would occur subject to MBTA requirements.

The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s *Bald Eagle Management Plan* guidelines would be followed (FWC 2008).
The proposed projects were also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-7 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of these projects.

**Table 12-7. Potential project impacts to different migratory bird groups**

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least tern</td>
<td>Foraging, feeding, resting, nesting</td>
<td>This species forages, rests, and nests in the proposed action area.</td>
</tr>
<tr>
<td>Shorebirds</td>
<td>Foraging, feeding, resting, nesting</td>
<td>Shorebirds nest, forage, feed, and rest, and in the types of habitats consistent with some of the shoreline areas near the proposed project. As such, they may be impacted locally and temporarily by the project.</td>
</tr>
<tr>
<td>Seabirds</td>
<td>Resting, roosting</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats including dunes. As such, they may be impacted locally and temporarily by the project.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-8.

**Table 12-8. Conservation measures to minimize impacts to migratory bird groups**

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least tern</td>
<td>The Trustees expect foraging and resting adult birds may be able to move to another nearby location to continue foraging and resting though other habitats may not be as optimal and could result in inter-species competition. To protect nesting birds, eggs, chicks, fledglings and their habitats the following measures will be implemented:</td>
</tr>
<tr>
<td></td>
<td>- There are two acceptable options to minimize impacts to least tern nesting areas for new boardwalks: the western option (orange on map in Figure 12-8) can be elevated so that visitors do not have to walk through traffic or bird nesting areas and birds can move freely underneath; or the eastern option (blue on map in Figure 12-8) which would be built on the ground (to prevent fledglings from entering the adjacent parking area).</td>
</tr>
<tr>
<td></td>
<td>- Consider purchasing a tram to transport kids if either boardwalk option is determined to be too long for children to walk.</td>
</tr>
<tr>
<td></td>
<td>- Install speed bumps at locations along the road accessing the park facilities (see examples and generally recommended locations on map in Figure 12-8) to reduce mortality of chicks and fledglings.</td>
</tr>
<tr>
<td></td>
<td>- All vehicles (e.g., sea turtle surveyors, life guards) will be required to use western park boundary access in non-emergency cases (exceptions can be made for emergencies).</td>
</tr>
<tr>
<td></td>
<td>- No use of fireworks from February 15 - September 1 within the Park boundaries.</td>
</tr>
<tr>
<td></td>
<td>- Annually till the southern 3/4 of the Causeway adjacent to the park to support bird nesting along the highway.</td>
</tr>
<tr>
<td></td>
<td>- Place reader boards and signs as needed along Causeway to warn motorists to drive with caution as chicks and fledglings may be on road. Information for boards will be determined in coordination with Panama City Ecological Services Field</td>
</tr>
</tbody>
</table>

39
<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Office and Florida Fish and Wildlife Conservation Commission.</td>
</tr>
<tr>
<td></td>
<td>- If parking areas are necessary, place parking in the brown or purple areas (Figure 12-8, preferably the brown area as it is the least habitat impacting).</td>
</tr>
<tr>
<td></td>
<td>- Use remaining contingency funds or consider requesting additional funds to purchase wood decoys and place decoys east of the bathhouses to encourage birds to move from the areas of high visitor use to low visitor use.</td>
</tr>
<tr>
<td>Shorebirds</td>
<td>The Trustees expect foraging and resting birds would be able to move to another nearby location to continue foraging and resting, though other habitats may not be as optimal and inter-species competition could occur. Therefore, care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. If project activities occur during shorebird nesting season (February 15 to August 31), the FWC will be contacted to obtain the most recent guidance to protect nesting shorebirds or rookeries and their recommendations will be implemented. The Panama City Field Office will be contacted regarding dune plantings to balance habitat for listed and migratory birds and beach mouse.</td>
</tr>
<tr>
<td>Seabirds</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. Nesting should not be impacted because the project will not occur near general nesting habitats.</td>
</tr>
</tbody>
</table>

**Environmental Consequences**

The proposed project has been evaluated for potential short- and long-term impacts to state and federally listed threatened and endangered species that may occur in and adjacent to the project area based on available suitable habitat and restoration goals. Descriptions of these evaluations are provided below.

**Protected Species**

On May 1, 2014 USFWS concurred with the Trustees’ review of potential impacts to species managed by USFWS, agreeing the Navarre Beach Park Coastal Access and Dune Restoration project may affect, but is not likely to adversely affect five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead), piping plover, red knot (if listed), and West Indian manatee (McClain, 2014).

Consultation of potential impacts on protected species managed by NMFS from the Navarre Beach Park Coastal Access and Dune Restoration project was initiated on February 19, 2014. The Trustees’ review of the potential impacts of the project for protected species managed by NMFS determined the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the project implementation area:

- Gulf Sturgeon Critical Habitat- The proposed project footprint falls within an identified Gulf sturgeon critical habitat unit (Critical Habitat Unit 10 – Santa Rosa Sound); however, it has been determined that the construction activities associated with this project will not adversely affect the PCE’s associated with this habitat or modify designated Gulf sturgeon critical habitat.
• Gulf Sturgeon - The proposed may project affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
• Smalltooth Sawfish – The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
• Green Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
• Loggerhead Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
• Hawksbill Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
• Leatherback Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
• Kemp’s Ridley Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.

Concurrence from NMFS with the Trustees’ conclusions for these species and associated critical habitats is still pending.

For the Navarre Beach Park Coastal Access and Dune Restoration project, the Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

**Essential Fish Habitat**
The EFH review of the Santa Rosa Sound Coastal Access and Dune Restoration Project was completed on April 24, 2014 and concurred with the Trustees’ conclusion that the Navarre Beach Park Coastal Access and Dune Restoration project construction is not likely to adversely affect EFH and any disturbance to species will be minor and brief (Fay, 2014).

**State-Listed Birds, MBTA, and BGEPA**
No bald eagles are known or are likely to use the project area, due to the lack of wooded areas surrounding most of the site. According to FWC, the closest eagle’s nest to the proposed project is approximately 4 miles north of the project area. Accuracy of locations is estimated to be within 0.1 mile of the true location. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

**Invasive Species**

**Affected Resources**
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project areas, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and
economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project sites or could be introduced through the project have not yet been identified.

Environmental Consequences

Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the projects will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.73.5.8 Human Uses and Socioeconomics

12.73.5.8.1 Socioeconomics and Environmental Justice

Affected Resources

The proposed project would be located in Santa Rosa County, Florida. Data and characteristics on the population of Santa Rosa County are summarized and compared to those same measures for the population of the state as a whole (Table 12-9).

Environmental Consequences

The proposed project would create approximately 961 worker days of employment during construction (Table 12-2). The improved beach access and facilities at the various sites would result in a minor increase in visitation to the sites, which could benefit the local economy for multiple years. The project would not create a benefit for any specific group or individual, but rather would produce benefits realized by the local community and visitors. There are no indications that the public improvements would be contrary to the goals of Executive Order 12898 or would create disproportionate, adverse human health or environmental impacts on minority or low-income populations of the surrounding community. Therefore no environmental justice issues would be anticipated in the short term or long term.

Table 12-9. Population characteristics of Santa Rosa County compared with State of Florida data.

<table>
<thead>
<tr>
<th>PEOPLE QUICKFACTS</th>
<th>SANTA ROSA COUNTY</th>
<th>FLORIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population, 2012 estimate</td>
<td>158,512</td>
<td>19,317,568</td>
</tr>
<tr>
<td>Population, 2010 (April 1) estimate base</td>
<td>151,372</td>
<td>18,802,690</td>
</tr>
<tr>
<td>Population, percent change, April 1, 2010, to July 1, 2012</td>
<td>4.7%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Population, 2010</td>
<td>151,372</td>
<td>18,801,310</td>
</tr>
<tr>
<td>Persons under 5 years, percent, 2012</td>
<td>5.7%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Persons under 18 years, percent, 2012</td>
<td>22.9%</td>
<td>20.7%</td>
</tr>
</tbody>
</table>
### People Quick Facts

<table>
<thead>
<tr>
<th></th>
<th>Santa Rosa County</th>
<th>Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persons 65 years and over, percent, 2012</td>
<td>13.6%</td>
<td>18.2%</td>
</tr>
<tr>
<td>Female persons, percent, 2012</td>
<td>49.0%</td>
<td>51.1%</td>
</tr>
<tr>
<td>White alone, percent, 2012 (a)</td>
<td>87.5%</td>
<td>78.3%</td>
</tr>
<tr>
<td>Black or African American alone, percent, 2012 (a)</td>
<td>6.5%</td>
<td>16.6%</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone, percent, 2012 (a)</td>
<td>0.9%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Asian alone, percent, 2012 (a)</td>
<td>2.0%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander alone, percent, 2012 (a)</td>
<td>0.2%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Two or more races, percent, 2012</td>
<td>2.9%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Hispanic or Latino, percent, 2012 (b)</td>
<td>4.9%</td>
<td>23.2%</td>
</tr>
<tr>
<td>White alone, not Hispanic or Latino, percent, 2012</td>
<td>83.4%</td>
<td>57.0%</td>
</tr>
<tr>
<td>Homeownership rate, 2007–2011</td>
<td>76.3%</td>
<td>69.0%</td>
</tr>
<tr>
<td>Median household income, 2007–2011</td>
<td>$55,913</td>
<td>$47,827</td>
</tr>
<tr>
<td>Persons below poverty level, percent, 2007–2011</td>
<td>10.8%</td>
<td>14.7%</td>
</tr>
<tr>
<td>Manufacturer’s shipments, 2007 ($1,000)</td>
<td>74,894</td>
<td>104,832,907</td>
</tr>
<tr>
<td>Merchant wholesaler sales, 2007 ($1,000)</td>
<td>148,932</td>
<td>221,641,518</td>
</tr>
<tr>
<td>Retail sales, 2007 ($1,000)</td>
<td>1,107,974</td>
<td>262,341,127</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau State & County QuickFacts (U.S. Census Bureau 2013)

(a) Includes persons reporting only one race.
(b) Hispanics may be of any race, so also are included in applicable race categories.

### 12.73.5.8.2 Cultural Resources

**Affected Resources**

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

**Environmental Consequences**

A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

### 12.73.5.8.3 Infrastructure

**Affected Resources**

The Santa Rosa Sound side of the park is located in a bayside dune environment with current access to six pavilions, three restrooms, and several parking facilities but no boardwalks. There is an existing boat ramp and restroom with a large parking area west of the proposed project area (on the other side of the Navarre Beach Causeway). The Gulf side of the park is located in a coastal beach and dune environment with current access to nine pavilions, three restrooms, two boardwalks with dune walkovers, two
lifeguard towers, and two main parking facilities, and is currently connected to utilities and public services (see figure above).

**Environmental Consequences**
New infrastructure would be added at both sides of Navarre Beach Marine Park. The project would not have an adverse impact on infrastructure in the area because the project activities would be either added or improved as a result of the proposed projects, and it is anticipated that existing utility and services have the capacity to provide for the improvements.

12.73.5.8.4  Land and Marine Management

**Affected Resources**
The surrounding land use characteristics at the Gulf side site consist of public beaches along the Gulf shorelines surrounded by commercial areas. The Santa Rosa Sound side site is located in a bayside dune environment with the major land use being public recreation. The Gulf side project would be located in a coastal area, on a beach, with the major land use being public recreation. This area is regulated by the federal Coastal Zone Management Act (CZMA) of 1972 and the Florida Coastal Management Act of 1978.

**Environmental Consequences**
The project would be consistent with current land use and would have no adverse impact on land use or marine management in the area.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

12.73.5.8.5  Aesthetics and Visual Resources

**Affected Resources**
Existing aesthetics and visual resources are views of developed sandy shorelines, residential areas, hotels, and beachside towns. Navarre Beach is home to the longest pier in Florida and the Gulf of Mexico. Navarre Beach Pier is located within 0.5 mile of the proposed construction areas on the Gulfside site. The pier, at 1,545 feet long and 30 feet above the water, offers spectacular views of the ocean and the coastline. When pier viewers look in the direction of Navarre Beach Marine Park, they currently see several pavilions, parking areas, boardwalks, and lifeguard towers.

**Environmental Consequences**
Aesthetics would be reduced in the project area during construction due to the presence of equipment and materials. In addition, Navarre Beach Pier visitors looking in the direction of Navarre Beach Marine Park would see the construction site and thus be negatively impacted. However, this impact would be a minor, temporary change to visual resources because only a small part of a 360-degree viewshed would be impacted, and only for 1 year. In addition, those looking from the pier at the site following
construction would see three dune walkover complexes instead of the previous two, but this view would be aesthetically consistent because the new complex is designed to look like the existing two complexes. Following construction, projects would provide moderate, long-term beneficial aesthetic impacts to the beach and dune habitat and visitor access areas because they would be consistent with dune access and recreation facilities in the area.

12.73.5.8.6 Tourism and Recreational Use

Affected Resources
Santa Rosa County’s beaches are visited by tourists each year to fish, dive, swim, and view wildlife. Recreation at these sites includes swimming, beach-going, picnicking, wildlife viewing, fishing, hiking, canoeing, kayaking, and bicycling.

On the Santa Rosa Sound side of Navarre Beach Marine Park there are two snorkeling reefs, with one snorkeling reef on the Gulfside (see Figure 12-2). Tourists to the park can rent the pavilions for private use and pay a small entrance fee for day use.

Navarre Beach is home to the longest pier in Florida and the Gulf of Mexico. Navarre Beach Pier is located within walking distance of the park, and only 0.5 mile away from the proposed Gulfside site. The pier, at 1,545 feet long and 30 feet above the water, offers spectacular views and recreational fishing opportunities for pompano, flounder, cobia, and king and Spanish mackerel. In the 2003–2004 fiscal year, approximately 80,000 people visited the pier, with ticket sales averaging $265,900 per year from 2001 to 2004. After various rounds of destruction from Hurricanes Opal, Ivan, and Dennis, the pier was completely rebuilt in 2010 (Santa Rosa County 2013a).

Environmental Consequences
During the construction period, the visitor recreational experience at the park would be negatively impacted by noise and visual disturbances associated with the use of construction equipment. The construction process would also limit recreational activities near construction areas for a short time to protect public safety.

The impact would be short term and minor because there are numerous other boardwalks, pavilions, parking areas, and restrooms at Navarre Beach Marine Park for visitors to obtain the same or similar recreational experiences. The beach access and parking locations on the Gulfside may experience a spike in use during construction on the Santa Rosa Sound side of the park. Construction of new facilities on the Gulfside of the park are not expected to divert visitors to the Santa Rosa Sound side, however, because existing facilities on the Gulfside would be open.

The boat ramp located to the west of the proposed project site currently caters to motorized water crafts, while the proposed canoe and kayak launch would cater to non-motorized water craft users. Therefore, it is not expected that the existing boat ramp would be negatively affected, in terms of a reduction in use (collection of fees), because the proposed launch represents a different water craft use type (non-motorized).

Over the long term, minor beneficial impacts to tourism and recreational use would be expected due to the enhancement of recreational opportunities associated with improved facilities and accessibility.
12.73.5.8.7 Public Health and Safety and Shoreline Protection

Affected Resources
There are no known hazardous waste generation or disposal sites in the vicinity of the project. Erosion at the proposed project site is typical of a barrier island shoreline, but would be mitigated through construction BMPs discussed in the Construction and Installation section above.

Environmental Consequences
The proposed dune walkovers and boardwalks would increase public safety conditions at the park, as well as protect the dunes from trampling by foot traffic. Overall, the project would have a moderate beneficial impact on public health and safety and shoreline protection because the project would provide organized public access to the beach, concentrating shoreline access impacts and providing public infrastructure, and would have no negative impacts on these resources.

12.73.6 Summary and Next Steps
The Navarre Beach Park Coastal Access project would improve access for the public seeking to access the beach and water of Santa Rosa Sound from the existing pavilion/parking lot areas. In addition, construction of a new canoe/kayak launch would increase access opportunities to the waters of the sound for recreational boaters. The enhancement of the recreational experience from these infrastructure improvements would also be complemented by the restoration of a roughly 1 acre parcel of degraded dune habitat in the project area. The Navarre Beach Park Gulfside Walkover Complex project would enhance access to the shoreline at Navarre Beach Park to enhance recreational use of the natural resources. The proposed improvements include constructing an entrance, driveway, and parking area; constructing a restroom facility; constructing pavilions with boardwalk connections; lifeguard tower; and constructing a dune walkover that will provide access to the beach. These projects are consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts to some resource categories, no moderate to major adverse impacts are anticipated to result. These projects would enhance and/or increase recreational boating and beach use opportunities by constructing new infrastructure for recreational opportunities and by improving beach access. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.73.7 References

Fay, V. 2014. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for the Florida Navarre Beach Park Coastal Access project in Santa Rosa Sound, Santa Rosa County, Florida. April 24.


Gulf of Mexico Fishery Management Council (GMFMC). 2005. FINAL Generic Amendment Number 3 for Addressing Essential Fish Habitat Requirements, Habitat Areas of Particular Concern, and Adverse Effects of Fishing in the following Fishery Management Plans of the Gulf of Mexico: Shrimp Fishery of the Gulf of Mexico, United States Waters; Red Drum Fishery of the Gulf of Mexico; Reef Fish Fishery of the Gulf of Mexico; Coastal Migratory Pelagic Resources (Mackerels) in the Gulf of Mexico and South Atlantic Stone Crab Fishery of the Gulf of Mexico; Spiny Lobster in the Gulf of Mexico and South Atlantic; Coral and Coral Reefs of the Gulf of Mexico. Tampa, FL: Gulf of Mexico Fishery Management Council.


2001. Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat. August.


USFWS 2011 Standard Manatee Conditions for In-Water Work

USFWS Mapped by Jeremy Rabalais


12.74 Gulf Breeze Wayside Park Boat Ramp: Project Description

12.74.1 Project Summary
The proposed Gulf Breeze Wayside Park Boat Ramp Improvements project would improve the existing boat ramp at Wayside Park in the City of Gulf Breeze, Santa Rosa County, FL. The proposed improvements include repairing the existing boat ramp and seawall cap, constructing a public restroom facility, and repairing and enhancing the parking area to improve access. The total estimated cost of the project is $309,669.

12.74.2 Background and Project Description
The Trustees propose to repair and improve an existing boat ramp in the City of Gulf Breeze (Figure 12-11 for general project location). The objective of the Gulf Breeze Wayside Park Boat Ramp Improvement project is to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. The restoration work proposed includes repairing the existing boat ramp and seawall cap, constructing a public restroom facility, and repairing and enhancing the parking area to improve access. The parking areas and bathrooms are needed to enhance and/or increase access to the boat ramp, which will make the public’s recreational boating and fishing opportunities more accessible, functional or fully utilized.

Figure 12-11. Location of Gulf Breeze Wayside Park boat ramp improvements project.
12.74.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Gulf Breeze Wayside Park Boat Ramp Improvements project is intended to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Agencies have successfully completed projects of similar scope throughout Florida over many years, including similar types of actions in earlier phases of the Deepwater Horizon Early Restoration. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.74, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.74 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Florida Gulf Breeze Wayside Park Boat Ramp Improvements project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.74.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. Performance monitoring will evaluate: 1) the repair of an existing boat ramp and seawall cap; 2) the construction of a public restroom facility; and 3) the repair and enhancement of the parking area to improve access. Specific performance criteria include: 1) the
completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the boat ramp facility is open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by the City of Gulf Breeze as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by the City of Gulf Breeze.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, the City of Gulf Breeze will monitor the recreational use activity at the site. The City of Gulf Breeze staff will visit the site twice a year to count the number of users at the boat ramp. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.74.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $619,338 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.4

12.74.6 Costs
The total estimated cost to implement this project is $309,669. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---

4 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.75 Gulf Breeze Wayside Park Boat Ramp: Environmental Review

12.75.1 Introduction and Background
The City of Gulf Breeze, Florida Wayside Park Public Boat Ramp provides local boaters with access to public waterways, and boating access provides the primary infrastructure upon which many types of secondary activities may be enjoyed in this area, such as fishing, SCUBA diving, water-skiing, and other local activities.

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP), entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is under way. The Framework Agreement is intended to expedite the start of restoration in the Gulf of Mexico, in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address, all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement, the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees, announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This project, in Pensacola Bay in Santa Rosa County, was submitted as an Early Restoration project on the NOAA website and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the 8-county panhandle area that was impacted by the Spill.

This facility was used as a primary staging and launching location for cleanup operations in response to the Deepwater Horizon oil spill. The public facility suffered loss of use and the boat ramp and parking area were used to stage and deploy oil spill response resources during the Deepwater Horizon incident. The proposed project would implement needed repairs and enhancements to the approximately 2-acre site, including the boat ramp, seawall, parking area, and construction of new restroom facilities.

12.75.2 Project Location
The proposed project is located in the state of Florida, in the city of Gulf Breeze, Santa Rosa County. The proposed project would be located on the existing Wayside Park Public Boat Ramp (30° 22’ 23 N; 87° 10’ 39 W) on the west side of Gulf Breeze Highway (U.S. Highway 98) (Figure 12-12 and...
Figure 12-13). The total project area is approximately 2 acres, including the seawall, boat ramp, and parking area.
Figure 12-12. Wayside Park public boat ramp on U.S. Highway 98 in Gulf Breeze, Santa Rosa County, Florida.
12.75.3 Construction and Installation
The proposed Gulf Breeze Wayside Park Boat Ramp project would improve the existing boat ramp at Wayside Park in the City of Gulf Breeze, Santa Rosa County, FL. The proposed improvements include repairing cracks and damage to the existing boat ramp and seawall cap, constructing a public restroom facility, and repairing and enhancing the parking area to improve access. Figure 12-13 identifies the project area.

While final plans have not been developed for this project, the construction work associated with repairs/replacement of a boat ramp can be summarized in terms of executing a number of specific tasks and subtasks including:
Task 1. Site Preparation

a. Prior to beginning any waterward work at the boat ramp site the project area needs to be surveyed and marked. Turbidity curtains are then installed to encapsulate the work area and other erosion control methods are put in place on the landward side of the project (e.g., placement of hay bales) to prevent erosion into the water from equipment movement and any work being performed on the upland areas.

Task 2. Ramp Repairs/Construction

a. The area for the ramp is surveyed in and marked by stake or pole (typically small diameter 2” or less PVC).

b. A coffer or bladder dam is installed and the water within the dam, between the waterward extent of the ramp and the land, is pumped out to upland storage ponds or run through a filter system to remove any sediment in the water before returning it to the receiving waterbody. The work area is kept dry by use of dewater pumps (ground water to be pumped is first sampled and tested for water quality) and disposed of in the same manner as the pumped surface water. This dewatering operation is run continuously throughout the construction of the ramps. Once the ramps are completed the dewatering pumps are shut down and the dams are removed.

c. Construction of the ramps begins once the area is sufficiently dry to remove unsuitable soils, if necessary, and replaced with suitable soil. This soil is then compacted to specification. Then the base material for the ramp is placed, usually a rock material. After placement and compaction of the base the ramp is formed, reinforcing steel placed and then the concrete poured and finished. Once curing of the concrete is complete the forms are removed and the coffer or bladder dams are removed.

Task 3. Monitoring

a. Every day, before the start of construction activities, the turbidity screen is checked and repaired if necessary.

b. The foreman or other designated individual checks the area inside the screen and the screen itself to see if any protected species (manatees, dolphins, small tooth sawfish etc.) have gotten trapped within the work area or in the screen. If so then appropriate (FWC) personnel are notified to request removal. No work is begun until the animal, fish or bird is removed.

c. During the work day the work area and area adjacent to the work are is monitored to make sure protected species have not ventured into the area. If so then work is stopped until the animal moves out of the area.

d. At the end of the day the area is checked for debris, sediment and possible spillage and these are properly removed and disposed of before shutting down the site.

e. If a storm is anticipated that might damage the turbidity screen it is removed and stored until the storm event has passed and seas have resided.
Similarly, plans for the seawall cap work have not been finalized but are likely to involve some combination of removing parts of the existing, failing, concrete structure and then rebuilding the seawall to the final design specifications. Neither the boat ramp nor sea wall cap repairs would involve the placing of pilings. Figure 12-14 provides a view of existing boat ramp and seawall conditions.

Critically, during any in-water construction activity, the conditions and guidelines of the *Sea Turtle and Smalltooth Sawfish Construction Conditions* (NOAA, 2006) would be implemented and adhered to. These provisions include stopping operation of any equipment if sea turtles or smalltooth sawfish come within 50 feet of the equipment until the time when animals leave the project area of their own volition.

All other activities, including equipment and materials staging, would take place within the footprint of the existing parking area and boat ramp. Repair to the existing seawall would not change the seawall’s overall footprint and there would be no expansion of the developed footprint outside of the existing 2-acre site.

In addition to repairs of the boat ramp and seawall, other activities would include repairs and enhancements to the existing parking lot and construction of a new public restroom facility. Work on these site amenities would also take place completely within the footprint of the existing 2-acre developed site (See Figure 12-15 for a photograph of current parking area conditions). Florida Department of Environmental Protection (FDEP) permit conditions for the construction at the site will require erosion and turbidity mitigation measures, including installing floating turbidity barriers, installing erosion-control measures along the perimeter of all work areas, and stabilizing all filled areas with sod, mats, barriers, or a combination.

Total construction time would be between 4 and 6 months.

*Source: Florida Fish and Wildlife Conservation Commission (2013a).*

**Figure 12-14. Existing boat ramp and seawall.**
12.75.4  Operations and Maintenance
Operation and maintenance of the improved facilities would continue under the existing maintenance performed by the City of Gulf Breeze. Maintenance would include tasks such as checking and cleaning of the restroom facility, removing debris and trash from the boat ramp and boat trailer parking areas, and striping parking areas in the parking area. Monitoring would include construction monitoring and tracking visitor use.

12.75.5  Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

12.75.5.1  No action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.74.5.2.
**Physical Environment**

12.75.5.1.1  Geology and Substrates

**Affected Resources**

**Geology**

The Pensacola Bay system is generally shallow, with a total surface area greater than 144 square miles. The system is comprised of several smaller bays, of which Pensacola Bay is the largest followed by East Bay, Escambia Bay, Santa Rosa Sound, Blackwater Bay, and Big Lagoon. The estuarine embayments are within the Gulf Coastal Lowlands subdivision. The lowlands are a series of parallel terraces rising from the coast in successively higher levels. They formed during the Pleistocene Epoch (Great Ice Age) when fluctuating sea levels were associated with the growth and melting of ice caps. Dunes, barrier islands, beach ridges, and other topographical features were stranded inland as seas receded. Land surfaces of the lowlands are generally level and less than 100 feet above sea level. Substantial areas are less than 30 feet above sea level and are characterized by extensive wetlands. Higher elevations are present in the general area of Pensacola, on the west side of Pensacola and Escambia Bays (USACE 2009).

**Soils**

The Pensacola Bay area has been sculpted from an alluvial plain underlain by sand, gravel, silt, and clay. The soil survey for Santa Rosa County (Natural Resources Conservation Service [NRCS] 2013) identifies the project area as Kureb sand, 0 to 8 percent slopes with part of the boat ramp extending into “Waters of the Gulf of Mexico.” Kureb sands are classified as excessively drained, nearly level to sloping soils found on broad uplands on the coastal plain. Typically, the surface layer is gray sand with a salt-and-pepper appearance of about 3 inches thick with underlying layers of different sands to a depth of more than 80 inches. This soil has a very low available water capacity, very rapid permeability, and very low natural fertility and organic matter content. The natural bay shoreline adjacent to the project area is fringed by wide, shallow sand flats between 3 and 5 feet deep (NRCS 2013).

**Environmental Consequences**

The geological and substrate resource in the area would not be significantly affected as a result of repairs and improvements associated with the proposed project. The footprint of disturbance would be focused on the area of the existing boat ramp and parking area. The ground would be disturbed to a depth of several feet for repairs, and deeper excavation may be required for restroom construction because of sewer line or septic tank installation and some surface area would be permanently converted as a result of building placement. However, adverse impacts to geology and substrates would be direct and minor. Soil, debris, vegetation, and old parking lot material would be removed from the site as a part of construction and repair activities. After completion of the project, soil surfaces would not be exposed, and planting of additional vegetation in the project area is not planned. There would be no long-term changes to local geological features or soil characteristics. Some erosion and/or compaction may occur in localized areas.
12.75.5.1.2 Hydrology and Water Quality

Affected Resources
The Pensacola Bay system watershed covers nearly 7,000 square miles in northwest Florida and southern Alabama. The entire system discharges into the Gulf of Mexico south of Pensacola, Florida. Sources of water to the bay include the system's rivers through adjacent bays, the Gulf of Mexico, and several bayou basins (Olinger et al. 1975). Pensacola Bay is in an urbanized watershed and receives nonpoint source pollution via surface runoff and discharges from the cities of Gulf Breeze and Pensacola, the associated Naval Air Station, Bayou Grande, Bayou Chico, and Bayou Texar. The most significant point source discharges are the Main Street and Naval Air Station Sewage Treatment Plants, which discharge via an outfall into the bay. Pensacola Bay is identified as an impaired waterbody by the FDEP. Total maximum daily loads have been developed for coliform, identified as the primary source of impairment. Component bayous, formerly centers of productivity in the system, are now among the most anthropogenically stressed.

The CWA requires that the surface waters of each state be classified according to designated uses. Florida has six classes with associated designated uses, which are arranged in order of degree of protection required. According to 62.302.400, Florida Administrative Code, most of the project occurs within Class III waters. Therefore, standards to meet the following uses apply to the project area: Fish Consumption, Recreation, Propagation and Maintenance of a Healthy, Well-Balanced Population of Fish and Wildlife. The surface waters of the state are Class III unless described in Florida rule. The Pensacola Bay watershed is also identified as a priority waterbody under the Surface Water Improvement and Management (SWIM) Program. Florida created the SWIM Program to develop comprehensive plans for at-risk waterbodies and direct the work needed to restore damaged ecosystems, prevent pollution from stormwater runoff and other sources, and educate the public.

There are no waters that are designated as Outstanding Florida Waters, wild and scenic rivers, or aquatic preserves located in or adjacent to the project area. Two aquatic preserves are located in the general area. Fort Pickens Aquatic Preserve is approximately 3 miles south of the project area, and the Yellow River Marsh Aquatic Preserve is located approximately 8 miles to the northwest. Waters in aquatic preserves and state parks require additional water quality considerations; the State would be consulted to determine any concerns due to proposed project activities.

Floodplain
The project is located in Federal Emergency Management Agency (FEMA) designated Flood Zones according to the Flood Insurance Rate Maps (FIRMs) for Santa Rosa County (FIRM No. 12113C0606G Santa Rosa County, Effective Date December 19, 2006). The project is located in Zone AE with base flood elevation of 6 feet. Zone AE has defined base flood elevations with a 1% annual chance of flood and is an area of special flood hazard (FEMA 2006).

Wetlands
Most of the project area would be located in upland areas with some in-water work anticipated. No wetlands occur within the boundaries of the proposed project area. However, the Pensacola Bay Bridge Project Development and Environmental Study prepared for the Florida Department of Transportation
(FDOT) identified an emergent estuarine wetland dominated by saltmarsh cordgrass (*Spartina alterniflora*) within 10 feet of the southern edge of the existing Wayside Park boat ramp (FDOT 2012).

**Environmental Consequences**

Due to the small footprint and location of the proposed project, no impacts to tides or currents would be expected as a result of the implementation of the proposed project. The project would have minor short-term impacts to water quality in the area due to turbidity and contaminants anticipated during construction; however, no significant elevation of turbidity is expected. The state of Florida’s waters would not be significantly affected. No long-term impacts and only minor short-term impacts to water quality would be expected to result from repairing the boat ramp and parking area. The project area would not be located in or directly adjacent to areas designated as Outstanding Florida Waters, and no impacts would be anticipated. These impacts would quickly become undetectable and state water quality standards as required by the CWA would not be exceeded.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (Corps) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the Corps and final authorization pursuant to CWA/RHA will be completed prior to project implementation.

**Floodplains**

Most of the project is located above the mean high water level, but construction activities would remain within the approximately 2-acre site of existing facilities and are unlikely to have any impact on the floodplain in and around the project area.

**Wetlands**

During construction, care would be needed near the southern edge of the project area to avoid adverse impacts to wetlands south of the project area. Short-term, minor, direct impacts could result from project implementation; however, no long-term adverse impacts would be anticipated.

**12.75.5.1.3 Air Quality and Greenhouse Gas Emissions**

**Affected Resources**

The Clean Air Act (CAA) requires the Environmental Protection Agency (EPA) to set National Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to public health and the environment. NAAQS have been set for six common air pollutants (also known as criteria pollutants), consisting of particle pollution or particulate matter, ozone, carbon monoxide, sulfur dioxide, nitrogen dioxide, and lead. Particulate matter is defined as fine particulates with a diameter of 10 micrometers or less (PM$_{10}$), and fine particulates with a diameter of 2.5 micrometers or less (PM$_{2.5}$). When a designated air quality area or airshed in a state exceeds an NAAQS, that area may be designated as a “nonattainment” area. Areas with levels of pollutants below the health-based standard are designated as “attainment” areas.

To determine whether an area meets the NAAQS, air monitoring networks have been established and are used to measure ambient air quality. The EPA also regulates 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health effects.
Air quality in the Florida panhandle is in attainment with the NAAQS (EPA 2013a). The FDEP Northwest District currently operates only one air monitor in Santa Rosa County. The Woodlawn Beach Middle School monitor in Gulf Breeze records ozone and PM$_{2.5}$ concentrations. Readings at this monitor for the last 3 years show attainment with the NAAQS for ozone and PM$_{2.5}$ (FDEP 2013a). Sulfur dioxide attainment data were not available (EPA 2013b).

**Greenhouse Gases**

Gases that trap heat in the air are called greenhouse gases (GHGs). The primary GHGs are carbon dioxide (CO$_2$), methane (CH$_4$), nitrous oxide (NO$_x$), and fluorinated gases. Over the past century, human activities have released large amounts of GHGs into the atmosphere, which are contributing to global warming. Global warming is defined as the ongoing rise in global average temperature near the Earth’s surface and is known to cause changes in climate patterns.

According to the EPA, the average annual temperature in the southeastern portion of the United States has increased by approximately 2.0 degrees Fahrenheit (°F) since 1970. Winters, in particular, are getting warmer, and the average number of freezing days has decreased by 4 to 7 days per year since the mid-1970s. Most areas are getting wetter; autumn precipitation has increased by 30% since 1901 (EPA 2013c). In many parts of the region, the number of heavy downpours has increased. Despite the increases in fall precipitation, the area affected by moderate and severe drought has increased since the mid-1970s (EPA 2013c).

Average annual temperatures in the region are projected to increase from 4°F to 9°F by 2080. Hurricane-related rainfall is projected to continue to increase. Models suggest that rainfall will arrive in heavier downpours, with increased dry periods between storms. These changes would increase the risk of both flooding and drought. The coasts will likely experience stronger hurricanes and sea level rise. Storm surges could present problems for coastal communities and ecosystems (EPA 2013c).

Total GHG emissions in the state of Florida from 1990 to 2007 have increased at an average rate of 2.1% per year. Total GHG emissions in 2007 were 290 million metric tons of CO$_2$ equivalent (CO$_2$e). In 2007, 91% of GHG emissions in Florida were CO$_2$ emissions (FDEP 2010).

**Environmental Consequences**

Project implementation would require the use of heavy mechanized equipment, which would lead to temporary air pollution (e.g., criteria pollutants, HAPs, GHGs) due to emissions from the operation of construction vehicles and equipment. Any air quality impacts that occur would be minor due to their localized nature, short-term duration, and the small size of the proposed project. Available BMPs would be employed to prevent, mitigate, and control potential air pollutants during project implementation. No air quality–related permits would be required.

Because specific construction plans have not been finalized, needed equipment for construction was assumed based on a most-likely scenario and evaluated below (Table 12-10). In terms of construction equipment, the tractor-trailers and barge/crane would likely contribute most of the GHG emissions; GHG emissions from the remaining equipment would be negligible. GHG emissions from the tractor-trailers and barge/crane have been estimated using the operating assumption of 8 hours per day and 5
days per week for 1 month for boat ramp and seawall cap repairs, and 8 hours per day and 5 days a week for 6 months for restroom facility construction.

At the completion of the project, visitor use (and therefore vehicle and boat use) is not likely to significantly increase due to the fact that no expansions are planned as a part of this project. Therefore, long-term adverse impacts to air quality are not expected.

12.75.5.1.4 Noise

Affected Resources

Noise can be defined as unwanted or nuisance sound. The Noise Control Act of 1972 (42 USC 4901–4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. Amplitude is the magnitude of a sound and is usually expressed in decibels (dB), a dimensionless ratio of sound pressure to that of a reference pressure. The A-weighted decibel (dBA) is the adjusted unit of sound used to describe the human response to noise from industrial and transportation sources. The threshold of hearing is 0 dB. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear.

Table 12-11 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.

<table>
<thead>
<tr>
<th>CONSTRUCTION EQUIPMENT</th>
<th>NO. OF DAYS OPERATED&lt;sup&gt;1&lt;/sup&gt;</th>
<th>CO₂ (METRIC TONS)&lt;sup&gt;2&lt;/sup&gt;</th>
<th>CH₄(CO₂E) (METRIC TONS)&lt;sup&gt;3&lt;/sup&gt;</th>
<th>NOₓ(CO₂E) (METRIC TONS)</th>
<th>TOTAL CO₂E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barge/crane (1)</td>
<td>20</td>
<td>5.8</td>
<td>0.002</td>
<td>0.02</td>
<td>5.82</td>
</tr>
<tr>
<td>Tractor trailer (3)</td>
<td>29</td>
<td>10.15</td>
<td>0.0058</td>
<td>0.058</td>
<td>10.21</td>
</tr>
<tr>
<td>Grader</td>
<td>5</td>
<td>1.95</td>
<td>0.0015</td>
<td>0.01</td>
<td>1.97</td>
</tr>
<tr>
<td>Bulldozer</td>
<td>5</td>
<td>1.9</td>
<td>0.001</td>
<td>0.01</td>
<td>1.91</td>
</tr>
<tr>
<td>Rollers</td>
<td>5</td>
<td>0.8</td>
<td>0.2</td>
<td>3.2</td>
<td>4.2</td>
</tr>
<tr>
<td>CONSTRUCTION EQUIPMENT</td>
<td>NO. OF DAYS OPERATED(^1)</td>
<td>CO(_2) (METRIC TONS)(^2)</td>
<td>CH(_4) (CO(_2)E) (METRIC TONS)(^3)</td>
<td>NO(_x) (CO(_2)E) (METRIC TONS)</td>
<td>TOTAL CO(_2)E (METRIC TONS)</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.11</td>
</tr>
</tbody>
</table>

\(^1\) Emissions assumptions for all equipment based on 8-hour days of operation per piece of equipment, 5 days per week, over a 6-month construction period.

\(^2\) CO\(_2\) emissions assumptions for diesel and gasoline engines based on EPA (2009).

\(^3\) CH\(_4\) and NO\(_x\) emissions assumptions and CO\(_2\)e calculations based on EPA (2011).

Table 12-11. Typical noise levels for common sources.

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (DBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawn mower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Adapted from U.S. Department of Energy and Bonneville Power Administration (1986).

Ambient noise levels in the project area are moderate. The major noise-producing source of the area year-round is related to urbanized areas, roads, and boats associated with use of the existing boat ramp and adjacent highway next to the project area. No residential properties are directly adjacent to the project area.

**Environmental Consequences**

Noise from the construction equipment and other associated support equipment would be evident in the project area. While this noise would be evident to those workers on the job and any users of the adjacent highway, it would be short-term and insignificant. Normal noise levels would be achieved at the end of each workday and after completion of the job. Short-term impacts associated with construction would be minor, and no long-term adverse impacts would occur.
12.75.2  Biological Environment

12.75.2.1  Living Coastal and Marine Resources

Vegetation

Affected Resources
Vegetation in and around the proposed project area includes urban landscaped upland areas with sparse grasses and planted trees along the edge of the proposed project area. No natural vegetation exists within the boundaries of the project area. Submerged aquatic vegetation may be present in the areas directly south of the existing boat ramp and proposed project site.

A review of Florida’s Efficient Transportation Decision Making tool (FDOT 2013) indicates that while submerged aquatic vegetation (corals, seagrasses) are present off the coastline and south of the boat ramp, they are not present within the boundaries of the project area (FDOT 2013).
Environmental Consequences
There would be a small construction footprint associated with the proposed project, occurring mainly in upland areas. During the construction of the restroom facility and vehicle parking area, minimal vegetation would be disturbed due to the lack of vegetation in the existing infrastructure of the project area. The occurrence of seagrasses at the project site is unlikely due to the water quality and other past disturbance to the project area. Saltmarsh vegetation, dominated by saltmarsh cordgrass, exists adjacent to the southern border of the project area and may be affected by the proposed project. Short-term, minor direct impacts to saltmarshes could result from project implementation; however, no long-term adverse impacts would be anticipated.

Wildlife Habitat

Affected Resources
The project site would be surrounded by an urban environment. Common wildlife that could occur at the project site includes squirrels, raccoons, birds, etc. The proposed project area would be on existing urban facilities with little to no natural vegetation.

Environmental Consequences
Although common wildlife may be disturbed from construction activities, these species live in an urban environment where ambient noise levels are high and vegetation communities are not natural. Habitat conditions after construction would be similar to the existing conditions and no impacts to common wildlife would be anticipated.

Marine and Estuarine Fauna (fish, shell beds, and benthic organisms)

Affected Resources
Pensacola Bay provides habitat for numerous fish and other marine species. The value of marine habitats at the proposed project area has been affected by population growth, urban development, and water contamination from runoff and wastewater disposal. Increased coastal development, in particular, has contributed to displaced habitats, loss of wetlands, and greater amounts of stormwater runoff entering the river, bay, and their tributaries (Northwest Florida Water Management District 2011). Nonetheless, the marine environment at the project site provides habitat to an array of aquatic species including: ladyfish (Elops saurus), hardhead catfish (Arius felis), gafftopsail catfish (Bagre marinus) and pigfish (Orthopristis chrysoptera), among others. Benthic organisms, such as bivalves, gastropods and other mollusks, anemones, amphipods, annelids, crustaceans, and echinoderms, can also be abundant in these waters (FWC 2001).

Environmental Consequences
The proposed project would likely result in short-term, minor adverse impacts to fish that may be present during the in-water construction as a result of turbidity and noise disturbance during repairs to the boat ramp and seawall. Benthic organisms that may be present in the substrate may also be adversely affected during in-water construction. However, these impacts would be short-term and minor and would not result in a measurable impact to these species. The habitat areas around the boat ramp and seawall structures would not likely provide additional habitat for sessile organisms.
Protected Species

Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

Affected Resources

The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Santa Rosa County, Florida. Table 12-12 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

Table 12-12. Potential Impacts to Species/Critical Habitats managed by USFWS in the project area

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle	extsuperscript{a}, Hawksbill turtle	extsuperscript{b}, Kemp’s ridley turtle; Leatherback turtle	extsuperscript{c}, Loggerhead turtle</td>
<td>The project is located in waters within Pensacola Bay. Sea turtles are not known to nest at or near the project location; therefore no impacts to sea turtles using terrestrial habitats are expected. No designated or proposed critical habitat for sea turtles occurs within the action area; therefore, none will be adversely affected or modified. The main risk to sea turtles from this project is from collision with equipment and materials during periods of in-water work which could result in harm or mortality. Consultation has been initiated with NMFS the agency that has the jurisdiction to review impacts to sea turtles in the estuarine and marine environments.</td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>Santa Rosa County is not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the project waters. The main risk to manatees during implementation of this project would come from boat collisions during construction or from visitor use which could result in harm or mortality. Implementation of the conservation measures will reduce the risk of potential impacts to any manatees that could be present to a level that is insignificant and discountable.</td>
</tr>
<tr>
<td>Gulf sturgeon</td>
<td>NMFS was consulted on Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon was not considered in the consultation with the USFWS.</td>
</tr>
</tbody>
</table>

\textsuperscript{5} The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered
- Kemp’s Ridley Sea Turtle, *Lepidochelys kempii*, Endangered

Additional information on some of these species and associated critical habitat areas is presented below.

**Sea Turtles and Marine Mammals**

There are five species of endangered or threatened sea turtles that may occur or have potential to occur in the project area. These include green turtle, hawksbill turtle, Kemp’s Ridley turtle, leatherback turtle, and loggerhead turtle. Sea turtles forage in the waters of the coastal Florida panhandle region and have potential to occur in the waters where in-water work is proposed. The project site does not contain suitable sea turtle nesting habitat.

Twenty-two marine mammals are native to the Gulf of Mexico: 21 pelagic species of whales and dolphins, and the West Indian manatee. The endangered West Indian manatee has the potential to occur in the project area waters. Manatees typically seek out shallow seagrass areas as preferred feeding habitat. Additionally, bottlenose dolphins (*Tursiops*) populations are known to migrate into bays, estuaries, and river mouths and could be located in the proposed project area (NMFS 2013a). Bottlenose dolphins have been observed entering and leaving nearshore coastal waters (NMFS 2012).

**Smalltooth Sawfish, Gulf Sturgeon, and Gulf Sturgeon Critical Habitat**

Smalltooth sawfish (*Pristis pectinata*) do not typically utilize northern Gulf waters (NMFS 2013b). Gulf sturgeons are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Pearl River, Louisiana to the Suwannee River, Florida (NMFS 2009). Adult fish reside in rivers 8 to 9 months each year and in estuarine or Gulf waters during the 3 to 4 cooler months of each year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993).

Gulf sturgeon critical habitat was jointly designated by the NMFS and USFWS on April 18, 2003 (50 Code of Federal Regulations [C.F.R.] 226.214). The proposed project site is located Critical Habitat for Gulf sturgeon (Critical Habitat Unit 9). Critical habitat was designated based on seven primary constituent elements essential for its conservation, as defined in the 2003 *Federal Register* and listed below. PCE’s 1, 5, 6, and 7 are present in the project area. The PCE’s are:

1. Abundant food items, such as detritus, aquatic insects, worms, and/or mollusks, within riverine habitats for larval and juvenile life stages; and abundant prey items, such as amphipods,
lancelets, polychaetes, gastropods, ghost shrimp, isopods, mollusks, and/or crustaceans, within estuarine and marine habitats and substrates for subadult and adult life stages;

2. Riverine spawning sites with substrates suitable for egg deposition and development, such as limestone outcrops and cut limestone banks, bedrock, large gravel or cobble beds, marl, soapstone, or hard clay;

3. Riverine aggregation areas, also referred to as resting, holding, and staging areas, used by adult, subadult, and/or juveniles, generally, but not always, located in holes below normal riverbed depths; these are believed necessary for minimizing energy expenditure during freshwater residency and possibly for osmoregulatory functions;

4. A flow regime (i.e., the magnitude, frequency, duration, seasonality, and rate-of-change of freshwater discharge over time) necessary for normal behavior, growth, and survival of all life stages in the riverine environment, including migration, breeding site selection, courtship, egg fertilization, resting, and staging, and for maintaining spawning sites in suitable condition for egg attachment, egg sheltering, resting, and larval staging;

5. Water quality, including temperature, salinity, pH, hardness, turbidity, oxygen content, and other chemical characteristics necessary for normal behavior, growth, and viability of all life stages;

6. Sediment quality, including texture and chemical characteristics, necessary for normal behavior, growth, and viability of all life stages; and

7. Safe and unobstructed migratory pathways necessary for passage within and between riverine, estuarine, and marine habitats (e.g., an unobstructed river or a dammed river that still allows for passage).

**Essential Fish Habitat**

EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as “those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Table 12-13 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Gulf Breeze Park Boat Ramp site and Pensacola Bay.

**Table 12-13. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.**

<table>
<thead>
<tr>
<th>EFH Category</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Highly Migratory Species</td>
<td></td>
</tr>
<tr>
<td>Atlantic Sharpnose Shark-Neonate</td>
<td></td>
</tr>
<tr>
<td>Sandbar Shark-Adult</td>
<td></td>
</tr>
<tr>
<td>Sandbar Shark-Neonate</td>
<td></td>
</tr>
<tr>
<td>EFH Category</td>
<td>Species</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Tiger Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Tiger Shark-Neonate</td>
</tr>
<tr>
<td>Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cobia</td>
</tr>
<tr>
<td></td>
<td>King Mackerel</td>
</tr>
<tr>
<td></td>
<td>Spanish Mackerel</td>
</tr>
<tr>
<td>Gulf of Mexico Red Drum</td>
<td>Red Drum</td>
</tr>
<tr>
<td>Gulf of Mexico Shrimp</td>
<td>Brown Shrimp</td>
</tr>
<tr>
<td></td>
<td>Pink Shrimp</td>
</tr>
<tr>
<td></td>
<td>White Shrimp</td>
</tr>
<tr>
<td>Reef Fish Resources of the Gulf of Mexico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Almaco Jack</td>
</tr>
<tr>
<td></td>
<td>Banded Rudderfish</td>
</tr>
<tr>
<td></td>
<td>Black Grouper</td>
</tr>
<tr>
<td></td>
<td>Blackfin Snapper</td>
</tr>
<tr>
<td></td>
<td>Blueline Tilefish</td>
</tr>
<tr>
<td></td>
<td>Cubera Snapper</td>
</tr>
<tr>
<td></td>
<td>Gag</td>
</tr>
<tr>
<td></td>
<td>Goldface Tilefish</td>
</tr>
<tr>
<td></td>
<td>Gray (Mangrove) Snapper</td>
</tr>
<tr>
<td></td>
<td>Gray Triggerfish</td>
</tr>
<tr>
<td></td>
<td>Greater Amberjack</td>
</tr>
<tr>
<td></td>
<td>Hogfish</td>
</tr>
<tr>
<td></td>
<td>Lane Snapper</td>
</tr>
<tr>
<td></td>
<td>Lesser Amberjack</td>
</tr>
<tr>
<td></td>
<td>Mutton Snapper</td>
</tr>
<tr>
<td></td>
<td>Nassau Grouper</td>
</tr>
<tr>
<td></td>
<td>Queen Snapper</td>
</tr>
<tr>
<td></td>
<td>Red Grouper</td>
</tr>
<tr>
<td></td>
<td>Red Snapper</td>
</tr>
<tr>
<td></td>
<td>Scamp</td>
</tr>
<tr>
<td></td>
<td>Silk Snapper</td>
</tr>
<tr>
<td></td>
<td>Snowy Grouper</td>
</tr>
<tr>
<td></td>
<td>Speckled Hind</td>
</tr>
<tr>
<td></td>
<td>Tilefish</td>
</tr>
<tr>
<td></td>
<td>Vermilion Snapper</td>
</tr>
<tr>
<td></td>
<td>Warsaw Grouper</td>
</tr>
<tr>
<td></td>
<td>Wenchman</td>
</tr>
<tr>
<td></td>
<td>Yellowedge Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowmouth Grouper</td>
</tr>
</tbody>
</table>
State-listed Birds, MBTA, and BGEPA

All migratory bird species are protected under the MBTA. There are a few State of Florida–listed bird species with potential for occurrence in and around the proposed project location. These include least tern (*Sternula antillarum*), and southeastern/Cuban snowy plover (*Charadrius alexandrinus tenuirostris*). The nesting season in Florida is from February 15 to August 31.

The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s *Bald Eagle Management Plan* guidelines would be followed (FWC 2008). According to the FWC Bald Eagle Nest Locater, there is only one bald eagle nest within 10 miles of the project site, and it is located approximately 8 miles away from the proposed project area (FWC 2013b).

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-14 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

Table 12-14. Potential project impacts to different migratory bird group

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds/seabirds</td>
<td>Resting, foraging</td>
<td>Construction may disturb resting or foraging birds; however, these species if disturbed would disperse to nearby suitable habitat and resume normal activities. State-listed birds are unlikely to nest in or near the project area due to the lack of beaches, dunes, or mudflats in the vicinity of the project area. If construction activities occur during the nesting season (February 15 to August 31), any nesting birds could be disturbed by noise generated by terrestrial and in-water activities.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-15.
Table 12-15. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds/seabirds</td>
<td>The Trustees expect foraging and resting birds would be able to move to another nearby location to continue foraging and resting. If construction and planting occurs during shorebird nesting season, the most recent version of the FWC Nesting seabirds and shorebird protection conditions will be followed.</td>
</tr>
</tbody>
</table>

**Environmental Consequences**

The proposed project has been evaluated for potential short- and long-term impacts to state-listed and federally listed threatened and endangered species that may occur in and adjacent to the project area, based on available suitable habitat and restoration goals. Descriptions of these evaluations are provided below.

**Protected Species**

On February 6, 2014, the review of potential impacts to species managed by USFWS was completed for the Gulf Breeze Wayside Park Boat Ramp project (McClain, 2014). This review determined the proposed project may affect, but is not likely to adversely affect the West Indian manatee and would have no effect on five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead).

Consultation of potential impacts on protected species managed by NMFS from this project was initiated on February 11, 2014. The Trustees’ review of the potential impacts of the project for protected species managed by NMFS determined the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the project implementation area:

- **Gulf Sturgeon Critical Habitat** - The proposed project footprint falls within an identified Gulf sturgeon critical habitat unit (Critical Habitat Unit 9 – Pensacola Bay); however, it has been determined that the construction activities associated with this project will not adversely affect the PCE’s associated with this habitat or modify designated Gulf sturgeon critical habitat.
- **Gulf Sturgeon** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Smalltooth Sawfish** – The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Green Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Loggerhead Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Hawksbill Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Leatherback Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- **Kemp’s Ridley Sea Turtle** - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
Concurrence from NMFS with the Trustees’ conclusions for these species and associated critical habitats is still pending.

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

**Essential Fish Habitat**

The restoration actions at the Gulf Breeze Wayside Park boat ramp are expected to have no to minor impacts on EFH. The proposed project would utilize standard construction methods to repair the existing Wayside Park public boat ramp and seawall cap that were previously damaged from the Deepwater Horizon oil spill cleanup efforts. Some demolition and debris removal may be required during repairs and enhancements to the existing structures. A portion of the boat ramp and seawall repair work would likely take place in-water; however, all other activities, including installing a restroom facility and repairing and enhancing the parking area, would take place above mean high water and are not expected to affect EFH. Repair to the existing seawall would not change the seawall’s overall footprint. There would be no expansion outside of the existing 2-acre site. Total construction time would be between 4 and 6 months, and total duration of work in-water would be a fraction of the total construction time. Because all planned work would take place within the footprint of the existing structures, no habitat conversion is expected to result from this project work.

Construction activities will likely have a temporary negative impact on habitat. Disturbance caused by the use of heavy equipment, sediment disturbance, potential increase of debris in the water, and increased noise associated with repairing the boat ramp and seawall cap may affect any species using the habitat near the boat ramp. During construction, all appropriate BMPs will be followed to minimize the potential impacts of construction activities on EFH and species in the area. During construction, adjacent areas with equivalent or better habitat will be available and undisturbed and organisms could move away from disturbed areas.

As a result the Trustees conclude the project is not likely to adversely affect EFH. The proposed boat ramp and seawall cap repairs will take place within the footprint of the existing structures. No habitat conversion is anticipated as part of this project. Disturbance to species will be minor and brief.

On March 27, 2014, NOAA concurred that the project is not likely to adversely affect EFH and any disturbances to species will be minor and brief (Fay, 2014).

**State-listed Birds, MBTA, and BGEPA**

Bald eagles are not known to be present in the project area so will not be affected. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.
Invasive Species

Affected Resources
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

Environmental Consequences
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.75.5.3 Human Uses and Socioeconomics

12.75.5.3.1 Socioeconomics and Environmental Justice

Affected Resources
The population of Santa Rosa County is 151,372 (U.S. Census Bureau 2010). The proposed project is contained within Census Tract 109 in Santa Rosa County. Table 12-16 shows population/minority data for Census Tract 109, Santa Rosa County, and Florida.

Environmental Consequences
The proposed project would have a short-term, minor, direct adverse impact through disruption of localized recreational fishing and boating during construction. Direct, short-term, moderate benefits through local job creation would result from construction activities. Approximately 10 temporary construction jobs would be created for up to 4 months for boat ramp and seawall cap repairs, and about 11 temporary construction jobs would be created for up to 6 months for restroom facility construction. Long-term, direct, moderate benefits would result from increasing the quality of the boat ramp, parking area, and restroom facilities in the project area, and would likely increase recreational use of this area.
# Table 12-16. Populations of Florida Santa Rosa County, Census Tract 109.

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>FLORIDA</th>
<th>SANTA ROSA COUNTY</th>
<th>CENSUS TRACT 109</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 Total Population</td>
<td>18,801,310</td>
<td>151,372</td>
<td>5,763</td>
</tr>
<tr>
<td>White alone</td>
<td>14,109,162</td>
<td>132,920</td>
<td>5,518</td>
</tr>
<tr>
<td></td>
<td>75.0%</td>
<td>87.8%</td>
<td>95.8%</td>
</tr>
<tr>
<td>Black or African American alone</td>
<td>2,999,862</td>
<td>8,205</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>16.0%</td>
<td>5.4%</td>
<td>0.4%</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone</td>
<td>71,458</td>
<td>1,306</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>0.4%</td>
<td>0.9%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Asian alone</td>
<td>454,821</td>
<td>2,759</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>2.4%</td>
<td>1.8%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander alone</td>
<td>12,286</td>
<td>217</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.1%</td>
<td>0.1%</td>
<td>&lt;0.1%</td>
</tr>
<tr>
<td>Some Other Race alone</td>
<td>681,144</td>
<td>1,463</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>3.6%</td>
<td>1.0%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Two or More Races:</td>
<td>472,577</td>
<td>4,502</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>2.5%</td>
<td>3.0%</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

This project is not designed to create a benefit for any one group or individual, but rather would provide benefits to all local groups. There are no indications that the proposed Gulf Breeze Wayside Park Boat Ramp project would be contrary to the goals of Executive Order 12898, or would create disproportionate, adverse human health or environmental impacts on minority or low-income populations of the surrounding community.

## 12.75.5.3.2 Cultural Resources

### Affected Resources

A review of the Florida Master Site File’s online data (State of Florida Division of Historical Resources 2013) indicates that there are at least 13 previously recorded archaeological sites within 1 mile of the current project area. Most of these are shipwrecks of historic age that have been identified in and around Old Navy Cove. Additionally, there is the Pensacola Bay Bridge (8SR2165/8ES3721), the Gulf Breeze Fishing Bridge (8SR2162), and the Gulf Breeze Ballast Pile/Shipwreck (8SR2176). None of the 11 shipwrecks in Old Navy Cove are in the immediate vicinity of the project area. The Pensacola Bay Bridge (8SR2165/8ES3721) is considered infrastructure not eligible for the National Register of Historic Places (NRHP). The Gulf Breeze Fishing Bridge (8SR2162) was reported as completely destroyed, and although the eligibility of this resource has not been determined, it is not likely eligible for the NRHP. Finally, the Gulf Breeze Ballast Pile/Shipwreck (8SR2176) is just across U.S. Highway 98 from the proposed boat ramp location. This site’s eligibility for listing on the NRHP has also yet to be determined.

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.
**Environmental Consequences**
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.75.5.3.3 Infrastructure

**Affected Resources**
The following infrastructure currently exists as part of the Wayside Park Public Boat Ramp, Gulf Breeze Wayside Park East across Gulf Breeze Parkway:

- Two-lane lighted boat ramp with deep water access
- Parking area for 36 vehicles and trailers
- Sidewalk
- Concrete seawall and riprap
- Picnic tables

Park water is acquired from Santa Rosa County municipal water supply. The landward side of the proposed project area is largely developed with a variety of infrastructure that includes roads and commercial and residential development.

**Environmental Consequences**
Construction of the new restroom would require connection to the South Santa Rosa Utility System. The impact to the regional system would be long-term but minor, because it is localized and would be within operational capacity. Visitor experience at the park would be improved with the provision of a new restroom. A sanitary sewer collection system permit would be obtained from the FDEP.

Additional improvements would be made to infrastructure by improving accessibility for ADA compliance. These infrastructure improvements would have moderate, beneficial, long-term impacts because they would improve the visitor experience and allow for a greater participation in the existing facilities. The proposed project would not impact other infrastructure in surrounding areas.

12.75.5.3.4 Land and Marine Management

**Affected Resources**
The land use surrounding the boat ramp area to the south, southwest, and southeast is primarily zoned as city, including residential neighborhoods and commercial businesses. Wayside Park is to the east of the project area and is a linear park zoned as city. The boat ramp area and adjacent Wayside Park are managed by the Parks and Recreation Department of City of Gulf Breeze.

The project would be located in a coastal area that is regulated by the federal Coastal Zone Management Act of 1972 and the Florida Coastal Management Act of 1978.
Environmental Consequences
Although the proposed project would require several permits for the short-term construction period, it would not require a variance, zoning change, or amendment to a land-use area or comprehensive management plan, as the existing use would be continued. There would be no impacts to land use or management and the project would be consistent with current land use.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

12.75.5.3.5  Aesthetics and Visual Resources

Affected Resources
The landward side of the proposed project area has a variety of land uses that provide access for residents, visitors, and commuters, including Wayside Park.

Environmental Consequences
Aesthetics would be reduced in the project area during the construction operations, due to the physical presence of the equipment used to transport the material as well as the presence of other land-based support equipment. However, these impacts would be minor, direct, temporary impacts. Following construction, the repairs and enhancements to the existing boat ramp, parking lot, and restroom facilities would provide for minor, direct benefits through improved aesthetics to the local area.

12.75.5.4  Tourism and Recreational Use

Affected Resources
The proposed project site is currently used and operated as a public boat ramp with primitive restrooms and a semi-improved parking area. No data on current use are available; however, it is located on the west side of Gulf Breeze Highway (U.S. Highway 98) in the city of Gulf Breeze and is easily accessible to the public.

Environmental Consequences
During the construction period, recreational visitors would have very limited access to the boat ramp and parking lot areas and would experience negative impacts from noise and visual disturbances associated with the use of construction equipment. These limitations would be a minor inconvenience to visitors. Construction would have a short-term, minor, direct adverse impact on tourism and recreational use of the project area. A small amount of revenue would be lost through the inability to collect ramp fees during the time of construction. However, once completed, the project would result in a long-term, direct, positive impact on tourism and recreational use by providing needed improvements and repairs to the boat ramp, parking lot, and restroom facilities that would likely enhance recreational opportunities. Because work would include repairs to existing facilities without any expansion of the site.
or number of boat ramps, no significant change to vessel traffic is expected regarding impacts to natural resources.

12.75.5.4.1 Public Health and Safety and Shoreline Protection

Affected Resources
The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act; the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); the Emergency Planning and Community Right-to-Know Act; and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of these materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

A review of the EPA’s EnviroMapper revealed that there are no CERCLA sites on or immediately adjacent to the proposed project area. There are several nearby facilities that produce hazardous waste, including an automotive facility, a pharmacy, a supermarket, and a laundry facility (EPA 2013b). In addition, there are no known hazardous waste generation or disposal sites in the project area. According to the FDEP Bureau of Petroleum Storage Systems (FDEP 2013b), three storage tank and/or contaminated facilities exist within 0.5 mile of the proposed project area, the closest being approximately 675 feet from the edge of the project area. This site has been marked as having completed cleanup, and the facility is closed. Additionally, the shorelines are stabilized with existing human-made structures. Minimal erosion rates have been observed for this shoreline.

Environmental Consequences
Project construction would require mechanical equipment that uses oil, lubricants, and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of construction-related hazardous materials such as vehicle fuels, oil, hydraulic fluid, and other vehicle maintenance fluids, and to avoid releases and spills. As a result, no impacts associated with construction-related hazardous materials would be anticipated. The period of time during which a release could occur from construction activities would be short term, and any release would be expected to be minor. Additionally, there would be no significant impacts to shoreline stability as a result of this project due to the lack of expansion beyond the footprint of the existing structures, and BMPs to reduce erosion.

12.75.6 Summary and Next Steps
The Gulf Breeze Wayside Park Boat Ramp Improvements project would improve the existing boat ramp at Wayside Park in the City of Gulf Breeze, Santa Rosa County, FL. The proposed improvements include repairing the existing boat ramp and seawall cap, constructing a public restroom facility, and repairing and enhancing the parking area to improve access. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.
NEPA analysis of the environmental consequences suggests that while minor adverse impacts to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational boating and fishing opportunities by improving the boat ramp area. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.75.7 References


USFWS 2011 Standard Manatee Conditions for In-Water Work


12.76 Developing Enhanced Recreational Opportunities on the Escribano Point Portion of the Yellow River Wildlife Management Area: Project Description

12.76.1 Project Summary
The proposed Developing Enhanced Recreational Opportunities on the Escribano Point Portion of the Yellow River Wildlife Management Area project would improve public access and enjoyment of natural resources at the Escribano Point portion of the Yellow River Wildlife Management Area. The proposed improvements include a one-time assessment and mapping activities necessary for developing the site for outdoor recreation purposes, hurricane debris removal and road repair, constructing an entrance kiosk, information facilities, parking facilities, interpretive facilities, fishing facilities, picnicking facilities, primitive camping sites, wildlife viewing areas, and bear-proof containers for trash and food storage. The total estimated cost of the project is $2,576,365.

12.76.2 Background and Project Description
The Trustees propose to improve and enhance Escribano Point (see Figure 12-16 for project location). Escribano Point is uniquely situated to provide recreational opportunities in saltwater, freshwater and upland ecosystem environments. In particular it provides scenic water views and a wide range of recreational uses such as paddling, camping, fishing, wildlife viewing and nature study. Escribano Point is key to providing military base buffers to Eglin Air Force Base and the Navy’s Choctaw Outlying Field immediately adjacent to the wildlife management area (WMA). FWC’s management of this property includes providing public access and enjoyment of these coastal resources.

The objective of the Escribano Point project is to enhance and/or increase recreational use and wildlife viewing opportunities by improving the recreational use of the land. The restoration work proposed would include 1) an entrance kiosk, information, parking and facilities; 2) north beach hammock parking, interpretive, fishing and picnicking facilities; 3) primitive camping sites; 4) wildlife viewing facilities; 5) Escribano Point parking, interpretive, fishing and picnicking facilities; and 6) bear-proof containers for trash and storing food at campsites. Additionally there would be one-time assessment and mapping activities necessary for developing the site for outdoor recreation purposes (natural communities mapping, rare and exotic plan inventories, development of a hydrological assessment and water control plans for road access improvements, and herpetofauna survey). Funding for hurricane debris removal and road repair with hydrologic restoration would also be included.
12.76.3 Evaluation Criteria

This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Developing Enhanced Recreational Opportunities on the Escribano Point Portion of the Yellow River Wildlife Management Area project is intended to enhance and/or increase recreational use and wildlife viewing opportunities by improving the recreational use of the land. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Florida State Wildlife Management Areas have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and
Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.76, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration with the exception of noise and living coastal and marine resources which would be minor, localized and long term. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.76 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Developing Enhanced Recreational Opportunities on the Escribano Point Portion of the Yellow River Wildlife Management Area project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.76.4 Performance Criteria, Monitoring and Maintenance

As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational use and wildlife viewing opportunities by improving the recreational use of the Escribano Point portion of the Yellow River Wildlife Management Area. Performance monitoring will evaluate: 1) the hurricane debris removal and road repair; 2) the construction of an entrance kiosk, information, parking and facilities; 3) the improvements of the north beach hammock parking; 4) the construction of the interpretive, fishing and picnicking facilities; 5) the construction of the primitive camping sites; 6) the construction of the wildlife viewing facilities; 7) the construction of the Escribano Point parking, interpretive, fishing and picnicking facilities; and 8) the installation of the bear-proof containers for trash and storing food at campsites. Specific success criteria include: 1) the completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the visitor area of the wildlife management area is open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by FWC as part of its regular public facilities maintenance activities. The proposed project cost includes $500,000 for five years of management costs.
During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, FWC will monitor the recreational use activity at the site. FWC staff will visit the site twice a year to count the number of users at the wildlife management area. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.76.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $5,152,730 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.6

12.76.6 Costs
The total estimated cost to implement this project is $2,576,365. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---

6 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.77 Developing Enhanced Recreational Opportunities on the Escribano Point Portion of the Yellow River Wildlife Management Area: Environmental Review

The proposed Escribano Point project would improve public access and enjoyment of natural resources at the Escribano Point portion of the Yellow River Wildlife Management Area. Improvements include a one-time assessment and mapping activities necessary for developing the site for outdoor recreation purposes, hurricane debris removal and road repair, constructing an entrance kiosk, and interpretive facilities, parking facilities, fishing facilities, picnicking facilities, primitive camping sites, wildlife viewing areas, and bear-proof containers for trash and food storage.

12.77.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement), the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This project was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

The Trustees propose to improve and enhance Escribano Point (Figure 12-17). Escribano Point is uniquely situated to provide recreational opportunities in saltwater, freshwater and upland ecosystem environments. In particular it provides scenic water views and a wide range of recreational uses such as paddling, camping, fishing, wildlife viewing and nature study. Escribano Point is key to providing military base buffers to Eglin Air Force Base and the Navy’s Choctaw Outlying Field immediately adjacent to the WMA. FWC’s management of this property includes providing public access and enjoyment of these coastal resources.
Elements of the project would include construction of public access facilities on site including:

- Entrance kiosk, information station and parking lot and facilities;
- Parking lot, interpretive signs and fishing and picnicking facilities at the North Beach Hammock;
- Primitive campsites and placement of bear-proof containers;
- Parking lot, interpretive signs, and fishing and picnicking facilities at Escribano Point;
- Wildlife viewing areas; and
- Support shop facility.

In addition to construction, the proposed project includes a one-time assessment and mapping activities necessary for developing the site for outdoor recreation purposes as well as removal of debris placed on the point from previous hurricanes and storms. These assessments include natural communities mapping, rare and exotic plant inventories, development of a hydrological assessment and water control plans for road access improvements, and a herpetofauna survey. The total estimated cost of the project is $2,576,365.

12.77.2 Project Location
The proposed project is located in the State of Florida, Santa Rosa County. Escribano Point is along the East and Blackwater Bays, of which East Bay connects to Pensacola Bay to the southwest. Figure 12-17 and
Figure 12-18 show the general and more specific project location.
Figure 12-17. General project location map for Escribano Point.
Figure 12-18. Detailed project location map for Escribano Point.
12.77.3 Construction and Installation

The proposed Escribano Point project will begin with surveying and mapping of the project site that will, among other things, include natural communities mapping, developing inventories of rare and exotic plants, and conducting a herpetofauna survey. At the same time, initial pre-construction work will include developing a hydrological assessment and water control plans for the area that incorporate possible improvements to unpaved access roads.

Based on the results of these mapping and surveying efforts and the results of the hydrological assessment, a final land management plan detailing restoration and access-related activities will be developed for the area. Generally, the land management plan will seek to restore natural hydrological systems in the area and attempt to reintroduce critical elements that help shape these types of natural systems, for example the use of prescribed fire. Additional elements of this envisioned plan include: hurricane debris removal along the shore near Escribano Point; completing repairs/renovations to existing roads, but not paving them; constructing an entrance kiosk, information facilities, parking facilities, an interpretive fishing facility, interpretive picnicking facilities, primitive camping sites, wildlife viewing trails, a site-support workshop, and a wildlife viewing structure. The surveying and mapping area will help inform placement of the kiosk, facilities, camping sites, wildlife viewing areas, and hydrologic restoration.

Additional details with respect to the proposed construction activities include the following:

- Constructing an entrance kiosk, information station, and parking lot with support facilities. While, the design and exact location for each of these elements is not yet known, the maximum footprint needed for the sum of all the projects is expected to be approximately 1 to 1.5 acres. The preference is to construct these elements on an existing disturbed site adjacent to an existing silviculture road. Figure 12-18 shows a prototypical design of a typical entrance package including a kiosk and sign. Signage in this kiosk could include information on interacting with sensitive species as well as guidelines for activities such as driving in the area (e.g., stay on formal roads). The proposed parking lot would be unpaved.
- Constructing a picnic area with unpaved parking lot. While the exact location for these features is not known it is expected they would be located in a previously disturbed coastal oak hammock area that would be accessible by an existing silviculture road and a new unpaved road developed as part of this project. The total footprint of all disturbances associated with this work is expected to be less than 1 acre. Figure 12-20 shows the design of a prototypical picnicking facility, and Figure 12-21 shows a typical interpretive sign as seen at other Florida Wildlife Management Areas.
- Constructing five primitive campsites with bear-proof trash containers in existing clearings. Each campsite is expected to be approximately 400 square feet with a fire ring and bear-proof container. Figure 12-22 shows an example of a typical bear-proof container used. Campsites would be maintained by underbrushing and mowing but would not require ground disturbance.
- Constructing wildlife viewing trails and an elevated wildlife viewing structure. The final location for these structures would be determined based upon a wildlife viewing analysis of the site and
the location of the other public access facilities. The proposed structure and trails are expected to disturb approximately 0.2 acre with the proposed trails being worked into the habitat connecting the site to one of the proposed parking areas. Figure 12-23 shows an example of a wildlife viewing trail.

- Constructing a shop support facility consisting of a compound with a metal building and fencing. Utilities would be provided by an on-site power generator since no existing utilities serve the site. Total project footprint for this facility is expected to be less than 2 acres. Figure 12-24 shows a typical shop.

This proposed work will be limited to the area above mean high water in the project parcel. Long-term monitoring and maintenance of the improved facilities will be completed by Florida Fish and Wildlife Conservation Commission (FWC) as part of their regular public facilities maintenance activities.

Figure 12-19. Entrance package example.
Figure 12-20. Picnicking facility example.

Figure 12-21. Interpretive signs example.
Figure 12-22. Bear-proof container example.

Figure 12-23. Wildlife viewing trail example.
Project construction would be expected to begin 4 to 6 months after funding is received. A detailed timeline of the proposed construction scheduled can be seen below in Table 12-17.

**Table 12-17. Proposed project timeline.**

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>YEAR 1</th>
<th>YEAR 2</th>
<th>YEAR 3</th>
<th>YEAR 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debris Removal</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrological Assessment</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant and Animal Survey</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primitive Campsites</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entrance Package</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Shop Support Facility</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Road Restoration/Construction</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>North Beach Picnic Area</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Escribano Point Picnic and Interpretation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Wildlife Viewing Facility</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Note: “X” delineates when activities for the proposed projects would occur and does not represent the construction period alone.

**12.77.4 Operations and Maintenance**

Long-term operations and maintenance would be completed by the Florida Fish and Wildlife Conservation Commission (FWC) as part of their regular public facilities maintenance activities. Funding
for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by the FWC. Following construction FWC will monitor the recreational use activity of the site. FWC staff will visit the site twice a year to count the number of users at the wildlife management area.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, FWC will monitor the recreational use activity at the site. FWC staff will visit the site twice a year to count the number of users at the wildlife management area. The visitation numbers will then be provided to the Florida Department of Environmental Protection

12.77.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

12.77.5.1 No action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.77.5.2 Physical Environment

12.77.5.2.1 Geology and Substrates

Affected Resources
Escribano Point is located in Santa Rosa County, Florida, in between Blackwater Bay and East Bay, just west of the Navy’s Choctaw Outlying Field Airport. The coastal portion of the project area is relatively flat to gently sloping with elevations ranging from sea level to 75-feet above sea level. The majority of the proposed project area and soils has been previously disturbed, while much of the surrounding areas are void of development and are undisturbed. Soils in the project area have been classified by Department of Agriculture Natural Resources Conservation Services (USDA NRCS) as Leon, Ortega, Pactolus, and Rutledge soils types. Each of these soil groups are primarily composed of sandy with some portions of clay, range from flat to gradual slopes, are moderately well drained with a low erosion potential (USDA NRCS 1980; FWC 2006).

Environmental Consequences
Construction and construction activities associated with the development of enhanced recreational activities would disturb, modify, and expose soils in the direct footprint of the project sites, approximately 6 acres. Construction activities would likely include the use of a backhoe, grader, skid steer, and tractors. Construction equipment and materials staging have not been identified but would
be located on previously disturbed sites or sites that would be disturbed as a result of construction. Impacts to soils would occur primarily through the clearing and grading of sites, the removal of existing vegetation, and the placement of structures including pilings and foundations. Soils in the direct footprint of structures, parking areas, and trails would lose all productivity; however, based on the relatively small amount of soils impacted and previous disturbances to the soils, impacts would be long-term, minor and adverse. Specific mitigation measures would be implemented during construction to minimize erosion and overall soil impacts. These would include following established best management practices (BMPs) such as the implementation of an erosion control and stormwater management plan, the installation of sediment traps prior to commencement of construction activities, and on-going construction monitoring to ensure compliance.

Given that there would likely be increased visitation to the area as a result of the proposed project soils in the footprints of the project areas would see continued impacts; however, based on the nature of impacts (vehicle and foot traffic) and the relatively small area impacted, impacts would be long-term and negligible as a result of site use.

12.77.5.2.2 Hydrology and Water Quality

Affected Resources

The principal water bodies associated with the project area are East and Blackwater Bay. Both bodies of water have been designated as outstanding Florida waters (OFWs), indicating these bodies of water are worthy of special protection due to natural attributes. An OFW is designated by the Florida Department of Environmental Protection after approval of the Environmental Regulation Commission (ERC), once it is determined that the environmental, social, and economic benefits of the Special Water status outweigh the environmental, social, and economic costs (Rule 62-302.700(5), FAC). The Florida Department of Environmental Protection (FDEP) is granted the authority by Section 403.061(27), FS, to establish rules for OFWs. The purpose of the designation as an OFW is to protect existing water quality and to preserve the exceptional ecological and recreational significance of the waterbody. FDEP will not issue permits for direct pollutant discharges to OFWs, which would lower ambient (existing) water quality, or for indirect discharge, which would significantly degrade the OFW.

The site is located on the shoreline in between Blackwater and East Bay. Both bays and the waters surrounding the project area have been impacted by numerous non-point and point source pollution sources resulting in a reduction of natural biodiversity and productivity. In addition to surface waters the proposed project area comprises three aquifers, the surficial aquifer system, intermediate aquifer system, and the Floridan aquifer system, listed from shallowest to deepest. The surficial aquifer system is the primary source of groundwater for the project area and Santa Rosa County. The entire project area is located within the 100-year floodplain.

Environmental Consequences

Project activities are not anticipated to require construction in water or in wetlands; however, based on construction activities on-land it is possible that some impacts via turbidity and the potential for increased sediment released into water could occur. It is anticipated that all potential impacts would be short-term in nature occurring only during construction resulting in short-term, negligible, adverse impacts to water quality. BMPs along with other avoidance and mitigation measures required by state
and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts. It is not anticipated that based on the construction requirements of the proposed project that impacts to groundwater would occur.

Long-term, the planned enhancement of recreational opportunities could result in some in-water recreation, increasing turbidity of water in the project area, resulting in long-term, negligible adverse impacts. The planned removal of debris would have a long-term, negligible impact on water quality as a result for the decreased potential for water contamination as a result. Based on the details and construction requirements of the proposed project, impacts to floodplains and groundwater are not anticipated.

The proposed project is not anticipated to require authorization by the U.S. Army Corps of Engineers (Corps) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA).

12.77.5.2.3  Air Quality and Greenhouse Gas Emissions

Affected Resources
The U.S. Environmental Protection Agency (USEPA) defines ambient air in 40 C.F.R. Part 50 as “that portion of the atmosphere, external to buildings, to which the general public has access.” In compliance with the 1970 Clean Air Act (CAA) and the 1977 and 1990 Clean Air Act Amendments (CAAA), the USEPA has promulgated National Ambient Air Quality Standards (NAAQS). The NAAQS include primary standards which set limits to protect public health, including the health of “sensitive” populations such as asthmatics, children, and the elderly. To date, the USEPA has issued NAAQS for seven criteria pollutants: carbon monoxide (CO), sulfur dioxide (SO2), particles with a diameter less than or equal to a nominal 10 micrometers (PM10), particles with a diameter less than or equal to a nominal 2.5 micrometers (PM2.5), ozone (O3), nitrogen dioxide (NO2), and lead (Pb). Individual states may promulgate their own ambient air quality standards for these “criteria” pollutants, provided that they are at least as stringent as the federal standards. In Table 12-18, below, both State of Florida and federal primary ambient air quality standards for criteria air pollutants are presented.

The project is located in a primarily undeveloped area with few sources of emissions. In 2013, Santa Rosa County was in attainment of the NAAQS for all criteria pollutants as designated by the USEPA.

Greenhouse gases (GHGs) are chemical compounds found in the Earth’s atmosphere that absorb and trap infrared radiation as heat. Global atmospheric GHG concentrations are a product of continuous emission (release) and removal (storage) of GHGs over time. In the natural environment, this release and storage is largely cyclical. For instance, through the process of photosynthesis, plants capture atmospheric carbon as they grow and store it in the form of sugars. Human activities such as deforestation, soil disturbance, and burning of fossil fuels disrupt the natural cycle by increasing the GHG emission rate over the storage rate, which results in a net increase of GHGs in the atmosphere. The principal GHGs emitted into the atmosphere through human activities are CO2, methane, nitrous oxide, and fluorinated gases, such as hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. CO2 is the major GHG emitted, and the burning of fossil fuels accounts for 81 percent of all U.S. GHG emissions (USEPA 2010).
Table 12-18. State and Federal ambient standards for criteria air pollutants.

<table>
<thead>
<tr>
<th>POLLUTANT</th>
<th>AVERAGING PERIOD</th>
<th>FEDERAL PRIMARY STANDARD</th>
<th>STATE OF FLORIDA STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone</td>
<td>8-hour</td>
<td>0.075 ppm</td>
<td>Same as Federal</td>
</tr>
<tr>
<td></td>
<td>1-hour (daily max.)</td>
<td>0.12 ppm</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>PM2.5</td>
<td>Annual (arithmetic mean)</td>
<td>15.0 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>35 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>PM10</td>
<td>Annual (arithmetic mean)</td>
<td>NA</td>
<td>50 µg/m³</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>150 µg/m³</td>
<td>150 µg/m³</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>8-hour</td>
<td>9 ppm</td>
<td>9 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>35 ppm</td>
<td>35 ppm</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>Annual (arithmetic mean)</td>
<td>0.053 ppm</td>
<td>0.05 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.100 ppm</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>Annual (arithmetic mean)</td>
<td>0.03 ppm</td>
<td>0.02 ppm</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>0.14 ppm</td>
<td>0.10 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour (per annum)</td>
<td>NA</td>
<td>0.40 ppm</td>
</tr>
<tr>
<td></td>
<td>1-hour (per 7 days)</td>
<td>NA</td>
<td>0.25 ppm</td>
</tr>
<tr>
<td></td>
<td>5-minute</td>
<td>NA</td>
<td>0.80 ppm</td>
</tr>
<tr>
<td>Lead</td>
<td>Rolling 3-month average</td>
<td>0.15 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td></td>
<td>Quarterly average</td>
<td>1.5 µg/m³</td>
<td>Same as Federal</td>
</tr>
<tr>
<td>Total Suspended Particulate</td>
<td>Annual (geometric mean)</td>
<td>NA</td>
<td>60 µg/m³</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>NA</td>
<td>150 µg/m³</td>
</tr>
</tbody>
</table>

Implementation of the proposed project would include transportation and heavy construction equipment which may include a backhoe, grader, skid steer, dump trucks, and tractors.

**Environmental Consequences**

Project implementation would require the use of heavy equipment which would temporarily affect air quality in the project vicinity due to construction vehicle emissions. Excavation activities associated with the construction portions of the project may produce fine particulate matter. Available BMPs would be employed to prevent, mitigate, and control potential air pollutants during project implementation. Any air quality impacts that would occur would be localized, short in duration, and minimal based on the small scale of construction with overall impacts to air quality would be short-term and minor. Long-term, the site may experience some increase in use by the public potentially resulting in increased emissions and impacts to air quality from visitors passenger vehicles; however, the increase in visitor use is not expected to be substantial enough to cause any evident impacts to air quality or GHG, with impacts being long-term, minor and adverse.

The use of gasoline and diesel-powered construction vehicles and equipment, including cars, trucks, bulldozers, dump trucks, and backhoes, would contribute to an increase in GHG emissions. describes the high end of a potential likely GHG emission scenario for the implementation of this project.

Based on the assumptions described in Table 12-19, and the small scale and short duration of the construction portion of the proposed project, predicted GHG emissions would be short-term and minor and would not exceed 25,000 metric tons of CO2e per year. Available BMPs would be employed to reduce the release of GHGs during implementation. Based on the small scale and short duration of the
project, GHG emissions in the project staging and deployment areas would be minimal. Therefore, any increase in GHG emissions would be short-term and minor.

12.7.5.2.4 Noise

Affected Resources
Noise can be defined as unwanted sound and noise levels, and impacts are interpreted in relationship to its impacts on nearby residents. Noise associated with visitors and recreational land uses, such as boating, can be of concern to surrounding communities. Noise also emanates from vehicular traffic associated with new facilities and from project sites during construction. Ambient noise (the existing background noise environment) can be generated by a number of noise sources, including mobile sources, such as airplanes, automobiles, trucks, and trains; and stationary sources such as construction sites, machinery, or industrial operations.

The Noise Control Act of 1972 (42 U.S.C. 4901 to 4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale which approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-20 presents some familiar sounds and their decibel levels.

Table 12-19. Projected project GHG emissions.

<table>
<thead>
<tr>
<th>VESSEL/CONSTRUCTION EQUIPMENT7</th>
<th>NO. OF HOURS OPERATED8</th>
<th>CO₂ (METRIC TONS)9</th>
<th>CH₄ (CO₂E) (METRIC TONS)10</th>
<th>NOX (CO₂E) (METRIC TONS)</th>
<th>TOTAL CO₂E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trackhoe11</td>
<td>2,640</td>
<td>924</td>
<td>.26</td>
<td>.26</td>
<td>924.52</td>
</tr>
<tr>
<td>Crane</td>
<td>720</td>
<td>209</td>
<td>.07</td>
<td>.07</td>
<td>209.14</td>
</tr>
<tr>
<td>Grader</td>
<td>720</td>
<td>281</td>
<td>.22</td>
<td>.22</td>
<td>281.44</td>
</tr>
<tr>
<td>Dumptruck (2)1213</td>
<td>2,640</td>
<td>1,795</td>
<td>1.06</td>
<td>1.06</td>
<td>1,797.12</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,212.22</td>
</tr>
</tbody>
</table>

7 Construction estimates from an email from the Florida Fish and Wildlife Conservation Commission on 9/30/2013.
8 Emissions assumptions for all equipment based on 240 10-hour days of operation per piece of equipment over a 12-month construction period.
9 CO₂ emissions assumptions for diesel and gasoline engines based on USEPA 2009.
10 CH₄ and NOx emissions assumptions and CO₂e calculations based on USEPA 2011.
11 GHG emission estimates were not available for skid steers. In order to present the highest estimate, GHG emissions for a backhoe were used.
12 GHG emission estimates were not available for a tractor trailer. In order to present the highest estimate, GHG estimates for a dumptruck were used.
13 Construction equipment emission factors based on USEPA NONROAD emission factors for 250hp pieces of equipment. Data was accessed through the California Environmental Quality Act Roadway Construction Emissions Model.
Table 12-20. Familiar sounds and their decibel levels (dB).

<table>
<thead>
<tr>
<th>SOUND</th>
<th>DECIBEL LEVEL (DB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whisper</td>
<td>30</td>
</tr>
<tr>
<td>Normal Conversation</td>
<td>50-65</td>
</tr>
<tr>
<td>Vacuum cleaner at 10 feet</td>
<td>70</td>
</tr>
<tr>
<td>Midtown Manhattan Traffic Noise</td>
<td>70-85</td>
</tr>
<tr>
<td>Lawnmower</td>
<td>85-90</td>
</tr>
<tr>
<td>Train</td>
<td>100</td>
</tr>
<tr>
<td>Nearby Jet Takeoff</td>
<td>130</td>
</tr>
</tbody>
</table>

Source: Occupational Health and Safety Administration 2012

The project area is primarily void of development with the primary sources of ambient (background) noise in the project area coming from the operation of vehicles, commercial and recreational vessels, the Navy’s nearby Choctaw Outlying Field Airport and natural sounds such as wind and wildlife. The levels of noise in the project area varies, depending on the season, and/or the time of day, the number and types of sources of noise, and distance from the sources of noise. Noise levels fluctuate with highest levels usually occurring during the spring and summer months due to the increased boating and coastal beach activities.

Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the project. Noise-sensitive land uses in the project area include visitors and wildlife to the area.

**Environmental Consequences**

Project area visitors and wildlife may be sensitive to changes in noise sources or levels due to the project. Instances of increased noise are expected during construction of the project. The proposed project would generate construction noise associated with equipment during the construction period. Construction noise can also be a nuisance to those visitors and wildlife in the area.

Mitigation measures that serve to limit noise during construction include: limiting activity at project sites to daytime hours; limiting truck traffic ingress/egress to the site to daytime hours; promoting awareness that producing prominent discrete tones and periodic noises (e.g., excessive dump truck gate banging) should be avoided as much as possible; and requiring that work crews seek pre-approval for any weekend activities, or activities outside of daytime hours. Because construction noise is temporary, any negative impacts to the human environment during construction activities would be short-term and minor.

Once project components are constructed, noise can be generated from operations, the vehicles associated with site use and visitor use of the site. This would add a noticeable amount of noise and notably change the noise environment of the area. However, it is not anticipated that noise levels would be bothersome for visitors or wildlife in the area, with overall impacts being long-term, minor and adverse.
12.77.5.3 Biological Environment

12.77.5.3.1 Living Coastal and Marine Resources

Affected Resource
Coastal and marine resources at the site include open water habitat in the Blackwater and East Bay as well as the existing coastline.

Terrestrial vegetation occurring in the project area is typical of a coastal environment with a dense canopy and a diverse population of shrubs and herbs. Wetlands exist in the project area along the Pensacola Bay and include estuarine and marine deepwater, estuarine and marine wetland, freshwater emergent wetland, freshwater forested/shrub wetland and riverine (FWC 2006, USFWS 2013).

Environmental Consequences
Impacts to living coastal and marine resources are expected to be long-term and minor. The proposed project is not anticipated to require any in-water work and the project area already sees some recreational used. All appropriate conditions permit requirements, and BMPs would be followed to prevent impacts to aquatic environments. The development of the site would result in some short-term noise increased and increases in the human presence of the area. This could result in the displacement of some wildlife and the removal of existing vegetation. However, based on the relatively small areas to be developed and the abundance of suitable habitat and vegetation in the vicinity of the project area, impacts are not expected to be substantial and would likely be longterm and minor. The continued use of the site by visitor as a result of construction could result in some long-term disturbances. However, it is expected that with the types of activities likely to occur at the site, previous interactions of wildlife with humans in the area and the relatively small area impacted, impacts are likely to be longterm and minor. Consultation to determine potential impacts to listed, proposed, and candidate species will be initiated with the USFWS. Any potential adverse impacts to protected species would be avoided or minimized through the implementation of conservation measures that would be developed through the Endangered Species Act consultation process with the USFWS.

Protected Species

Affected Resources
The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Santa Rosa County, Florida. Table 12-21 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

---

14 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
### Table 12-21. Potential Impacts to Species/Critical Habitats managed by USFWS

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red-cockaded woodpecker</td>
<td>The site has supported recent logging activity and while the project site contains planted pine, no mature long leaf or loblolly pine stands are expected to be present. Therefore, red-cockaded woodpeckers are not expected to be present on site. The Trustees have included conservation measures in the event that suitable habitat for this species is discovered during site surveys. Because of the low likelihood of presence and the additional conservation measures if individuals are present, the Trustees anticipate that any potential impacts can be minimized such that they are insignificant or discountable.</td>
</tr>
<tr>
<td>Eastern indigo snake</td>
<td>Eastern indigo snake may be present on site and could be startled, harassed, or potentially killed through construction and management activities. The conservation measures will minimize any potential impacts to the Eastern indigo snake such that impacts are insignificant and discountable.</td>
</tr>
<tr>
<td>Reticulated flatwoods salamander</td>
<td>The on-site wetland areas will be identified in the initial mapping and surveying and specifically avoided during construction activity (for kiosks, camp sites, trails, etc). However, hydrologic restoration may occur to connect wetlands. Hydrologic restoration would ultimately be expected to benefit any salamanders on site; however, during restoration salamanders could be startled, harassed, or potentially killed. The conservation measures will minimize any potential impacts to the reticulated flatwoods salamander such that impacts are insignificant and discountable.</td>
</tr>
<tr>
<td>Gopher tortoise</td>
<td>Gopher tortoise is a candidate species and may be present on site. If present the individuals could be startled, harassed, or potentially killed through construction and management activities. The conservation measures should avoid or minimize potential impacts to the tortoise to an insignificant and discountable level (if listed).</td>
</tr>
<tr>
<td>Panhandle lily and Gulf sweet pitcherplant</td>
<td>These species are not listed under the ESA; however, the U.S. Fish and Wildlife Service has been petitioned to list these species. Both are known to occur in the general project vicinity and could be destroyed by heavy equipment use or land management techniques, if present on site. Conservation measures are expected to minimize impacts to these species if found on site.</td>
</tr>
<tr>
<td>Other Species</td>
<td>There are a variety of at-risk species (amphibians, reptiles, birds, Florida black bear, and many plant species) that could be within the project area. The project goal is to improve habitat and support minor recreational activities. Short-term impacts to species and their habitats from construction and management could occur. Conservation measures described as part of the project construction above are expected to minimize impacts to any of the species found on site.</td>
</tr>
</tbody>
</table>

Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Protected Resource Division (PRD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that this project falls outside of NMFS Endangered Species Act (ESA) jurisdiction, as it does not contain suitable habitat for species managed by NMFS. As a result, the project did not require further ESA evaluation from NOAA.

**Environmental Consequences**

On April 4, 2014 the review of potential impacts to species managed by USFWSwas completedfor this project (McClain, 2014). This reviewconcluded the proposed project may affect, but is not likely to adversely affect the following species managed by USFWS, red-cockaded woodpecker, eastern indigo snake, and reticulated flatwoods salamander. The review also concluded that a suite of candidate species (gopher tortoise) and at-risk species (specifically, panhandle lily and Gulf sweet pitcherplant) are not likely to be adversely affected by this project, if listed.
Essential Fish Habitat

EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as "those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column.

Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Habitat Conservation Division (HCD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that this project will not affect EFH because there is no EFH in the project area. As a result, the project did not require further EFH evaluation.

State-listed Birds, MBTA, and BGEPA

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-22 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

**Table 12-22. Potential project impacts to different migratory bird groups**

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passerines and near-passerines</td>
<td>Nesting, foraging, resting</td>
<td>A variety of birds likely use the project site to complete routine activities and as such these species behaviors could be interrupted during construction, hydrologic restoration, and visitor use.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-23.

**Table 12-23. Conservation measures to minimize impacts to migratory bird groups**

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passerines and near-passerines</td>
<td>The Trustees expect noise from construction and restoration to be short-term during implementation and noise from visitor use should be short-term and sporadic. The Trustees expect any birds that are disturbed during feeding or resting behaviors to move to nearby areas on the project site as only a small portion of the site will be affected at any given time. If trees or shrubbery must be removed, these areas will be cleared outside of nesting season or inspected for active nests. If no active nests are found, vegetation may be removed. If active nests are found, vegetation can be removed after the nest successfully fledges.</td>
</tr>
</tbody>
</table>
**Environmental Consequences**

Bald eagles are not present at the project location so will not be affected. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

**Invasive Species**

**Affected Resources**

Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

**Environmental Consequences**

Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

**12.77.5.4  Human Uses and Socioeconomics**

**12.77.5.4.1  Socioeconomics and Environmental Justice**

**Affected Resources**

The population of Santa Rosa County was 155,390 in 2012 and accounted for 0.8 percent of the state’s total population. In 2013, median household income in Escambia County was $55,913, which was approximately 14 percent higher than median household income in the State of Florida. Santa Rosa County contains both minority and low-income populations; however, no communities of environmental justice concern are located adjacent to the project area.

**Environmental Consequences**

Based on the relatively small scale of construction activities, it is not anticipated that the proposed project would create jobs nor would it have substantial impacts to the socioeconomic environment as a result of construction. It is likely that there would be direct beneficial impacts to the local economy as a result for increased recreational and tourist activity in response to the project components. These economic benefits would be concentrated to the local economy as well as in the service and retail industry sectors. Beneficial economic impacts would accrue to local recreational supply retailers,
restaurants, and hospitality providers. The proposed project would not adversely affect any low income or minority populations. Overall, no adverse impacts would occur to socioeconomics and environmental justice as a result of the proposed project.

12.77.5.4.2 Cultural Resources

Affected Resources
This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, one archaeological site, named Shell Hammock, occurs within the boundary of Escribano Point. The site is a prehistoric shell midden with various components, dated as 450-1,000 AD (FWC 2006).

Environmental Consequences
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources. At this time, the Trustees are planning to conduct a Phase I cultural survey of the project area as an initial implementation activity.

12.77.5.4.3 Infrastructure

Affected Resources
Infrastructure for the purpose of this analysis includes both transportation and utility networks. Vehicle use (for both transportation and maintenance) constitutes the primary source of energy consumption in the vicinity of the proposed project area. The proposed project would not prevent access to any known energy resources in the project vicinity, such as coal, oil, or natural gas. The project would have no such impacts on the availability of these resources.

Environmental Consequences
Construction of parking lots, roads, and trails would lead to long-term beneficial impacts to existing transportation infrastructure. Based on the nature of proposed improvements there would be no additional public utility requirements because all proposed power would be provided via a generator. A construction phase solid waste management plan would be implemented to manage the collection, recycling, and disposal all construction and demolition waste and non-construction related waste generated during construction activities.

12.77.5.5 Land and Marine Management

Affected Resources
The area surround the proposed project site is primarily void of development and consists of forests and shoreline. The proposed project area is currently used for recreational activities.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The
Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

**Environmental Consequences**

Improvements to the Escribano Point would alter existing land management because the site would change from undeveloped to developed. However, the development of the site would not affect land and marine management because the site is already developed for recreational use; project plans would not change the nature of land use or management but would improve the function of the existing site, resulting in no impacts.

12.77.5.5.1 **Aesthetics and Visual Resources**

**Affected Resources**
The project area can be described as undeveloped and primarily consists of white sands, beach, and existing vegetation. The topography of the area is flat to gently sloping and the existing landscape in the vicinity of the proposed project areas is characterized by a mosaic of marsh wetlands with patches of mature coastal forest. There are no designated protected viewsheds in the vicinity of the project site.

**Environmental Consequences**
Temporary impacts to visual resources would result from construction of the proposed project components. Large construction equipment such as backhoes would temporarily obstruct the views for visitors and recreational users at the site. These short-term construction-related impacts to visual resources would be minor.

12.77.5.5.2 **Tourism and Recreational Use**

**Affected Resources**
The proposed project area is a public site that provides opportunities for recreation, including use of the recreational path and fishing. While the site is currently accessed by the public, exact visitation is not known because visitor counts and monitoring is not conducted (FWC 2006).

**Environmental Consequences**
During the construction period, recreational experience would be impacted from noise and visual disturbances associated with the use of heavy equipment. While these temporary inconveniences would result in minor short-term impacts on tourism and recreational use of the project area during the construction at the project areas, it is not anticipated that these impacts would be substantial because visitor use of the site as it currently exists is not substantive. Over the long-term, it is expected that the development of enhanced recreation activities would result in a long-term beneficial impact to overall visitor experience as a result of improved access to the sites, improved viewsheds, and an overall improved recreational experience.
12.77.5.5.3  Public Health and Safety and Shoreline Protection

Affected Resources
No hazardous materials currently exist at the project site where the potential for human exposure to natural or man-made hazards does not present a substantial risk. The project area is situated along an area of stable coastline not prone to significant shoreline erosion under normal conditions. Other natural hazards do not occur in any great abundance within the boundaries of the park. Some debris from previous storms and hurricanes does exist along the southwest portion of the project area as seen in Figure 12-25 and Figure 12-26. Debris in the project area varies greatly from fishing nets to building materials including 2x4s.

Figure 12-25. Project area existing debris.
Figure 12-26. Project area existing debris.
Environmental Consequences
No hazardous wastes would be created during restoration and construction activities. All hazardous materials handled during construction including paints, solvents, chemicals and petroleum products would be contained and appropriate barriers would be in place to ensure the protection of adjacent water resources from potential spills and leaks. In the event of a discharge of oil or release of hazardous substances all spills would be reported to the FDEP and all federal and state regulations would be followed during the cleanup. BMPs in accordance with the Occupational Safety and Health Administration (OSHA) and state and local requirements would be incorporated into construction activities to ensure proper handling, storage, transport and disposal of all hazardous materials. All waste generated during construction would be disposed of in the appropriate waste or recycling receptacles on-site would be taken off-site and disposed in an approved waste disposal site by the construction contractor. All occupational and safety regulations would be followed to ensure safety of all workers and the public. Construction and construction related activities would lead to the development of areas that are currently maintained as natural habitat. During construction soil and sediment stabilization measures would be incorporated into project design as needed in areas where the potential for erosion exists in order to protect resources and public health and safety. As a result of construction no adverse impacts to public health and safety are anticipated as a result of this project. Project improvements including the removal of existing debris are designed to improve public safety, resulting in long-term beneficial impacts.

12.77.6 Summary and Next Steps
The Developing Enhanced Recreational Opportunities on the Escribano Point Portion of the Yellow River Wildlife Management Area project would improve public access and enjoyment of natural resources at the Escribano Point portion of the Yellow River Wildlife Management Area. The proposed improvements include a one-time assessment and mapping activities necessary for developing the site for outdoor recreation purposes, hurricane debris removal and road repair, constructing an entrance kiosk, information facilities, parking facilities, interpretive facilities, fishing facilities, picnic facilities, primitive camping sites, wildlife viewing areas, and bear-proof containers for trash and food storage. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase the recreational use and wildlife viewing opportunities by improving the recreational use of the land. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.
12.77.7 References


Florida Fish and Wildlife Conservation Commission (FWC)


Occupational Health and Safety Administration (OSHA)


U.S. Department of Agriculture – Natural Resources Conservation Service (USDA NRCS)

1980 Soil Survey of Santa Rosa County, Florida.

U.S. Environmental Protection Agency (USEPA)


U.S. Fish and Wildlife Service (USFWS)

12.78 Norriego Point Restoration and Recreation Project: Project Description

12.78.1 Project Summary
The proposed Norriego Point Restoration and Recreation project would involve stabilizing, enhancing and re-establishing recreational activities available at Norriego Point. Improvements would include constructing erosion control structures and new park amenities including a picnic pavilion with restrooms, showers, and drinking fountains; educational signage; a multi-use trail; bike racks; and vehicle parking along the access road adjacent to the park land. The total estimated cost of the project is $10,228,130.

12.78.2 Background and Project Description
The Trustees propose to protect, stabilize, and re-establish the recreational opportunities of Norriego Point, an impressive, well-known landmark and boaters’ beach. Norriego Point is a natural sand feature in the inlet of East Pass, Destin, Florida (see Figure 12-27 for project location). It serves as the protective barrier for the boat channel entering Destin Harbor. Most significantly, it is the hub and focal point for Destin’s water-based recreational opportunities and is what creates Destin’s unique character.

The objective of the Norriego Point Restoration and Recreation project is to enhance and/or increase recreational boating and beach use opportunities by stabilizing and re-establishing Norriego Point. The stabilization of Norriego Point is critical for the expansion and maintenance of its recreational use and the continued integrity of Destin Harbor. Construction of park amenities will enhance the use of Norriego Point for the public. The restoration work proposed involves the construction of several erosion control structures to dissipate wave energy and protect the dredged fill placed landward of the revetment. Two new embayments will provide additional swimming areas as well as more space for boat and kayak to pull-ins. Additionally, facilities will include a picnic pavilion with restrooms, showers, and drinking fountains; educational signage to encourage appreciation of this natural environment; a multi-use trail, bike racks, and vehicle parking along the access road adjacent to the park land. This road is to be built by a private property owner as part of the owner’s development order.

12.78.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Norriego Point Restoration and Recreation project is intended to enhance and/or increase recreational boating and beach use opportunities by stabilizing and re-establishing Norriego Point. The project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

115
The project is technically feasible and utilizes proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Agencies have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.78, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.78 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.
Many recreational use projects, including this and other similar projects, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Norriego Point Restoration and Recreation project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area that deployed boom and was impacted by response and SCAT activities for the Spill.

12.78.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational boating and beach use opportunities by improving by stabilizing and re-establishing Norriego Point. Performance monitoring will evaluate: 1) the construction of erosion control structures; 2) the construction of a picnic pavilion with restrooms, showers, and drinking fountains; 3) the construction of educational signage and a multi-use trail; 4) the construction of bike racks; and 5) the addition of vehicle parking areas along the access road the construction. Specific performance criteria include: 1) the completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the point is open and available.

Long-term monitoring and maintenance will be completed by the City of Destin as part of their regular public facilities maintenance activities. Funding for this post construction maintenance is not included in the previously provided value for the project cost and will be accomplished by the City of Destin.

During the construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice a year to the site to record the number of users. Following the construction performance monitoring period, the City of Destin will monitor the recreational use activity at the site. The City of Destin will visit the site twice a year to count the number of users. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.78.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $20,456,260 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.15

---

15 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.78.6 Costs
The total estimated cost to implement this project is $10,228,130. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.
12.79 Norriego Point Restoration and Recreation Project: Environmental Review

The purpose of this project is to protect, stabilize, and reestablish the recreational opportunities of Norriego Point.

12.79.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf Coast in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not, fully address all injuries caused by the spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the spill.

Pursuant to the process articulated in the Framework Agreement, the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This restoration project in Okaloosa County was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the requirements of the Oil Pollution Act (OPA), the project meets Florida criteria that Early Restoration projects occur in the eight-county panhandle area that deployed boom and was impacted by the Spill.

The purpose of this project is to protect, stabilize, enhance and reestablish the vast recreational opportunities of Norriego Point, an impressive, well-known landmark and boaters’ beach. Norriego Point is a natural sand feature in the inlet of East Pass, Destin, Florida. It serves as the protective barrier for the boat channel entering Destin Harbor. Most significantly, it is the hub and focal point for Destin’s water-based recreational opportunities and is what creates Destin’s unique character.

The restoration of Norriego Point is critical for the expansion and maintenance of its recreational use and the continued integrity of Destin Harbor. Construction of park amenities would enhance the use of Norriego Point for the public.

Norriego Point served as a staging area and deployment area for setting booms across the Destin East Pass throughout the summer of 2010. The presence of the response equipment and the oil resulted in a loss of use for recreation and fishing.
12.79.2  Project Location
The proposed restoration project is located on Norriege Point in Destin, Okaloosa County, Florida. Norriege Point is a natural sand split in the inlet of East Pass to Choctawhatchee Bay.

Figure 12-28 and Figure 12-29 illustrate the project area.

12.79.3  Construction and Installation
The restoration and protection of Norriege Point involves the construction of several erosion control structures to dissipate wave energy and protect the dredged fill that will be placed landward of the revetment to restore and expand the land area lost over time, approximately 8 acres. Two new embayments formed by the placement of the erosion control structures would provide additional swimming areas as well as more space for boats and kayaks to pull in. See Figure 12-30 for the layout of these improvements.

Additionally, the project would construct new facilities including a picnic pavilion with restrooms, showers, and drinking fountains; educational signage to encourage appreciation of this natural environment; and a multi-use trail, bike racks, and vehicle parking along the access road to the Point.

The dredged sand fill material that would be placed behind the renovated and new erosion control structures would be obtained during maintenance dredging of the navigation channels in the area. This dredging activity has already been reviewed and an active permit for this activity is held by the City of
Destin (permit number SAJ-2012-007-02 (SP-TPH). Standard construction methods would be used for all aspects of the project. All permits and best management practices (BMPs) would be followed to minimize any adverse impacts of the construction. An area on top of the existing dredge spoil “dun” will also be evaluated for posting and roping to prevent direct human access in an attempt to foster least tern nesting.

During construction of the erosion control structures, material from the old structures would be removed and sediment would be excavated from the old and new sites to prepare the area for the new structures. For upland construction, material planned for removal includes soil, rubble, and vegetation in the area where facilities, trails, and roads would be built.

Much or all of the erosion control structure work and embayment construction would be completed in-water. During any in-water construction activity, the conditions and guidelines of the *Sea Turtle and Smalltooth Sawfish Construction Conditions* (NOAA, 2006) and the *Standard Manatee Conditions for In-Water Work* (USFWS, 2011) would be implemented and adhered to. These provisions include stopping operation of any equipment if sea turtles or smalltooth sawfish come within 50 feet of the equipment until the time when animals leave the project area of their own volition. Other work would be done from uplands, possibly using the existing parking lot as a staging ground.

Sheet piling would be installed as part of the erosion control structures. Jetting methods may be used within 2 feet of the required elevation; the final 2 feet would be driven without the use of jetting. The final pile-driving method would be approved before the selected contractor mobilizes to begin work. The size and number of sheet piling would be finalized with final engineering designs, based on the size of material available and the amount required. Current plans indicate approximately 680 27’ wide Z-shaped sheet piles would need to be placed as part of the construction effort. Sheet piling would be made of rolled steel. Coal Tar Epoxy would be applied to all steel sheet piles in a controlled production facility before installation. The installed steel sheet pile would be covered with a concrete cap.

The project also includes repair of existing erosion control (groin) structures and construction of several new erosion control (groin) structures to expand the protected area to include the eastern portion of Norriego Point. Existing erosion control groins placed along the southern side of Norriego Point include two that are approximately 200 linear feet and one that is approximately 500 linear feet. The existing erosion control groins would be excavated and reconstructed. The old material would be reused and reinforced with new sheet piling and armor. The new erosion control groins would be built by excavating the area where the groins would be built, and placing a marine mattress constructed of geogrid materials and filled with material dredged from the site. Stone fill would be placed on top of the marine mattress; armor stone would be placed over the foundation to create a structure approximately 4 feet above North American Vertical Datum (NAVD) at the highest point and would be in the shape of a trapezoid. The finished erosion control groins would vary in size depending on the location; together, the five erosion control groins would be approximately 1,000 linear feet.

Detailed construction methods and plans have not yet been developed for the construction of the park amenities and would be subject to the final design and contractor approach. The remainder of the project would occur in uplands. Standard BMPs for this type of construction with limited in-water work
would be used to minimize impacts (e.g., using silt fencing, staging and refueling vehicles away from waterways).

A range of heavy construction equipment and tools would be required for construction of this project. Equipment would include bulldozers, graders, backhoes, bobcats, and so on. Dredge equipment would be required to remove material and create new land areas to support groin structures. The specific equipment used would vary with the different phases of the project.

Up to several feet of ground would be disturbed during construction. In the area where land would be added, sediment and other material would be placed. The area to be covered would be determined by final design and includes the planned facilities, trails, bike racks, parking areas, and access road. Ground would need to be graded and in some cases removed as part of the construction activities. Material planned for removal includes soil, rubble, and vegetation in the area where facilities, trails, and roads would be built.

Figure 12-28. Illustration of the area where restoration actions would occur.
Figure 12-29. Project vicinity map.
Figure 12-30. Layout of existing and proposed erosion control structures.
12.79.4 Operations and Maintenance
City of Destin Parks and Recreation Department staff would operate and maintain the new and expanded facilities under the existing management plan. Maintenance would include tasks such as checking and cleaning restrooms, removing debris and trash from the parking areas, and striping parking areas. Monitoring would include construction monitoring and tracking visitor use.

12.79.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

12.79.5.1 No action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.79.5.2 Physical Environment
12.79.5.2.1 Geology and Substrates

Affected Resources
According to the Geologic Map of Florida, the project is likely located on the Quaternary system, Holocene series stratigraphic unit. This stratigraphic unit consists of quartz sands, carbonate sands, muds, and organics occurring near the present coastline at elevations generally less than 5 feet (1.5 meters) (Scott 2001).

The project site occurs on the Newhan-Corolla complex, rolling soil map unit, which is found on marine terraces and dunes. This complex is nearly level to steep, excessively drained, and moderately well drained or somewhat poorly drained soils located in areas of undulating dunes near the Gulf Coast (Natural Resources Conservation Service [NRCS] 2004).

A sinkhole is a closed depression in the land surface that is formed by surficial solution or by subsidence or collapse of surficial materials due to the solution of near-surface limestone or other soluble rocks. Sinkholes are a natural and common geologic feature in areas underlain by limestone and other rock types soluble in natural water; they are one of the predominant land form features of Florida. The state has been classified into four areas of sinkhole occurrence. Okaloosa County is categorized as Area IV, with a carbonate rock cover more than 200 feet thick. Area IV consists of cohesive sediments interlayered with discontinuous carbonate beds. Sinkholes are very few in number, but several large-diameter, deep sinkholes occur. Cover-collapse sinkholes dominate in Area IV, which occur when a solution cavity develops in limestone to such a size that the overlying cover material can no longer support its own weight (FDEP 2013).
Environmental Consequences
Mechanized equipment and hand tools would be used to complete the construction of the project. Some excavation of soils would occur; however, adverse impacts to geology and substrates would be minor. Disturbance would be detectable, but would be short term, small, and localized. There would be no long-term changes to local geologic features or soil characteristics. Erosion and/or compaction may occur in localized areas.

12.79.5.2.2 Hydrology and Water Quality

Affected Resources
Northwest Florida has seven major watersheds, all of which have been identified as priorities under the Surface Water Management and Improvement (SWIM) program. Water quality protection is the underlying goal of SWIM, along with the preservation and restoration of natural systems and associated public uses and benefits (Northwest Florida Water Management District [NFWWMD] 2011). Norriego Point is part of the Choctawhatchee River and Bay watershed system. The total drainage area covers nearly 5,350 square miles, approximately 42% of which is in Florida. East Pass, located immediately west of Destin, provides the only direct opening to the Gulf of Mexico. The bay also opens up to Santa Rosa Sound in the west and the Intracoastal Waterway in the east. The Choctawhatchee River and Bay system has long been known for its rich, diverse ecology, economic benefits, and numerous recreational opportunities. Over recent decades, however, many of the area’s water resources have been impacted by population growth, development, and wastewater disposal. Increased coastal development, in particular, has contributed to displaced habitats, loss of wetlands, and greater amounts of stormwater runoff entering the river, bay, and their tributaries. Stormwater carries contaminants such as dirt, heavy metals, bacteria, nutrients from fertilizer and other sources, and various chemicals.

There is no Outstanding Florida Water (OFW) designated by the State of Florida (Rule 62-302.700, Fla. Admin. Code) in the project area, which only cover waters that have exceptional characteristics. Surface waters in the project area are classified as Class III waters by the FDEP (FDEP 2006). Class III waters have the designated uses of fish consumption, recreation, and propagation and maintenance of a healthy, well-balanced population of fish and wildlife.

Impaired waters are waters that are too polluted or otherwise degraded to meet the water quality standards set by states, territories, or authorized tribes. Choctawhatchee Bay has been listed as an impaired waterbody for mercury in fish tissue and fecal coliform; however, total maximum daily loads (TMDLs) have not yet been adopted (Environmental Protection Agency [EPA] 2010).

Wetlands
Based on the National Wetland Inventory data, Norriego Point is designated as an estuarine wetland (USFWS 2013a).
Floodplains
Based on Federal Emergency Management Agency (FEMA) flood insurance rate maps (Panel 12091C0469H), the project appears to be in Zone VE. Zone VE is defined as coastal flood with velocity hazard (wave action) based on flood elevations determined (FEMA 2002).

Environmental Consequences
Hydrology is expected to be affected only if water is channeled or otherwise controlled around the erosion control structures during construction. Water quality would be potentially impacted during construction from equipment leaks or spills or disturbance of sediments that results in siltation, turbidity, and the release of chemicals from sediments. If the disturbed sediments are anoxic, the biological oxygen demand in the water column would increase. With required mitigation in place, the effect on hydrology and water quality would be measurable or detectable but it would be small, short term, and localized. Water quality impacts would quickly become undetectable, and the area’s hydrology would be only temporarily altered during construction.

The dredged sand fill material that would be placed behind the renovated and new erosion control structures would be obtained during maintenance dredging of the navigation channels in the area. This dredging activity has already been reviewed and an active permit for this activity is held by the City of Destin (permit number SAJ-2012-007-02 (SP-TPH)).

All permit conditions would be strictly adhered to, including mitigation measures for siltation, erosion, turbidity, and release of chemicals. During construction, BMPs and boom placement along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts. FDEP permit conditions require erosion and turbidity mitigation measures, which include the following:

- Installation of floating turbidity barriers;
- Installation of erosion control measures along the perimeter of all work areas;
- Stabilization of all filled areas with sod, mats, barriers, or a combination;
- Stoppage of work if turbidity thresholds are exceeded. The soils would then be stabilized, work procedures would be modified, and the FDEP would be notified.

The FDEP permit also constitutes a Certification of Compliance with State Water Quality Standards under Section 401 of the CWA, which indicates that the project would comply with state water quality standards and other aquatic resource protection requirements.

Impacts from chemicals that could be released from sources such as construction equipment and boats are expected to be negligible. Required spill containment measures would be implemented for applicable construction activities. FDEP permit conditions require spill containment protection and mitigation measures as follows:

- Boat repair or fueling facilities over the water would be prohibited.
- Prohibiting vessels from being removed from the water for the purposes of maintenance or repair.
Prohibited activities include hull cleaning and painting, and discharges or release of oils, greases, and related metal-based bottom paints associated with hull scraping, cleaning, and painting. This project would not impact groundwater. A wetlands permit is required for the project and would stipulate appropriate BMPs and mitigation requirements.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (USACE) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the USACE and final authorization pursuant to CWA/RHA will be completed prior to project implementation.

### 12.79.5.2.3 Air Quality and Greenhouse Gas Emissions

#### Affected Resources

The Clean Air Act (CAA) requires the EPA to set National Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to public health and the environment. NAAQS have been set for six common air pollutants (also known as criteria pollutants)—particle pollution or particulate matter, ozone, carbon monoxide, sulfur dioxide (SO\textsubscript{2}), nitrogen dioxide, and lead. Particulate matter is defined as fine particulates with a diameter of 10 micrometers or less (PM\textsubscript{10}) and fine particulates with a diameter of 2.5 micrometers or less (PM\textsubscript{2.5}). When a designated air quality area or airshed in a state exceeds a NAAQS, that area may be designated as a “nonattainment” area. Areas with levels of pollutants below the health-based standard are designated as “attainment” areas. To determine whether an area meets the NAAQS, air monitoring networks have been established and are used to measure ambient air quality. The EPA also regulates 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or have other serious health effects. Air quality in the Florida panhandle is in attainment with the NAAQs (EPA 2013a).

#### Greenhouse Gases

Gases that trap heat in the air are called greenhouse gases (GHGs). The primary GHGs are carbon dioxide (CO\textsubscript{2}), methane (CH\textsubscript{4}), nitrous oxide (NO\textsubscript{x}), and fluorinated gases. Over the past century, human activities have released large amounts of GHGs into the atmosphere, which are contributing to global warming. Global warming is defined as the ongoing rise in global average temperatures near the Earth’s surface and is known to cause changes in climate patterns.

According to the EPA, the average annual temperature in the southeast portion of the United States has increased by approximately 2.0°F (degrees Fahrenheit) since 1970. Winters, in particular, are getting warmer, and the average number of freezing days has decreased by 4 to 7 days per year since the mid-1970s. Most areas are getting wetter; autumn precipitation has increased by 30% since 1901 (EPA 2013b). In many parts of the region, the number of heavy downpours has increased. Despite the increases in fall precipitation, the area affected by moderate and severe drought has increased since the mid-1970s (EPA 2013b).

Average annual temperatures in the region are projected to increase from 4°F to 9°F by 2080. Hurricane-related rainfall is projected to continue to increase. Models suggest that rainfall would arrive in heavier downpours, with increased dry periods between storms. These changes would increase the risk of both
flooding and drought. The coasts would likely experience stronger hurricanes and sea level rise. Storm surge could present problems for coastal communities and ecosystems (EPA 2013b).

Total GHG emissions in the state of Florida from 1990 to 2007 have increased at an average rate of 2.1% per year. Total GHG emissions in 2007 were 290 million metric tons of CO$_2$ equivalent (MMTCO$_2$E). In 2007, 91% of GHG emissions in Florida were CO$_2$ emissions (FDEP 2010).

**Environmental Consequences**

Project implementation would require the use of heavy mechanized equipment, which would lead to temporary air pollution (e.g., criteria pollutants, HAPs, GHGs) due to emissions from the operation of construction vehicles and equipment. Any air quality impacts that occur would be minor due to their localized nature, short-term duration, and the small size of the project. Available BMPs would be employed to prevent, mitigate, and control potential air pollutants during project implementation. No air quality–related permits would be required. The project area is currently in attainment with NAAQS. The proposed action would not affect the attainment status of the project area or region. A State Implementation Plan conformity determination (42 USC 7506 (c)) is not required since the project area is in attainment for all criteria pollutants.

Project plans have not been finalized for this project. As such, it is unclear what equipment would be used and the duration of use for that equipment. The following table provides GHG emissions estimates for a variety of construction and transportation equipment that may be used for park improvements. Each of these emissions estimates is based on use of the heavy equipment for an 8-hour day (Table 12-24).
**Table 12-24. Greenhouse gas emissions for various mechanized equipment.**

<table>
<thead>
<tr>
<th>Equipment Description</th>
<th>Total Hours Used</th>
<th>CO$_2$ Factor-mt/100 hrs*</th>
<th>CO$_2$ (mt)$^2$</th>
<th>CH$_4$ Factor-mt/100 hrs</th>
<th>CH$_4$ (mt)</th>
<th>N$_2$O Factor-mt/100 hrs</th>
<th>N$_2$O (mt)</th>
<th>Total CO$_2$ (mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dump Trucks/Flatbed Truck</td>
<td>216</td>
<td>1.7</td>
<td>3.706</td>
<td>0.5</td>
<td>1.08</td>
<td>7.2</td>
<td>15.55</td>
<td>20.336</td>
</tr>
<tr>
<td>Concrete Trucks</td>
<td>24</td>
<td>1.7</td>
<td>0.408</td>
<td>0.5</td>
<td>0.12</td>
<td>7.2</td>
<td>1.72</td>
<td>2.248</td>
</tr>
<tr>
<td>Pickup Truck$^1$</td>
<td>2,304</td>
<td>1.1</td>
<td>25.34</td>
<td>0.35</td>
<td>8.06</td>
<td>4.4</td>
<td>10.13</td>
<td>43.53</td>
</tr>
<tr>
<td>Bobcat (bare and with auger mount)</td>
<td>480</td>
<td>2.65</td>
<td>12.72</td>
<td>0.9</td>
<td>4.32</td>
<td>10.6</td>
<td>50.88</td>
<td>67.92</td>
</tr>
<tr>
<td>Trackhoe (with bucket/thumb or vibratory attachments)</td>
<td>24</td>
<td>2.55</td>
<td>0.612</td>
<td>0.85</td>
<td>0.2</td>
<td>10.2</td>
<td>2.44</td>
<td>3.252</td>
</tr>
<tr>
<td>Dozer</td>
<td>24</td>
<td>2.25</td>
<td>0.54</td>
<td>0.65</td>
<td>0.16</td>
<td>1.08</td>
<td>0.26</td>
<td>0.96</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>4,131</strong></td>
<td></td>
<td><strong>138.24</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*mt = metric tons

1 Emissions assumptions for all equipment based on 8 hours of operation
2 CO$_2$ emissions assumptions for diesel and gasoline engines based on EPA 2009
3 CH$_4$ and NOx emissions assumptions and CO$_2$e calculations based on EPA 2011
4 Emissions assumptions for an 8-cylinder, 6.2-liter gasoline engine Ford F150 pickup based on Department of Energy 2013 and 18 gallon (half-tank) daily fuel consumption.

Based on the assumptions described in Table 12-24 above, GHG emissions would not exceed 25,000 metric tons per year. Given the projected construction-phase GHG emissions, the small scale and short duration of the project, and increased park use, predicted impacts on air quality from GHG emissions would be anticipated to be minor in both the short term and the long term.

At the completion of the project, visitor use (and therefore vehicle and boat use) could increase due to improved access. Increased exhaust emissions could affect air quality over the long term. However, adverse impacts to air quality would be expected to be minor because management actions could be taken to limit boat use.

12.79.5.2.4 Noise

**Affected Resources**

Noise can be defined as unwanted sound and noise levels, and its impacts are interpreted in relation to impacts on nearby visitors to the recreational areas and wildlife in the project vicinity. The Noise Control Act of 1972 (42 USC 4901–4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale that approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-25 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.
Table 12-25. Common noise levels.

<table>
<thead>
<tr>
<th>Noise Source or Effect</th>
<th>Sound Level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawnmower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

*Source: Adapted from U.S. Department of Energy and Bonneville Power Administration (1986).*

Noise levels in the project area vary depending on the season, time of day, number and types of noise sources, and distance from noise sources. Existing noise in the project area is mainly from recreational boating, with occasional overhead aircraft or commercial traffic. Ambient natural sounds such as wind, waves, and wildlife also contribute to existing noise levels. Existing ambient noise levels in the project area would be generally low and predominantly result from daily boating activities.

Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the proposed project. Noise-sensitive receptors in the project vicinity include beach and park recreational use and wildlife. The project area is, for the most part, consistent with a developed urban environment. The shoreline of the project area supports a variety of residential and industrial developed areas, and the Gulf of Mexico supports commercial and recreational boat traffic.

**Environmental Consequences**

Instances of increased noise would occur during the project. Equipment and vehicles used during the construction of the project would generate noise. Construction equipment noise is known to disturb fish, marine mammals, and nesting shorebirds. The noise would be temporary, and the construction period is not anticipated to last more than 12 months. Because of the temporary nature of the construction noise, negative impacts to the soundscape would be short term and of a level likely to affect current user activities.

After completion of the project, the soundscape would return to pre-project levels. The potential for increased vehicle and boat traffic exists due to the improved access to Norriego Point, which would result in a slight increase in noise levels in the vicinity. Overall, long-term noise impacts from boating and other recreational activities would remain minor.
12.79.5.3 Biological Environment

12.79.5.3.1 Living Coastal and Marine Resources

Vegetation

Affected Resources
According to the Natural Vegetation of Florida the project area is located on sand pine (*Pinus clausa*) scrub forest. This vegetation type is mostly on excessively drained deep sandy soils and occurs on dunes of coastal strand and old dunes or dry sands in the interior (Davis 1967). Based on aerial reviews, the project site appears to contain mainly unvegetated sandy beach areas. Submerged aquatic vegetation may be present in the areas where groin placement is proposed.

A review of Florida’s Efficient Transportation Decision Making Web Application indicates that while submerged aquatic vegetation (corals, seagrasses) are present off the coastline, they are not present in the project area (Florida Department of Transportation [FDOT] 2013). Only one state-listed plant species has the potential to occur in the project area, Gulf Coast lupine (*Lupinus westinus*).

Environmental Consequences
There would be multiple, small construction events associated with this project, mainly in upland area. During the construction of the picnic pavilion, restrooms, multi-use trail, bike racks, and vehicle parking, any vegetation that may be present would be disturbed, and placement of facilities would result in the permanent removal of vegetation within the facility footprint. The use of equipment and disturbance of soil and existing vegetation would also potentially increase the risk of noxious weed or invasive vegetation species introduction. Overall, impacts on native vegetation would not be expected.

Wildlife Habitat

Affected Resources
The project site is surrounded by an urban environment, and common wildlife that potentially occur at the project site include raccoons, opossums, and migratory birds.

Environmental Consequences
Although common wildlife may be disturbed from construction activities, these species live in an urban environment where ambient noise levels are high. Habitat conditions after construction would be similar to existing conditions, and no impacts to common wildlife would be anticipated.

Marine and Estuarine Fauna (fish, shell beds, and benthic organisms)

Affected Resources
Choctawhatchee Bay provides habitat for numerous fish and other marine species. The value of marine habitats at the project site has been affected by population growth, development, and wastewater disposal. Increased coastal development, in particular, has contributed to displaced habitats, loss of wetlands, and greater amounts of stormwater runoff entering the river, bay, and their tributaries (NWFWMD 2011). Nonetheless, the marine environment at the project site provides habitat to an array of aquatic species, including ladyfish (*Elops saurus*), hardhead catfish (*Arius felis*), gafftopsail catfish (*Bagre marinus*), and pigfish (*Orthopristis chrysoptera*), among others. Benthic organisms such as bivalves, gastropods, and other mollusks, anemones, amphipods, annelids, crustaceans, and
Echinoderms are also abundant in these waters (Florida Fish and Wildlife Conservation Commission[FWC] 2001).

**Environmental Consequences**

The proposed project would likely result in short-term, minor adverse impacts to fish that may be present during the in-water construction as a result of turbidity and noise disturbance during placement of groin structures. Benthic organisms that may be present in the substrate may also be adversely affected during groin structure placement. However, these impacts would be short term and minor and would not result in a measurable impact to these species. The habitat areas around the groin structures may provide surface for attachment of sessile organisms, which would indirectly benefit the ecosystem around the structures.

**Protected Species**

Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

**Affected Resources**

The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Okaloosa County, Florida. Table 12-26 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

**Table 12-26. Potential Impacts to Species/Critical Habitats managed by USFWS**

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle*, Hawksbill turtle*, Kemp's ridley turtle, Leatherback turtle*, Loggerhead turtle</td>
<td>Norriego Point is not expected to be suitable nesting habitat for sea turtles due to the slope of the shore above the high tide line. No impacts to sea turtles in terrestrial habitats are anticipated. Consultation has been initiated with NMFS the agency that has jurisdiction to review impacts to sea in the esuarine and marine environments.</td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>Okaloosa County is not one of the 36 Florida counties identified where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the project waters. The main risk to manatees during implementation of this project include noise and construction activities or boat collisions, all of which could harm or kill a manatee. The Trustees anticipate conservation measures will minimize adverse effect to manatees from the proposed project.</td>
</tr>
</tbody>
</table>

16 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
### Table: Species/Critical Habitat and Impacts

<table>
<thead>
<tr>
<th>Species/Critical Habitat</th>
<th>Species/Critical Habitat Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping plover and Red knot</td>
<td>Though there is sandy shoreline with prey suitable for both species, Norriego Point does not currently serve as habitat for piping plover or red knot due to substantial recreational use and hardened shoreline is already in place around entire spit that historically was optimal habitat. Because these species are highly unlikely to be present, no impacts to these species are anticipated.</td>
</tr>
<tr>
<td>Gulf sturgeon</td>
<td>NMFS was consulted on Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon was not considered in the consultation with the USFWS.</td>
</tr>
</tbody>
</table>

In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered
- Kemp’s Ridley Sea Turtle, *Lepidochelys kempii*, Endangered

Additional information on some of these species is provided below.

**Sea Turtles and Marine Mammals**

There are five species of endangered or threatened sea turtles that may occur or have potential to occur in the project area. These include green turtle (*Chelonia mydas*), hawksbill turtle (*Eretmochelys imbricata*), Kemp’s ridley turtle (*Lepidochelys kempii*), leatherback turtle (*Dermochelys coriacea*), and loggerhead turtle (*Caretta caretta*). Sea turtles forage in the waters of the coastal Florida panhandle region and have potential to occur in the waters where in-water work is proposed. The project site contains potentially suitable sea turtle nesting habitat along the sandy beach, but the area is low and washes over, which may affect its suitability.

Twenty-two marine mammals are native to the Gulf of Mexico: 21 pelagic species of whales and dolphins, and the West Indian manatee. The endangered West Indian manatee has the potential to occur in the project area waters. Manatees typically seek out shallow seagrass areas as preferred feeding habitat. Additionally, bottlenose dolphin (*Tursiops*) populations are known to migrate into bays, estuaries, and river mouths and could be located in the proposed project area (NMFS 2013a). Bottlenose dolphins have been observed entering and leaving Choctawhatchee Bay and in nearshore coastal waters (NMFS 2012).

**Smalltooth Sawfish, Gulf Sturgeon, and Gulf Sturgeon Critical Habitat**

Smalltooth sawfish (*Pristis pectinata*) do not typically use northern Gulf of Mexico waters (NMFS 2013b). Gulf sturgeons are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Pearl River, Louisiana to the Suwannee River, Florida (USFWS 2007). Adult fish reside in rivers for 8 to 9 months each year and in estuarine or Gulf of Mexico waters during the 3 to 4 cooler months of each
year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993).

Gulf sturgeon critical habitat was jointly designated by the NMFS and USFWS on April 18, 2003 (50 Code of Federal Regulations [C.F.R.] 226.214). The proposed project site is located within Critical Habitat for Gulf sturgeon (Critical Habitat Unit 12 – Choctawhatchee Bay). See Figure 12-31 for a map of critical habitat in the project area. Critical habitat was designated based on seven primary constituent elements (PCEs) essential for the species’ conservation, as defined in the 2003 Federal Register and listed below. PCE’s 1, 5, 6, and 7 are present in the project area. The PCE’s are:

1. Abundant food items, such as detritus, aquatic insects, worms, and/or mollusks, within riverine habitats for larval and juvenile life stages, and abundant prey items, such as amphipods, lancelets, polychaetes, gastropods, ghost shrimp, isopods, mollusks, and/or crustaceans, within estuarine and marine habitats and substrates for subadult and adult life stages;
2. Riverine spawning sites with substrates suitable for egg deposition and development, such as limestone outcrops and cut limestone banks, bedrock, large gravel or cobble beds, marl, soapstone, or hard clay;
3. Riverine aggregation areas, also referred to as resting, holding, and staging areas, used by adult, subadult, and/or juveniles, generally, but not always, located in holes below normal riverbed depths; these are believed necessary for minimizing energy expenditure during freshwater residency and possibly for osmoregulatory functions;
4. A flow regime (i.e., the magnitude, frequency, duration, seasonality, and rate-of-change of freshwater discharge over time) necessary for normal behavior, growth, and survival of all life stages in the riverine environment, including migration, breeding site selection, courtship, egg fertilization, resting, and staging, and for maintaining spawning sites in suitable condition for egg attachment, egg sheltering, resting, and larval staging;
5. Water quality, including temperature, salinity, pH, hardness, turbidity, oxygen content, and other chemical characteristics necessary for normal behavior, growth, and viability of all life stages;
6. Sediment quality, including texture and chemical characteristics, necessary for normal behavior, growth, and viability of all life stages; and
7. Safe and unobstructed migratory pathways necessary for passage within and between riverine, estuarine, and marine habitats (e.g., an unobstructed river or a dammed river that still allows for passage).
Figure 12-31. Critical habitat map.
**Piping Plover**
The sandy beaches and shorelines adjacent to the project area offer suitable foraging and resting habitat for the piping plover during the winter migratory season, and piping plover may forage in the shallow waters of the project area. Natural shorelines in the proposed project vicinity provide suitable winter migration resting habitat for the piping plover. Piping plover wintering habitat includes beaches, mudflats, and sandflats, as well as barrier island beaches and spoil islands (Haig 1992, as cited by USFWS 2013c). On the Gulf Coast, preferred foraging areas are associated with wider beaches, mudflats, and small inlets (USFWS 2013c).

**Red Knot**
The red knot, a federal proposed species, uses the state of Florida both for wintering habitat and as migration stopover habitat for those that continue to migrate down to specific wintering locations in South America (Niles et al. 2008). Wintering and migrating red knots forage along sandy beaches, tidal mudflats, salt marshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms, and roost on high sandflats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008).

**Essential Fish Habitat (EFH)**
EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as "those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity." The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Table 12-27 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Norriege Point Restoration and Recreation project site and Santa Rosa Sound.
Table 12-27. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area

<table>
<thead>
<tr>
<th>EFH - Category</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal Migratory Pelagics of the Gulf of Mexico and South Atlantic</td>
<td>Cobia</td>
</tr>
<tr>
<td></td>
<td>King Mackerel</td>
</tr>
<tr>
<td></td>
<td>Spanish Mackerel</td>
</tr>
<tr>
<td>Gulf of Mexico Red Drum</td>
<td>Red Drum</td>
</tr>
<tr>
<td>Gulf of Mexico Shrimp</td>
<td>Brown Shrimp</td>
</tr>
<tr>
<td></td>
<td>Pink Shrimp</td>
</tr>
<tr>
<td></td>
<td>White Shrimp</td>
</tr>
<tr>
<td>Reef Fish Resources of the Gulf of Mexico</td>
<td>Almaco Jack</td>
</tr>
<tr>
<td></td>
<td>Banded Rudderfish</td>
</tr>
<tr>
<td></td>
<td>Black Grouper</td>
</tr>
<tr>
<td></td>
<td>Blackfin Snapper</td>
</tr>
<tr>
<td></td>
<td>Blueline Tilefish</td>
</tr>
<tr>
<td></td>
<td>Cubera Snapper</td>
</tr>
<tr>
<td></td>
<td>Gag</td>
</tr>
<tr>
<td></td>
<td>Goldface Tilefish</td>
</tr>
<tr>
<td></td>
<td>Gray (Mangrove) Snapper</td>
</tr>
<tr>
<td></td>
<td>Gray Triggerfish</td>
</tr>
<tr>
<td></td>
<td>Greater Amberjack</td>
</tr>
<tr>
<td></td>
<td>Hogfish</td>
</tr>
<tr>
<td></td>
<td>Lane Snapper</td>
</tr>
<tr>
<td></td>
<td>Lesser Amberjack</td>
</tr>
<tr>
<td></td>
<td>Mutton Snapper</td>
</tr>
<tr>
<td></td>
<td>Nassau Grouper</td>
</tr>
<tr>
<td></td>
<td>Queen Snapper</td>
</tr>
<tr>
<td></td>
<td>Red Grouper</td>
</tr>
<tr>
<td></td>
<td>Red Snapper</td>
</tr>
<tr>
<td></td>
<td>Scamp</td>
</tr>
<tr>
<td></td>
<td>Silk Snapper</td>
</tr>
<tr>
<td></td>
<td>Snowy Grouper</td>
</tr>
<tr>
<td></td>
<td>Speckled Hind</td>
</tr>
<tr>
<td></td>
<td>Tilefish</td>
</tr>
<tr>
<td></td>
<td>Vermilion Snapper</td>
</tr>
<tr>
<td></td>
<td>Warsaw Grouper</td>
</tr>
<tr>
<td></td>
<td>Wenchman</td>
</tr>
</tbody>
</table>
State-Listed Birds, MBTA, and BGEPA
There are numerous state of Florida–listed bird species with potential for occurrence in and around the Norrieigo Point restoration site. These include Arctic peregrine falcon (*Falcoperegrinus tundrius*), least tern (*Sterna antillarum*), southeastern American kestrel (*Falco sparverius paulus*), Florida sandhill crane (*Grus canadensis pratensis*), American oystercatcher (*Haematopus palliates*), and southeastern/Cuban snowy plover (*Charadrius alexandrinus tenuirostris*). All migratory bird species are protected under MBTA. The nesting season in Florida is from February 15 to August 31.

According to the FWC Bald Eagle Nest Locater, there is one bald eagle nest within 5 miles of the project site. It is approximately 4.7 miles away from the project site (FWC 2012). The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s *Bald Eagle Management Plan* guidelines would be followed (FWC 2008).

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-28 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

**Table 12-28. Potential project impacts to different migratory bird groups**

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Shorebirds</strong></td>
<td>Foraging, feeding,</td>
<td>Shorebirds forage, feed, and rest on Norrieigo Point. As such, they may be impacted</td>
</tr>
<tr>
<td></td>
<td>resting,</td>
<td>locally and temporarily by the project. Norrieigo Point is not currently used as</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nesting habitat because of the frequency and level of human use.</td>
</tr>
<tr>
<td><strong>Seabirds</strong></td>
<td>Resting, roosting,</td>
<td>Seabirds forage in water and rest in terrestrial habitats at Norrieigo Point. As such,</td>
</tr>
<tr>
<td></td>
<td>nesting</td>
<td>they may be impacted locally and temporarily by the project. Norrieigo Point is not</td>
</tr>
<tr>
<td></td>
<td></td>
<td>currently used as nesting habitat because of the frequency and level of human use.</td>
</tr>
</tbody>
</table>
Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-29.

Table 12-29. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds and Seabirds</td>
<td>The Trustees expect foraging and resting birds would be able to move to another nearby location to continue foraging and resting. Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have.</td>
</tr>
</tbody>
</table>

Environmental Consequences

The proposed project has been evaluated for potential short- and long-term impacts to state and federally listed threatened and endangered species that may occur in and adjacent to the project area based on available suitable habitat and restoration goals. Descriptions of these evaluations are provided below.

Protected Species

The USFWS reviewed the proposed Norriego Point project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On March 24, 2014 the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect West Indian manatee and would have no effect on five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead), piping plover, or red knot (if listed).

Consultation of potential impacts on protected species managed by NMFS from this project was initiated on February 4, 2014. The Trustees’ review of the potential impacts of the project for protected species managed by NMFS determined the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the project implementation area:

- Gulf Sturgeon - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.
- Gulf Sturgeon Critical Habitat – The project footprint does fall within Gulf sturgeon critical habitat; however, it has been determined that the construction activities associated with this project will not adversely modify designated Gulf sturgeon critical habitat.
- Green Sea Turtle - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.
- Loggerhead Sea Turtle - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.
- Hawksbill Sea Turtle - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.
• Leatherback Sea Turtle - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.
• Kemp’s Ridley Sea Turtle - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.

Concurrence from NMFS with the Trustees’ conclusions for these species and associated critical habitats is still pending.

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

Essential Fish Habitat
The Trustees’ review of potential impacts to EFH concluded the conversion of subtidal habitat to upland habitat is relatively small, at 8 acres, compared to the size of the project area. The Trustees also concluded conversion of the subtidal habitat would have minimal impacts to EFH since the proposed conversion would occur in an area where land had previously existed but had eroded away. The Trustees also concluded it is likely that the subtidal habitat in proposed conversion area is low quality due to beach erosion and the high current levels of recreational use of the existing area at Norrie Point and the associated commercial and recreational boat traffic in the area.

Werde
On April 24, 2014 NMFS completed its evaluation of potential EFH impacts and concluded that the project construction restoring eight acres of upland habitat would result in an adverse impact to eight acres of estuarine sand substrate and water column (Fay, 2004). However it was also concluded BMPs will be utilized during construction to minimize impacts to adjacent habitats and these impacts should be minor and brief.

State-Listed Birds, MBTA, BGEPA
State-listed birds such as oystercatchers (Haematopus Sp.) or least terns may nest on beaches or mudflats in the vicinity of the project area, and all migratory birds are protected under the MBTA. If restoration activities occur during the nesting season (February 15 to August 31), these birds could be disturbed by noise generated by in-water activities. These impacts would be short term and moderate. In such circumstances, FWC nesting shorebird avoidance measures will be followed. These measures generally call for surveys within 300 feet and an avoidance buffer of 300 feet for nesting birds. Increased visitor use may discourage foraging, loafing, and nesting of migratory birds in the project area. Therefore, long-term moderate impacts may occur.

There is one known bald eagle nest within 5 miles of the project site. Based on the distance from proposed project activities, nesting of the known occurrence of bald eagle would not be impacted. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.
Invasive Species

Affected Resources
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

Environmental Consequences
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.79.5.4 Human Uses and Socioeconomics

12.79.5.4.1 Socioeconomics and Environmental Justice

Affected Resources
The population of Okaloosa County is 180,822. The following table (Table 12-30) contains population/minority data for Okaloosa County and Florida (U.S. Bureau of the Census 2010).

Table 12-30. Populations of Florida and Okaloosa County.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Florida</th>
<th>Okaloosa County</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 Total Population</td>
<td>18,688,787</td>
<td>180,822</td>
</tr>
<tr>
<td>White alone</td>
<td>14,270,053</td>
<td>146,582</td>
</tr>
<tr>
<td>Black or African American alone</td>
<td>2,946,899</td>
<td>16,797</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone</td>
<td>58,192</td>
<td>1,068</td>
</tr>
<tr>
<td>Asian alone</td>
<td>455,403</td>
<td>5,328</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander alone</td>
<td>11,005</td>
<td>354</td>
</tr>
<tr>
<td>Some other race alone</td>
<td>564,351</td>
<td>3,592</td>
</tr>
<tr>
<td>Two or More Races</td>
<td>382,884</td>
<td>7,101</td>
</tr>
<tr>
<td>Median household income, 2007–2011</td>
<td>$47,827</td>
<td>$54,140</td>
</tr>
<tr>
<td>Persons below poverty level, percent, 2007–2011</td>
<td>14.7%</td>
<td>11.7%</td>
</tr>
</tbody>
</table>
Environmental Consequences
Improvements to Norriego Point would have a direct, beneficial effect for people who live near the area. Improvements would encourage more people to visit Norriego Point and participate in outdoor activities. This might have benefit the health and well-being of the local population. The proposed improvements to Norriego Point would draw more visitors to the county. Long-term, indirect, moderate benefits would result from increasing the recreational and fishing value of the area. Greater fishing success may increase the number of fishing trips in the area, which could generate ancillary purchases such as license fees, fuel, equipment, or other ancillary purchases.

Direct, short-term, moderate benefits through local job creation would result from construction activities. The proposed improvement would create approximately 10 to 20 temporary construction jobs. This project is not designed to create a benefit for any group or individual, but rather would provide benefits on a local and regional basis. Because the project occurs in an area that is not disproportionately minority or low income (see Table 12-30), there are no indications that the proposed project would be contrary to the goals of Executive Order 12898, or would create disproportionate, adverse human health or environmental impacts on minority or low-income populations of the surrounding community.

12.79.5.4.2 Cultural Resources
Affected Resources
This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Environmental Consequences
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.79.5.5 Land and Marine Management
Affected Resources
The land use surrounding Norriego Point is primarily mixed use conservation and residential (City of Destin 2010). Norriego Point is surrounded by water on three sides. The project would be located in a coastal area that is regulated by the federal CZMA and the Florida Coastal Management Act of 1978.

Environmental Consequences
Although the project would require several permits for the short-term construction period, it would not require a variance, zoning change, or amendment to a land-use area or comprehensive management plan. The long-term impact of the project would be minor because it would not affect overall use and management beyond the local project area. It would be consistent with current land use.
Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS. The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process.

12.79.5.5.1 Tourism and Recreational Use

Affected Resources
Tourism and recreation are common activities throughout the Florida panhandle region. Norriego Point provides public beach access for tourism and recreation use. Recreational activities on and around Norriego Point include fishing, boating, beach going, and swimming.

Environmental Consequences
During the construction period, the visitor recreational experience would be adversely impacted by noise and visual disturbances associated with the use of construction equipment. The impact would be short term and minor because it would only occur during the construction period, which is anticipated to take 9 to 12 months. The construction process would also limit recreational activities near construction areas for a short time to protect public safety. These limitations would be a minor inconvenience to visitors. Over the long term, minor beneficial impacts to tourism and recreational use would be expected due to the enhancement of recreational opportunities associated with improved facilities and accessibility.

12.79.5.5.2 Aesthetics and Visual Resources

Affected Resources
Existing aesthetic and visual resources from the project site are views of a developed area and openwater.

Environmental Consequences
Short-term impacts would occur to visual resources during construction activities due to the presence of equipment and materials. These impacts would be minor because they would only be visible from a small portion of the project area and would not dominate the viewshed or detract from current visitor activities. Long-term changes to visual resources would occur from the addition of a picnic pavilion and the parking area. These changes would be readily apparent but minor because they are consistent with other facilities in the surrounding areas and would not attract attention, dominate the view, or detract from visitor experiences.

12.79.5.5.3 Infrastructure

Affected Resources
Currently, Norriego Point has limited infrastructure. Norriego Point can be accessed by Gulf Shore Drive.

Environmental Consequences
As there is limited infrastructure at Norriego Point, adding to the facilities by construction of a picnic pavilion, with restrooms, showers, and drinking fountains, a multi-use trail, bike racks, and vehicle
parking would have a long-term, beneficial effect to the park,. The improvements would have a beneficial, long-term impact because they would improve the visitor experience.

12.79.5.5.4 Public Health and Safety and Shoreline Protection

Affected Resources
The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act (RCRA); the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); the Emergency Planning and Community Right-to-Know Act; and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of hazardous materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

A review of the EPA’s EnviroMapper revealed that there are no CERCLA or RCRA sites on or immediately adjacent to Norriego Point (EPA 2013c). There are two Permit Compliance System (PCS) sites located across Destin Harbor from Norriego Point.

Environmental Consequences
Project construction would require mechanical equipment that uses oil, lubricants, and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of construction-related hazardous materials such as vehicle fuels, oil, hydraulic fluid, and other vehicle maintenance fluids, and to avoid releases and spills.

12.79.6 Summary and Next Steps
The Norriego Point Restoration and Recreation project would involve stabilizing, enhancing and re-establishing recreational activities available at Norriego Point. Improvements would include constructing erosion control structures and new park amenities including a picnic pavilion with restrooms, showers, and drinking fountains; educational signage; a multi-use trail; bike racks; and vehicle parking along the access road adjacent to the park land. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase the recreational boating and beach use opportunities by stabilizing and re-establishing Norriego Point. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.
12.79.7 References


Fay, V. 2014. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for the proposed restoration/improvement of the Norriego Point Restoration and Recreation Project in East Pass, Destin, Okaloosa County, Florida. April 24.


Gulf of Mexico Fishery Management Council (GMFMC). 2005. *FINAL Generic Amendment Number 3 for Addressing Essential Fish Habitat Requirements, Habitat Areas of Particular Concern, and Adverse Effects of Fishing in the following Fishery Management Plans of the Gulf of Mexico: Shrimp Fishery of the Gulf of Mexico, United States Waters; Red Drum Fishery of the Gulf of Mexico; Reef Fish Fishery of the Gulf of Mexico; Coastal Migratory Pelagic Resources (Mackerels) in the Gulf of Mexico and South Atlantic Stone Crab Fishery of the Gulf of Mexico; Spiny Lobster in the Gulf of Mexico and South Atlantic; Coral and Coral Reefs of the Gulf of Mexico*. Tampa, FL: Gulf of Mexico Fishery Management Council.


USFWS 2011 Standard Manatee Conditions for In-Water Work


12.80 Deer Lake State Park Development: Project Description

12.80.1 Project Summary
The proposed Deer Lake State Park Recreation Areas project would improve the existing visitor areas at Deer Lake State Park in Walton County. The proposed improvements would include adding a paved access road, parking, picnic shelters, restroom facilities, plantings (trees, grass, shrubs), and necessary utilities (water, sewer, and electrical). The total estimated cost of the project is $588,500.

12.80.2 Background and Project Description
The Trustees propose to improve and enhance visitor use areas at Deer Lake State Park in Walton County (See Figure 12-32 for general project location). The objective of the Deer Lake State Park Development project is to enhance and/or increase recreational beach use opportunities by improving the park’s visitor area. The restoration work proposed includes adding a paved access road, parking, picnic shelters, restroom facilities, plantings (trees, grass, shrubs), and necessary utilities (water, sewer, and electrical).
Figure 12-32. Location of Deer Lake State Park development project.
12.80.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Deer Lake State Park Recreation Areas project is intended to enhance and/or increase recreational beach use opportunities by improving the park’s visitor area. The project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Florida agencies have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.80, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.80 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Deer Lake State Park Development project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area that was impacted by SCAT and response activities, including boom deployment.

12.80.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational beach use opportunities by improving the visitor use areas at Deer Lake State Park. The proposed improvements would include adding a paved access road, parking, picnic shelters, restroom facilities, plantings (trees, grass, shrubs), and necessary utilities (water, sewer, and electrical). Performance monitoring will evaluate: 1) the addition of a paved access road and parking; 2) construction of picnic shelters; 3) construction of restroom facilities; and 4) installation of planting and necessary utilities. Specific success criteria include: 1) the completion of the
construction as designed and permitted, and 2) enhanced and/or increased access is provided to the
natural resources, which will be determined by observation that the visitor use area is open and
available.

Long term maintenance of the improved facilities will be completed by Deer Lake State Park staff as part
of their regular public facilities maintenance activities. Corrective actions necessary after completion
and signoff of the project will also be undertaken by park staff. Funding for this post-construction
maintenance is not included in the project cost estimate and will be assumed by Deer Lake State Park.

During and following the post construction performance monitoring period, the State of Florida park
staff will monitor the recreational use activity at the site. Park staff keeps track of visitation and usage at
the park and will provide visitation numbers by the month. This use information is kept by the Florida
Department of Environmental Protection.

12.80.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are
$1,177,000 expressed in present value 2013 dollars to be applied against the monetized value of lost
recreational use provided by natural resources injured in Florida, which will be determined by the
Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document
(Section 7.2.2) for a description of the methodology used to develop monetized Offsets.17

12.80.6 Costs
The total estimated cost to implement this project is $588,500. This cost reflects current cost estimates
developed from the most current information available to the Trustees at the time of the project
negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring,
and contingencies.

---

17 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational
use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost
  recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to
  express the present value of the damages.
12.81 Deer Lake State Park Development: Environmental Review

The Deer Lake State Park improvement project is intended to enhance the quantity and quality of recreation in Florida’s State Park system by improving infrastructure and access to the coastal areas of Deer Lake State Park.

12.81.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf of Mexico in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not, fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement, the Trustees released a Phase I Early Restoration Plan (ERP) in April 2012, after public review of a draft. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III ERP. This park improvement project was submitted as an ERP on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and Oil Pollution Act (OPA), the project meets Florida’s criteria that ERPs occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

The Florida State Parkssystem offers residents and visitors recreation opportunities and scenic beauty. Improved access and facilities at these parks would promote increased visitation and park use, inspiring a sense of community, improving outdoor experience and education, and contributing to local economies. Roads, parking areas, trails, picnic facilities, and restrooms compose the main infrastructure through which the general public is able to enjoy state parks.

Created in 1996, Deer Lake State Park (referred to hereafter as “the Park”) contains a freshwater coastal dune lake (Deer Lake). A small portion of Camp Creek Lake, also a freshwater coastal dune lake, is located in the southeast portion of the Park. Extensive wetlands are located in the flatwoods near the two lakes, as are intermittent and perennial blackwater streams. Coastal dune lakes are extremely rare and only occur along the Gulf Coast in the United States. Deer Lake has an outflow that empties into the Gulf of Mexico and harbors habitat for rare plants, migratory birds, and sensitive species. (Camp Creek Lake also empties into the Gulf of Mexico.) Park trails provide access to a dune ecosystem and a beach along the Gulf of Mexico south of Deer Lake. One of Florida’s largest populations of the rare plant Curtiss’ sand grass (Calamovilfa curtissii) can be found in the Park. The dune ecosystem is of particular
importance because it provides habitat for the federally endangered Choctawhatchee beach mouse (*Peromyscus polionotus allophrys*) (Florida State Parks 2013b).

In 2004, Hurricane Ivan destroyed the Park’s beach boardwalk, and after the hurricane season, a temporary stairway was put in place for beach access. In 2009, a new beach boardwalk compliant with the Americans with Disabilities Act (ADA) was opened and a paved ADA-compliant trail to the boardwalk was constructed to provide all visitors with beach access and dune views. Currently, the Park has two interpretive trails and the 1/4-mile dune boardwalk that provides beach access so visitors can picnic, swim, and fish. The Park also provides access to Walton County’s 10-mile walking and biking trail that winds along the coast through seaside communities.

The proposed infrastructure project would involve adding new roads, parking lots, sidewalks, picnic and restroom facilities, plantings (trees, grass, shrubs), and necessary utilities (water, sewer, and electrical). This project would improve Park access and expand and enhance its use by the public.

The Park improvement project is part of an ongoing plan by the Florida State Parkssystem to enhance and improve the ability of the public to utilize its resources.

### 12.81.2 Project Location

The Park is located at 6350 East County Road 30A in the city of Santa Rosa Beach in Walton County, Florida, in Sections 19 and 20, Township 03 South, Range 18 West (Figure 12-33). The 1,995-acre Park is situated adjacent to a beach along the Gulf of Mexico, and County Road 30A bisects the Park. The area to the south of the county road provides the primary recreational attraction: Deer Lake and the Gulf of Mexico beach. North of the county road is an extensive area of pinelands, scrub, and blackwater stream communities. Existing facilities include the 1-mile Interpretive Forest Loop trail, the 1/2-mile Lake trail with a scenic overlook of Deer Lake, a picnic shelter on the nature trail located on the north side of County Road 30A across from the Park entrance, and an unimproved access road and parking area with approximately 0.69 acre of impervious surface intersecting County Road 30A.

The proposed Park improvements would take place south of County Road 30A on approximately 8 acres located 1,000–1,500 feet east of Deer Lake and about 1,700 feet from the coastline. Figure 12-33 is a map of the project area, and Figure 12-34 shows the project area on an aerial image.
Figure 12-33. Vicinity map of Deer Lake State Park and the project area, Walton County, Florida.
Figure 12-34. Aerial imagery of the project area in Deer Lake State Park.
12.81.3 Construction and Installation

12.81.3.1 Construction Design

The project scope includes developing two parking lots with approximately 100 total spaces, paved access roads, various sidewalks, an entry ranger station with associated utilities (water, sewer, power), an entrance sign with fully shielded wildlife friendly lighting, a day-use bathroom and pump station with associated utilities (water, sewer, power), an elevated picnic shelter, wildlife-friendly parking lot lighting, and underground power. Construction would require connecting the new restroom and entry ranger station to the regional sanitary sewer collection system operated by the Regional Utilities of Walton County. Water and power would also be connected to the site.

Figure 12-35 shows the proposed work overview for the Park.

Materials planned for removal may include soil, sand, rubble, trees, and asphalt. The demolition plan includes the removal of approximately 1,500 square feet (0.03 acre) of existing concrete, 650 square feet (0.01 acre) of an existing bike trail, the existing park entry sign, and between 40 and 60 existing trees.

In addition to the parking lots, access roads, and structures, construction plans specify the addition of approximately 2.6 acres of “vegetative buffer,” which would consist of to-be-determined grasses. A mix of trees and shrubs are planned for parking areas and various beds throughout the 8-acre site as detailed in Table 12-31 below. Tree protection would include, but not be limited to root protection, water-holding soil additive, drainage outside of the root ball, aboveground poles or protective fencing, and trunk ropes to stabilize trees during the initial growth period.

12.81.3.2 Construction Methods and Materials

A mix of heavy equipment and specific mechanized equipment or hand tools for various activities would be used. Activities would include grading and paving; mechanical and manual excavation would also occur for roads, sidewalks, buildings, and parking areas. Excavation and construction may involve equipment such as excavators or track hoes, bulldozers, backhoes, graders, compacting equipment (roller), dump trucks, bobcats, a paving machine, forklifts, ditchwitches, and pickup trucks; some additional hand digging may also occur. Assumed equipment usage and manpower requirements are detailed in Table 12-32.

At least 10 small tools (e.g., nail guns, saws, drills) would be needed and would be operated approximately 8 hours per day, 5 days per week for 6 months. A generator would be needed to power the small tools, and it, too, would operate for about 8 hours per day, 5 days per week for 6 months.

Road and parking lot construction would entail the removal of 0.65 acre of the 0.69-acre existing impervious surface and the addition of 1.71 acres of new impervious surface for the road and parking area, plus 0.07 acre for 5-foot-wide sidewalks. The total new impervious surface would be 1.82 acres. Building footprints would cover 0.04 acre.
Figure 12-35. Proposed work overview in the project area in Deer Lake State Park.
Table 12-31. Number and type of plants to be planted.

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Sand live oak (Quercus virginiana)</td>
</tr>
<tr>
<td>5</td>
<td>Sand pine (Pinus clausa)</td>
</tr>
<tr>
<td>5</td>
<td>Slash pine (Pinus ewotti)</td>
</tr>
<tr>
<td>13</td>
<td>Tree wax myrtle (Myrica cerifera)</td>
</tr>
<tr>
<td>47</td>
<td>Inkberry (Ilex glabra)</td>
</tr>
<tr>
<td>56</td>
<td>Saw palmetto (Serenoa repens)</td>
</tr>
<tr>
<td>5</td>
<td>Chapman oak (Quercus chapmanii)</td>
</tr>
<tr>
<td>3</td>
<td>Myrtle oak (Quercus myrtifolia)</td>
</tr>
<tr>
<td>44*</td>
<td>Golden aster (Chrysopsis)</td>
</tr>
<tr>
<td>44*</td>
<td>Apalachicola rosemary (Conradina glabra)</td>
</tr>
<tr>
<td>44*</td>
<td>False rosemary (Conradina)</td>
</tr>
</tbody>
</table>

* Mixture of the following per planting bed

Table 12-32. Assumed equipment usage and worker needs.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Number of Days Used</th>
<th>Number of Worker Days</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dump truck</td>
<td>10</td>
<td>10</td>
<td>1 week excavation; 1 week paving</td>
</tr>
<tr>
<td>Flatbed truck</td>
<td>25</td>
<td>25</td>
<td>1 trip per week for six months</td>
</tr>
<tr>
<td>Concrete truck</td>
<td>5</td>
<td>5</td>
<td>1 week use</td>
</tr>
<tr>
<td>Pickup truck</td>
<td>396</td>
<td>396</td>
<td>Three pickups per day for 6 months</td>
</tr>
<tr>
<td>Bobcat</td>
<td>15</td>
<td>15</td>
<td>1 week excavation; 1 week paving; 1 week utilities work</td>
</tr>
<tr>
<td>Grader</td>
<td>5</td>
<td>5</td>
<td>1 week grading</td>
</tr>
<tr>
<td>Paving machine</td>
<td>5</td>
<td>5</td>
<td>1 week paving</td>
</tr>
<tr>
<td>Roller</td>
<td>5</td>
<td>5</td>
<td>1 week paving</td>
</tr>
<tr>
<td>Trackhoe</td>
<td>5</td>
<td>5</td>
<td>1 week excavation</td>
</tr>
<tr>
<td>Bulldozer</td>
<td>10</td>
<td>10</td>
<td>1 week excavation, 1 week grading</td>
</tr>
<tr>
<td>Forklift</td>
<td>26</td>
<td>26</td>
<td>One delivery per week for 6 months</td>
</tr>
<tr>
<td>Ditchwitch</td>
<td>10</td>
<td>10</td>
<td>2 weeks utilities work</td>
</tr>
</tbody>
</table>

The depth of ground disturbance would be determined with the final design and would vary throughout the construction site. The access road and parking lot would likely require disturbance up to several feet deep, and the footprint placement would depend on final design and desired parking capacity. The picnic shelters would also require ground disturbance of up to several feet to construct the base and may require pilings to be placed to support roofs. Restroom facilities would require deeper ground disturbance to install sewer lines or septic tanks, and footprint placement would also depend on final design.

Posts may be temporarily placed as part of the construction effort (e.g., to secure concrete forms). If posts are placed (most likely associated with picnic shelters), they would likely be placed by mechanically auguring holes to place pre-formed pilings or to place forms that would be filled with pumped concrete to create new pilings. The holes for the pilings would be approximately 1–2 inches in diameter (final sizes would depend on final design requirements). As work proceeds, the project area may be isolated by construction fencing to prevent incidental access. Fencing material would be
emplaced by hand driving stakes with a sledge hammer or post driver as necessary. Stakes would be less than 2 inches in diameter and driven to a depth of 1–2 feet to secure the fencing.

The water main would be of polyvinyl chloride (PVC) pipe and constructed 3 feet from edge of the pavement, unless otherwise noted, but in all cases no more than 5 feet from the pavement edge. The PVC pipe would be either 4 or 6 feet in diameter and installed in 20-foot lengths, with a minimum cover of 36 inches. The water main and sewer line would be installed in the same trench, but the water main would maintain a clearance of 18 vertical and 10 horizontal inches from the sanitary sewer line. All utility lines would tie in to existing main lines that run adjacent to County Road 30A.

Standard construction materials would be used for the entry station, picnic shelter, restroom facility, and pump house. The parking areas and access roads would likely be constructed of asphalt. Sidewalks and building foundations would be of poured concrete. Construction-related materials such as sand, gravel, and concrete forms may be placed on the surface of the site. These materials would be staged on existing paved areas to avoid additional surface disturbance. New lighting is proposed for outdoor facilities, including at the entry sign, entry station, restroom facility, and parking areas.

**12.81.3.3 Best Management Practices**
The following construction best management practices (BMPs) would be followed:

- All construction would be performed in accordance with all local, state, and federal requirements and all permit requirements to protect the surrounding vegetation and natural condition.
- The contractor would submit a plan for control of surface water runoff in accordance with all local, state, and federal requirements and all permit requirements to protect the surrounding vegetation and natural condition.
- All construction adjacent to open water would be separated and confined by appropriate siltation screens and turbidity barriers to protect the quality of such open water. However, for this project, no construction would occur adjacent to open water.
- Upon completion of construction, the site would be cleared of all construction materials and restored to its natural state as shown on the plan drawings.
- The contractor would be responsible for assuring compliance with all permit requirements.

In addition to construction BMPs, the contractor would implement BMPs for adequate erosion control. Erosion control is necessary to prevent damage to adjacent property, natural features, site property, and work in progress. Erosion control measures would be in place prior to any land alteration and would be used throughout the construction process until soils are stabilized. Erosion control BMPs are as follows:

To protect against wind and stormwater runoff erosion, the contractor would place, as appropriate, hay bales and silt fencing with wire fence reinforcement, with sediment to be removed when it reaches approximately one-half the height of the barrier (see Figure 12-35).

Silt fences would be of optimal design and materials for adequate sediment control.
Side slopes created during construction would be stabilized at the earliest possible date to avoid erosion with adequate use of compacted soil and staked hay bales.

Any disturbed area that would not be paved, sodded, or built upon would have a minimum vegetative cover of 80% and be mature enough to control soil erosion and survive severe weather conditions prior to final inspection.

Sod would be sufficiently grown and maintained to secure a dense stand of live grass.

The proposed road surface at the entrance would maintain a condition of slope that would prevent tracking or flow of mud onto the existing public roadway (County Road 30A).

12.81.3.4 Construction Permits and Schedule
The project would require a county building permit from Walton County, a wetlands permit from the U.S. Army Corps of Engineers (USACE) in consultation with the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (USFWS) regarding endangered species, an environmental resource permit and sanitary sewer collection system permit from the Florida Department of Environmental Protection (FDEP), and authorization from the Regional Utilities of Walton County for a connection permit.

Construction could occur at any time but, to minimize impacts, would ideally take place during the time of year when recreation use is lowest. Construction work is expected to take 4–6 months to complete. The following schedule is currently planned:

- Design complete: Summer 2014
- Permitting complete: State permitting is completed; Walton County building permit to be finalized once funding is secured.
- Contract bid: Summer 2014
- Construction start: Fall 2014

12.81.4 Operations and Maintenance
Park staff would operate and maintain the new and expanded facilities under the existing management plan. Maintenance would include tasks such as checking and cleaning the restroom, removing debris and trash from the picnic and parking areas, and maintaining the parking areas and roads over time. Monitoring would include construction monitoring and tracking visitor use.

12.81.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.
12.81.5.1 No action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.81.5.2 Physical Environment
12.81.5.2.1 Geology and Substrates

Affected Resources

According to the Geologic Map of Florida, the Park is located on the Quaternary system, Pleistocene series, Undifferentiated Quaternary Sediments stratigraphic unit, and the Holocene series, Holocene Sediments stratigraphic unit. The Undifferentiated Quaternary Sediments stratigraphic unit consists of siliciclastics, organics, and freshwater carbonates. The siliciclastics are light gray, tan, brown to black, unconsolidated to poorly consolidated, clean to clayey, silty, unfossiliferous, variably organic-bearing sands to blue green to olive green, poorly to moderately consolidated, sandy, silty clays. Gravel is occasionally present. Organics occur as plant debris, roots, disseminated organic matrix, and beds of peat. Freshwater carbonates, or marls, are buff-colored to tan, unconsolidated to poorly consolidated, fossiliferous carbonate muds. Sand, silt, and clay may be present in limited quantities, and these carbonates often contain organics. The dominant fossils in the freshwater carbonates are mollusks. The Holocene Sediments stratigraphic unit occurs near the present Florida coastline at elevations generally less than 5 feet and includes quartz sands, carbonate sands and muds, and organics (Scott et al. 2001).

The entire southern area of Walton County lies in the Gulf Coastal Lowlands of Puri and Vernon province, which includes beaches and sand dune ridges that extend inland up to approximately 15 miles into the flatwoods. A wedge-shaped terrace, defined by a 25-foot scarp, extends westward along the coast of the Florida panhandle, terminating as a scarp toe near Four Mile Village in Walton County. The deep Pleistocene and recent quartz sands that cover the lower part of the county are suspected to overlie this scarp feature in the Park area. Over time, these sands have been reworked by storms and hurricanes into the present landscape. In terms of the stratigraphy in the Park, a quartz sand veneer (soft, sandy limestone with abundant microfossils) is found above the Intracoastal Formation that begins at 50 feet, which overlies Bruce Creek Limestone at approximately 100 feet. Although limestone is present, the Park contains few obvious karst features (Florida Division of Recreation and Parks 2004).

Topographically, higher areas at the Park are deeply dissected by numerous streams and drainageways. Topography ranges from islands of xeric sandhills and sand pine scrub bluffs to sea level where lake outlets meet the Gulf of Mexico. The highest point in the Park is 46 feet on the northeastern side; the highest points of interior ridges reach 46 feet while knolls along the beach rise to 25 feet. In the basins of Deer Lake and Camp Creek Lake, elevations along drainageways increase gradually and then drop abruptly from 25 feet to sea level (Florida Division of Recreation and Parks 2004).
Sixteen soil types occur in the boundaries of the Park:

- Dorovan-Pamlico association, frequently flooded (mainly large hardwood swamps and floodplains of the major drainageways)
- Foxworth sand, 0%–5% slopes (uplands and in elevated areas of flatwoods)
- Kureb sand, 0%–8% slopes (broad, undulating ridges and short side slopes on upland sand hills and dune-like ridges)
- Lakeland sand, 0%–5% slopes (broad ridge tops on uplands)
- Lakeland sand, 5%–12% slopes (upland side slopes leading to drainageways and around depressions)
- Lakeland sand, 12%–30% slopes (upland side slopes leading to drainageways and depressions)
- Leon sand (flatwoods)
- Rutlege fine sand (shallow depressions, stream or creek floodplains and upland flats)
- Eglin sand, 0%–5% slopes (low uplands)
- Mandarin sand (slightly elevated areas of flatwoods)
- Newhan-Corolla sands, rolling (undulating dune-like areas adjacent to the Gulf of Mexico)
- Beaches (narrow strips of tide-washed sand along the Gulf of Mexico)
- Kureb sand, hilly (dune-like ridges)
- Hurricane sand, 0%–5% slopes (slightly elevated areas of flatwoods)
- Resota fine sand, 0%–5% slopes (moderately elevated ridges of flatwoods)
- Pamlico Muck (depressional areas of flatwoods) (Florida Division of Recreation and Parks 2004)

Limited soil erosion has occurred from unimproved roads and off-road vehicle impacts prior to acquisition of the land for the Park (Florida Division of Recreation and Parks 2004).

**Environmental Consequences**

Mechanized equipment and hand tools would be used to complete the construction of the paved access road, parking lots, sidewalks, entry station, picnic shelter, and restroom facility. Some excavation of soils would occur to construct the base and possibly place posts for the picnic shelter, to construct foundations for the entry station and restroom, to lay sewer lines and other utility lines, and to construct the access road and parking lots. Soil, rock, and vegetation would be removed from the area where facilities would be built. Long-term, permanent surface disturbance would occur on approximately 4.4 acres; temporary short-term surface disturbance during construction would occur on an additional area of up to 3.6 acres. Soil removal, compaction, and disturbance would be most common in Kureb sand (0%–8% slopes), Leon sand, and Newhan-Corolla sands.

Disturbance to geologic features or soils would be detectable but would be short term, small, and localized. There would be no long-term changes to local geologic features or soil characteristics. Erosion and/or compaction may occur in localized areas but would be minimized by the erosion control BMPs specified above. In addition, the Park’s management plan requires the implementation of BMPs during the development of park roads to prevent erosion (Florida Division of Recreation and Parks 2004).
Affected Resources
Northwest Florida has seven major watersheds, all of which have been identified as priorities under the Surface Water Improvement and Management (SWIM) program. Water quality protection is the underlying goal of SWIM, along with the preservation and restoration of natural systems and associated public uses and benefits (Northwest Florida Water Management District 2011). The Park is located on the eastern side of the Choctawhatchee River and Bay system, which encompasses 3,422,154 acres. Approximately 42% of the system is in Florida and the remainder is in Alabama. Major tributaries of the Choctawhatchee River include the Pea River and Little Choctawhatchee River, as well as Holmes, Wrights, Bruce, and Pine Log Creeks. The Choctawhatchee Bay has one direct opening to the Gulf of Mexico at East Pass, near the city of Destin, and joins with Santa Rosa Sound to the west and the Intracoastal Waterway to the east. The Choctawhatchee River and Bay system supports a variety of environmental resources including aquatic and wetland habitats, vast forests, Floridan Aquifer springs, steephead streams, and many species of flora and fauna. It also supports human-related activities such as commercial and recreational fisheries, marine transportation, military uses, outdoor recreation, tourism, and activities related to the region’s aesthetic qualities, contributing economic and other benefits to local communities. Broad issues for the Choctawhatchee River and Bay system include urban stormwater runoff and other nonpoint sources of pollution, widespread sedimentation, domestic and industrial wastewater discharges, and habitat loss and degradation (Thorpe et al. 2002).

All waters in the Park have been classified as Outstanding Florida Waters (OFWs) by the State of Florida (Rule 62-302.700, Fla. Admin. Code) (Florida Division of Recreation and Parks 2004). An OFW is water designated worthy of special protection because of its natural attributes (e.g., excellent water quality or exceptional ecological, social, educational, or recreational value). OFWs are protected through more stringent requirements for activities requiring a permit from the FDEP or a water management district. Waters are designated OFW to prevent the lowering of existing water quality and to preserve the exceptional features of the waterbody. Surface waters in the Park are also classified as Class II waters by the FDEP (Florida Division of Recreation and Parks 2004). Class II waters have been designated for shellfish propagation and harvesting.

Impaired waters are waters that are too polluted or otherwise degraded to meet the water quality standards set by states, territories, or authorized tribes. Neither Deer Lake nor Camp Creek Lake are listed as impaired waters (Environmental Protection Agency [EPA] 2010).

The watershed of the Park extends into adjacent Division of Forestry property where the water table is very close to the surface. The unit drainage is from north to south along drainage channels (blackwater streams) into the two coastal dune lakes, Camp Creek Lake and Deer Lake. Intermittent and perennial blackwater streams draw from an extensive wetland reservoir in nearby flatwoods. A series of shallow, sand-bottomed rivulets in the upper section of the Park eventually coalesce into deep, tannic-colored stream bodies as they wind down through the sandhills and sand pine-oak scrub communities. Water tends to settle in the swamps and cypress domes. Isolated wetlands are common (Florida Division of Recreation and Parks 2004).
Two major aquifers are found in Walton County: the sand and gravel aquifer and the Floridian Aquifer (the primary source of water for the county) (Florida Division of Recreation and Parks 2004).

**Wetlands**
The Park contains estuarine and marine wetlands, freshwater emergent wetlands, and freshwater forested/shrub wetlands (USFWS). As shown in Figure 12-36 below, the project area overlaps several wetlands. These wetlands can be described as palustrine emergent, persistent, seasonally flooded (PEM1C); palustrine forested, broad-leaved deciduous, seasonally flooded-tidal (PF01R); and palustrine forested, needle-leaved evergreen (PF04).

**Floodplains**
Based on Federal Emergency Management Agency (FEMA) flood insurance rate maps (Panel 12131C0712G), the proposed project features appears to be located in Zone X. Zone X is defined as other flood areas. This area is characterized as areas of 0.2% annual chance of flood; areas of 1% annual chance of flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance of flood.

**Environmental Consequences**
All project activity would take place in upland areas, away from both the Gulf of Mexico and the shores of Deer Lake and Camp Creek Lake. Because of the project area’s distance from bodies of water and the proposed application of BMPs, surface water quality is not expected to be impacted during construction.

All permit conditions, including mitigation measures for erosion and release of chemicals, would be strictly adhered to. During construction, BMPs (listed above) along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality impacts. Permit conditions of the FDEP require erosion mitigation measures that include the installation of erosion control measures along the perimeter of all work areas and the stabilization of all filled areas with sod, mats, barriers, or a combination. The FDEP permit also constitutes a Certification of Compliance with State Water Quality Standards under Section 401 of the Clean Water Act, which indicates that the project would comply with state water quality standards and other aquatic resource protection requirements.

Impacts from chemicals to surface water or groundwater that could be released from sources such as construction equipment and vehicles are expected to be negligible. Required spill containment measures would be implemented for applicable construction activities. Permit conditions of the FDEP require spill containment protection and mitigation measures.

With required mitigation measures and erosion and construction BMPs in place, the effect on hydrology and water quality would likely be negligible. Any impacts would be small, short term, and localized.

**Wetlands**
A wetlands permit is required for the project and would stipulate appropriate BMPs and mitigation. Because all permit conditions would be strictly adhered to, the effect on wetlands would be minor and short term, and wetland function would be remain unimpaired or would be replaced through required mitigation.
Floodplains
No appreciable increased risk of flood loss, including impacts to human safety, health, and welfare, is expected to occur because the project would not impact vegetation, slopes, or coastal conditions in a substantial manner.

12.81.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
The Clean Air Act requires the EPA to set National Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to public health and the environment. NAAQS have been set for six common air pollutants (also known as criteria pollutants), consisting of particle pollution or particulate matter, ozone, carbon monoxide, sulfur dioxide, nitrogen dioxide, and lead. Particulate matter is defined as fine particulates with a diameter of 10 micrometers or less (PM$_{10}$) and fine particulates with a diameter of 2.5 or less (PM$_{2.5}$). When a designated air quality area or airshed in a state exceeds a NAAQS, that area may be designated as a “nonattainment” area. Areas with levels of pollutants below the health-based standard are designated as “attainment” areas. To determine whether an area meets the NAAQS, air monitoring networks have been established and are used to measure ambient air quality. The EPA also regulates 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health effects.

Air quality in the Florida panhandle is in attainment with the NAAQS (EPA 2013a). The FDEP, Northwest District Air Program, does not operate any air quality monitors in Walton County (FDEP 2013a).

Greenhouse Gases
Gases that trap heat in the air are called greenhouse gases (GHGs). The primary GHGs are carbon dioxide (CO$_2$), methane, nitrous oxide, and fluorinated gases. Over the past century, human activities have released into the atmosphere large amounts of GHGs, which are contributing to global warming. Global warming is defined as the ongoing rise in global average temperature near the Earth’s surface. Global warming is causing climate patterns to change.

According to the EPA, the average annual temperature in the southeast portion of the United States has increased by approximately 2.0°F since 1970. Winters, in particular, are getting warmer, and the average number of freezing days has decreased by 4–7 days per year since the mid1970s. Most areas are getting wetter; autumn precipitation has increased by 30% since 1901. In many parts of the region, the number of heavy downpours has increased. Despite the increases in fall precipitation, the area affected by moderate and severe drought has increased since the mid1970s (EPA 2013b).
Average annual temperatures in the region are projected to increase from 4°F to 9°F by 2080. Hurricane-related rainfall is projected to continue to increase. Models suggest that rainfall will arrive in heavier downpours with increased dry periods between storms. These changes would increase the risk of both
flooding and drought. The coasts will likely experience stronger hurricanes and sea level rise. Storm surge could present problems for coastal communities and ecosystems (EPA 2013b).

Total GHG emissions in the state of Florida from 1990 to 2007 have increased at an average rate of 2.1% per year. Total GHG emissions in 2007 were 290 million metric tons of CO₂ equivalent (MMT CO₂ E). In 2007, 91% of GHG emissions in Florida were CO₂ emissions (FDEP 2010).

**Environmental Consequences**

Project implementation would require the use of heavy mechanized equipment which would lead to temporary emissions (e.g., criteria pollutants, HAPs, GHGs) from the operation of construction vehicles and equipment. Any air quality impacts that occur would be measurable but minor due their localized nature, short-term duration, and the small size of the project. BMPs would be employed to prevent, mitigate, and control potential air pollutants during project implementation, such as following speed limits and prohibiting idling unless necessary to run equipment. No air quality–related permits would be required because of the minimal levels of emissions.

**Greenhouse Gases**

The major pieces of construction equipment that would contribute to GHG emissions for this project are listed in Table 12-33, along with their estimated GHG emissions. GHG emissions from the remaining (hand) equipment would be negligible. The emissions estimates are based on the operating assumptions in Table 12-32.

**Table 12-33. Greenhouse gas impacts of the proposed project for major construction equipment.**

<table>
<thead>
<tr>
<th>Equipment Description</th>
<th>Total Hours Used</th>
<th>CO₂ Factor-mt/100hrs*</th>
<th>CO₂ (mt)</th>
<th>CH₄ Factor-mt/100hrs</th>
<th>CH₄ (mt)</th>
<th>NO₂ Factor-mt/100hrs</th>
<th>NO₂ (mt)</th>
<th>Total CO₂ (mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dump trucks/ flatbed truck</td>
<td>280</td>
<td>1.7</td>
<td>4.8</td>
<td>0.5</td>
<td>1.4</td>
<td>7.2</td>
<td>20.2</td>
<td>26.3</td>
</tr>
<tr>
<td>Concrete trucks</td>
<td>40</td>
<td>1.7</td>
<td>0.7</td>
<td>0.5</td>
<td>0.2</td>
<td>7.2</td>
<td>2.9</td>
<td>3.8</td>
</tr>
<tr>
<td>Pick up trucks</td>
<td>3,168</td>
<td>1.1</td>
<td>34.8</td>
<td>0.35</td>
<td>11.1</td>
<td>4.4</td>
<td>139.4</td>
<td>185.3</td>
</tr>
<tr>
<td>Bobcat (bare and w/auger mount)</td>
<td>120</td>
<td>2.65</td>
<td>3.2</td>
<td>0.9</td>
<td>1.1</td>
<td>10.6</td>
<td>12.7</td>
<td>17.0</td>
</tr>
<tr>
<td>Moto grader</td>
<td>40</td>
<td>2.25</td>
<td>0.9</td>
<td>0.65</td>
<td>0.3</td>
<td>1.08</td>
<td>0.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Paving machine</td>
<td>40</td>
<td>2</td>
<td>0.8</td>
<td>0.5</td>
<td>0.2</td>
<td>8</td>
<td>3.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Rollers</td>
<td>40</td>
<td>2</td>
<td>0.8</td>
<td>0.5</td>
<td>0.2</td>
<td>8</td>
<td>3.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Trackhoe (w/bucket/ thumb or vibratory attachments)</td>
<td>40</td>
<td>2.55</td>
<td>1.0</td>
<td>0.85</td>
<td>0.3</td>
<td>10.2</td>
<td>4.1</td>
<td>5.4</td>
</tr>
<tr>
<td>Bulldozer</td>
<td>80</td>
<td>2.25</td>
<td>1.8</td>
<td>0.65</td>
<td>0.5</td>
<td>1.08</td>
<td>0.9</td>
<td>3.2</td>
</tr>
<tr>
<td>Forklift</td>
<td>208</td>
<td>2.25</td>
<td>4.7</td>
<td>0.65</td>
<td>1.4</td>
<td>1.08</td>
<td>2.2</td>
<td>8.3</td>
</tr>
<tr>
<td>Ditchwitch</td>
<td>80</td>
<td>0.75</td>
<td>0.6</td>
<td>0.35</td>
<td>0.3</td>
<td>4</td>
<td>3.2</td>
<td>4.1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>4,136</strong></td>
<td><strong>263</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*mt = metric tons

Based on the assumptions detailed in Table 12-33, the project would generate approximately 263 metric tons of GHGs over the duration of all phases. The following mitigation measures have been identified to reduce or eliminate GHG emissions from the project:
• Shut down idling construction equipment, if feasible.
• Locate staging areas as close to construction sites as practicable to minimize driving distances between staging areas and construction sites.
• Encourage the use of the proper equipment size for the job to maximize energy efficiency.
• Encourage the use of alternative fuels for generators at construction sites, such as propane or solar, or use electrical power where practicable.

The project would have short-term minor impacts but no long-term impacts on GHG emissions. Mitigation measures would minimize GHG emissions.

At the completion of the project, visitor use (and therefore vehicle use) could increase due to the improved access and facilities. Increased exhaust emissions could affect air quality over the long term. However, adverse impacts to air quality are expected to be minor because management actions could be taken if necessary to limit Park visits and because they would be negligible in the context of the total number of miles travelled in the regional airshed.

12.81.5.2.4 Noise

Affected Resources
Noise can be defined as unwanted or nuisance sound. The Noise Control Act of 1972 (42 USC 4901 to 4918) was enacted to establish noise control standards and to regulate noise emissions from commercial products such as transportation and construction equipment. Amplitude is the magnitude of a sound and is usually expressed in decibels (dB), a dimensionless ratio of sound pressure to that of a reference pressure. The A-weighted decibel (dBA) is the adjusted unit of sound used to describe the human response to noise from industrial and transportation sources. The threshold of human hearing is 0 dBA. A 3-dBA increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear.

Table 12-34 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.

<table>
<thead>
<tr>
<th>Noise Source or Effect</th>
<th>Sound Level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawn mower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Adapted from U.S. Department of Energy (1986)
Noise levels in the project area vary depending on the season, time of day, number and types of noise sources, and the distance of the receptor from noise sources. Existing sources of noise in the project area are from nearby residential activities (such as lawn care), traffic on nearby roads and highways, overhead aircraft, and ambient natural sounds such as wind, waves, and wildlife.

Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the project. Noise-sensitive receptors in the project area include recreational users, residences located to the east and west of the Park, and wildlife. There are currently residences located in an 80-acre community that are immediately adjacent to (east of) the Park boundary. Approximately 10 of these residences are located within 500 feet of the proposed construction area, and some are as close as 25 feet.

**Environmental Consequences**

Instances of increased noise would occur during the project. Equipment, tools, and vehicles used during the construction of the paved access road, parking lots, sidewalks, entry station, picnic shelter, and restroom facility; paving of asphalt and pouring of concrete; planting and erosion control activities; and the laying of underground utility lines would generate noise. Construction equipment noise is known to disturb fish, marine mammals, and nesting shorebirds. Construction noise would also negatively affect the experience of Park visitors and local residents in areas near project activities. The noise impacts would be short term since the construction period is not anticipated to last more than 6 months. Because of the temporary nature of the construction noise, negative impacts to the soundscape would be short term and of a level that is likely to attract visitor and neighbor attention but not cause changes in visitor or resident activities.

After completion of the project, the soundscape would return to pre-project levels. The potential for increased vehicle traffic exists due to the improved access and facilities at the Park, which would result in a slight increase in noise levels in the vicinity. Overall, long-term noise impacts from hiking, picnicking, and other recreational activities would remain minor.

**12.81.5.3 Biological Environment**

**12.81.5.3.1 Living Coastal and Marine Resources**

**Vegetation**

**Affected Resources**

The Park contains rare coastal dune habitat, which hosts magnolias, golden asters, woody goldenrod, and scrub oaks, as well as rare plants such as Gulf Coast lupine, spoonflower, pitcher plants, and Curtiss' sand grass (Florida State Parks 2013a). The population of Curtiss' sand grass is one of the largest in Florida.

Fourteen distinct natural communities have been identified in the Park, in addition to 2 acres of developed areas (jeep trails, roads, and improvements on the beach side at Deer Lake). These communities are described in Table 12-35.
The project site appears to be located in the scrub and mesic flatwoods communities.

In the Park, all wetlands, beach dune, sandhill, scrub, and coastal dune lake communities have been designated as protected zones, defined as areas of high sensitivity or outstanding character from which most types of development are excluded as a protective measure (Florida Division of Recreation and Parks 2004).

A list of federally designated threatened, endangered, candidate, and other plant species of concern likely to occur in Walton County and the Park can be found in Table 12-36. State-listed special status species reported to occur in the project area are also shown in the table.

Although Godfrey’s golden aster (*Chrysopsis godfreyi*) was not reported as likely to occur in Walton County, it has been observed infrequently in the Park with sea oats on foredunes. According to Florida Natural Areas Inventory (FNAI) rankings, it is imperiled in Florida due to rarity or vulnerability to extinction from some natural or manmade factor. (The FNAI maintains a comprehensive database of the biological resources of Florida.) Spoonflower (*Peltandra saggitifolia*) is found along basin swamps at Camp Creek and, in Florida, is either very rare and local throughout its range or found locally in a restricted range or vulnerable to extinction or other factors (FNAI ranking). Rosebud orchid (*Cleistes divaricata*) and grass pinks (*Calopogon barbatus*) have been observed around ponded areas in flatwoods and around streams in the Park; these species have been listed as threatened plants (species in rapid decline in the state) by the Florida Department of Agriculture and Consumer Services.

### Table 12-35. Vegetation communities in the park.

<table>
<thead>
<tr>
<th>Community</th>
<th>Acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beach dune</td>
<td>46.6</td>
</tr>
<tr>
<td>Mesic flatwoods</td>
<td>589.7</td>
</tr>
<tr>
<td>Sandhill</td>
<td>602.6</td>
</tr>
<tr>
<td>Scrub</td>
<td>366.5</td>
</tr>
<tr>
<td>Seepage slope</td>
<td>unknown</td>
</tr>
<tr>
<td>Wet flatwoods</td>
<td>unknown</td>
</tr>
<tr>
<td>Wet prairie</td>
<td>unknown</td>
</tr>
<tr>
<td>Basin swamp</td>
<td>126.4</td>
</tr>
<tr>
<td>Depression marsh</td>
<td>unknown</td>
</tr>
<tr>
<td>Dome swamp</td>
<td>48.9</td>
</tr>
<tr>
<td>Coastal dune lake</td>
<td>53.1</td>
</tr>
<tr>
<td>Seepage stream</td>
<td>147.9</td>
</tr>
<tr>
<td>Estuarine tidal marsh</td>
<td>unknown</td>
</tr>
<tr>
<td>Marine unconsolidated substrate</td>
<td>12.3</td>
</tr>
</tbody>
</table>

Source: Florida Division of Recreation and Parks (2004)
Table 12-36. Protected plant species with potential to occur in the project area.

<table>
<thead>
<tr>
<th>Resource Category</th>
<th>Common Name</th>
<th>Scientific Name</th>
<th>USFWS Status</th>
<th>State Status</th>
<th>Natural Communities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants</td>
<td>Cruise’s golden-aster</td>
<td><em>Chrysopsis gossypina cruiseana</em></td>
<td>—</td>
<td>E</td>
<td>Terrestrial: Coastal dunes, coastal strand, coastal grassland; openings and blowouts Observed in the Park on taller dunes inland from beach dune</td>
</tr>
<tr>
<td>Plants</td>
<td>Curtiss’ sandgrass</td>
<td><em>Calamovilfa curtissii</em></td>
<td>—</td>
<td>T</td>
<td>Palustrine: Mesic and wet flatwoods, wet prairie, depression marsh Terrestrial: Mesic flatwoods Observed in large populations in the Park around ponded areas in the flatwoods and along streams (dune swamp community)</td>
</tr>
<tr>
<td>Plants</td>
<td>Decumbant pitcher plant</td>
<td><em>Sarracenia purpurea</em></td>
<td>—</td>
<td>T</td>
<td>Palustrine: Bogs Observed in the Park</td>
</tr>
<tr>
<td>Plants</td>
<td>Florida anise</td>
<td><em>Illicium floridanum</em></td>
<td>—</td>
<td>T</td>
<td>Palustrine: Floodplain forest, baygall Riverine: Seepage stream bank Terrestrial: Slope forest, seepage slope Observed in the Park</td>
</tr>
<tr>
<td>Plants</td>
<td>Gulf Coast lupine</td>
<td><em>Lupinus westianus</em></td>
<td>—</td>
<td>T</td>
<td>Terrestrial: Beach dune, scrub, disturbed areas, roadways, blowouts in dunes Observed in the Park in disturbances along paths in scrub and sandhills</td>
</tr>
<tr>
<td>Plants</td>
<td>Large-leaved jointweed</td>
<td><em>Polygonella macrophylla</em></td>
<td>—</td>
<td>T</td>
<td>Terrestrial: Scrub, sand pine/oak scrub ridges Observed frequently in the Park in oak scrub</td>
</tr>
<tr>
<td>Plants</td>
<td>Panhandle meadow-beauty</td>
<td><em>Rhexia salicifolia</em></td>
<td>—</td>
<td>—</td>
<td>None listed Observed in the Park</td>
</tr>
<tr>
<td>Plants</td>
<td>Parrot pitcher plant</td>
<td><em>Sarracenia psittacina</em></td>
<td>—</td>
<td>T</td>
<td>Palustrine: Wet flatwoods, wet prairie, seepage slope Observed in the Park</td>
</tr>
<tr>
<td>Plants</td>
<td>Southern milkweed</td>
<td><em>Asclepias viridula</em></td>
<td>—</td>
<td>T</td>
<td>Palustrine: Wet prairie, seepage slope edges Riverine: Seepage stream banks Terrestrial: Mesic flatwoods, drainage ditches Observed in the Park</td>
</tr>
<tr>
<td>Plants</td>
<td>Southern red lily or pine lily</td>
<td><em>Lilium catesbaei</em></td>
<td>—</td>
<td>T</td>
<td>Palustrine: Wet prairie, wet flatwoods, seepage slope Terrestrial: Mesic flatwoods, seepage slope; usually with grasses Observed in the Park</td>
</tr>
<tr>
<td>Plants</td>
<td>Spoon-leaved sundew or drosera</td>
<td><em>Drosera intermedia</em></td>
<td>—</td>
<td>T</td>
<td>Lacustrine: Sinkhole lake edges Palustrine: Seepage slope, wet flatwoods, depression marsh Riverine: Seepage stream banks, drainage ditches Observed in the Park</td>
</tr>
<tr>
<td>Plants</td>
<td>White-top pitcher plant</td>
<td><em>Sarracenia leucophylla</em></td>
<td>—</td>
<td>E</td>
<td>Palustrine: Wet prairie, seepage slope, baygall edges, ditches Observed around ponded areas in the flatwoods and around streams of the Park</td>
</tr>
<tr>
<td>Plants</td>
<td>Yellow butterwort</td>
<td><em>Pinguicula lutea</em></td>
<td>—</td>
<td>T</td>
<td>Palustrine: Flatwoods, bogs Observed in the Park</td>
</tr>
</tbody>
</table>

ce = consideration encouraged; E = endangered; T = threatened
Source: USFWS Panama City Ecological Services, Fish and Wildlife Conservation Office (2012); Florida Division of Recreation and Parks (2004)
Very few exotic species have been documented in the Park, although a few Chinese tallow (Sapiumsebiferum) have been identified and removed when found. Also, small areas of cogongrass (Imperata cylindrica) have been identified near the Park, primarily along road rights-of-way (Florida Division of Recreation and Parks 2004).

**Environmental Consequences**

Construction of the paved access road, parking lots, sidewalks, entry station, picnic shelter, restroom facility, and associated utilities would require the permanent removal of vegetation in the affected areas. This long-term, permanent surface disturbance would occur on approximately 4.4 acres; short-term surface disturbance during construction activities would occur on an additional area of up to 3.6 acres. The vegetation types most likely to be affected by project construction include scrub and mesic flatwoods.

In areas of short-term surface disturbance, infrequent, minimal disturbance to individual plants would be expected and local or range-wide population stability would not be affected. One-time disturbance to locally suitable habitat could occur, but sufficient habitat would remain functional at the local and regional scales to maintain the viability of the species. Where new structures, plantings, and facilities are placed, the loss of vegetation would be limited to the project footprint but would persist for the life of the facilities (i.e., indefinitely).

The use of equipment and disturbance of soil and existing vegetation would create a risk of noxious weed or invasive vegetative species introduction. Those undeveloped areas disturbed during construction would be monitored and invasive species removed. The opportunity for the increased spread of non-native species would be temporary and localized and is not anticipated to displace native species populations and distributions.

Due to the prevalence of rare plants in the Park, preconstruction vegetation surveys will likely be required. The presence of any special status species would be considered during the design phase of the project, and precautions would be taken to avoid them.

Improvements to the Park would likely attract additional visitors. Increased human presence could have a long-term, minor effect on vegetation in the Park because of the greater likelihood of trampling, picking, or other vegetative disturbance. This type of impact would probably occur in areas closest to Park facilities.

**Wildlife Habitat**

**Affected Resources**

A variety of wildlife can be found in the Park, including reptiles (snakes, turtles, skinks, lizards), amphibians (frogs, salamanders, newts, toads), coyote (Canis latrans), beaver (Castor canadensis), opossum (Didelphis marsupialis), river otter (Lutra canadensis), striped skunk (Mephitis mephitis), white-tailed deer (Odocoileus virginianus), raccoon (Procyon lotor), Eastern gray squirrel (Sciurus carolinensis), foxes, and rabbits. The Park also hosts a wide variety of resident and migratory birds, especially during spring and fall migrations. Migratory butterflies are also present.
**Environmental Consequences**
Although common wildlife may be disturbed by the noise and activity of construction, the disturbance would be of a temporary and short-term nature (less than 6 months). Additional habitat is present in the Park, which would allow for the movement and dispersal of individual animals away from the construction area during this time. Permanent habitat loss would occur on approximately 4.4 acres of the 1,995-acre Park.

**Marine and Estuarine Fauna**

**Affected Resources**
The marine environment near the Park provides habitat to aquatic species such as turtles and fish. Benthic organisms, including bivalves, gastropods and other mollusks, annelids, and crustaceans, may also be present in the waters off the Park.

**Environmental Consequences**
The proposed project would not result in a measurable impact to the marine environment near the Park because all construction would occur in upland areas.

Impacts to sea turtles are discussed in **Tortoises and Sea Turtles** section.

**Protected Species**
Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

**Affected Resources**
The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Walton County, Florida. Table 12-37 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

---

18 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
### Table 12-37. Potential Impacts to Species/Critical Habitats managed by USFWS in the project area

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle, Leatherback turtle, Loggerhead turtle</td>
<td>The main risk to sea turtles during execution of this project would come should work be conducted during the turtles nesting season from approximately May to November when turtles, and to a greater extent their nests could be at risk of harassment, harm, and mortality from the use of heavy equipment on the beach. Construction equipment can crush individuals and nests, create ruts and other structures that may make it difficult to return to the sea, and compact substrates which may make nesting difficult. Due to the small footprint of any single project and the conservation measures, impacts to sea turtles and their nests will be minimized to an insignificant and discountable level. No proposed or designated critical habitat for sea turtles occurs within the action area; therefore, none will be adversely affected or modified.</td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>The county in the project area is not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the project waters (U.S. Department of the Interior, 2011) for the Bayside Ranchettes action area. The main risk to manatees during implementation of this project would come from in-water material collisions which could result in harm or mortality. Due to the conservation measures, the Trustees believe these impacts will be reduced such that they are either avoided or insignificant and discountable.</td>
</tr>
<tr>
<td>Piping plover</td>
<td>The main risk to Piping plovers is from human disturbance while resting and foraging in habitats adjacent to work areas. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the plovers to move to a nearby area. Because other foraging/resting habitats surround the area the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable. Piping plover critical habitat is not designated in or near the action.</td>
</tr>
<tr>
<td>Red knot</td>
<td>The main risk to Red knots is from human disturbance while resting and foraging in habitats adjacent to work areas. The proposed project could result in short term increases in noise which could startle individuals, though the Trustees would expect normal activity to resume within minutes or cause the red knots to move to a nearby area. Because other foraging/resting habitats surround the area the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable.</td>
</tr>
<tr>
<td>Gulf sturgeon</td>
<td>NMFS is providing consultation for Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon will not be considered in the consultation with the USFWS.</td>
</tr>
<tr>
<td>Choctawhatchee beach mouse, Critical habitat for Choctawhatchee beach mouse</td>
<td>The Choctawhatchee beach mouse could occupy any and all these sites except Bayside Ranchettes, though they are not expected in the Ed Walline and Gulfview Heights project areas. If working in or near habitat for the mouse (i.e., dune systems) burrows could collapse during walkover construction/replacement activities which can result in abandonment of the burrow by the adults; leading to potential harm or mortality and mortality of any young within the burrow, and increased risk of predation. Lighting added to parking areas could affect the nocturnal habitats of the mouse. Because of the conservation measures (including those for critical habitat), the Trustees believe impacts to beach mice are insignificant and discountable. Critical habitat is adjacent to the Deer Lake project site. Primary Constituent Elements for the mouse habitat are: 1) A contiguous mosaic of primary, secondary scrub vegetation, and dune structure, with a balanced level of competition and predation and few or no competitive or predaceous nonnative species present, that collectively provide foraging opportunities, cover, and burrow sites; 2) Primary and secondary dunes, generally dominated by sea oats that, despite occasional temporary impacts and reconfiguration from tropical storms and hurricanes, provide abundant</td>
</tr>
<tr>
<td>SPECIES/Critical Habitat</td>
<td>SPECIES/Critical Habitat Impacts</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>food resources, burrow sites, and protection from predators; 3) Scrub dunes, generally dominated by scrub oaks, that provide food resources and burrow sites, and provide elevated refugia during and after intense flooding due to rainfall and/or hurricane induced storm surge; 4) Functional, unobstructed habitat connections that facilitate genetic exchange, dispersal, natural exploratory movements, and recolonization of locally extirpated areas; and 5) A natural light regime within the coastal dune ecosystem, compatible with the nocturnal activity of beach mice, necessary for normal behavior, growth and viability of all life stages.</td>
</tr>
</tbody>
</table>

The proposed projects are not expected to negatively impact PCE's but rather may benefit PCE's. The existing boardwalks or lack of boardwalks could be limiting the amount of contiguous habitat, food resources, burrow sites, and the boardwalks may be causing obstructions due to their low height. Repairing boardwalks and constructing new ones including should allow for unobstructed movements by mice; help prevent dune erosion (pathway “fanning”) from general visitor use thereby reducing changes to burrow sites, food resources, and susceptibility to hurricane/storm impacts. No lighting is planned for the walkovers. At Deer Lake any lighting will wildlife friendly, consistent with latest edition of FWC lighting technical manual.

Due to the conservation measures and project design, no adverse modification or destruction of critical habitat is anticipated.

Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Protected Resource Division (PRD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that this project falls outside of NMFS Endangered Species Act (ESA) jurisdiction, as it does not contain suitable habitat for species managed by NMFS. As a result, the project did not require further ESA evaluation from NOAA.

Additional information on some of these species is provided below.

**Tortoises and Sea Turtles**

The gopher tortoise, a candidate species, prefers high dry sandy habitats such as longleaf pine-xeric oak sandhills. It is also found in scrub, dry hammocks, pine flatwoods, dry prairies, coastal grasslands and dunes, mixed hardwood-pine communities, and a variety of disturbed habitats, such as pastures (FWC 2013a). It is known to occur in the Park, and has the potential to occur in the project area based on the presence of scrub and mesic flatwoods.

Although all listed sea turtles are known to utilize Gulf waters and have potential to occur in the marine environment around the Park, there are five species of endangered or threatened sea turtles that have the potential to occur near the project area on the beaches in the Park: green, hawksbill, Kemp’s ridley, leatherback and loggerhead. Sea turtles are known to nest on the Park.

Walton County has adopted a Wildlife Lighting Ordinance (No. 2009-03) that provides guidelines for proper light management to minimize disturbances to nesting sea turtles, their hatchlings, and other coastal wildlife. All new construction in the Wildlife Conservation Zone (750 feet from the mean high water line of the Gulf of Mexico) must comply with the ordinance (Walton County 2013a). The south portion of the Park is located in the Wildlife Conservation Zone, but project activities would be outside the zone.
**Choctawhatchee Beach Mouse**

The endangered Choctawhatchee beach mouse is found only in a small portion of Florida. It forages at night, primarily on insects and the seeds and fruit of dune plants. It is thought that breeding peaks in the winter months but can occur year round with adequate food availability. The main threat facing the Choctawhatchee beach mouse is continued development along beaches, which destroys or degrades the sand dunes on which it depends. Increased human traffic on sand dunes is also a threat to the mouse because it can damage dune vegetation used for food and shelter. Other threats include habitat damage from hurricanes and increased predation from feral cats, foxes, raccoons, and coyotes (FWC 2013b).

This species was federally listed as endangered on June 6, 1985. Five units of critical habitat for the Choctawhatchee beach mouse (CBM-1 through CBM-5) were designated on October 12, 2006, totaling 2,404 acres. PCE’s for beach mouse habitat include: 1) A contiguous mosaic of primary, secondary scrub vegetation, and dune structure, with a balanced level of competition and predation and few or no competitive or predaceous nonnative species present, that collectively provide foraging opportunities, cover, and burrow sites; 2) Primary and secondary dunes, generally dominated by sea oats that, despite occasional temporary impacts and reconfiguration from tropical storms and hurricanes, provide abundant food resources, burrow sites, and protection from predators; 3) Scrub dunes, generally dominated by scrub oaks, that provide food resources and burrow sites, and provide elevated refugia during and after intense flooding due to rainfall and/or hurricane induced storm surge; 4) Functional, unobstructed habitat connections that facilitate genetic exchange, dispersal, natural exploratory movements, and recolonization of locally extirpated areas; and 5) A natural light regime within the coastal dune ecosystem, compatible with the nocturnal activity of beach mice, necessary for normal behavior, growth and viability of all life stages. CBM-4 is the Deer Lake Unit, which consists of 49 acres (Figure 12-37). It encompasses essential features of beach mouse habitat within the boundary of the Park as well as adjacent private lands. This unit provides primary, secondary, and scrub dune habitat and habitat connectivity to adjacent lands; it is essential to the conservation of the species. Threats specific to CBM-4 that may require special management include artificial lighting, presence of feral cats and other predators at unnatural levels, and high recreation use that could result in soil compaction, damage to dunes, or other decrease in habitat quality (71 Federal Register 60238: 60238–60370).
Figure 12-37. Choctawhatchee beach mouse and Gulf sturgeon critical habitat in and adjacent to Deer Lake State Park.
Piping Plover
The piping plover, federally designated as threatened, typically inhabits sandy beaches, sandflats, and mudflats along coastal areas (FWC 2013a). The Park’s beach dunes provide suitable foraging and resting habitat for the piping plover during the winter season, and the plover may forage in the shallow waters near the Park’s beaches. No piping plover designated critical habitat is located in or adjacent to Park boundaries.

Red Knot
The red knot, a federal proposed species, uses the state of Florida both for wintering habitat and migration stopover habitat for those that continue to migrate down to specific wintering locations in South America (Niles et al. 2008). Wintering and migrating red knots forage along sandy beaches, tidal mudflats, saltmarshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms, and roost on high sand flats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008).

Essential Fish Habitat
EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as “those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column.

Based on the Trustees’ reviews of project materials (Spring 2013) in coordination with representatives from NOAA’s Habitat Conservation Division (HCD) in the South East Regional Office (SERO), the NOAA Restoration Center determined that this project will not affect EFH because there is no EFH in the project area. As a result, the project did not require further EFH evaluation.

State-Listed Birds, MBTA, and BGEPA
The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-38 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

Table 12-38. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>Foraging, feeding, resting, nesting</td>
<td>Shorebirds nest, forage, feed, and rest, and in the types of habitats consistent with some of the shoreline areas near the proposed project. As such, they may be impacted locally and temporarily by the project. Impacts to breeding/nesting birds will be avoided.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested)</td>
<td>Resting, roosting, nesting</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats including dunes. However, the level of project activity in open areas will be reduced.</td>
</tr>
</tbody>
</table>
### Table 12-39. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>The Trustees expect foraging and resting birds would be able to move to another nearby location to continue foraging and resting. If project activities occur during shorebird nesting season (February 15 to August 31), the FWC will be contacted to obtain the most recent guidance to protect nesting shorebirds or rookeries and their recommendations will be implemented.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. Nesting should not be impacted because the project will not occur near nesting habitats.</td>
</tr>
<tr>
<td>Songbirds</td>
<td>Trees will not be removed during songbird nesting season at Deer Lake.</td>
</tr>
</tbody>
</table>

### Environmental Consequences

The proposed project has been evaluated for potential short- and long-term impacts to state and federally listed threatened and endangered species that may occur in and adjacent to the project area based on available suitable habitat and construction plans. Descriptions of these evaluations are provided below.

### Protected Species

The USFWS reviewed the proposed Deer Lake State Park project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On March 10, 2014 the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect, five species of sea turtles in terrestrial habitats (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead), Choctawhatchee beach mouse, West Indian manatee, piping plover, or red knot (if listed). The USFWS also concurred with the Trustees’ determination that the project will not adversely modify or destroy critical habitat for the Choctawhatchee beach mouse.
To protect any gopher tortoise that may be found on site, the Florida Gopher Tortoise Management Plan (FWC, 2012) will be implemented.

**State-Listed Birds, MBTA, and BGEPA**
Bald eagles are not present at the project location so will not be affected. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

**Invasive Species**

**Affected Resources**
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

**Environmental Consequences**
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

**12.81.5.4 Human Uses and Socioeconomics**

**12.81.5.4.1 Socioeconomics and Environmental Justice**

**Affected Resources**
The proposed project would be located in Walton County, which is Florida’s forty-first most populous county. Walton County contains 0.3% of Florida’s population (Office of Economic & Demographic Research [OEDR] 2013a). According to census data, 86.2% of the county’s population have high school diplomas (or higher) and 24.9% have bachelor’s degrees or higher (compared to 85.5% for high school graduates and 26.0% for bachelor’s degrees in the state of Florida). The 2012 crime rate (index crimes per population of 100,000) is 2,880.7, which is lower than the state of Florida’s 3,805.8 (OEDR 2013a).

Census data indicates that 31.0% of Walton County’s residents are employed in the leisure and hospitality industry; 24.9% in the trade, transportation, and utilities industry; 17.6% in government; 11.2% in education and health services; 9.4% in professional and business services; 9.0% in construction;
and 6.5% in financial activities, with the remaining population employed in the natural resource and mining industry, manufacturing, information, and other services. The county unemployment rate in 2012 was 5.6% (8.6% in the state of Florida) with 74.8% of the population in the labor force (62.5% in the state of Florida) (OEDR 2013a).

Data and characteristics of the population of Walton County are summarized and compared to those for the population of the state as a whole in Table 12-40. Walton County is located in the Crestview-Fort Walton Beach-Destin Metropolitan Statistical Area (MSA). Population growth increased 3.6% from 2010 to 2012 and 11.7% from 2000 to 2010 in this MSA. Walton County is projected to grow to a population of 92,659 by 2040 (OEDR 2013b). As seen in the table, Walton County has similar racial and economic/income demographic characteristics as Florida as a whole.

Environmental Consequences
The proposed project would create approximately 517 worker days of employment during construction (see Table 12-32). The improved access to Deer Lake may result in a minor to moderate increase in visitation to the Park because of the substantial improvement of park facilities. As a result, the local economy could benefit over the long term through the economic activity generated through fees, new jobs, and the purchases from recreational visitors (food, fuel, food, equipment, etc.). This project would not create a benefit for any specific group or individual, but rather would produce benefits realized by the local community and visitors. Overall, only a few individuals, groups, and properties would be affected; therefore, the overall impact is expected to be minor and would not substantively alter socioeconomic conditions.

Walton County has similar racial and economic/income demographic characteristics as Florida as a whole. Thus, there are no indications that the Park improvements would be contrary to the goals of Executive Order 12898, or would create disproportionate, adverse human health or environmental impacts on minority or low-income populations of the surrounding community. Therefore, no short-term or long-term environmental justice issues would be anticipated.

**Table 12-40. Population characteristics of Walton County compared with the State of Florida.**

<table>
<thead>
<tr>
<th>People QuickFacts</th>
<th>Walton County</th>
<th>Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population, 2012 estimate</td>
<td>57,582</td>
<td>19,317,568</td>
</tr>
<tr>
<td><strong>Age</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persons under 5 years, 2012</td>
<td>5.6%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Persons under 18 years, 2012</td>
<td>20.1%</td>
<td>20.7%</td>
</tr>
<tr>
<td>Persons 65 years and over, 2012</td>
<td>17.5%</td>
<td>18.2%</td>
</tr>
<tr>
<td>Female persons, 2012</td>
<td>48.9%</td>
<td>51.1%</td>
</tr>
</tbody>
</table>
### People QuickFacts

<table>
<thead>
<tr>
<th>Race</th>
<th>Walton County</th>
<th>Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td>White alone, 2012*</td>
<td>89.6%</td>
<td>78.3%</td>
</tr>
<tr>
<td>Black or African American alone, 2012*</td>
<td>6.0%</td>
<td>16.6%</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone, 2012*</td>
<td>0.9%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Asian alone, 2012*</td>
<td>1.0%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander alone, 2012*</td>
<td>0.2%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Two or More Races, 2012</td>
<td>2.3%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Hispanic or Latino, 2012 (b)</td>
<td>5.9%</td>
<td>23.2%</td>
</tr>
<tr>
<td>White alone, not Hispanic or Latino, 2012</td>
<td>84.4%</td>
<td>57.0%</td>
</tr>
</tbody>
</table>

### Economic/Income

<table>
<thead>
<tr>
<th>Economic/Income</th>
<th>Walton County</th>
<th>Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeownership rate, 2007–2011</td>
<td>74.0%</td>
<td>69.0%</td>
</tr>
<tr>
<td>Median household income, 2007–2011</td>
<td>$46,926</td>
<td>$47,827</td>
</tr>
<tr>
<td>Persons below poverty level, 2007–2011</td>
<td>14.9%</td>
<td>14.7%</td>
</tr>
</tbody>
</table>

### Sales

<table>
<thead>
<tr>
<th>Sales</th>
<th>Walton County</th>
<th>Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merchant wholesaler sales, 2007 ($1,000)</td>
<td>205,148</td>
<td>221,641,518</td>
</tr>
<tr>
<td>Retail sales, 2007 ($1,000)</td>
<td>705,008</td>
<td>262,341,127</td>
</tr>
</tbody>
</table>

* Includes persons reporting only one race.
† Hispanics may be of any race, so also are included in applicable race categories.

Source: U.S. Census Bureau State & County (2013)

### 12.81.5.5 Cultural Resources

**Affected Resources**

A review of the Florida Master Site Files indicates that there are at least six previously recorded archaeological sites located within 1 mile of the project location either in or just outside the Park. These sites include five prehistoric sites and a single modern-era shipwreck that is located on the beach. One of these sites (8WL878, a prehistoric lithic scatter) was recommended as potentially eligible for inclusion on the National Register of Historic Places; the remaining sites are of unknown eligibility at this time.

It does not appear that the area has been subjected to previous, formal cultural resources surveys.

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

**Environmental Consequences**

The proposed project area would be subjected to a Phase I cultural resources survey. Based on the results of the survey, project plans would be altered to avoid any historic properties that would be adversely affected by the project work (ground disturbance and construction).

A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.
12.81.5.6  **Infrastructure**

**Affected Resources**
Deer Lake State Park has existing improvements typical of a state park. Regional Utilities of Walton County is the operator of the water supply system and the sanitary sewer collection system for a large portion of South Walton County, including the Park.

Walton County indicates that the entire Park is in a Water Resource Caution Area (Walton County 1992). A water resource caution area is an area with critical water supply problems or projected to have critical water supply problems. Reuse of reclaimed water from domestic wastewater treatment facilities is required in these areas unless it is not economically, environmentally, or technically feasible (FDEP 2011).

**Environmental Consequences**
Construction of the new restroom and entry station would require connection to the regional sanitary sewer collection system. The impact to the regional system would be long term but minor because it is localized and would be within operational capacity. A sanitary sewer collection system permit would be obtained from the FDEP.

Visitor experience at the Park would be improved with the provision of a new restroom, reducing crowding. In addition, a new picnic structure, entry station, and parking areas would improve the Park’s visitor experience, which would be a beneficial, long-term impact. A minor, long-term increase in the pace of the need for maintenance of existing facilities could occur if visitor use increases due to better infrastructure at the Park; minor increases in local daily traffic volumes could also occur, resulting in perceived inconveniences to drivers but no actual disruption to traffic.

---

12.81.5.7  **Land and Marine Management**

**Affected Resources**
County Road 30A is a two-lane rural collector highway that bisects the Park. Land use near the Park includes single- and multi-residential development and undeveloped land along the Gulf of Mexico and north of the county road, both east and west of the Park. North of the Park is Point Washington State Forest, which extends to U.S. Highway 98. Inlet and Seagrove Beaches are located a few miles east and west of the Park, respectively. No commercial land uses have been identified near the Park (Florida Division of Recreation and Parks 2004).

Public lands located in the vicinity of the Park include Camp Helen State Park, Grayton Beach State Park, Topsail Hill Preserve State Park, Eden Gardens State Park, Point Washington State Forest, Choctawhatchee River Water Management Area, and Elgin Wildlife Management Area (Florida Division of Recreation and Parks 2004).

The Park is managed by the FDEP Florida Division of Recreation and Parks under the 2004 Deer Lake State Park Unit Management Plan. Public outdoor recreation and conservation is the designated single use of the property. Under the plan, the Park is managed to conserve and protect natural and historical resources and to use the property for public outdoor recreation compatible with the conservation and protection of resources. The Park has designated all wetland communities, beach dune, sandhill, scrub,
and coastal dune lake communities as protected zones, defined as areas of high sensitivity or outstanding character from which most types of development are excluded. Generally, facilities requiring extensive land alteration or more intensive use such as parking lots and camping areas are not allowed in protected zones. Facilities with minimal resource impacts such as trails, interpretive signs, and boardwalks are generally allowed (Florida Division of Recreation and Parks 2004).

The project would be located in a coastal area that is regulated by the federal Coastal Zone Management Act (CZMA) of 1972 and the Florida Coastal Management Act of 1978.

The Park is a component of the Florida Greenways and Trails System, a statewide system of greenways and trails. According to the Ecological Greenways for South Walton map (Walton County 2007), the Park is considered a “critical linkage” (highest priority) to protect a statewide network of conservation land and connecting wildlife corridors, designed to maintain large landscape-scale ecological functions (FDEP 2013b).

Walton County has established a coastal dune lake protection zone, defined as all land beginning at the mean or ordinary high water line of coastal dune lakes and their tributaries and extending 300 feet landward. There is a 100-foot building setback from the mean or ordinary high water line of all coastal dune lakes, as well as other building restrictions within the protection zone (Walton County 2013b).

**Environmental Consequences**

Although the action would require several permits for the short-term construction period, it would not require a variance, zoning change, or amendment to a land use area or comprehensive management plan. The long-term impact of the project would be minor because it would not affect overall use and management beyond the local Park area. It would be consistent with current land use because construction would take place in an already developed area of the Park. It would also be consistent with and support the Deer Lake State Park Unit Management Plan, which has a recreational goal of developing a park entrance, parking lot, and picnic shelter (Florida Division of Recreation and Parks 2004). No construction or project activities would occur in the coastal dune lake protection zone of Deer Lake.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

**12.81.5.8 Aesthetics and Visual Resources**

**Affected Resources**

Existing aesthetic and visual resources from the project area consist of views of a minimally developed area. Views include those of Park vegetation such as trees, glimpses of Deer Lake, an access road, and Park facilities (trails and a small picnic structure).
**Environmental Consequences**

Short-term introduction of unnatural elements to the existing visual landscape would occur during construction activities due to the presence of equipment and materials. These impacts would be minor because they would only be visible from a small portion of the Park, would not dominate the viewshed (being surrounded by trees), and would not detract from current visitor activities in the portion of the Park north of County Road 30A or on the beach. Long-term changes to visual resources would occur from the addition of a new entry station with two flagpoles (20 feet and 25 feet in height), a restroom, new sidewalks, a new entry sign, picnic shelter, expanded parking areas, and new plantings of shrubs, trees, and grass. These changes would be readily apparent but minor because they are consistent with other state Park facilities and would not attract attention, dominate the view, or detract from visitor experiences.

**12.81.5.9 Tourism and Recreational Use**

**Affected Resources**

Recreation at the Park includes swimming, beach-going, picnicking, wildlife viewing, fishing, hiking, canoeing, kayaking, and bicycling. The park is a day-use-only park, and no overnight camping is allowed.

Hours are from 8:00 a.m. to sunset, 365 days a year. A fee of $3.00 per vehicle (8 people per vehicle) and $2.00 for pedestrians, bicyclists, and extra passengers is charged.

Annual entrance passes allow park entrance in lieu of the daily entrance fee and are valid for 1 year. They are honored at all state parks (except for the Skyway Fishing Pier State Park).

**Environmental Consequences**

During the construction period, the visitor recreational experience would be adversely impacted by noise and visual disturbances associated with the use of construction equipment. The impact would be short term and minor because visitor use would be allowed in other parts of the park during construction, which would last 4–6 months. In addition, construction would occur in a relatively small area of the Park. The construction process would also limit recreational activities near construction areas for a short time to protect public safety, which would be a minor, short-term inconvenience to visitors. Over the long term, minor beneficial impacts to tourism and recreational use would be expected due to the enhancement of recreational opportunities associated with improved facilities and accessibility.

**12.81.5.10 Public Health and Safety and Shoreline Protection**

**Affected Resources**

The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); the Emergency Planning and Community Right-to-Know Act; and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment,
transport, and disposal) of these materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

A review of the EPA’s EnviroMapper revealed that there are no CERCLA sites located on or immediately adjacent to the Park. There are several nearby facilities that have had some type of discharge permits, including Camp Creek Park, Peninsula Pointe, Watersound Beach, and Prosperity Bank. The Park, itself, is listed under the RCRA hazardous waste program (EPA 2013c).

In order to protect and manage Florida’s beaches and adjacent coastal system, the Legislature adopted the Florida Beach and Shore Preservation Act, contained in Parts I and II of Chapter 161, Florida Statutes. The Act provides three interrelated programs administered by the FDEP that work in concert to protect the coastal system from improperly sited and designed upland construction, provide for management of beach erosion and coastal sediment, and process permits to ensure that any potential adverse impacts are avoided or minimized (FDEP 2013).

The Park contains approximately 2,700 linear feet of beach shoreline. The depth of the beach dune community ranges from approximately 500 feet south of the lake to nearly 1,000 feet near the eastern boundary (Florida Division of Recreation and Parks 2004).

**Environmental Consequences**

Project construction would require mechanical equipment that uses oil, lubricants, hydraulic fluids, and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of construction-related hazardous materials and to avoid releases and spills. If a release should occur, it would be handled promptly in accordance with all applicable regulations. The period of time during which a release could occur from construction activities would be short term, and any release would be expected to be minor.

If hazardous materials are encountered in the project area during construction activities, appropriate measures for handling the materials would be used in accordance with applicable regulations. All occupational safety regulations and laws would be followed to ensure the safety of all workers and monitors. The project is not anticipated to affect the existing Park RCRA activities.

The project is not expected to impact shorelines because of its upland location and erosion control measures. Shoreline integrity would remain intact, and there would be no increased risk of potential hazards (e.g., increased likelihood of storm surge) to visitors or residents.

**Summary and Next Steps**

The Deer Lake State Park Development project would improve the existing visitor areas at Deer Lake State Park in Walton County. The proposed improvements would include adding a paved access road, parking, picnic shelters, and a restroom. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.
NEPA analysis of the environmental consequences suggests that while minor adverse impacts to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational beach use opportunities by improving the park’s visitor area. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.81.7 References


Accessed October 1, 2013.

———. 2007. Geographic Information Systems Department. County Maps, Environmental Maps,

———. 2013a. Wildlife Lighting, Sea Turtle Lighting. Available at:

———. 2013b. Frequently Asked Questions. What is the Coastal Dune Lake Protection Zone? Available
12.82  City of Parker- Oak Shore Drive Pier: Project Description

12.82.1  Project Summary
The proposed City of Parker Oak Shore Drive Pier project would construct a fishing pier at Oak Shore Drive in the City of Parker, Bay County Florida. The proposed work includes construction of a 500 foot long fishing pier. The total estimated cost of the project is $993,649.

12.82.2  Background and Project Description
The Trustees propose to construct a 500-foot long fishing pier in the City of Parker in Bay County (See Figure 12-38 for general project location). The objective of the City of Parker Oak Shore Drive Pier project is to enhance and/or increase recreational fishing opportunities by constructing a fishing pier. The proposed pier is intended to serve the City of Parker and Tyndall Air Force Base; neither location currently has publically accessible fishing facilities. The restoration work proposed includes construction of a fishing pier that will provide access to St. Andrews Bay.

Figure 12-38. Location of City of Parker – Oakshore Drive Pier Project.
12.82.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed City of Parker Oak Shore Drive Pier project is intended to enhance and/or increase recreational fishing opportunities by constructing a fishing pier. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Florida counties have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.82, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration with the exception of hydrology and water resources which would be minor, localized and long term. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.82 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the City of Parker Oakshore Drive Pier project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.82.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational fishing opportunities by constructing a fishing pier at Oakshore Drive in the City of Parker. Performance monitoring will evaluate the construction of the fishing pier. Specific performance criteria include: 1) completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the fishing pier is open and available.
Long-term monitoring and maintenance of the improved facilities will be completed by the City of Parker as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by the City of Parker.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, the City of Parker will monitor the recreational use activity at the site. City of Parker staff will visit the site twice a year to count the number of users at the fishing pier. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

12.82.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $1,987,298 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.\(^\text{19}\)

12.82.6 Costs
The total estimated cost to implement this project is $993,649. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

\(^{19}\)For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.83 City of Parker- Oak Shore Drive Pier: Environmental Review

The proposed project in the City of Parker, Florida, would construct a new public fishing pier for the City of Parker and Tyndall Air Force Base residents. The proposed pier would provide fishing and recreational access to East Bay for the City of Parker and Tyndall Air Force Base. Neither the City of Parker nor Tyndall Air Force Base has public access to fishing facilities.

12.83.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement), the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This boat ramp project was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

The proposed project would include a new public fishing pier for the City of Parker and Tyndall Air Force Base residents. The proposed pier would provide fishing and recreational access to East Bay for the City of Parker and Tyndall Air Force Base. Neither the City of Parker nor Tyndall Air Force Base has public access to fishing facilities. The project is intended to address this specific need.
At the project site there is an existing boat ramp, a small dock just to the north side of the boat ramp, and a nearby parking area (Figure 12-39). The boat ramp is approximately 50 feet long by 15 feet wide, and the existing L-shaped dock is approximately 100 feet long by 5 feet wide. The parking area currently contains approximately 12 parking spaces for vehicles and trailers.
Figure 12-39. Location of the proposed Oak Shore Drive Pier in the City of Parker, Florida.

The new fishing pier would be approximately 500 feet long and 16 feet wide extending southwest from end of Oak Shore Drive adjacent to and on the south side of the existing boat ramp (Error! Reference source not found.). At the end of the pier a small section would be oriented perpendicular to the rest of the pier and have dimensions of approximately 60 feet long by 16 feet wide, giving the pier an overall total area of approximately 8,960 square feet. However, the exact width and square footage of the pier will be ultimately determined during the final design for the project.

Fixed signs that are consistent with National Oceanic and Atmospheric Administration (NOAA) and State of Florida guidelines with instructions on what to do in the event of hooking a listed species (e.g., sea turtle) would be placed at the entrance to the fishing pier and strategically at fixed intervals along its length. Additionally, a kiosk/booth would be placed at the entrance to the pier with additional information for best practices on catch and release and other fishing practices (e.g., placing cut line and hooks for disposal in trash cans) designed to limit potential adverse impacts to species. Any facilities (e.g. trash cans) needed to help anglers comply with these recommendations would also be provided. The total estimated cost for the project is approximately $993,649.
12.83.2 Project Location
The proposed project is located at the end of Oak Shore Drive in the City of Parker, Florida (Figure 12-39). The City of Parker is located in the Florida "panhandle" on East Bay, which is a connecting embayment to St. Andrews Bay in Bay County. The City of Parker is located to the southeast of Panama City and is approximately 170 miles east of Mobile, Alabama, 95 miles east of Pensacola, Florida, and 100 miles southwest of Tallahassee, Florida. Tyndall Air Force Base is located to the south across East Bay.

12.83.3 Construction and Installation

Final plans the proposed fishing pier have not been completed and the final size and orientation of the pier will also be evaluated as part of the effort to develop final plans although Figure 12-39 presents the current envisioned conceptual design for the pier.

As part of this engineering and orientation assessment, a survey of submerged aquatic vegetation (SAV) in the area would be completed. Existing information suggests SAV is in the area around the point where the pier will be constructed (see Figure 12-39). Should the site assessment for the project identify SAV in the proposed project area, the conditions in the Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat (U.S. Army Corps of Engineers/National Marine Fisheries Service, 2001) would be implemented. Among other elements this would require placing pilings for the dock expansion a minimum of 10 feet
apart. Orientation options for the fishing pier will also consider site specific features such as the generation of the shallow sand bars off the point (see Figure 12-39) and the Intracoastal Waterway which runs offshore of the point in Figure 12-39. As Figure 12-39 shows, the SAV coverage at the point is not complete as the combination of current and other conditions leave an area off of the South of the point going out into deeper water where there is effectively a “path” that is free of SAV.

As presented in Figure 12-39, the current plan is to construct the pier in this path to avoid impacts to SAV habitat at the site. Because of this SAV free path at the site, there is confidence the pier can be built without affecting the SAV habitat.

Based on conceptual plans for similar fishing piers it is assumed that the pier will be constructed using 8” diameter fiberglass pilings that are pre-filled with concrete. Based on the length and shape of the pier up to 150 pilings may be required. These pilings will be placed using a combination of water-jetting to initially set the piles to within 5 feet of their desired final depth. For the remaining five feet, the pilings will be set using a vibratory hammer. Final construction plans will also consider and account for options would minimize disruption to the aquatic environment including available BMPs (e.g., use of bubble curtains). All decking, cross members and railings for the pier will be made of timber. Following placement of the pilings the timber cross members will be placed from the water and then the rest of the pier will be built out from shore. When complete, all pier pilings will incorporate pointed covers to discourage/minimize birds (e.g., laughing gulls) having a convenient perch from which to predate on nearby nesting birds. This work will be accomplished primarily by crews in-water using a combination of workboat/skiffs and barges with heavy equipment to support the lifting and placement of materials and worker access to elevated positions (some nearshore work may use shore-based heavy equipment). The exact mix of equipment will be developed with the final construction plans and project bids but will take into account and be reviewed for critical considerations such as the depth of the site to avoid grounding in sensitive habitats (e.g., seagrass beds). The subsequent construction of the pedestrian walkway or decking will be done from the surface of the pier. In total, the in-water work associated with this project is expected to last no more than 6 months.

During all in-water construction activity, the conditions and guidelines of the *Sea Turtle and Smalltooth Sawfish Construction Conditions* (NOAA, 2006) would be implemented and adhered to. Among the significant aspects of these provisions is the requirement to stop operation of any equipment if sea turtles or smalltooth sawfish come within 50 feet of the equipment until the time when animals leave the project area of their own volition.

During construction BMPs for erosion control would also be implemented and maintained at all times during upland activity to prevent siltation and turbid discharges into surface waters. Methods could include, but are not limited to, the use of staked hay bales, staked filter cloth, sodding, seeding, and mulching; staged construction; and installation of turbidity screens around the immediate project site. The direct goal of these actions is to limit sediment discharges into the water that would adversely affect turbidity. Staging of most construction materials would occur in the parking area. With the potential that some materials may be delivered by barge for installation (the Intracoastal Waterway is offshore at the project site).
Finally, prior to the opening of the pier to the public, fixed signs that are consistent with National Oceanic and Atmospheric Administration (NOAA) and State of Florida guidelines with instructions on what to do in the event of hooking a listed species (e.g., sea turtle) would be placed at the entrance to the fishing pier and strategically at fixed intervals along its length. Additionally, a kiosk/booth would be placed at the entrance to the pier with additional information for best practices on catch and release and other fishing practices (e.g., placing cut line and hooks for disposal in trash cans, not feeding dolphins) designed to limit potential adverse impacts to species. The signage in this kiosk would include the NMFS “Dolphin Friendly Fishing and Viewing Tips” sign with NMFS’ “Protect Dolphin” signs along the pier and signage/notices not feed gulls. Monofilament recycling bins will be installed at regular intervals along the pier. These would be emptied regularly by city/county staff as part of the project maintenance activities, and fishing line recycled. Further, any lighting installed on the pier or addressed as part of the project will be wildlife friendly and comply with the guidance provided in the current edition of the FWC’s Lighting Technical Manual. Finally, no fish cleaning stations will be included in the design and construction of these piers to help mitigate/avoid issues of species attraction to the pier.

Total construction time is estimated to take approximately 12 months.

12.83.4 Operations and Maintenance
Maintenance of the new facilities would be the responsibility of the City of Parker and would be conducted as part of its regular public facilities maintenance activities.

12.83.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

12.83.5.1 No action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.

12.83.5.2 Physical Environment

12.83.5.2.1 Geology and Substrates

Affected Resources
The project area lies within the geological division known as the West Florida Coast Strip that extends from the mouth of the Ochlockonee River west to the Mississippi River. This strip consists primarily of coastal islands and narrow peninsulas along the coast. East Bay is an attached embayment to St. Andrews Bay and is a protected shallow embayment generally less than 49 feet (15 meters). Though land based construction would be confined to the immediate shoreline, soils at the project site are
classified as Arents, 0 to 5 percent slopes. The Soil Survey for Bay County identifies the estuarine waters of the project area as “East Bay” and no soils data is provided (USDA, 1984). A study at Tyndall Air Force Base indicates that sediments in East Bay range from fine sands to silts (NOAA, 1997).

**Environmental Consequences**

While pilings would be driven into the East Bay substrate, no changes to geology of the bay floor would occur. During installation of pier pilings sediments would be temporarily disturbed. The number of pilings and the depth to which they would be installed would be determined during the final design phase of the project. Best management practices, such as the use of sediment curtains, would be used to minimize the dispersal of sediments during the installation of the pilings. The USACE or Florida Department of Environmental Protection (FDEP) may also require other management practices to minimize potential adverse impacts through the permitting process for the project. Once the pilings are installed sediments would settle, resulting in short-term minor impacts. On land, if any soils are disturbed, erosion and sedimentation into the bay would be minimized through the use of erosion control measures resulting in short-term negligible impacts.

**12.83.5.3 Hydrology and Water Quality**

**Affected Resources**

St. Andrews Bay is the receiving waterbody for the largest drainage basin in Bay County. The area drained is from the Apalachicola River west to the Choctawhatchee River (FDEP 1991). There are nine major streams that flow into St. Andrews Bay. St. Andrews Bay is central in the St. Andrews Bay system. The bay opens directly to the Gulf of Mexico through East and West Passes. Connecting embayments include North, West, and East Bays, as well as Grand Lagoon and St. Andrews Sound. Tides in the estuary are typically diurnal with a mean range of 1.6 feet, with a longer ebb flow than flood flow (Murphy and Valle-Levinson, 2008).

The Clean Water Act requires that the surface waters of each state be classified according to designated uses. Florida has six classes with associated designated uses, which are arranged in order of degree of protection required. According to Rule 62-302.400, Florida Administrative Code, East Bay is designated as Class II waters. Therefore, standards to meet the following uses apply to the project area: Shellfish Propagation or Harvesting.

**Environmental Consequences**

Construction of the fishing pier would require in-water work. Installing the pilings for the fishing pier occur largely from a barge. Installing the piers would disturb and resuspend sediments, increasing turbidity levels in the vicinity of the project. Best management practices, such as the use of sediment curtains to contain resuspended sediments and erosion control measures would be employed to minimize impacts to the surrounding waters. Operating a barge(s) and mechanical equipment to install the pilings and construct the fishing pier could impact water quality through the leakage of hydraulic fluids, oil, gasoline etc. However, best management practices to avoid, minimize, and control spills would be employed to minimize the risk of adverse impacts. Additionally, appropriate permits would be obtained prior to beginning construction and all conditions set forth, such as erosion control measures and a spill, prevention, control, and countermeasure plan, would be followed. Once construction is
complete, no additional impacts to water quality would be expected. Overall, impacts to water quality would be short-term, minor and adverse.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (Corps) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the Corps and final authorization pursuant to CWA/RHA will be completed prior to project implementation.

The fishing pier would extend out into East Bay. With this, once the fishing pier is complete the pilings would alter the currents in and around the immediate vicinity of the pier itself. However, these changes would be highly localized and relatively small. As a result, impacts to hydrology would be long-term, minor and adverse.

12.83.5.3.1 Air Quality and Greenhouse Gas Emissions

Affected Resources
Air quality and greenhouse gas (GHG) emissions at the site are affected by the development in the area such as Tyndall Air Force Base across East Bay and Panama City to the west as well as boat traffic in the Gulf of Mexico, St. Andrews Bay, and its connecting embayments. Bay County, Florida is in attainment for all criteria pollutants (USEPA 2013).
**Environmental Consequences**

During construction activities, use of construction equipment, including heavy machinery and handheld tools, would likely increase emissions at the project site. However, impacts from construction activities would be temporary, occurring over a 7-12 month period and emissions from the project would cease upon completion of construction activities.

The following table (Table 12-41) provides GHG emissions estimates for the heavy equipment expected to be used during the construction of the fishing pier, staging docks, and boat ramp. The barge and crane emission total is based on an estimated 1,040 hours of operation over the life of the project (8 hours a day, five days a week, for 6 months) for the fishing pier. The tractor trailer emission total is based on 32 hours of operation (based on the estimation that it would be used once per week, for 4 months) for the fishing pier. A “minor impact” on air quality can be determined if the contributions to GHGs of this project are measurable, but fall below 25,000 metric ton/year of CO\textsubscript{2} or its equivalent.

**Table 12-41. Estimated greenhouse gas emissions for equipment to be used.**

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>CO\textsubscript{2} (METRIC TONS)\textsuperscript{20}</th>
<th>CH\textsubscript{4} (CO\textsubscript{2}E) (METRIC TONS)\textsuperscript{21}</th>
<th>NO\textsubscript{x} (CO\textsubscript{2}E) (METRIC TONS)</th>
<th>TOTAL CO\textsubscript{2}E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barge with Crane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishing Pier</td>
<td>37.700</td>
<td>0.104</td>
<td>1.040</td>
<td>38.844</td>
</tr>
<tr>
<td>Tractor Trailer\textsuperscript{23}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishing Pier</td>
<td>5.440</td>
<td>0.006</td>
<td>0.064</td>
<td>5.510</td>
</tr>
<tr>
<td>TOTAL</td>
<td>43.140</td>
<td>0.110</td>
<td>1.104</td>
<td>44.354</td>
</tr>
</tbody>
</table>

Based on Table 12-41, CO\textsubscript{2} emissions or its equivalent from the proposed project would be measurable, but would not exceed the USEPA 25,000 metric ton/year threshold. Therefore, the proposed project would have minor adverse impacts on air quality. However, these impacts would be short-term since emissions from the project would cease upon completion of construction activities.

**12.83.5.3.2 Noise**

**Affected Resources**

Noise levels at the project area are influenced by the natural ambient soundscape of wind and waves as well as noise generated by vehicles driving on local roads, recreation activities, local residences, as well boat traffic on East Bay and noise generated by Tyndall Air Force Base. According to the City of Parker map of the Adopted Community Redevelopment Area the project site falls between the 75 decibel and 70 decibel noise contour for Tyndall Air Force Base’s Air Installation Compatible Use Zone (AICUZ) (City of Parker 2007).

---

1. Emissions assumptions for all equipment based on 8 hours of operation.
2. CO\textsubscript{2} emissions assumptions for diesel and gasoline engines based on USEPA 2009.
3. CH\textsubscript{4} and NO\textsubscript{x} emissions assumptions and CO\textsubscript{2}e calculations based on USEPA 2011.
4. Construction equipment emission factors based on USEPA NONROAD emission factors for 250hp pieces of equipment. Data was accessed through the California Environmental Quality Act Roadway Construction Emissions Model.
Environmental Consequences
Construction activities associated with the project would increase the amount of noise at the site and would be noticeable. While noise would be evident to those workers on the job and users of the boat ramp and surrounding areas, it would be short-term and minor given the site exists in the 75 to 70 decibel contour level of the Tyndall Air Force Base AICUZ. Ambient noise levels would return each evening at the end of the work day. Some long term noise impacts would occur from the likely increase in use of the site due to the new fishing pier. Increases in noise would likely result from more vehicles entering and exiting the parking lot and human voices. Given the sources, the increase in noise level would likely be negligible, but it would be long-term.

12.83.5.4 Biological Environment

12.83.5.4.1 Living Coastal and Marine Resources

Affected Resources
The project is on a peninsula with small strips of sandy beach and a parking lot. To the landward side, the area is residential with landscaped yards with some open and wooded lots interspersed. The site is situated on East Bay, a connected embayment to St. Andrews Bay, and consists of open estuarine waters. Nearly 20,000 acres of seagrasses extend through St. Andrews Bay and St. Josephs Bay to the southeast, the most extensive and diverse seagrass habitat in the Florida Panhandle (NWFWMD n.d.). At the project site, there is a large area of continuous seagrass habitat to the east of the peninsula while a narrow strip of discontinuous seagrass exists along the southwest and west side of the peninsula (Figure 12-40).

Seagrasses, or submerged aquatic vegetation (SAV), are rooted vascular plants that grow in fresh, brackish, and saltwater in areas dominated by soft substrates such as sand or mud. Marine species of seagrasses, grow in the littoral (intertidal) and sublittoral (subtidal) zones of oceans. Freshwater and brackish seagrass species are important components of estuary systems and inland waters. In the northern Gulf of Mexico six species of seagrasses are common (Table 12-42).
Figure 12-40. Seagrass in the vicinity of the proposed City of Parker Fishing Pier.

Table 12-42. Common Seagrass species in the Gulf of Mexico.

<table>
<thead>
<tr>
<th>SPECIES COMMON NAME</th>
<th>SCIENTIFIC NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manatee grass</td>
<td>Syringodium filiforme</td>
</tr>
<tr>
<td>Shoal grass</td>
<td>Halodule wrightii</td>
</tr>
<tr>
<td>Turtle grass</td>
<td>Thalassia testudinum</td>
</tr>
<tr>
<td>Widgeon grass</td>
<td>Ruppia maritima</td>
</tr>
<tr>
<td>Paddle grass</td>
<td>Halophila decipiens</td>
</tr>
<tr>
<td>Star grass</td>
<td>Halophila engelmannii</td>
</tr>
</tbody>
</table>

The presence and productivity of seagrasses in nearshore environments largely depends upon light availability. Although seagrasses have been recorded at 230-foot depths in clear waters, they are more generally restricted to shallow ocean or estuarine waters due to the rapid decline of light with depth. In addition to the availability of light, a number of other factors also affect seagrasses. These include water temperature, salinity, sediment and water nutrient content, wave fetch (length of open water over which the wind can blow unimpeded), turbidity, and water depth (FWS 1999a; Koch 2001; Merino et al. 2005).

Seagrasses, as well as freshwater and brackish SAV, provide essential food, shelter, and nursery habitats for commercial- and recreational-fishery species and for the many other organisms such as shrimp that live and feed in seagrass beds or shallow marshes. In addition, seagrass beds can serve as Essential Fish Habitat (EFH) for federally managed species. A single acre of seagrass can produce more than 10 tons of leaves per year and can support as many as 40,000 fish and 50,000,000 invertebrates (Dawes et al.
More than 70 percent of recreationally and commercially important fish and invertebrates in the Gulf of Mexico spend some portion of their lives in seagrass systems. Besides offering habitat, food, and shelter for many species, seagrasses filter contaminants and sediments, improve water quality, produce and export organic matter, dampen wave energy and currents, and improve the overall ecosystem through landscape-level biodiversity (Dawes et al. 2004).

Estuaries are extremely diverse and complex systems and provide spawning, nursery, and forage grounds for many species of fish and invertebrates. Within East Bay resident fish species include species such as bay anchovy, code goby, sheepshead minnow, silversides, and silver perch (NOAA 1997). Other transient species include Atlantic croaker, blue runner, bluefish, Gulf flounder, Gulf Menhaden, pinfish, red drum, Spanish mackerel, spotted seatrout, striped mullet (FL DNR 1991; NOAA 1997). Some of the invertebrates found within the bay include bay scallop, bay squid, blue crab, brown shrimp, eastern oyster, grass shrimp, and pink shrimp, as well as various species of marine worms and amphipods etc. (FL DNR 1991; NOAA 1997). Within the bay “hard” habitats such as piers, docks, seawalls, and rock jetties also contain tropical species such as cocoa damsels, angelfishes, parrotfishes, spadefishes, and butterfly fishes. Wrasses, groupers, and snappers are also found along these hard substrates (FL DNR 1991).

**Protected Species**

Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Bay County, Florida. Table 12-43 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

---

24 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
Table 12-43. Potential Impacts to Species/Critical Habitats managed by USFWS

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle; Leatherback turtle, Loggerhead turtle</td>
<td>No nesting habitat is present in any of the project areas; therefore no impacts from construction are anticipated. Sea turtles may nest in areas that boaters may access from these locations; therefore, visitors could disrupt nesting or hatching. The Trustees expect the conservation measures, including educational tools, will minimize impacts to sea turtles and their terrestrial habitats to an insignificant and discountable level. The main risk to sea turtles during execution of this project would come from boat collisions during in-water construction activity which could result in harm or mortality. Consultation has been initiated with NMFS the agency that has jurisdiction to review impacts to sea turtles in the estuarine and marine environments.</td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>Bay county is not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the action areas. The main risk to manatees during execution of this project would come from noise during construction and boat collisions during use of ramps which could result in harm or mortality. The Trustees expect conservation measures and educational tools to minimize impacts to manatees (including those from noise) to an insignificant and discountable level.</td>
</tr>
<tr>
<td>Piping plover and red knot</td>
<td>The main risk to piping plovers and red knot is from human disturbance while resting and foraging in habitats adjacent to marine work areas and from human disturbance if boaters choose to visit nearby islands. The proposed project could result in short term increases in noise which could startle individuals and direct disturbance. The proposed project will not result in any changes to shoreline habitats where either species is likely to forage or rest. Educational signage will be posted at all ramps reminding visitors of nearby trust resources and any protective measures that may be necessary when visiting nearby islands. This signage will be developed in coordination with FWC and the Panama City Ecological Services Field Office.</td>
</tr>
<tr>
<td>Gulf sturgeon</td>
<td>NMFS was consulted on Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon was not considered in the consultation with the USFWS.</td>
</tr>
</tbody>
</table>

In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered
- Kemp’s Ridley Sea Turtle, *Lepidochelys kempii*, Endangered

Additional information on some of these species is provided below.
Sea turtles:
There are five species of sea turtles that are found within the Gulf of Mexico: green sea turtle, hawksbill sea turtle, loggerhead sea turtle, Kemp’s ridley sea turtle, and leatherback sea turtle. All five species of sea turtles found in the Gulf of Mexico are listed under the ESA. The Gulf populations of green (breeding populations in Florida), hawksbill, Kemp’s ridley, and leatherback sea turtles are listed as endangered. Loggerhead (northwest Atlantic distinct population segment) and green (except the Florida breeding population) sea turtles are listed as threatened.

Sea turtles in the Gulf (with the exception of the leatherback turtle) have a life history cycle where hatchlings develop in open ocean areas (e.g., continental shelf) and juvenile and adult turtles move landward and inhabit coastal areas. Sea turtles nest on low and high energy ocean beaches and on sandy beaches in some estuarine areas. Immediately after hatchlings emerge from the nest, they begin a period of frenzied activity. During this active period, hatchlings move from their nest to the surf, swim, and are swept through the surf zone, and continue swimming away from land for up to several days (NOAA, 2009a). Once hatching turtles reach the juvenile stage, they move to nearshore coastal areas to forage. As adults, they utilize many of the same nearshore habitats as during the juvenile developmental stage. Sea turtles utilize resources in coral reefs, shallow water habitat (including areas of seagrasses), and areas with rocky bottoms.

All five species of sea turtles are migratory and thus have a wide geographic range. The beaches at the site are not suitable for nesting as they are too narrow, however, the species could occur in the open waters of the bay near the site.

West Indian Manatee:
The West Indian Manatee is designated as endangered under the ESA and depleted under the Marine Mammal Protection Act (16 United States Code [U.S.C.] 1361 et seq.). In the Gulf Coast geographic area manatees are divided into two regional management units: the northwest and the southwest regional management units. Each regional unit is composed of individuals that tend to return to the same network of warmwater refuges each winter and have similar non-winter distribution patterns (FWC 2007). In addition, Florida enacted the Manatee Sanctuary Act in 1978 and declares the entire State of Florida to be a manatee “refuge and sanctuary” (FWC 2007). The FWC has developed a Florida Manatee Management Plan to provide a framework for conserving and managing manatees in Florida (FWC 2007). While Bay County is not one of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (USDOI 2011), they could be present in the open waters of East Bay.

The main threat to the manatee is increased boat traffic and other accidents associated with the expanding development in Florida. Manatees inhabit both salt and fresh water and can be found in shallow (5 feet to usually <20 feet), slow-moving rivers, estuaries, saltwater bays, canals, and coastal areas throughout their range where they feed on seagrass and other aquatic vegetation such as hydrilla and water lettuce.
**Gulf Sturgeon and its Critical Habitat:**

The National Marine Fisheries Service (NMFS) and FWS listed the Gulf sturgeon as a threatened species on September 30, 1991. The Gulf sturgeon, also known as the Gulf of Mexico sturgeon, is a subspecies of the Atlantic sturgeon. Adults are 71-95 inches in length, with adult females larger than adult males. Adult fish are bottom feeders, eating primarily invertebrates, including brachiopods, insect larvae, mollusks, worms and crustaceans. The Gulf sturgeon is an anadromous fish that migrates from salt water into coastal rivers during the warmer months to spawn. Historically, the Gulf sturgeon occurred from the Pearl River to Charlotte Harbor, Florida. It still occurs, at least occasionally, throughout this range, but in greatly reduced numbers. River systems where the Gulf sturgeon are known to be viable today include the Mississippi, Pearl, Escambia, Yellow, Choctawhatchee, Apalachicola, and Suwannee Rivers, and possibly others. The Gulf sturgeon often stays in the Gulf of Mexico and its estuaries and bays in cooler months (NOAA 2013). Most adult feeding takes place in the Gulf of Mexico and its estuaries. Telemetry data in the Gulf of Mexico usually locate sturgeon in depths of 19.8 feet or less. The fish return to breed in the river system in which they hatched. Spawning occurs in areas of deeper water with clean (rock and rubble) bottoms. The eggs are sticky and adhere in clumps to snags, outcroppings, or other clean surfaces. Sexual maturity is reached between the ages of 8 and 12 years for females and 7 and 10 years for males. The Gulf sturgeon historically was threatened because of overfishing and then by habitat loss due to construction of water control structures, dredging, ground water extraction, and flow alterations.

FWS and NMFS designated critical habitat essential to the conservation of the Gulf sturgeon (See Figure 12-41). In accordance with regulations, critical habitat determinations were based on the best scientific data available for those physical and biological features essential to the conservation of the species. Nearshore waters within one nautical mile of the mainland from Pensacola Pass to Apalachicola Bay and the Perdido Key area and the area north of Santa Rosa Island were designated as critical habitat, as they are believed to be important migratory pathways between Pensacola Bay and the Gulf of Mexico for winter feeding and genetic exchange (DOI and DOC 2003). East Bay is not a part of the critical habitat designation.
Smalltooth Sawfish:
The small tooth sawfish is federally listed as an endangered species. Formerly common from Texas to North Carolina, its current distribution is mainly restricted to South Florida and the Keys; adults are uncommon in the Florida panhandle (NOAA2009b). Juveniles inhabit shallow coastal waters, especially shallow mud banks and mangrove habitats. Very few juveniles have been documented in areas north of the current range of mangroves (i.e., north of 29 N latitude). Adults are found with juveniles but also in deeperwater habitat (NOAA2009b). The decline of this species is mainly attributed to mortality as by catch in commercial and sport fisheries. The current range of this species has contracted to the peninsula of Florida, though smalltooth sawfish are common only in the Everglades region at the southern tip of the state.

Migratory Birds:
The Migratory Bird Treaty Act of 1918 (16 U.S.C. 703-711) decreed that all migratory birds and their parts (including eggs, nests, and feathers) were fully protected. The migratory bird species protected by the Act are listed in 50 C.F.R. 10.13. More than 250 species of birds have been reported from the Florida panhandle, several of which breed there as well. These birds can be grouped generally as (1) species that occur year-round, both nesting and overwintering, (2) species that nest during the warm season and overwinter to the south, (3) species that overwinter and nest further north, and (4) species that
pass through during spring migrations to more northern nesting sites and/or during fall migrations to overwintering areas. Different populations of the same species sometimes exhibit more than one type of migratory behavior. Species that may occur in the vicinity of the project site include species of herons, egrets, gulls, and terns.

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-44 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

Table 12-44. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>Foraging, feeding, resting, nesting</td>
<td>At the project sites, shorebirds likely forage and rest and could be locally and temporally impacted during construction. Shorebirds nest, forage, feed, and rest on Shell Island. As such, they may be impacted by visitors traveling form the project sites to Shell Island.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Resting, roosting, nesting</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats at Shell Island. However, the level of project activity could startle resting birds. Because activities will occur during the day roosting should not be impacted.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-45.

Table 12-45. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>In general, the Trustees expect foraging and resting birds would be able to move to another nearby location to continue foraging and resting if disturbed during construction. Shorebirds are not expected to be nesting in the area of construction but use nearby areas that could be visited by people using the ramps. Educational signage will be posted at each ramp and pier to prevent impacts to migratory birds at Shell Island and other locations. Signs will be developed in coordination with FWC and the Panama City Ecological Services Field Office to detail conservation measures to protect shorebirds in nearby habitats. At the Oakshore Drive location, there is an area with shallow sandbars off the point where shorebirds commonly feed. Design of this pier will be coordinated with FWC to minimize impacts and changes to the point and sand bars to the maximum extent practicable.</td>
</tr>
<tr>
<td>SPECIES/SPECIES GROUP</td>
<td>CONSERVATION MEASURES TO MINIMIZE IMPACTS</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------------------</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. Nesting should not be impacted because the project will not occur near nesting habitats. Educational signage will be posted at each ramp and pier. Signs will be developed in coordination with FWC and the Panama City Ecological Services Field Office to detail conservation measures to protect seabirds while visitors may be fishing. Protective measures will also be implemented in the design phase and include the use of pointy, white, piling caps and containers for waste fishing gear.</td>
</tr>
</tbody>
</table>

**Bald Eagles:**
The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s *Bald Eagle Management Plan* guidelines would be followed (FWC 2008). Three bald eagle nests occur within approximately 2.5 miles of the project site; the closest recorded active nesting site is approximately 1.5 miles from the project site (Nest ID BA011). Two other nests are within approximately 2.5 miles of the project site (Nest ID BA005 and BA018).

**Essential Fish Habitat (EFH)**
EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as “those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Table 12-46 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the City of Parker Oak Shore Drive Fishing Pier site and East Bay portion of St. Andrew Bay.
Table 12-46. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.

<table>
<thead>
<tr>
<th>EFH Category</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Atlantic Highly Migratory Species</strong></td>
<td></td>
</tr>
<tr>
<td>Atlantic Sharpnose Shark-Neonate</td>
<td></td>
</tr>
<tr>
<td>Bull Shark-Juvenile</td>
<td></td>
</tr>
<tr>
<td>Nurse Shark-Juvenile</td>
<td></td>
</tr>
<tr>
<td>Sandbar Shark-Adult</td>
<td></td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark-Juvenile</td>
<td></td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark-Neonate</td>
<td></td>
</tr>
<tr>
<td>Spinner Shark-Juvenile</td>
<td></td>
</tr>
<tr>
<td>Spinner Shark-Neonate</td>
<td></td>
</tr>
<tr>
<td>Tiger Shark-Juvenile</td>
<td></td>
</tr>
<tr>
<td><strong>Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic</strong></td>
<td></td>
</tr>
<tr>
<td>Spanish Mackerel</td>
<td></td>
</tr>
<tr>
<td>Cobia</td>
<td></td>
</tr>
<tr>
<td>King Mackerel</td>
<td></td>
</tr>
<tr>
<td><strong>Gulf of Mexico Red Drum</strong></td>
<td></td>
</tr>
<tr>
<td>Red Drum</td>
<td></td>
</tr>
<tr>
<td><strong>Gulf of Mexico Shrimp</strong></td>
<td></td>
</tr>
<tr>
<td>Pink Shrimp</td>
<td></td>
</tr>
<tr>
<td><strong>White Shrimp</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Brown Shrimp</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Reef Fish Resources of the Gulf of Mexico</strong></td>
<td></td>
</tr>
<tr>
<td>Lane Snapper</td>
<td></td>
</tr>
<tr>
<td>Lesser Amberjack</td>
<td></td>
</tr>
<tr>
<td>Mutton Snapper</td>
<td></td>
</tr>
<tr>
<td>Nassau Grouper</td>
<td></td>
</tr>
<tr>
<td>Queen Snapper</td>
<td></td>
</tr>
<tr>
<td>Red Grouper</td>
<td></td>
</tr>
<tr>
<td>Red Snapper</td>
<td></td>
</tr>
<tr>
<td>Scamp</td>
<td></td>
</tr>
<tr>
<td>Silk Snapper</td>
<td></td>
</tr>
<tr>
<td>Snowy Grouper</td>
<td></td>
</tr>
<tr>
<td>Speckled Hind</td>
<td></td>
</tr>
<tr>
<td>Tilefish</td>
<td></td>
</tr>
<tr>
<td>Vermilion Snapper</td>
<td></td>
</tr>
<tr>
<td>Warsaw Grouper</td>
<td></td>
</tr>
<tr>
<td>Wenchman</td>
<td></td>
</tr>
<tr>
<td>Yellowedge Grouper</td>
<td></td>
</tr>
<tr>
<td>Yellowfin Grouper</td>
<td></td>
</tr>
<tr>
<td>Yellowmouth Grouper</td>
<td></td>
</tr>
<tr>
<td>Almaco Jack</td>
<td></td>
</tr>
<tr>
<td>Banded Rudderfish</td>
<td></td>
</tr>
<tr>
<td>Black Grouper</td>
<td></td>
</tr>
<tr>
<td>Blackfin Snapper</td>
<td></td>
</tr>
<tr>
<td>Blueline Tilefish</td>
<td></td>
</tr>
<tr>
<td>Cubera Snapper</td>
<td></td>
</tr>
<tr>
<td>Gag</td>
<td></td>
</tr>
<tr>
<td>Goldface Tilefish</td>
<td></td>
</tr>
<tr>
<td>Gray (Mangrove) Snapper</td>
<td></td>
</tr>
<tr>
<td>Gray Triggerfish</td>
<td></td>
</tr>
<tr>
<td>Greater Amberjack</td>
<td></td>
</tr>
<tr>
<td>Hogfish</td>
<td></td>
</tr>
</tbody>
</table>
Environmental Consequences

There are discontinuous patches of seagrass in the area of the proposed fishing pier that could be adversely impacted by construction of the pier. Seagrass could be destroyed or buried during installation of the pilings, and once constructed the area below the pier would be permanently shaded, adversely impacting any seagrass still intact. The total square footage of substrate that could be impacted by shading is approximately 8,960 square feet, though the final dimensions of the pier won’t be determined until the final design phase for the project. Increased turbidity and the eventual settling out of resuspended sediments could also impact seagrass adjacent to the project site; however, the use of best management practices such as the use of sediment curtains, would help to contain any turbidity and minimize impacts to surrounding seagrasses. To minimize potential adverse impacts on seagrass, prior to construction activities a site-specific benthic survey would be conducted to document seagrass in the area. The survey would inform the final design of the fishing pier in terms of exact location, orientation, height above MHW, and overall size. However, due to the likely disturbance of seagrass plants and the removal of approximately 8,690 square feet of suitable habitat for seagrass, the proposed project would have long-term moderate adverse impacts on seagrass habitat. These impacts though would not threaten the viability of the seagrass population at the project site or regionally. To mitigate some of the adverse impacts the USACE through the permitting process for the project may require potentially impacted seagrass plants to be transplanted to other areas. This would likely mitigate the long-term adverse impacts to minor due to the loss of suitable habitat from the shading of the bay floor by the pier.

During construction of the fishing pier there could be local, short-term minor adverse impacts on both fish and macroinvertebrate species, including shellfish, in the vicinity of the project site. Fish species could be temporarily displaced from habitat in the area of construction due to noise and vibration impacts. Feeding success could also be impacted through increased turbidity; however, most species are highly mobile and would move out of the area to neighboring waters where feeding would be less problematic. Some mortality of sedentary and less mobile species and life stages could occur. Placement of the pilings in the substrate could crush species that cannot flee the area and resuspended sediments could cause problems with feeding for filter feeders such as shell fish, or as the sediments settle out of the water column they could bury sedentary species. However, given the small aerial extent of the impacted area compared to the available habitat within East Bay and St. Andrews Bay, the overall impact on species would be minor. Additionally, once construction was complete, fish and invertebrates species would be expected to readily recolonize the area. Some beneficial impacts to species would also occur. Piers and pilings provide a hard substrate habitat that otherwise would not exist in the area. As noted under the affected environment, such hard substrates provide habitat for species such cocoa damsels, angelfishes, parrotfishes, spadefishes, and butterfly fishes. Wrasses, groupers, and snappers also can be found among this type of habitat as well (FDNR 1991). As part of the project, information would be made available at the entrance to the pier on best practices on catch and release and other fishing practices (e.g. placing cut line and hooks for disposal in trash bins) designed to limit potential adverse impacts to fish and other marine species. Trash receptacles would also be placed on the pier to help repopulated on the fishing pier to help anglers comply with the recommendations as well as keep other trash out of the water that could otherwise cause adverse impacts on species.
Although bird species that use the waters around the site for foraging or loafing are likely habituated to human activity, it is likely that they would experience some short-term, minor impacts from the increased human activity and the noise from construction activities. However, there is ample suitable habitat in surrounding areas for the birds to use, and impacts would only occur during the construction period. Though habitat at the site is not necessarily suitable for nesting, preconstruction nesting surveys would be conducted and if evidence of nesting is found, appropriate conservation measures would be taken. Therefore, impacts would be short-term and minor.

**Protected Species**

The USFWS reviewed the proposed Oakshore Drive Pier project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On March 24, 2014, the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect, five species of sea turtles (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead), West Indian manatee, piping plover, or red knot (if listed). The USFWS also concurred with the Trustees’ determination that the project will not adversely modify or destroy critical habitat for the piping plover.

Consultation of potential impacts on protected species managed by NMFS from this project was initiated on April 9, 2014. NMFS Protected Resources Division reviewed the Biological Assessment and determined that there was a potential for adverse impacts to threatened and endangered species. NFMS Protected Resources Division is currently preparing a Biological Opinion that evaluates the potential effects this project may have on gulf sturgeon and sea turtles.

The procedures contained within the ESA consultation for West Indian manatee\(^{25}\) constitute appropriate and responsible steps to promote compliance with MMPA prohibitions on take by requiring the proposed activities to achieve a standard of No Effect or May Affect, Not Likely to Adversely Affect for manatees. As such, the Trustees do not anticipate any take, incidental or otherwise, under the MMPA for West Indian manatee due to implementation the proposed project. The Trustees are continuing to coordinate with NMFS Office of Protected Resources to evaluate the potential and magnitude of take or harassment of marine mammals under NMFS jurisdiction.

**Essential Fish Habitat**

The Trustees’ review of potential impacts to EFH from the project concluded the project is not likely to adversely affect EFH. A small area of subtidal habitat would be converted with the placing of pilings for the new pier, however, this would be a relatively small area compared with the surrounding habitat and would not completely convert or block habitat in the area where the pier is constructed. SAV habitat is in the area of the pier but the initial survey will be used to ensure impacts to this habitat are minimized and potentially avoided completely as there appear to be areas free of SAV where the pier could be constructed. Ultimately, disturbance to species and their habitats will be minor and brief.

\[^{25}\text{Implementing of the Service’s most recent version of the Standard Manatee Conditions for In-water Work (USFWS, 2011)}\]
On April 17, 2014 NMFS completed its evaluation of potential EFH impacts and concluded that the project construction is not likely to adversely affect EFH and any disturbance to species will be minor and brief (Fay, 2014).

**Migratory Birds and Bald Eagle:**
There are no bald eagle nests within 660 feet of the project site and there is no suitable nesting habitat at the site. Therefore, there would be no impacts on bald eagles. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

**Invasive Species**

**Affected Resources**
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

**Environmental Consequences**
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.83.5.5  **Human Uses and Socioeconomics**

12.83.5.5.1  **Socioeconomics and Environmental Justice**

**Affected Resources**
Bay County is located in the northwestern corner of the State of Florida. The County encompasses 1,032.2 square miles, of which 758.5 square miles is land and 274.7 square miles is water area. The population of Bay County is currently estimated at 169,392 (FEDR 2010). Table 12-47 provides a brief demographic overview of Bay County, Florida.

**Environmental Consequences**
Constructing a new fishing pier would provide additional recreational fishing opportunities for the public in the City of Parker and Tyndall Air Force Base providing long-term beneficial impacts. However, the
extent to which the new structure would support new trips to the area for recreational fishing is difficult to quantify. Assessments of the actual levels of use of the pier would be completed as part of the proposed monitoring of this project.

Table 12-47. Demographic information for Bay County, Florida.

<table>
<thead>
<tr>
<th>FLORIDA OFFICE OF ECONOMIC DEVELOPMENT</th>
<th>BAY COUNTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population, percent change, April 1, 2010 to April 1, 2012</td>
<td>0.3%</td>
</tr>
<tr>
<td>Population, 2010</td>
<td>168,852</td>
</tr>
<tr>
<td>Persons under 5 years, percent, 2010</td>
<td>6.3%</td>
</tr>
<tr>
<td>Persons under 18 years, percent, 2010</td>
<td>22.0%</td>
</tr>
<tr>
<td>Persons 65 years and over, percent, 2010</td>
<td>14.5%</td>
</tr>
<tr>
<td>Female persons, percent, 2010</td>
<td>50.5%</td>
</tr>
<tr>
<td>White alone, percent, 2010</td>
<td>82.2%</td>
</tr>
<tr>
<td>Black or African American alone, percent, 2010</td>
<td>10.8%</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone, percent, 2012</td>
<td>0.9%</td>
</tr>
<tr>
<td>Asian alone, percent, 2012</td>
<td>0.7%</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander alone, percent, 2012</td>
<td>0.1%</td>
</tr>
<tr>
<td>Two or More Races, percent, 2010</td>
<td>3.1%</td>
</tr>
<tr>
<td>Hispanic or Latino, percent, 2010</td>
<td>4.8%</td>
</tr>
<tr>
<td>White alone, not Hispanic or Latino, percent, 2010</td>
<td>79.2%</td>
</tr>
<tr>
<td>Persons per household</td>
<td>2.0</td>
</tr>
<tr>
<td>Median household income, 2009</td>
<td>$44,357</td>
</tr>
<tr>
<td>Persons below poverty level, percent, 2009</td>
<td>13.0%</td>
</tr>
</tbody>
</table>

The proposed project is expected to have short-term, beneficial impacts on socioeconomics for the project area and adjacent areas, based on a slight increase in the workforce required to perform construction work on the fishing pier, staging docks, and boat ramp. The exact number of person to be employed by this project is undetermined, but is estimated to be approximately 15 persons.

**12.83.5.6 Cultural Resources**

**Affected Resources**

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

**Environmental Consequences**

A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.
12.83.5.6.1 Infrastructure

Affected Resources
The project site is located in the City of Parker and surrounded by residential areas. East Highway 98 is a major road crossing East Bay that connects the City of Parker and Tyndall Air Force Base. There is a variety of infrastructure that includes roads and parks. The project site has approximately 12 parking spaces for vehicles and trailers along with one boat ramp and an existing pier. On the water side of the project, East Bay is part of the intracoastal waterway which transits down the axis of the bay in front of the project site.

Environmental Consequences
The majority of the work for the proposed project would be conducted from the water, though trucks would be used to stage material, likely in the parking lot at the project site. The surrounding road network would be expected to be able to handle the minimal truck traffic as well as the influx of approximately 15 workers for the project. With the likely staging of material in the parking lot, some parking spaces would be lost for use temporarily during the construction period. To minimize impacts on the use of the boat ramp and parking, construction activities on the fishing pier would occur outside of the fishing season which occurs from April through September (Pearce 2013). Additionally, there are other boat ramps in the area that could be used to access the bay (Pearce 2013). Therefore, adverse impacts would be expected to be short-term and minor.

For the fishing pier, in-water construction would occur outside of the intracoastal waterway and therefore would not impact boat movement within this waterway. Overall, impacts to infrastructure from the proposed project would be short-term minor and adverse.

12.83.5.6.2 Land and Marine Management

Affected Resources
The project site currently is zoned for recreation and the planned future use of the site continues to be for recreation (City of Parker 2009).

The project is located in a coastal area regulated by the federal Coastal Zone Management Act (CZMA) of 1972 and the Florida Coastal Management Act of 1978.

Environmental Consequences
The proposed project would increase and improve the public’s access to East Bay and would be consistent with the proposed continued future land use for this site as a recreation area. This would provide long-term beneficial impacts. Some minor adverse impacts would result during construction activities as some parking spaces would be lost to the staging of materials. However, these short-term impacts would be minimized by conducting construction activities outside of the April – September fishing season to the extent practicable, and by the relatively short construction period which is estimated to be 7-12 months.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal
management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS. The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process.

12.83.5.6.3 Aesthetics and Visual Resources

Affected Resources
The project area is located in a recreational use area adjacent to a boat ramp and existing pier. The views from the site offer open vistas of East Bay.

Environmental Consequences
Construction of a fishing pier would be consistent with the features of the existing site and would not be in conflict with the surrounding developed area. Therefore, the proposed project would have no effect on aesthetics or visual resources.

12.83.5.6.4 Tourism and Recreational Use

Affected Resources
The project site is currently a recreational user destination. The boat ramp provides public access to East Bay and St. Andrews Bay and the surrounding waters, including the Gulf of Mexico.

Environmental Consequences
The project would have long-term beneficial impacts on tourist and recreational user enjoyment of the site. The project would provide additional recreational fishing opportunities for the public in the City of Parker and Tyndall Air Force Base, which currently has no public piers to fish from.

12.83.5.6.5 Public Health and Safety and Shoreline Protection

Affected Resources
There are no safety issues associated with the project site as it currently exists.

Environmental Consequences
Design of the fishing pier would include necessary handrails ensuring the safety of those that use it. The facilities would also be properly maintained by the City of Parker as part of its regular public facilities maintenance activities. During construction activities, staging and construction areas would be fenced off, and BMPs would be employed to ensure public safety both on land and on the water, as well as the safety of the construction workers.

12.83.6 Summary and Next Steps
The City of Parker Oak Shore Drive Pier project would construct a fishing pier at Oak Shore Drive in the City of Parker, Bay County Florida. The proposed work includes construction of a 500 foot long fishing pier. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.
NEPA analysis of the environmental consequences suggests that while minor adverse impacts to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational fishing opportunities by constructing a fishing pier. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.83.7 References

City of Parker

2009 Future Land Use.

2007 City of Parker Adopted Community Redevelopment Area.

Dawes C.J., R.C. Phillips, and G. Morrison


Department of the Interior (DOI)

2011 Biological Opinion: permitted actions for watercraft access facilities. FWS Log No. 41910-2-11-FC-0195. March 21

Department of the Interior (DOI) and Department of Commerce (DOC)


Fay, V. 2014. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for construction of a City of Parker-Oak Shore Drive Pier project tin St. Andrews Bay, City of Parker, Bay County, Florida. April, 17.


Florida Department of Environmental Protection (FDEP)


Florida Department of Natural Resources (FDNR)

Florida Fish and Wildlife Conservation Commission (FWC)


Florida Fish and Wildlife Conservation Commission (FWC)


Green, E.E.P., & Short, F.T. (Eds.)


Koch, E.W.

2001 Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24: 1-17.


Merino, J.H., J.A. Nyman, and T. Michot


Murphy, P.L. and A. Valle-Levinson


National Oceanic and Atmospheric Administration (NOAA)


National Park Service (NPS)


Northwest Florida Water Management District (NFWMD)


Pearce, B.

2013    Personal communication between Pearce Barrett, Florida Department of Environmental Protection, and Spence Smith, the Louis Berger Group. September 23, 2013.

Thayer, G.W., W.J. Kenworthy, and M.S. Fonseca


2001. Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat. August.

United States Department of Agriculture (USDA)

1984    Soil Survey of Bay County Florida.

United States Environmental Protection Agency (USEPA)


United States Fish and Wildlife Service (FWS)


2011 Standard Manatee Conditions for In-Water Work
12.84 Panama City Marina Fishing Pier, Boat Ramp, and Staging Docks: Project Description

12.84.1 Project Summary
The proposed Panama City Marina Fishing Pier, Boat Ramp, and Staging Docks project would provide additional recreational fishing opportunities for the public in Panama City in Bay County. The proposed improvements include constructing a 400-foot long pier, replacing a poorly functioning boat ramp, and constructing new staging docks associated with the boat ramp at the Panama City Marina. The total estimated cost of the project is $2,000,000.

12.84.2 Background and Project Description
The Trustees propose to improve the Panama City Marina (see Figure 12-42 for general project location). The objective of the Panama City Marina Fishing Pier, Boat Ramp, and Staging Docks project is to enhance and/or increase recreational boating and fishing opportunities by improving the city’s marina. The restoration work proposed includes constructing a 400-foot long pier, replacing a poorly functioning boat ramp, and constructing new staging docks at the Panama City Marina.

Figure 12-42. Location of Panama City Marina Project.
12.84.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Panama City Marina Fishing Pier, Boat Ramp, and Staging Docks project is intended to enhance and/or increase recreational boating and fishing opportunities by improving the city’s marina. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Agencies have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.84, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration with the exception of hydrology and water resources which would be minor, localized and long term. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.84 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Panama City Marina Fishing Pier, Boat Ramp, and Staging Docks project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.84.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational boating and fishing opportunities by improving the marina. Performance monitoring will evaluate: 1) the construction of a 400-foot long pier; 2) the replacement of a poorly functioning boat ramp, and 3) the construction of new staging docks.
at the Panama City Marina. Specific performance criteria include: 1) completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the marina and fishing pier are open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by Panama City as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by Panama City.

During the one year construction performance monitoring period, the Florida Trustees' Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Panama City will monitor the recreational use activity at the site. Panama City staff will visit the site twice a year to count the number of users at the marina. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

The State of Florida Trustees and the Department of the Interior recognize the need to evaluate the effectiveness of conservation measures designed to avoid or minimize impacts to sensitive species or their habitats. To assess the public’s awareness of the educational signage intended to minimize impacts of use associated with the improved facilities, readers will be invited to take an online survey accessed via a QR code on the sign. The Florida Trustees and DOI will determine the adequacy of this method of assessing public awareness six months after the completion of construction. If the online surveying is insufficient, concurrent with the twice annual performance monitoring, and performed by the same party, a survey will be taken of a sample of recreational users at the project location.

12.84.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $4,000,000 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets. 26

12.84.6 Costs
The total estimated cost to implement this project is $2,000,000. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

26 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.85 Panama City Marina Fishing Pier, Boat Ramp, and Staging Docks: Environmental Review

The proposed Panama City Marina Fishing Pier, Boat Ramp, and Staging Docks project would enhance and/or increase recreational boating and fishing opportunities for the public in Panama City in Bay County. The proposed improvements include constructing a 400-foot long pier, replacing a poorly functioning boat ramp, and constructing new staging docks at the Panama City Marina.

12.85.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to, and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement), the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This boat ramp project was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

The Trustees propose to improve the Panama City Marina (see Figure 12-42 for general project location). The objective of the Panama City Marina Fishing Pier, Boat Ramp, and Staging Docks project is to enhance and/or increase recreational boating and fishing opportunities by improving the city’s marina. The restoration work proposed includes constructing a 400-foot long pier, replacing a poorly functioning boat ramp, and constructing new staging docks at the Panama City Marina.

The Panama City Marina consists of a marina, boat ramp, staging docks, restrooms and showers, parking area, and a business center (Figure 12-43). The marina has 240 slips that can accommodate boats ranging in size from 30 feet to 120 feet with drafts up to 10 feet. The parking lot has a capacity of approximately 200 vehicles. The proposed project would consist of constructing a new 400-foot long fishing pier, replacing a poorly functioning boat ramp, and constructing new staging docks adjacent to the boat ramp. The total estimated cost of the project is approximately $2,000,000.
12.85.1.1  Fishing Pier

The new fishing pier would be approximately 400 feet long and 14 feet wide extending southwest from the marina (at the end of Harrison Avenue) into St. Andrews Bay (Figure 12-44). A the end of the pier, a small section would be oriented perpendicular to the rest of the pier and have dimensions of approximately 60 feet long by 14 feet wide, giving the pier an overall total area of approximately 6,440 square feet. The pier would have handrails and lighting installed along it as well.

Fixed signs that are consistent with National Oceanic and Atmospheric Administration (NOAA) and State of Florida guidelines with instructions on what to do in the event of hooking a listed species (e.g., sea turtle) would be placed at the entrance to the fishing pier and strategically at fixed intervals along its length. Additionally, a kiosk/booth would be placed at the entrance to the pier with additional information for best practices on catch and release and other fishing practices (e.g., placing cut line and hooks for disposal in trash cans) designed to limit potential adverse impacts to species. Any facilities (e.g., trash cans) needed to help anglers comply with these recommendations would also be provided.
12.85.1.2 **Boat Ramp**  
The existing boat ramp at the marina is approximately 60 feet long and 20 feet wide. The ramp would be removed and replaced with a concrete boat ramp with similar footprint and a 13.33 percent grade (Figure 12-44). At the end of the boat ramp, 12-inch rip-rap would extend another 10 feet.

12.85.1.3 **Staging Docks**  
Staging docks would be constructed on both sides and parallel the boat ramp (Figure 12-44). On the southeast side of the ramp the dock would be approximately 250 feet long by 6 feet wide (Figure 12-44). The dock on the northwest side of the ramp would be handicap accessible with dimension of approximately 72 feet long by 8 feet wide. Final dimensions of the docks would be determined during the final project design.

The total estimated cost of the project is $2,000,000.

12.85.2 **Project Location**  
The proposed project is located at the City-owned Panama City Marina in Panama City, Florida (see Figure 12-44 for detailed project location). Panama City is located in the Florida “panhandle” on St. Andrews Bay in Bay County and is approximately 170 miles east of Mobile, Alabama, 95 miles east of
Pensacola, Florida, and 100 miles southwest of Tallahassee, Florida. St. Andrews Bay surrounds much of Panama City and provides a protected harbor.
Figure 12-43. Location of Panama City Marina.
Figure 12-44. Location of proposed fishing pier, boat ramp, and staging docks as Panama City Marina.

12.85.3 Construction and Installation
The proposed project would consist of constructing a new 400-foot long fishing pier, replacing a poorly functioning boat ramp, and constructing new staging docks adjacent to the boat ramp. The proposed areas where these improvements to existing facilities would occur and where the new amenities would be constructed are indicated in the conceptual drawings in with respect to the existing marina facility.

Final design is not complete for any of these project elements. As part of the final engineering and orientation assessment associated with developing these final plans, a survey of submerged aquatic vegetation (SAV) in each of the project implementation areas would be completed. Should the site assessment for the project identify SAV in the proposed project area, the conditions in the *Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation* (SAV), *Marsh or Mangrove Habitat* (U.S. Army Corps of Engineers/National Marine Fisheries Service, 2001) would be implemented as appropriate for each affected element. For example, among other elements this would require placing pilings for the dock expansion a minimum of 10 feet apart. Each element of this project is discussed in greater detail below.
Figure 12-45. Drawing of the proposed improvements at the Panama City Marina

**Fishing Pier Construction**

Based on the current conceptual design (See Figure 12-45), the new fishing pier would be approximately 400 feet long and 14 feet wide, extending southwest from the marina (at the end of Harrison Avenue) into St. Andrews Bay (Figure 12-45 and Figure 12-46). At the end of the pier, a small section would be oriented perpendicular to the rest of the pier and have dimensions of approximately 60 feet long by 14 feet wide, giving the pier an overall total area of approximately 6,440 square feet.

Prior to the opening of the pier to the public, fixed signs that are consistent with National Oceanic and Atmospheric Administration (NOAA) and State of Florida guidelines with instructions on what to do in the event of hooking a listed species (e.g., sea turtle) would be placed at the entrance to the fishing pier.
and strategically at fixed intervals along its length. Additionally, a kiosk/booth would be placed at the entrance to the pier with additional information for best practices on catch and release and other fishing practices (e.g., placing cut line and hooks for disposal in trash cans, not feeding dolphins) designed to limit potential adverse impacts to species. The signage in this kiosk would include the NMFS “Dolphin Friendly Fishing and Viewing Tips” sign with NMFS’ “Protect Dolphin” signs along the pier and signage/notices not feed gulls. Monofilament recycling bins will be installed at regular intervals along the pier. These would be emptied regularly by city/county staff as part of the project maintenance activities, and fishing line recycled. Further, any lighting installed on the pier or addressed as part of the project will be wildlife friendly and comply with the guidance provided in the current edition of the FWC’s *Lighting Technical Manual*. Finally, no fish cleaning stations will be included in the design and construction of these piers to help mitigate/avoid issues of species attraction to the pier.

![Figure 12-46. Drawing of the proposed fishing pier at the Panama City Marina.](image)
Figure 12-47. Drawing of the proposed fishing pier at the Panama City Marina, illustrating the proposed dimensions and height above mean high water.

Based on the conceptual plans (See Figure 12-47) and work on similar piers, it is assumed that the pier will be constructed using 8” diameter fiberglass pilings that are pre-filled with concrete. Based on the length and shape of the pier up to 130 pilings may be required. These pilings will be placed using a combination of water-jetting to initially set the piles to within 5 feet of their desired final depth. For the remaining five feet, the pilings will be set using a vibratory hammer. Final construction plans will also consider and account for options would minimize disruption to the aquatic environment including available BMPs (e.g., use of bubble curtains). All decking, cross members and railings for the pier will be made of timber. Following placement of the pilings the timber cross members will be placed from the water and then the rest of the pier will be built out from the existing developed area of the pier indicated in Figures A and B above. When complete, all pier pilings will incorporate pointed covers to discourage/minimize birds (e.g., laughing gulls) having a convenient perch from which to predate on nearby nesting birds. In total, the in-water work associated with this project is expected to last no more than 6 months.

During all in-water construction activity, the conditions and guidelines of the *Sea Turtle and Smalltooth Sawfish Construction Conditions* (NOAA, 2006) would be implemented and adhered to. Among the significant aspects of these provisions is the requirement to stop operation of any equipment if sea
turtles or Smalltooth sawfish come within 50 feet of the equipment until the time when animals leave the project area of their own volition.

During construction BMPs for erosion control would also be implemented and maintained at all times during upland activity to prevent siltation and turbid discharges into surface waters. Methods could include, but are not limited to, the use of staked hay bales. However, the highly developed nature of the existing marina in the area surrounding the proposed pier reduces the concern of this type of impact.

Total construction time for the fishing pier is estimated to take approximately 12 months with the in-water work potentially taking 6 months to complete.

**Boat Ramp Replacement and Staging Dock Construction**
The existing boat ramp at the marina is approximately 60 feet long and 20 feet wide. As part of the project, the current ramp would be removed and replaced with a concrete boat ramp with similar footprint and a lower 13.33 percent grade (Figure 12-48). At the end of the boat ramp, 12-inch rip-rap would extend another 10 feet.

![Figure 12-48. Drawing illustrating the boat ramp replacement and staging dock project areas.](image)

While final plans have not been developed for the boat ramp, the construction work associated with repairs/replacement of a boat ramp can generally be summarized in terms of executing a number of specific tasks and subtasks including:
Task 1. Site Preparation

b. Prior to beginning any waterward work at the boat ramp site the project area needs to be surveyed and marked. Turbidity curtains are then installed to encapsulate the work area and other erosion control methods are put in place on the landward side of the project (e.g., placement of hay bales) to prevent erosion into the water from equipment movement and any work being performed on the upland areas.

Task 2. Ramp Repairs/Construction

d. The area for the ramp is surveyed in and marked by stake or pole (typically small diameter 2” or less PVC).

e. A coffer or bladder dam is installed and the water within the dam, between the waterward extent of the ramp and the land, is pumped out to upland storage ponds or run through a filter system to remove any sediment in the water before returning it to the receiving waterbody. The work area is kept dry by use of dewater pumps (ground water to be pumped is first sampled and tested for water quality) and disposed of in the same manner as the pumped surface water. This dewatering operation is run continuously throughout the construction of the ramps. Once the ramps are completed the dewatering pumps are shut down and the dams are removed.

f. Construction of the ramps begins once the area is sufficiently dry to remove unsuitable soils, if necessary, and replaced with suitable soil. This soil is then compacted to specification. Then the base material for the ramp is placed, usually a rock material. After placement and compaction of the base the ramp is formed, reinforcing steel placed and then the concrete poured and finished. Once curing of the concrete is complete the forms are removed and the coffer or bladder dams are removed.

Task 3. Monitoring

f. Every day, before the start of construction activities, the turbidity screen is checked and repaired if necessary.

g. The foreman or other designated individual checks the area inside the screen and the screen itself to see if any protected species (manatees, dolphins, small tooth sawfish etc.) have gotten trapped within the work area or in the screen. If so then appropriate (FWC) personnel are notified to request removal. No work is begun until the animal, fish or bird is removed.

h. During the work day the work area and area adjacent to the work are is monitored to make sure protected species have not ventured into the area. If so then work is stopped until the animal moves out of the area.

i. At the end of the day the area is checked for debris, sediment and possible spillage and these are properly removed and disposed of before shutting down the site.

j. If a storm is anticipated that might damage the turbidity screen it is removed and stored until the storm event has passed and seas have resided.
However, the existing boat ramp that would be replaced is best described as a “bridge ramp”. This means the portion of the ramp that extends into deeper water so is supported by pilings. As part of the replacement/renovation work this same design would be required because of the depth of the basin in the area of a ramp. In terms of construction this means the coffer or bladder dam described in Task 2 and activities related specifically to the coffer dam in Task 3 would not be relevant as a coffer dam could not be installed. Instead, the construction of the final in-water portion of the ramp will likely require placing concrete slabs from the shore onto the support pilings in the basin.

The fact that the boat ramp activities would be associated with replacing an existing structure in an area of active use and extensive human development should limit its impacts on the marine environment. However, as already noted, all in-water work will adhere to the Sea Turtle and Smalltooth Sawfish Construction Conditions (NOAA, 2006). The in-water work for the boat ramp could take up to three months.

Finally, staging docks would be constructed on both sides and parallel the boat ramp (see Figure 12-D). On the southeast side of the ramp the dock would be approximately 250 feet long by 6 feet wide. The dock on the northwest side of the ramp would be handicap accessible with dimension of approximately 72 feet long by 8 feet wide. Final dimensions of the docks would be determined during the final project design based on, among other information, the results of the SAV survey and the corresponding need to comply with any conditions in the Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat (U.S. Army Corps of Engineers/National Marine Fisheries Service, 2001 – See Appendix A).

As with the pier, pilings would need to be placed for the staging dock. Based on these dimensions, it is expected that up to 80 pilings may need to be placed for these docks. These would be wither concrete or timber pilings not exceeding 8” in diameter. These pilings would generally be placed by barge or workboats (e.g., 20’ skiffs) using a combination of mechanical auguring and water jetting. Options to minimize disruption to the aquatic environment, including available BMPs (e.g., use of bubble curtains), would be evaluated as final engineering plans are determined. Following placement of the pilings and cross pieces from the water, work to construct the docks would generally proceed from shore and would not require additional in-water work unless pre-formed or pre-constructed sections are used and placed from workboats. The total expected in-water time for the dock construction is three to six months. As with the pier, all dock pilings will incorporate pointed covers to discourage/minimize birds (e.g., laughing gulls) having a convenient perch from which to predate on nearby nesting birds.

During all in-water construction activity for the staging dock, the conditions and guidelines of the Sea Turtle and Smalltooth Sawfish Construction Conditions (NOAA, 2006) would be implemented and adhered to. Among the significant aspects of these provisions is the requirement to stop operation of any equipment if sea turtles or Smalltooth sawfish come within 50 feet of the equipment until the time when animals leave the project area of their own volition.
Construction Methods and Schedule
Construction activities for the proposed project would occur from both in-water and on land. Most of the work for the fishing pier and staging docks would take place in-water, while work for the boat ramp would take place both in-water and from land. Construction is estimated to take approximately 12 to 24 months overall. With cumulative in-water work likely to take from 6 to 12 months depending on the sequencing of the in-water activity for the three project elements.

12.85.4 Operations and Maintenance
Long-term monitoring and maintenance of the improved facilities would be completed by Panama City as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by Panama City.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager would go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Panama City would monitor the recreational use activity at the site. Panama City staff would visit the site twice a year to count the number of users at the marina. The visitation numbers would then be provided to the Florida Department of Environmental Protection.

The State of Florida Trustees and the Department of the Interior recognize the need to evaluate the effectiveness of conservation measures designed to avoid or minimize impacts to sensitive species or their habitats. To assess the public’s awareness of the educational signage intended to minimize impacts of use associated with the improved facilities, readers will be invited to take an online survey accessed via a QR code on the sign. The Florida Trustees and DOI will determine the adequacy of this method of assessing public awareness six months after the completion of construction. If the online surveying is insufficient, concurrent with the twice annual performance monitoring, and performed by the same party, a survey will be taken of a sample of recreational users at the project location.

12.85.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

12.85.5.1 No action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.
12.85.5.2  Physical Environment

12.85.5.2.1  Geology and Substrates

Affected Resources
The project area lies within the geological division known as the West Florida Coast Strip that extends from the mouth of the Ochlockonee River west to the Mississippi River. This strip consists primarily of coastal islands and narrow peninsulas along the coast. St. Andrews Bay is a protected shallow embayment generally less than 49 feet (15 meters) deep. The Panama City Marina is classified as Urban Land. The Soil Survey for Bay County identifies the estuarine waters of the project area as “St. Andrews Bay” and no soils data is provided (USDA 1984). A study at Tyndall Air Force Base indicates that sediments in the St. Andrews Bay range from fine sands to silts (NOAA 1997).

Environmental Consequences
While pilings would be driven into the St. Andrews Bay substrate, no changes to geology of the bay floor would occur. The new boat ramp is replacing an existing boat ramp; therefore no changes to geology would occur. During installation of pier and staging dock pilings mechanical augers would be used to install the pilings, causing sediments to be temporarily disturbed. The number of pilings and the depth to which they would be installed would be determined during the final design phase of the project. BMPs, such as the use of sediment curtains, would be used to minimize the dispersal of sediments during the installation of the pilings. The USACE or Florida Department of Environmental Protection (FDEP) may also require other management practices to minimize potential adverse impacts through the permitting process for the project. Once the pilings are installed sediments would settle, resulting in localized, short-term minor impacts.

Replacement of the boat ramp would disturb soils that are already disturbed from construction of the existing boat ramp. BMPs and other erosion control measures required as part of the permitting process would minimize impacts to sediments during the construction process, resulting in short-term minor impacts.

12.85.5.2.2  Hydrology and Water Quality

Affected Resources
St. Andrews Bay is the receiving waterbody for the largest drainage basin in Bay County. The area drained is from the Apalachicola River west to the Choctawhatchee River (FDEP, 1991). There are nine major streams that flow into St. Andrews Bay. St. Andrews Bay is central in the St. Andrews Bay system. The bay opens directly to the Gulf of Mexico through East and West Passes. Connecting embayments include North, West, and East Bays, as well as Grand Lagoon and St. Andrews Sound. Tides in the estuary are typically diurnal with a mean range of 1.6 feet, with a longer ebb flow than flood flow (Murphy and Valles-Levinson, 2008).

The CWA requires that the surface waters of each state be classified according to designated uses. Florida has six classes with associated designated uses, which are arranged in order of degree of protection required. According to 62-302.400, Florida Administrative Code, St. Andrews Bay is designated as Class III waters. Therefore, standards to meet the following uses apply to the project area:
Fish Consumption; Recreation, Propagation and Maintenance of a Healthy, Well-Balanced Population of Fish and Wildlife.

**Environmental Consequences**

Construction of the fishing pier, staging docks, and boat ramp would require in-water work. Installing the pilings for the fishing pier and the staging docks would likely be by mechanical auger from a barge. Installing the piers would disturb and resuspend sediments, increasing turbidity levels in the vicinity of the project. Using a backhoe and other equipment to remove the existing boat ramp and construct a new boat ramp would disturb sediment in the water and at the water’s edge, resuspending sediments and potentially resulting in sedimentation from runoff at the shoreline. BMPs, such as the use of sediment curtains to contain resuspended sediments and erosion control measures would be employed to minimize impacts to the surrounding area. Operating a barge(s) and mechanical equipment to install the pilings and construct the fishing pier, staging docks, and boat ramp could impact water quality through the leakage of hydraulic fluids, oil, gasoline etc. However, BMPs to avoid, minimize, and control spills would be employed to minimize the risk of adverse impacts. Additionally, appropriate permits would be obtained prior to beginning construction and all conditions set forth, such as erosion control measures and spill prevention, control, and countermeasure plan, would be followed. Once construction is complete, no additional impacts to water quality would be expected. Overall, impacts to water quality would be localized, short-term, minor and adverse.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (Corps) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the Corps and final authorization pursuant to CWA/RHA will be completed prior to project implementation.

The fishing pier would extend out into St. Andrews Bay beyond the existing footprint of the marina. With this, once the fishing pier is complete the pilings would alter the currents slightly in and around the immediate vicinity of the pier itself. However, these changes would be localized and relatively small. The boat ramp would not impact currents at all and because the staging docks would occur within the footprint of the existing marina where currents are likely already altered slightly, no real change in local currents would occur. As a result, impacts to hydrology would be long-term, minor, and adverse.

**12.85.5.2.3 Air Quality and Greenhouse Gas Emissions**

**Affected Resources**

Air quality and greenhouse gas emissions at the site are affected by Panama City and boat traffic in the Gulf of Mexico and Old River. Bay County, Florida is in attainment for all criteria pollutants (USEPA 2013).

**Environmental Consequences**

During construction activities, use of construction equipment, including heavy machinery and handheld tools, would likely increase emissions at the project site. However, impacts from construction activities would be temporary, occurring over a 12 to 24 month period and emissions from the project would cease upon completion of construction activities.
The following table (Table 12-48) provides greenhouse gas emissions estimates for the heavy equipment expected to be used during the construction of the fishing pier, staging docks, and boat ramp. The barge and crane emission total is based on an estimated 1,040 hours of operation over the life of the project (8 hours a day, five days a week, for 6 months) for the fishing pier and 176 hours of operation over the life of the project for the staging docks and boat ramp. The tractor trailer emission total is based on 32 hours of operation (based on the estimation that it would be used once per week, for 4 months) for the fishing pier and 18 hours of operation (based on the estimation that it would be used for a total of three trips) for the staging docks and boat ramp. A “minor impact” on air quality can be determined if the contributions to greenhouse gases of this project are measurable, but fall below 25,000 metric ton/year of carbon dioxide (CO$_2$) or its equivalent (CO$_2$e).

Table 12-48. Estimated greenhouse gas emissions for equipment to be used.

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>CO$_2$ (METRIC TONS)$^{27}$</th>
<th>CH$_4$ (CO$_2$E) (METRIC TONS)$^{28}$</th>
<th>NO$_x$ (CO$_2$E) (METRIC TONS)</th>
<th>TOTAL CO$_2$E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Barge with Crane</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishing Pier</td>
<td>37.700</td>
<td>0.104</td>
<td>1.040</td>
<td>38.844</td>
</tr>
<tr>
<td>Staging Docks/Boat Ramp</td>
<td>6.380</td>
<td>0.018</td>
<td>0.176</td>
<td>6.574</td>
</tr>
<tr>
<td><strong>Tractor Trailer</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishing Pier</td>
<td>5.440</td>
<td>0.006</td>
<td>0.064</td>
<td>5.510</td>
</tr>
<tr>
<td>Staging Docks/Boat Ramp</td>
<td>3.060</td>
<td>0.004</td>
<td>0.036</td>
<td>3.100</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td>52.580</td>
<td>0.132</td>
<td>1.316</td>
<td>54.028</td>
</tr>
</tbody>
</table>

CO$_2$ – carbon dioxide
CH$_4$ – methane
CO$_2$e – carbon dioxide equivalent
NO$_x$ – nitrogen oxide

Based on Table 12-48, CO$_2$ emissions or its equivalent from the proposed project would be measureable, but would not exceed the USEPA 25,000 metric ton/year threshold. Therefore, the proposed project would have minor adverse impacts on air quality. However, these impacts would be short-term since emissions from the project would cease upon completion of construction activities.

---

$^{27}$ Emissions assumptions for all equipment based on 8 hours of operation.

$^{28}$ CO$_2$ emissions assumptions for diesel and gasoline engines based on USEPA 2009.

$^{29}$ CH$_4$ and NO$_x$ emissions assumptions and CO$_2$e calculations based on USEPA 2011.

$^{30}$ Construction equipment emission factors based on USEPA NONROAD emission factors for 250hp pieces of equipment. Data was accessed through the California Environmental Quality Act Roadway Construction Emissions Model.
12.85.5.2.4 Noise

Affected Resources
Noise levels at the project area are influenced by the natural ambient soundscape of wind and waves as well as noise generated by vehicles driving on local roads, recreation activities at the marina and boat noise both at the marina and on St. Andrews Bay.

Environmental Consequences
Construction activities associated with the project would increase the amount of noise at the site. However, the site is at a working marina in a commercial and industrial area of Panama City. Therefore, increased noise impacts would be relatively small and only last during the period of construction, resulting in short-term minor adverse impacts.

12.85.5.3 Biological Environment

12.85.5.3.1 Living Coastal and Marine Resources

Affected Resources
The area surrounding the Panama City Marina is highly developed with the majority of non-hardscape habitat being landscaped grass and vegetation. The non-water portions of the marina are also mostly hardscape (buildings and parking lots). What little grass and landscape vegetation occurs is confined to areas immediately adjacent to buildings and in various vegetated islands situated throughout the parking areas.

The Panama City Marina is situated on St. Andrews Bay and the water portions of the marina consist of open, shallow estuarine/marine habitats. While nearly 20,000 acres of seagrasses extend through St. Andrews Bay and St. Josephs Bay to the southeast, the most extensive and diverse seagrass habitat in the Florida Panhandle (NFWMD n.d.), no seagrasses exist within the footprints of the proposed fishing pier, staging docks, or boat ramp. However, a small patch of discontinuous seagrass habitat exists adjacent to the marina southeast of the existing boat ramp (Figure 12-49).
Figure 12-49. Seagrass in the vicinity of Panama City Marina.

Estuaries are extremely diverse and complex systems and provide spawning, nursery, and forage grounds for many species of fish and invertebrates. Within St. Andrews Bay resident fish species include species such as bay anchovy, code goby, sheepshead minnow, silversides, and silver perch (NOAA, 1997). Other transient species include Atlantic croaker, blue runner, bluefish, Gulf flounder, Gulf Menhaden, pinfish, red drum, Spanish mackerel, spotted seatrout, striped mullet (FDNR 1991; NOAA 1997). Some of the invertebrates found within the bay include bay scallop, bay squid, blue crab, brown shrimp, eastern oyster, grass shrimp, and pink shrimp, as well as various species of marine worms and amphipods etc. (FDNR 1991; NOAA 1997). Within the bay “hard” habitats such as piers, docks, seawalls, and rock jetties also contain tropical species such as cocoa damsels, angelfishes, parrotfishes, spadefishes, and butterfly fishes. Wrasses, groupers, and snappers are also found along these hard substrates (FDNR 1991).

In and around St. Andrews Bay a large number of bird species occur. Many are migratory and are protected by the Migratory Bird Treaty Act (MBTA). Species that may occur in the vicinity of the marina include species of herons, egrets, gulls, and terns.

Protected Species
Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).
The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Bay County, Florida 31. Table 12-49 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

**Table 12-49. Summary of Potentially Affected Species/Critical Habitats**

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle; Leatherback turtle, Loggerhead turtle</td>
<td>No nesting habitat is present in any of the project areas; therefore no impacts from construction are anticipated. Sea turtles may nest in areas that boaters may access from these locations; therefore, visitors could disrupt nesting or hatching. The Trustees expect the conservation measures, including educational tools, will minimize impacts to sea turtles and their terrestrial habitats to an insignificant and discountable level. The main risk to sea turtles during execution of this project would come from boat collisions during in-water construction activity which could result in harm or mortality. Consultation will be initiated with NMFS to address this risk as this agency has jurisdiction to review impacts to sea turtles in the estuarine and marine environments.</td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>Bay county is not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the action areas. The main risk to manatees during execution of this project would come from noise during construction and boat collisions during use of ramps which could result in harm or mortality. The Trustees expect conservation measures and educational tools to minimize impacts to manatees (including those from noise) to an insignificant and discountable level.</td>
</tr>
<tr>
<td>Piping plover and red knot</td>
<td>The main risk to piping plovers and red knot is from human disturbance while resting and foraging in habitats adjacent to marine work areas and from human disturbance if boaters choose to visit nearby islands. The proposed project could result in short term increases in noise which could startle individuals and direct disturbance. The proposed project will not result in any changes to shoreline habitats where either species is likely to forage or rest. Educational signage will be posted at all ramps reminding visitors of nearby trust resources and any protective measures that may be necessary when visiting nearby islands. This signage will be developed in coordination with FWC and the Panama City Ecological Services Field Office.</td>
</tr>
</tbody>
</table>
| Piping plover critical habitat | Piping plover critical habitat is not designated in the project area but is nearby (where visitors may access it via these ramps) on Shell Island. The primary constituent elements (PCEs) of wintering piping plover critical habitat include:  

1) Intertidal flats with sand or mud flats (or both) with no or sparse emergent vegetation.  

2) Adjacent unvegetated or sparsely vegetated sand, mud, or algal flats above high tide are also important, especially for roosting piping plovers. Such sites may have debris, detritus, or microtopographic relief (less than 50 cm above substrate surface) offering refuge from high winds and cold weather.  

3) Important components of the beach/dune ecosystem include surf-cast algae, sparsely vegetated back beach and salterns, spits, and washover areas. |

---

31 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
<table>
<thead>
<tr>
<th>SPECIES/Critical Habitat</th>
<th>SPECIES/Critical Habitat Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>4) Washover areas are broad, unvegetated zones, with little or no topographic relief, that are formed and maintained by the action of hurricanes, storm surge, or other extreme wave action. Project construction will not adversely modify or destroy critical habitat for piping plover because the construction work will not be taking place in any of the habitats listed above. Visitation of nearby area will not alter any of the PCEs or result in adverse modification or destruction of critical habitat.</td>
<td></td>
</tr>
<tr>
<td>Choctawhatchee beach mouse</td>
<td>Neither the Choctawhatchee beach mouse nor its critical habitat occurs within the project areas. Therefore, construction activities will not affect this species or its critical habitat. However, both the mouse and its critical habitat occur on Shell Island and Panama City Beach which could be accessed by visitors using the improved ramps. Mice or critical habitat could be disturbed if visitors travel to these areas from the ramps. Conservation measures are expected to minimize the risk of disturbance such that impacts are insignificant and discountable. Primary constituent elements (PCEs) for Choctawhatchee beach mouse critical habitat are: 1) A contiguous mosaic of primary, secondary scrub vegetation, and dune structure, with a balanced level of competition and predation and few or no competitive or predaceous nonnative species present, that collectively provide foraging opportunities, cover, and burrow sites; 2) Primary and secondary dunes, generally dominated by sea oats that, despite occasional temporary impacts and reconfiguration from tropical storms and hurricanes, provide abundant food resources, burrow sites, and protection from predators; 3) Scrub dunes, generally dominated by scrub oaks, that provide food resources and burrow sites, and provide elevated refugia during and after intense flooding due to rainfall and/or hurricane induced storm surge; 4) Functional, unobstructed habitat connections that facilitate genetic exchange, dispersal, natural exploratory movements, and recolonization of locally extirpated areas; and 5) A natural light regime within the coastal dune ecosystem, compatible with the nocturnal activity of beach mice, necessary for normal behavior, growth and viability of all life stages. Project construction will not adversely modify or destroy critical habitat for the Choctawhatchee beach mouse because the construction work will not be taking place in any of the habitats listed above. Conservation measures are expected to minimize impacts to PCEs such that no adverse modification or destruction of critical habitat occurs from visitor use.</td>
</tr>
<tr>
<td>Gulf sturgeon</td>
<td>NMFS is providing consultation for Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon will not be considered in the consultation with the USFWS.</td>
</tr>
</tbody>
</table>

In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrincus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered
- Kemp’s Ridley Sea Turtle, *Lepidochelys kempii*, Endangered

Additional information on some of these species is provided below.

**Sea turtles:**
There are five species of sea turtles that are found within the Gulf of Mexico: green sea turtle, hawksbill sea turtle, loggerhead sea turtle, Kemp’s ridley sea turtle, and leatherback sea turtle. All five species of sea turtles found in the Gulf of Mexico are listed under the ESA. The Gulf populations of green (breeding populations in Florida), hawksbill, Kemp’s ridley, and leatherback sea turtles are listed as endangered. Loggerhead (northwest Atlantic distinct population segment) and green (except the Florida breeding population) sea turtles are listed as threatened.

Sea turtles in the Gulf (with the exception of the leatherback turtle) have a life history cycle where hatchlings develop in open ocean areas (e.g., continental shelf) and juvenile and adult turtles move landward and inhabit coastal areas. Sea turtles nest on low and high energy ocean beaches and on sandy beaches in some estuarine areas. Immediately after hatchlings emerge from the nest, they begin a period of frenzied activity. During this active period, hatchlings move from their nest to the surf, swim, and are swept through the surf zone, and continue swimming away from land for up to several days (NOAA 2009a). Once hatchling turtles reach the juvenile stage, they move to nearshore coastal areas to forage. As adults, they utilize many of the same nearshore habitats as during the juvenile developmental stage. Sea turtles utilize resources in coral reefs, shallow water habitat (including areas of seagrasses), and areas with rocky bottoms.

All five species of sea turtles are migratory and thus have a wide geographic range. While there are no beaches in the vicinity of the proposed project that could accommodate sea turtle nesting, the species could occur in the open waters of St. Andrews Bay near the marina.

**West Indian Manatee:**
The West Indian Manatee is designated as endangered under the ESA and depleted under the Marine Mammal Protection Act (16 United States Code [U.S.C.] 1361 et seq.). In the Gulf Coast geographic area manatees are divided into two regional management units: the northwest and the southwest regional management units. Each regional unit is composed of individuals that tend to return to the same network of warmwater refuges each winter and have similar non-winter distribution patterns (FWC 2007). In addition, Florida enacted the Manatee Sanctuary Act in 1978 and declares the entire State of Florida to be a manatee “refuge and sanctuary” (FWC 2007). The FWC has developed a Florida Manatee Management Plan to provide a framework for conserving and managing manatees in Florida (FWC 2007). While Bay County is not one of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (USDOI 2011), they could be present in the open waters of St. Andrews Bay in the vicinity of the marina.
The main threat to the manatee is increased boat traffic and other accidents associated with the expanding development in Florida. Manatees inhabit both salt and fresh water and can be found in shallow (5 feet to usually <20 feet), slow-moving rivers, estuaries, saltwater bays, canals, and coastal areas throughout their range where they feed on seagrass and other aquatic vegetation such as hydrilla and water lettuce.

**Gulf Sturgeon and its Critical Habitat:**
The NMFS and USFWS listed the Gulf sturgeon as a threatened species on September 30, 1991. The Gulf sturgeon, also known as the Gulf of Mexico sturgeon, is a subspecies of the Atlantic sturgeon. Adults are 71-95 inches in length, with adult females larger than adult males. Adult fish are bottom feeders, eating primarily invertebrates, including brachiopods, insect larvae, mollusks, worms and crustaceans. The Gulf sturgeon is an anadromous fish that migrates from salt water into coastal rivers during the warmer months to spawn. Historically, the Gulf sturgeon occurred from the Pearl River to Charlotte Harbor, Florida. It still occurs, at least occasionally, throughout this range, but in greatly reduced numbers. River systems where the Gulf sturgeon are known to be viable today include the Mississippi, Pearl, Escambia, Yellow, Choctawhatchee, Apalachicola, and Swannee Rivers, and possibly others. The Gulf sturgeon often stays in the Gulf of Mexico and its estuaries and bays in cooler months (NOAA 2013). Most adult feeding takes place in the Gulf of Mexico and its estuaries. Telemetry data in the Gulf of Mexico usually locate sturgeon in depths of 6 m (19.8 feet) or less. The fish return to breed in the river system in which they hatched. Spawning occurs in areas of deeper water with clean (rock and rubble) bottoms. The eggs are sticky and adhere in clumps to snags, outcroppings, or other clean surfaces. Sexual maturity is reached between the ages of 8 and 12 years for females and 7 and 10 years for males. The Gulf sturgeon historically was threatened because of overfishing and then by habitat loss due to construction of water control structures, dredging, groundwater extraction, and flow alterations.

The USFWS and NMFS designated critical habitat essential to the conservation of the Gulf sturgeon. In accordance with regulations, critical habitat determinations were based on the best scientific data available for those physical and biological features essential to the conservation of the species. Nearshore waters within one nautical mile of the mainland from Pensacola Pass to Apalachicola Bay and the Perdido Key area and the area north of Santa Rosa Island were designated as critical habitat, as they are believed to be important migratory pathways between Pensacola Bay and the Gulf of Mexico for winter feeding and genetic exchange (DOI and DOC 2003). St. Andrews Bay is not a part of the critical habitat designation (Figure 12-50).
Figure 12-50. Gulf Sturgeon Critical Habitat.

Smalltooth Sawfish:
The smalltooth sawfish is federally listed as an endangered species. Formerly common from Texas to North Carolina, its current distribution is mainly restricted to South Florida and the Keys; adults are uncommon in the Florida panhandle (NOAA2009b). Juveniles in habit shallow coastal waters, especially shallowmud banks and mangrove habitats. Very few juveniles have been documented in areas north of the current range of mangroves (i.e., north of 29 N latitude). Adults are found with juveniles but also in deeper water habitat (NOAA2009b). The decline of this species is mainly attributed to mortality as by catch in commercial and sport fisheries. The current range of this species has contracted to the peninsula of Florida, though smalltooth sawfish are common only in the Everglades region at the southern tip of the state.

Essential Fish Habitat
EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as “those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area
include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Table 12-50 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Panama City Marina site and St. Andrew’s Bay.

Table 12-50. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.

<table>
<thead>
<tr>
<th>EFH Category</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Highly Migratory Species</td>
<td>Atlantic Sharpnose Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Blacktip Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Bonnethead Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Bonnethead Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Bull Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Nurse Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Sandbar Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Tiger Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Tiger Shark-Neonate</td>
</tr>
<tr>
<td>Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic</td>
<td>Spanish Mackerel</td>
</tr>
<tr>
<td></td>
<td>Cobia</td>
</tr>
<tr>
<td></td>
<td>King Mackerel</td>
</tr>
<tr>
<td>Gulf of Mexico Red Drum</td>
<td>Red Drum</td>
</tr>
<tr>
<td>Gulf of Mexico Shrimp</td>
<td>Pink Shrimp</td>
</tr>
<tr>
<td></td>
<td>White Shrimp</td>
</tr>
<tr>
<td></td>
<td>Brown Shrimp</td>
</tr>
<tr>
<td>Reef Fish Resources of the Gulf of Mexico</td>
<td>Lane Snapper</td>
</tr>
<tr>
<td></td>
<td>Lesser Amberjack</td>
</tr>
<tr>
<td></td>
<td>Mutton Snapper</td>
</tr>
<tr>
<td></td>
<td>Nassau Grouper</td>
</tr>
<tr>
<td></td>
<td>Queen Snapper</td>
</tr>
<tr>
<td></td>
<td>Red Grouper</td>
</tr>
<tr>
<td></td>
<td>Red Snapper</td>
</tr>
<tr>
<td></td>
<td>Scamp</td>
</tr>
<tr>
<td></td>
<td>Silk Snapper</td>
</tr>
<tr>
<td></td>
<td>Snowy Grouper</td>
</tr>
<tr>
<td></td>
<td>Speckled Hind</td>
</tr>
<tr>
<td></td>
<td>Tilefish</td>
</tr>
<tr>
<td></td>
<td>Vermilion Snapper</td>
</tr>
<tr>
<td></td>
<td>Warsaw Grouper</td>
</tr>
<tr>
<td></td>
<td>Wenchman</td>
</tr>
<tr>
<td></td>
<td>Yellowedge Grouper</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Grouper</td>
</tr>
</tbody>
</table>
Bald Eagles:
The closest recorded active nesting bald eagle sites are approximately 3 miles from the project site. The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s Bald Eagle Management Plan guidelines would be followed (FWC 2008).

Migratory Birds

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-51 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

Table 12-51. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>Foraging, feeding, resting, nesting</td>
<td>At the project sites, shorebirds likely forage and rest and could be locally and temporally impacted during construction. Shorebirds nest, forage, feed, and rest on Shell Island. As such, they may be impacted by visitors traveling form the project sites to Shell Island.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Resting, roosting, nesting</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats at Shell Island. However, the level of project activity could startle resting birds. Because activities will occur during the day roosting should not be impacted.</td>
</tr>
</tbody>
</table>
Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-52.

**Table 12-52. Conservation measures to minimize impacts to migratory bird groups**

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>In general, the Trustees expect foraging and resting birds would be able to move to another nearby location to continue foraging and resting if disturbed during construction. Shorebirds are not expected to be nesting in the area of construction but use nearby areas that could be visited by people using the ramps. Educational signage will be posted at each ramp and pier to prevent impacts to migratory birds at Shell Island and other locations. Signs will be developed in coordination with FWC and the Panama City Ecological Services Field Office to detail conservation measures to protect shorebirds in nearby habitats. At the Oakshore Drive location, there is an area with shallow sandbars off the point where shorebirds commonly feed. Design of this pier will be coordinated with FWC to minimize impacts and changes to the point and sand bars to the maximum extent practicable.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. Nesting should not be impacted because the project will not occur near nesting habitats. Educational signage will be posted at each ramp and pier. Signs will be developed in coordination with FWC and the Panama City Ecological Services Field Office to detail conservation measures to protect seabirds while visitors may be fishing. Protective measures will also be implemented in the design phase and include the use of pointy, white, piling caps and containers for waste fishing gear.</td>
</tr>
</tbody>
</table>

**Environmental Consequences**

As noted above, there is no seagrass located within the footprint of the proposed projects, so there would be no direct impacts. Potential indirect impacts could arise from in-water construction work increasing turbidity, and thus reducing sunlight reaching the seagrass, or resuspended sediments settling out onto the seagrass and either burying or smoothing it. The only patch of seagrass in proximity to the project area is the small discontinuous patch to the southeast of the boat ramp on the other side of the bulkhead. Given its location and the fact that in-water BMPs, such as sediment curtains, would be employed to contain resuspended sediments the proposed project would have no effect on seagrass.

During construction of the fishing pier, staging docks, and boat ramp there could be local, short-term minor adverse impacts on both fish and macroinvertebrate species, including shellfish, in the vicinity of the marina. Fish species could be temporarily displaced from habitat in the area of construction due to noise and vibration impacts. Feeding success could also be impacted through increased turbidity; however, most species are highly mobile and would move out of the area to neighboring waters where feeding would be less problematic. Some mortality of sedentary and less mobile species and life stages could occur. Placement of the pilings in the substrate could crush species that cannot flee the area and resuspended sediments could cause problems with feeding for filter feeders such as shell fish, or as the sediments settle out of the water column they could bury sedentary species. However, given the small aerial extent of the impacted area compared to the available habitat within St. Andrews Bay, the overall
impact on species would be minor. Additionally, once construction was complete, fish and invertebrates species would be expected to readily recolonize the area. Some beneficial impacts to species would also occur. Piers and pilings provide a hard substrate habitat that otherwise would not exist in the area. As noted under the affected environment, such hard substrates provide habitat for species such cocoa damsels, angelfishes, parrotfishes, spadefishes, and butterfly fishes. Wrasses, groupers, and snappers also can be found among this type of habitat as well (FDNR 1991). As part of the project, information would be made available at the entrance to the pier on best practices on catch and release and other fishing practices (e.g., placing cut line and hooks for disposal in trash bins) designed to limit potential adverse impacts to fish and other marine species. Trash receptacles would also be placed on the pier to help reposted on the fishing pier to help anglers comply with the recommendations as well as keep other trash out of the water that could otherwise cause adverse impacts on species.

Protected Species
The USFWS reviewed the proposed Oakshore Drive Pier project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On March 24, 2014, the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect, five species of sea turtles (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead), Choctawhatchee beach mouse, West Indian manatee, piping plover, or red knot (if listed). The USFWS also concurred with the Trustees’ determination that the project will not adversely modify or destroy critical habitat for the Choctawhatchee beach mouse or piping plover.

Consultation of potential impacts on protected species managed by NMFS from this project was initiated on April 9, 2014. NMFS Protected Resources Division reviewed the Biological Assessment and determined that there was a potential for adverse impacts to threatened and endangered species. NMFS Protected Resources Division is currently preparing a Biological Opinion that evaluates the potential effects this project may have on gulf sturgeon and sea turtles.

The procedures contained within the ESA consultation for West Indian manatee constitute appropriate and responsible steps to promote compliance with MMPA prohibitions on take by requiring the proposed activities to achieve a standard of No Effect or May Affect, Not Likely to Adversely Affect for manatees. As such, the Trustees do not anticipate any take, incidental or otherwise, under the MMPA for West Indian manatee due to implementation the proposed project. The Trustees are continuing to coordinate with NMFS Office of Protected Resources to evaluate the potential and magnitude of take or harassment of marine mammals under NMFS jurisdiction.

Bald Eagle and Migratory Birds:
There are no bald eagle nests within 660 feet of the project site and there is no suitable nesting habitat at the site. Therefore, there would be no impacts on bald eagles. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

Implementing of the Service’s most recent version of the Standard Manatee Conditions for In-water Work (USFWS, 2011)
**Essential Fish Habitat (EFH)**
The proposed work in the EFH area will take place adjacent to the existing Panama City Marina. A small area of sub-tidal habitat would be converted with the placing of pilings for the new pier, however, this area would be a relatively small compared with the surrounding habitat and would not completely convert or block habitat in the area where the pier is constructed. As a result, disturbance to species will be limited in their spatial extent, minor in scope, and brief in duration. All appropriate BMPs will be followed to minimize the potential impacts of construction activities on EFH and species in the area. During construction, adjacent areas with equivalent or better habitat will be available and undisturbed and organisms could move away from disturbed areas. Therefore, the project is not likely to adversely affect EFH.

On April 4, 2014 NMFS completed its evaluation of potential EFH impacts and concurred with the Trustees’ conclusions that the project construction is not likely to adversely affect EFH and any disturbance to species will be minor and brief (Fay, 2014).

**Invasive Species**

**Affected Resources**
Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

**Environmental Consequences**
Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.85.5.4 **Human Uses and Socioeconomics**

12.85.5.4.1 **Socioeconomics and Environmental Justice**

**Affected Resources**
Bay County is located in the extreme northwestern corner of the State of Florida. The County encompasses 1,032.2 square miles, of which 758.5 square miles is land and 274.7 square miles is water
area. The population of Bay County is currently estimated at 169,392 (FEDR 2010). Table 12-53 provides a brief demographic overview of Bay County, Florida.

**Environmental Consequences**
Constructing a new fishing pier would provide additional recreational fishing opportunities for the public at the Panama City Marina as well as within Panama City providing long-term beneficial impacts. The extent to which the new structure would support new trips to the marina for recreational fishing is difficult to quantify and would be monitored by Panama City staff for one year after construction to help determine the level of public use of the new facility. Improving the poorly functioning boat ramp and staging docks would likely improve the experience for those using the facilities in the future, although it is not expected to increase the number of users of the marina.

The proposed project is expected to have short-term, beneficial impacts on socioeconomics for the project area and adjacent areas, based on a slight increase in the workforce required to perform construction work on the fishing pier, staging docks, and boat ramp. The exact number of person to be employed by this project is undetermined, but is estimated to be approximately 25 persons.

**Table 12-53. Demographic information for Bay County, Florida.**

<table>
<thead>
<tr>
<th>FLORIDA OFFICE OF ECONOMIC DEVELOPMENT</th>
<th>BAY COUNTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population, percent change, April 1, 2010 to April 1, 2012</td>
<td>0.3%</td>
</tr>
<tr>
<td>Population, 2010</td>
<td>168,852</td>
</tr>
<tr>
<td>Persons under 5 years, percent, 2010</td>
<td>6.3%</td>
</tr>
<tr>
<td>Persons under 18 years, percent, 2010</td>
<td>22.0%</td>
</tr>
<tr>
<td>Persons 65 years and over, percent, 2010</td>
<td>14.5%</td>
</tr>
<tr>
<td>Female persons, percent, 2010</td>
<td>50.5%</td>
</tr>
<tr>
<td>White alone, percent, 2010 (a)</td>
<td>82.2%</td>
</tr>
<tr>
<td>Black or African American alone, percent, 2010 (a)</td>
<td>10.8%</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone, percent, 2012 (a)</td>
<td>0.9%</td>
</tr>
<tr>
<td>Asian alone, percent, 2012 (a)</td>
<td>0.7%</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander alone, percent, 2012 (a)</td>
<td>0.1%</td>
</tr>
<tr>
<td>Two or More Races, percent, 2010</td>
<td>3.1%</td>
</tr>
<tr>
<td>Hispanic or Latino, percent, 2010 (b)</td>
<td>4.8%</td>
</tr>
<tr>
<td>White alone, not Hispanic or Latino, percent, 2010</td>
<td>79.2%</td>
</tr>
<tr>
<td>Persons per household</td>
<td>2.0</td>
</tr>
<tr>
<td>Median household income, 2009</td>
<td>$44,357</td>
</tr>
<tr>
<td>Persons below poverty level, percent, 2009</td>
<td>13.0%</td>
</tr>
</tbody>
</table>

**12.85.5.4.2 Cultural Resources**

**Affected Resources**
This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.
Environmental Consequences
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.85.5.4.3 Infrastructure

Affected Resources
The Panama City Marina is located in the Downtown District of the city with commercial, industrial, and residential development nearby. There is a variety of infrastructure that includes shoreline protection, roads, and parks. Several main roads service the marina with Harrison Avenue terminating within the marina itself. The marina itself has approximately 200 vehicle parking spaces and 240 boat slips along with one boat ramp. On the water side of the marina, St. Andrews Bay is part of the Gulf intracoastal waterway which transits down the axis of the bay in front of the marina.

Environmental Consequences
The majority of the work for the proposed project would be conducted from the water, though trucks would be used to stage material, likely in the marina parking lot for the project. The surrounding road network would be expected to be able to handle the minimal truck traffic as well as the influx of approximately 25 workers for the project. With the likely staging of material in the marina parking lot, some parking spaces would be lost for use temporarily during the construction period. But with 200 parking spaces the adverse impact would be expected to be short-term and minor. Use of the boat ramp providing access to St. Andrews Bay would be interrupted during its removal and construction of the new boat ramp. To minimize impacts on the use of the boat ramp, construction activities on the boat ramp would occur outside of the fishing season which occurs from April through September (Pearce 2013).

For the fishing pier, in-water construction would occur outside of the intracoastal waterway and therefore would not impact boat movement within this waterway. Overall, impacts to infrastructure from the proposed project would be short-term minor and adverse.

12.85.5.4.4 Land and Marine Management

Affected Resources
The Panama City Marina is owned by the City of Panama City and is located in the downtown zoning district of the city. The purpose of this zoning district is to provide for the vitality of downtown Panama City as a safe community of business, residential, commercial, cultural, government, public institutional, light industrial, and entertainment uses, including public green spaces and recreational access to the waterfront, while protecting the environment and enhancing the quality of life (City of Panama City 2012).

The project is located in a coastal area regulated by the federal Coastal Zone Management Act (CZMA) of 1972 and the Florida Coastal Management Act of 1978.
Environmental Consequences
The proposed project would increase and improve the public’s access to the waterfront area of the City of Panama City and would therefore be consistent with the City’s Land Development Regulations for the Downtown District; providing long-term beneficial impacts. Some minor adverse impacts would result from the construction of the boat ramp due to the fact that it would not be available for use during construction activities. However, these short-term impacts would be minimized by conducting construction activities outside of the April – September fishing season, and by the relatively short construction period which is estimated to be less than 6 months.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS. The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process.

12.85.5.5 Aesthetics and Visual Resources

Affected Resources
The Panama City Marina is located in Panama City. The surrounding area is heavily developed with commercial, industrial, and residential properties. Views from the marina offer open vistas of St. Andrews Bay.

Environmental Consequences
Construction of a fishing pier and replacement of staging docks and the boat ramp would be consistent with the features of the existing marina and would not be in conflict with the surrounding developed area. Therefore, the proposed project would have no effect on aesthetics or visual resources.

12.85.5.5.1 Tourism and Recreational Use

Affected Resources
The project site is currently a recreational user destination. Through its boat ramp and 240 boat slips, the marina provides public access to St. Andrews Bay and the surrounding waters, including the Gulf of Mexico.

Environmental Consequences
The project would have long-term beneficial impacts on tourist and recreational user enjoyment of the site. The project would replace the existing poorly functioning boat ramp and staging docks improving the safety of these facilities. Construction of the fishing pier would provide additional recreational fishing opportunities for the public in Panama City and Bay County. The fishing pier and staging docks would also be handicap accessible improving the safety and accessibility of the site structures. Some minor impacts would occur from the inability of the public to use the boat ramp during construction of the new boat ramp. However, these impacts would be short-term as they would be limited to the duration of the boat ramp construction period which is estimated to last less than 6 months. Impacts would also be minimized by conducting construction activities for the boat ramp outside of the fishing season (April – September) when the boat ramp receives heavy use (Pearce 2013).
12.85.5.2  Public Health and Safety and Shoreline Protection

Affected Resources
While the boat ramp at the Panama City Marina is poorly functioning, public health and safety and shoreline protection at the site are of high quality. The marina is owned by the City of Panama City and is maintained as part of the city’s public facilities.

Environmental Consequences
The existing boat ramp at the Panama City Marina is poorly functioning and in need of repair. Thus, replacement of the boat ramp and staging docks at the marina would improve their functionality and the safety of those using them, providing long-term beneficial impacts. Design of the fishing pier would include necessary lighting and handrails ensuring the safety of those that use it. The facilities would also be properly maintained by Panama City as part of its regular public facilities maintenance activities. During construction activities, staging and construction areas would be fenced off, BMPs would be employed to ensure public safety both on land and on the water, as well as the safety of the construction workers.

12.85.6  Summary and Next Steps
The Panama City Marina Fishing Pier, Boat Ramp, and Staging Docks project would provide additional recreational fishing opportunities for the public in Panama City in Bay County. The proposed improvements include constructing a 400-foot long pier, replacing a poorly functioning boat ramp, and constructing new staging docks associated with the boat ramp at the Panama City Marina. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational boating and fishing opportunities by improving the city’s marina. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.85.7  References
City of Panama City. 2012. Land Development Regulations.


Fay, V. 2014. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for the proposed Panama City Marina fishing pier, boat ramp, and staging docks project in St. Andrews Bay, Bay County, Florida. April, 4.


Florida Department of Natural Resources (FDNR). 1991 St. Andrews State Park Aquatic Preserve Management Plan.


National Oceanic and Atmospheric Administration (NOAA).


National Park Service (NPS)


2001. Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat. August.


USFWS 2011 Standard Manatee Conditions for In-Water Work


United States Environmental Protection Agency (USEPA)


262

12.86   Wakulla Mashes Sands Park Improvements: Project Description

12.86.1  Project Summary
The proposed Wakulla County Mashes Sands Park Improvements project would improve recreation areas at the Wakulla County Mashes Sands Park. The proposed improvements include constructing observation platforms, boardwalks, and walking paths, improving the boat ramp area, and picnic areas, renovating the parking area, and the restroom facility, and constructing a canoe/kayak launch site. The total estimated cost of the project is $1,500,000.

12.86.2  Background and Project Description
The Trustees propose to provide access to a range of year-round nature-based recreation activities for visitors to the Mashes Sands Beach area (see Figure 12-51 for general project location). Mashes Sands is the collective name for a complex of low dunes, sandy beach, and a shallow offshore flat of rippled, sandy shoals. It is surrounded by three bodies of water: Apalachee Bay, Dickerson Bay, and Ochlockonee Bay, offering both salt and fresh water access.
The objective of the Wakulla County Mashes Sands Park Improvement project is to enhance and/or increase recreational boating and beach use opportunities by improving the recreational opportunities at the park. The proposed work includes constructing observation platforms, boardwalks, and walking paths, improving the boat ramp area, and picnic areas, renovating the parking area, and the restroom facility, and constructing a canoe/kayak launch site. The parking areas and bathrooms are needed to enhance and/or increase access to the park, which will make the public’s recreational boating and beach use opportunities more accessible, functional or fully utilized.

12.86.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Wakulla County Mashes Sands Park Improvements project is intended to enhance and/or increase recreational boating and beach use opportunities by improving the recreational opportunities at the park. This project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. Florida counties have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.86, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.86 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.
Many recreational use projects, including ones similar to this project, have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the criteria for the Framework Agreement and OPA, the Wakulla County Mashes Sands Park Improvements project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area in which boom was deployed and that was impacted by response and SCAT activities for the Spill.

12.86.4 Performance Criteria, Monitoring and Maintenance

As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented. Monitoring has been designed around the project goals and objectives. The project objective is to enhance and/or increase recreational boating and beach use opportunities by improving the recreational opportunities at the park. Performance monitoring will evaluate: 1) the construction of the observation platforms; 2) the construction of the boardwalks; 3) the construction of the walking paths; 4) the improvements to the boat ramp area; 5) the improvements to the picnic areas, 6) the renovation of the parking area; 7) the renovation of the restroom facility; and 8) the construction of a canoe/kayak launch site. Specific performance criteria include: 1) completion of the construction as
designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the park is open and available.

Long-term monitoring and maintenance of the improved facilities will be completed by Wakulla County as part of their regular public facilities maintenance activities. Funding for this post-construction maintenance is not included in the previously provided value for the project cost and will be accomplished by Wakulla County.

During the one year construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the one year construction performance monitoring period, Wakulla County will monitor the recreational use activity at the site. Wakulla County staff will visit the site twice a year to count the number of users at the park. The visitation numbers will then be provided to the Florida Department of Environmental Protection.

The State of Florida Trustees and the Department of the Interior recognize the need to evaluate the effectiveness of conservation measures designed to avoid or minimize impacts to sensitive species or their habitats. To assess the public’s awareness of the educational signage intended to minimize impacts of use associated with the improved facilities, readers will be invited to take an online survey accessed via a QR code on the sign. The Florida Trustees and DOI will determine the adequacy of this method of assessing public awareness six months after the completion of construction. If the online surveying is insufficient, concurrent with the twice annual performance monitoring, and performed by the same party, a survey will be taken of a sample of recreational users at the project location.

12.86.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $3,000,000 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.33

12.86.6 Costs
The total estimated cost to implement this project is $1,500,000. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

---

33 For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.87 Wakulla Mashes Sands Park Improvements: Environmental Review

The Wakulla County Mashes Sands Park improvement project is intended to improve the quantity and quality of recreation opportunities at Mashes Sands Park. The proposed project would construct observation platforms, boardwalks, and walking paths at Mashes Sands Park to improve accessibility to park areas. Additional components include boat ramp area improvements, picnic areas, renovations to parking and the restroom facility, and a canoe/kayak launch site.

12.87.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects would be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement, the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan. This park renovation project in Wakulla County, Florida, was submitted as a restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

Prior to the Spill, this park was used widely by boaters, fisherman, and people using the beaches, but as a result of the Spill, much of those users went away. It is expected that the improvements to park amenities would bring those users back and that an enhancement and/or increase in ecotourism would result from the addition of a new boardwalk, observation platform, and canoe/kayak launch site.

12.87.2 Project Location

The proposed project is located in the southern portion of Wakulla County, Florida, approximately 6 miles south of the city of Panacea. Mashes Sands Park is situated on the tip of a small peninsula overlooking the Gulf of Mexico bordered by Ochlockonee Bay to the south and Apalachee Bay to the north and east with lands that extend inland to the West and include a boat launch and park facilities along a canal (Figure 12-52).
Figure 12-52. Mashes Sands Park location, Panacea, Wakulla County, Florida.

12.87.3 Construction and Installation
The proposed Wakulla County Mashes Sands Park Improvements project would improve recreation areas at the Wakulla County Mashes Sands Park. The proposed improvements include constructing observation platforms, boardwalks, and walking paths; improving the boat ramp area and adjacent dock and picnic areas; renovating the parking area and the restroom facility; and constructing a canoe/kayak launch site. Figure 12-51 defines the project area for this work. The in-water aspect of this project would be limited to the work associated with the any renovation of the existing boat ramp and associated dock. This activity would take place in the southern half of the project area in Figure 12-51.

Detailed construction methods and plans for the entire have not yet been fully developed and would be subject to the final design and contractor approach. Proposed construction includes upland observation platforms, boardwalks, and walking paths. Additional components include boat ramp area improvements such as picnic areas, renovations to parking and the restroom facility, and development of a canoe/kayak launch site. A range of hand tools and heavy construction equipment would be used to
complete this project. Activities include grading, digging holes to place pilings or foundations for new structures, and removing old or damaged material from existing structures.

In upland areas without any connection to the water, pilings would need to be placed for the upland observation platforms and boardwalks and, depending on the nature of repairs required to picnic areas, pilings may be needed in those areas as well. Pilings would most likely be placed by mechanically auguring holes to place pre-formed pilings or to place forms that would be filled with pumped concrete to produce new pilings. The size and depth of the pilings would be approximately 1 to 2 feet in diameter, but the final size would depend on the engineering design requirements.

Construction materials would need to be staged in the project area; this would likely be accomplished in existing disturbed areas (e.g., parking lot areas). Construction Best Management Practices (BMPs) are as follows:

- All construction would be performed in accordance with all local, state, and federal requirements and all requirements of permits obtained so as to protect the surrounding vegetation and natural condition.
- The contractor would submit plan for control of surface water runoff in accordance with all local, state, and federal requirements and all requirements of permits obtained so as to protect the surrounding vegetation and natural condition (discussed in greater detail below).
- All construction adjacent to open water would be separated and confined by appropriate siltation screens and turbidity barriers so as to protect the quality of such open water.
- Upon completion of construction, the site would be cleared of all construction materials and restored to its natural state as shown on the drawings.
- The contractor would be responsible for assuring compliance with all permit requirements.

Based on a site visit conducted on January 10, 2014 with staff from NOAA, DOI and Florida DEP, it appears that the canoe/kayak launch area could be developed with no required in-water work. This is based on the fact that vehicles already have access to the location and there is a gently sloping access to the waterway that would be suitable for canoe/kayak launching. Based on the site visit, the main improvement needed at this area would be the placement of some sort of barrier that would prevent a truck with a trailer from backing to the water’s edge to facilitate launching. This could be achieve with the placement of a large rock or rocks or possibly sinking spaced posts at the end of the road. Because the area can be prone to flooding from tides/storms and the width of the waterway at the road’s end the construction of significant launching infrastructure is not necessary or desirable.

Renovation of the boat ramp, if undertaken, would involve excavating and replacing the existing ramp surface. In general, the construction of a boat ramp can be summarized in terms of executing a number of specific tasks and subtasks including:
Task 1. Site Preparation

a. Prior to beginning any waterward work at the boat ramp site the project area needs to be surveyed and marked. Turbidity curtains are then installed to encapsulate the work area and other erosion control methods are put in place on the landward side of the project (e.g., placement of hay bales) to prevent erosion into the water from equipment movement and any work being performed on the upland areas.

Task 2. Ramp Construction

a. The area for the ramp is surveyed in and marked by stake or pole (typically small diameter 2” or less PVC).

b. A coffer or bladder dam is installed and the water within the dam, between the waterward extent of the ramp and the land, is pumped out to upland storage ponds or run through a filter system to remove any sediment in the water before returning it to the receiving waterbody. The work area is kept dry by use of dewater pumps (ground water to be pumped is first sampled and tested for water quality) and disposed of in the same manner as the pumped surface water. This dewatering operation is run continuously throughout the construction of the ramps. Once the ramps are completed the dewatering pumps are shut down and the dams are removed.

c. Construction of the ramps begins once the area is sufficiently dry to remove unsuitable soils, if necessary, and replaced with suitable soil. This soil is then compacted to specification. Then the base material for the ramp is placed, usually a rock material. After placement and compaction of the base the ramp is formed, reinforcing steel placed and then the concrete poured and finished. Once curing of the concrete is complete the forms are removed and the coffer or bladder dams are removed.

Task 3. Monitoring

a. Every day, before the start of construction activities, the turbidity screen is checked and repaired if necessary.

b. The foreman or other designated individual checks the area inside the screen and the screen itself to see if any protected species (manatees, dolphins, small tooth sawfish etc) have gotten trapped within the work area or in the screen. If so then appropriate (FWC) personnel are notified to request removal. No work is begun until the animal, fish or bird is removed.

c. During the work day the work area and area adjacent to the work are is monitored to make sure protected species have not ventured into the area. If so then work is stopped until the animal moves out of the area.

d. At the end of the day the area is checked for debris, sediment and possible spillage and these are properly removed and disposed of before shutting down the site.

e. If a storm is anticipated that might damage the turbidity screen it is removed and stored until the storm event has passed and seas have resided.

When work being constructed in water requires it to be performed in a dry environment a cofferdam or bladder dam is installed. These devices are often employed when building boat ramps where the forming, pouring, finishing and curing of the concrete ramps is required to be constructed in a dry.
area. More often than not, along the coastal areas where tides and wave action occurs, a cofferdam is utilized. A coffer dam is most often constructed of welded steel sheet piles, whales and cross bracing. The sheet piles are usually jetted in to a set depth and then driven in the last 3-5 feet to provide a secure fitting. The sheet piling will usually encompass the entire work area being installed in a “U” shape with the ends of the system connected into the uplands. The cofferdam then provides a barrier to keep out water during the work of placing the ramp. Once the sheet piles are in place the surface water is pumped out to either upland constructed holding ponds or more often through a filtration system in order to remove any sediment which may be disturbed during the pumping operation.

To keep the work area dry throughout construction of the ramp a dewatering system will also be installed by the contractor to lower and keep water levels below any depth from which soils or sediment may need to be removed in order to provide a firm foundation for the ramp. Prior to starting the dewatering system, water quality tests will be performed to insure the suitability of discharging groundwater back into the receiving water body. If the groundwater is found to not meet water quality criteria for the receiving water body then further treatment may be required before it is released. If the ground water meets water quality standards then it will be filtered through the same system as the surface water. The dewatering system will be run 24 hours a day continuously throughout the construction period required to install the water ward facilities, i.e. ramp. Once all work is completed the dewatering system is shut down and removed and then the sheet piles are removed as well. All coffer dam installation and removal is to be only performed by a qualified contractor thoroughly experienced in this type of work.

Use of a bladder dam follows a similar approach but is less intensive where the bottom is anchored in the sediment and then the dam creating the watertight barrier is created by inflating a durable bladder wall vs installing sheet piles. The less invasive nature of the bladder dam makes it more appealing for use in situations, like the Mashes Sands boat ramp where there is a limited amount of in-water work for a limited duration of time.

Installing a bladder dam consists of the following steps:

1) **Laying out the bladder dam in the general area for installation.**

The bladder dam is constructed of two general pieces 1) an outer durable, abrasion and puncture resistant shell and 2) the buoyant inflatable bladder. Because the outer shell contains a weighted bottom section it can be laid out prior to inflation.

2) **Preliminary securing of the bladder dam.**

The bladder dam is secured to the bottom of the in-water work area using spikes/ties that are driven into the sediment to secure the weighted bottom of the dam to the sediment. These spikes are driven using hand tools (e.g., sledge hammer, hand-held post driver) using designated eyelets/rings in the outer shell.
3) Inflation of the bladder

Once initially secured the dam can be inflated to more firmly establish the seal with the bottom. Once the seal is established final adjustments can be made in terms of securing the bladder dam and then any residual flow into the work area is addressed with pumping.

4) Removal of the bladder dam

Once the project work requiring a dry area is complete the dam is removed by 1) deflating the bladder, 2) removing the securing stakes, and 3) physically removing the device from the work area.

The decision to use either a coffer dam or bladder dam will be made as part of the final construction plan following an inspection and evaluation of the conditions in the area of the canal around the boat ramp.

Work on the dock associated with the boat ramp would focus on incorporating changes to make the structure compliant with existing access guidelines (e.g., for the Americans with Disabilities Act). As part of this work it is possible that up to 20 pilings could need to be removed and replaced. If required, piling removal would be undertaken with shore based heavy equipment. Subsequent replacement pilings would be made of wood, be up to 8” in diameter and would be placed using a combination of water jetting, pushing, and mechanical auguring. While any dock renovations should be constructed within the existing footprint, as part of final design effort, a survey of submerged aquatic vegetation (SAV) in the area would be completed. Should the site assessment for the project identify SAV in the proposed project area, the conditions in the Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat (U.S. Army Corps of Engineers/National Marine Fisheries Service, 2001) would be implemented. Among other elements that would result should these guidelines need to be implemented, there would requirements that pilings be placed a minimum of 10 feet apart and there would be requirements for the height of the dock and spacing of decking materials.

During all in-water construction activity the conditions and guidelines of the Sea Turtle and Smalltooth Sawfish Construction Conditions (NOAA, 2006) and the Standard Manatee Conditions for In-Water Work (USFWS, 2011) would be implemented and adhered to.

One of the critical elements of the effort to limit impacts associated with the project development, particularly with any parking lot improvements, will be the consideration of, review for, and ultimate implementation of stormwater management controls for the project. Although each project site will pose its own issues when developing the stormwater and sediment control plans for pre, during, and completion of construction plans there is a standard approach to preparing these designs characterized by the following steps, which are distinguished by their relationship to construction, that will be followed for this project:

1. Development of Pre-construction or existing conditions plans w/erosion and sediment control[E&SC]features. These pre-construction plans will illustrate what sediment control measures will be initially installed and their location in order to minimize impacts to receiving waterways when upland land disturbance activities begin. These plans will be based upon an
existing site survey delineating the project boundaries, site topography, topographic features (vegetation, soil types, impervious and pervious areas, water bodies (streams and ponds), wetlands, drainage channels, existing structures, drainage basins, flow patterns and major points where stormwater enters and exits the site. The survey should extend to at least 50 feet beyond the project site and contours should depict intervals of 0.5 to 2.0 feet. The pre-construction plans should also identify phases of construction and areas that will be disturbed along with the overall limits of construction or disturbance. Sensitive areas (e.g., locations of sensitive/protected flora and fauna, wetlands, excessive slopes and unsuitable soils) should also be identified. Taking all the above information from the survey into consideration the designer will designate the locations and describe the structural controls to be installed in order to minimize erosion and control sediment from reaching adjacent receiving waters and wetlands.

The most important aspect of the pre-construction drawings is to identify where water flows through the project site and where critical discharge points are located. The nature and location of best management practices (BMP’s) that will then be emplaced and incorporated prior to construction are determined from these drawings. BMP’s commonly identified/used include: placing combinations of silt screens, hay bales, fiber logs, and temporary vegetation down gradient of areas to be disturbed. Other sediment and stormwater control options include installing sediment ponds or traps or diversion berms and conveyance channels to redirect runoff and sediment from receiving waters.

2. Development of During Construction grading plans. These plans may be incorporated with the pre-development plans when feasible for a simple site but otherwise will be developed for depicting E&SC measures to be employed during grading operations. As the project progresses through its various phases of construction it may be necessary to adjust the location of structural E&SC measures or to include additional ones. These plans will show areas for stockpiling top soils and other materials and how they are to be contained (silt fencing, berms etc.), equipment storage areas and refueling areas (if allowed) with protective measures to be employed such as containment berms or absorbent material for possible spills. These plans may also include final stormwater control structures such as retention/detention ponds. These plans will also include requirements for inspection and maintenance of the BMP’s such as inspections and repair/replacement, if necessary, after every storm event. These plans will point out to the contractor critical containment contours to ensure that optimal treatment of runoff from the disturbed areas is realized and minimal impact occurs to receiving waters.

3. Final Grading or Construction Plans. These plans will show how the site is to look upon completion of construction, final grades, stormwater controls and final stabilization of disturbed lands. These plans will include final landscaping (sod, mulching, plants (native trees and shrubs), ditch or swale lining utilizing sod mats, ditch breaks etc., and slope stabilization. Final grades on all impervious areas such as parking, entry and exit drives will designed so as to reduce runoff velocity and direct runoff into drainage conveyance systems and finally into treatment ponds dry or wet type depending on groundwater depths where the majority of runoff is treated before being released into the receiving waters. The design capacity of the treatment ponds will be based upon SCS curves for the required design storm event. Release of stormwater from the
sites will be at pre-construction rates. Outlet controls BMP’s may include rip rap installation where necessary to control erosion at exit points. Most boat ramp installations will also include the installation of trench drains at the top the ramps to capture runoff from the drive areas and divert it to treatment areas or pass it through a filter “sock”. Projects that have sufficient budgets and suitable site conditions may also consider the placement of pervious concrete in lieu of asphalt or concrete driving surfaces. The final grading plans will describe when and where removal of BMP construction sediment control structures (silt fencing, diversion berms etc.) is to be done i.e. establishment of 70% of permanent vegetation. The final part of the stormwater management system is the development of the monitoring or maintenance plan which will describe the frequency of inspection (after every major storm, x’s per year etc.) and maintenance (removing sediment from ponds and swales, cleaning or replacing sand filter beds, replacing sediment “sock” in trench drain) and what actions to take when the system has been reduced in efficiency or has failed.

The total in-water period of work with this project could be up to six months depending on the sequencing of work.

12.87.4 Operations and Maintenance
Operation and maintenance of the new and renovated facilities would be performed by Wakulla County staff. Monitoring would include construction monitoring and tracking visitor use numbers through park admission fees during the summer.

The State of Florida Trustees and the Department of the Interior recognize the need to evaluate the effectiveness of conservation measures designed to avoid or minimize impacts to sensitive species or their habitats. To assess the public’s awareness of the educational signage intended to minimize impacts of use associated with the improved facilities, readers will be invited to take an online survey accessed via a QR code on the sign. The Florida Trustees and DOI will determine the adequacy of this method of assessing public awareness six months after the completion of construction. If the online surveying is insufficient, concurrent with the twice annual performance monitoring, and performed by the same party, a survey will be taken of a sample of recreational users at the project location.

12.87.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

12.87.5.1 No action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.
12.87.5.2  Physical Environment

12.87.5.2.1  Geology and Substrates

Affected Resources

Geology
The Mashes Island peninsula and the entire Mashes Sands Park are made up of Holocene sediments, which in Florida occur near the present coastline at elevations generally less than 5 feet. The sediments include quartz sands, carbonate sands and muds, and organics (Florida Geological Survey 2001).

Soils
The Soil Survey for Wakulla County identifies the soils in the area of the park as “Bayvi, Isles, and Estero,” “Quartzipsamments, dredged,” “Water,” and “Waters of the Gulf of Mexico” (U.S. Department of Agriculture 2013).

Bayvi, Isles, and Estero soils are frequently flooded soils that are nearly level (slopes 0% to 1%) and poorly drained. They typically occur in the tidal marsh areas of the Gulf Coast and are flooded daily by high tides. Bayvi soils have a dark brown mucky sand surface layer approximately 26 inches deep with sand underlying. Isles soils typically have a black sand surface approximately 9 inches thick with grayish brown sand subsurface to 35 inches. Estero soils have a dark gray muck about 4 inches thick with approximately 14 inches of dark brown sand below. The subsurface is represented by grayish brown sand to about 34 inches.

Quartzipsamments, dredged soils are nearly level and poorly drained with slopes commonly 0% to 1%. They are formed by fill material that has been reworked and shaped by earthmoving equipment. The surface layer is typically a light brownish gray sand about 7 inches thick, while the remaining underlying material is made up of sand with various colors and combinations of brown and gray to about 80 inches.

Environmental Consequences
A range of hand tools and heavy construction equipment would likely be used to complete this project. Likely activities include grading, digging holes to place pilings or foundations for new structures, and removing old or damaged material from existing structures. Adverse impacts to geology and substrates would be short term and minor.

12.87.5.2.2  Hydrology and Water Quality

Affected Resources

Hydrology
Northwest Florida has seven major watersheds, all of which have been identified as priorities under the Surface Water Management and Improvement (SWIM) program. Water quality protection is the underlying goal of SWIM, along with the preservation and restoration of natural systems and associated public uses and benefits (Northwest Florida Water Management District [NWFWMMD] 2011). Mashes Sands Park marks the point where the St. Marks River and Apalachee Bay Watershed and the Ochlockonee River and Bay Watershed (both SWIM priority waterbodies) meet.
Apalachee Bay is located at the western extent of Florida’s Big Bend coastline. Freshwater inputs into the estuary include the Wakulla, Wacissa, Aucilla, Enconfina, and Fenholloway Rivers. The bay is in direct contact with the Gulf of Mexico but also contains some smaller, more isolated embayments, including Ochlockonee, Dickson, and Oyster Bays. The region is characterized by limestone “karst” topography and includes the popular tourist/diving area of Wakulla Springs. The estuarine ecosystem begins just offshore in the shallow waters of the Apalachee Bay. Forested swamps are located throughout the region, a great deal of which is protected by the 275-km² St. Marks National Wildlife Refuge. The environment consists of primarily coastal and estuarine habitats.

Ochlockonee Bay covers approximately 9 square miles bordering southern Wakulla and Franklin Counties. The primary sources of freshwater inflow into the bay are the Ochlockonee and Sopchoppy Rivers (Thorpe et al. 2012).

**Floodplain**
The project is located in Federal Emergency Management Agency (FEMA)-designated Flood Zones according to the Flood Insurance Rate Maps (FIRMs) for Wakulla County (FIRM No. 1203150480C Wakulla County, effective date January 16, 1981). The project is located in Zone V20, which indicates coastal flood zones with velocity hazards (wave action) with base flood elevations undetermined.

**Wetlands**
Review of the USFWS National Wetlands Inventory (USFWS 2013a) identified wetlands within the park area as estuarine intertidal emergent and unconsolidated shore under the Cowardin classification system (Cowardin 1979). A proposed boardwalk and kayak launch occurs within the estuarine intertidal emergent wetland.

**Environmental Consequences**
Hydrology may be affected during in-water work repairs of the boat ramp and would likely be affected temporarily during construction of the boardwalk and kayak/canoe launch within the tidal marsh. Disturbance of sediments from boardwalk construction would temporarily suspend sediments in the water column during construction activities. After park renovations, increased boat traffic in Ochlockonee Bay could result in minimal impacts to surface water quality through fuel/oil discharge, and sediment disturbance (Environmental Protection Agency [EPA] 2012). Gravel or paved walking paths would result in a small increase in impervious surface area leading to a negligible increase of runoff.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (Corps) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the Corps and final authorization pursuant to CWA/RHA will be completed prior to project implementation.
All permit conditions, including mitigation measures for siltation, erosion, turbidity, and release of chemicals, would be strictly adhered to. During construction, BMPs and boom placement along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts. Florida Department of Environmental Protection (FDEP) permit conditions require erosion and turbidity mitigation measures, which include the following:

- Installation of floating turbidity barriers.
- Installation of erosion control measures along the perimeter of all work areas.
- Stabilization of all filled areas with sod, mats, barriers, or a combination.
- Stoppage of work if turbidity thresholds are exceeded. The soils would then be stabilized, work procedures modified, and the FDEP would be notified.

The FDEP permit also constitutes a Certification of Compliance with State Water Quality Standards under Section 401 of the CWA, which indicates that the project would comply with state water quality standards and other aquatic resource protection requirements.

Impacts from chemicals that could be released from sources such as construction equipment and boats are expected to be negligible. Required spill containment measures would be implemented for applicable construction activities. FDEP permit conditions require spill containment protection and mitigation measures as follows:

- Prohibiting boat repair or fueling facilities over the water.
- Prohibiting vessels from being removed from the water for the purposes of maintenance or repair.
- Prohibited activities include hull cleaning and painting, discharges or release of oils or greases, and related metal-based bottom paints associated with hull scraping, cleaning, and painting (Consolidated Wetland Resource Field Permit and Sovereign Submerged Lands Authorization, FDEP, July 12, 2010).

**Floodplains**

There are no base flood elevations mapped for this area. Although construction of the boardwalk and kayak/canoe launch through tidal marsh and renovations to facilities at the boat ramp area would be in the floodplain, the construction or operation of the proposed project would not increase flood risk or change floodplain values. No adverse impacts would be anticipated.

**Wetlands**

Construction of the kayak/canoe launch and boardwalk would have a minor long-term impact on tidal marsh. Although construction of the kayak/canoe launch and boardwalk would affect emergent marsh habitat through shading, this represents only a small portion of the total emergent marsh habitat located in the surrounding area, which would continue to support local and regional vegetative communities. Overall, there would be short-term minor impacts to wetland habitats during construction due to vegetation loss and soil disturbance. There would be long-term impacts to wetlands as a result of the proposed project, but because of the small footprint of project features and the overall availability
of the wetland habitats on site, these impacts would also be minor. A USACE CWA Section 404/10 permit would be needed for all work in wetland and other jurisdictional waters.

With required mitigation in place, impacts to water quality would be expected to be minimal. During construction, BMPs along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts. Overall, adverse impacts to hydrology and water quality would be minor over both short and long-term timescales.

12.87.5.2.3 Air Quality and Greenhouse Gas Emissions

Affected Resources
The EPA has established the 8-hour ground-level ozone standard. Under this standard, the EPA can designate an area as “nonattainment” if it has violated the 8-hour ozone standard. The EPA may also designate an area as “attainment/unclassifiable,” which is an area where monitored air quality data show either that the area has not violated the ozone standard over a 3-year period or that there is not enough information to determine the air quality in the area. The entire state of Florida was designated as attainment area for the 8-hour ozone standard. Air quality within the Florida panhandle is in attainment with the National Ambient Air Quality Standards (http://www.epa.gov/airquality/urbanair/sipstatus/reports/fl_areabypoll.html).

Greenhouse Gases
Greenhouse gases (GHGs) are chemical compounds found in the Earth’s atmosphere that absorb and trap infrared radiation as heat. Global atmospheric GHG concentrations are a product of continuous emission (release) and removal (storage) of GHGs over time. In the natural environment, this release and storage is largely cyclical. For instance, through the process of photosynthesis, plants capture atmospheric carbon as they grow and store it in the form of sugars. Human activities such as deforestation, soil disturbance, and burning of fossil fuels disrupt the natural cycle by increasing the GHG emission rate over the storage rate, which results in a net increase of GHGs in the atmosphere. The principal GHGs emitted into the atmosphere through human activities are carbon dioxide (CO₂), methane, nitrous oxide, and fluorinated gases, such as hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride, with CO₂ as the major GHG emitted.

Environmental Consequences
Project implementation would require the use of heavy equipment, which could temporarily lead to air pollution due to equipment exhaust and fugitive dust (Table 12-54). Pollution that occurs during project implementation would be localized and short term in duration due to the limited amount of heavy equipment need for the project. Project implementation could increase park use and boat traffic, which would result in an increase in vehicle and exhaust fumes.

Based on the assumptions described in Table 12-54 above, GHG emissions would not exceed 25,000 metric tons per year. Given the projected construction-phase GHG emissions, the small scale and short duration of the project, and increased park use, predicted impacts on air quality from GHG emissions would be anticipated to be minor on both short and long-term timeframes.
12.87.5.2.4 Noise

Affected Resources
Noise can be defined as unwanted or nuisance sound. The Noise Control Act of 1972 (42 USC 4901–4918) was enacted to establish noise control standards and regulate noise emissions from commercial products such as transportation and construction equipment. Amplitude is the magnitude of a sound and is usually expressed in decibels (dB), a dimensionless ratio of sound pressure to that of a reference pressure. The A-weighted decibel (dBA) is the adjusted unit of sound used to describe the human response to noise from industrial and transportation sources. The threshold of hearing is 0 dB. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear.

Table 12-54. Greenhouse gas emission rates.

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>NUMBER OF 8-HOUR DAYS</th>
<th>CO₂ (METRIC TONS)</th>
<th>CH₄ (CO₂E) (METRIC TONS)</th>
<th>NOₓ (CO₂E) (METRIC TONS)</th>
<th>TOTAL CO₂E (METRIC TONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bobcat</td>
<td>90</td>
<td>0.21</td>
<td>0.072</td>
<td>0.848</td>
<td>101.7</td>
</tr>
<tr>
<td>Grader</td>
<td>20</td>
<td>0.39</td>
<td>0.0003</td>
<td>0.003</td>
<td>7.8</td>
</tr>
<tr>
<td>Paver</td>
<td>20</td>
<td>0.16</td>
<td>0.04</td>
<td>0.64</td>
<td>16.8</td>
</tr>
<tr>
<td>Roller</td>
<td>20</td>
<td>0.16</td>
<td>0.04</td>
<td>0.64</td>
<td>16.8</td>
</tr>
<tr>
<td>Dump truck</td>
<td>21</td>
<td>0.34</td>
<td>0.0002</td>
<td>0.002</td>
<td>7.14</td>
</tr>
<tr>
<td>Pickup truck</td>
<td>360</td>
<td>0.16</td>
<td>0.0001</td>
<td>0.001</td>
<td>57.6</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>207.84</strong></td>
</tr>
</tbody>
</table>

1 Emissions assumptions for all equipment based on 8 hours of operation.
2 CO₂ emissions assumptions for diesel and gasoline engines based on EPA (2009).
3 CH₄ and NOₓ emissions assumptions and CO₂e calculations based on EPA (2011).
4 Construction equipment emission factors based on EPA NONROAD emission factors for 250-horsepower pieces of equipment. Data were accessed through the California Environmental Quality Act Roadway Construction Emissions Model.
5 Emissions assumptions for an 8-cylinder, 6.2-liter gasoline engine Ford F150 pickup and 18 gallon (half-tank) daily fuel consumption (U.S. Department of Energy 2013).

Table 12-55 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.

Table 12-55. Typical noise levels for common sources.

<table>
<thead>
<tr>
<th>NOISE SOURCE OR EFFECT</th>
<th>SOUND LEVEL (DBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawn mower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Adapted from U.S. Department of Energy and Bonneville Power Administration (1986).

Noise levels in the project area vary depending on the season, time of day, number and types of noise sources, and the distance of the receptor from noise sources. Existing ambient noise levels in Mashes Sands Park are generally low and primarily result from vehicle traffic, recreational boating, overhead aircraft, and ambient natural sounds such as wind, waves, and wildlife. Noise-sensitive receptors in the
project area include recreational users, nearby residences, and wildlife. No residential properties are directly adjacent to the boat ramp area.

**Environmental Consequences**

Machinery and equipment used during renovations of parking, picnic, and restroom facilities, repairs to the boat ramp, and construction of boardwalks and walking paths would generate noise during the project. This noise may disturb wildlife and humans using the area, but this effect would be short term during the construction phase and daylight hours only. Once built, the proposed project would not cause long-term noise impacts. There would be minor noise impacts associated with increased boat traffic on the water and increased vehicle traffic at the ramp area. Overall long-term impacts from renovations including increased boating, vehicle traffic, and recreational activities would remain minor.

**12.87.5.3 Biological Environment**

**12.87.5.3.1 Living Coastal and Marine Resources**

**Vegetation**

**Affected Resources**

The northeast Gulf of Mexico shoreline contains about 60 percent of the coastal and freshwater marshes in the United States, including 400,000 to 500,000 acres of salt marsh in northern Florida alone. From Apalachicola Bay south to Tampa Bay, salt marshes are the main coastal community. Salt marshes act as a transitional zone from terrestrial uplands to ocean life. They absorb and trap potential pollutants before they reach estuaries and fragile waterways. Salt marshes also stabilize coastal shorelines, preventing erosion and sediments from washing offshore, especially during storm tides. Widely considered one of the most productive ecosystems in the world, salt marshes produce up to 80 metric tons per hectare of plant material annually. Tidal waters distribute plant cellulose (created when plants die and decompose) and flush salt and toxins from the system, bringing in nutrients that stimulate growth. Salt marshes are important to wildlife as well. They are a habitat for early life stages of many ocean species as they feed on invertebrates and are home to many marine fishes because shallow brackish water keeps large predatory fish out. Estuaries near Gulf Coast salt marshes provide a nursery for at least 70% of Florida's recreational and commercial fishes, shellfish, and crustaceans—all dependent on coastal wetlands.

Salt marshes in the Florida panhandle are usually characterized by large, fairly homogeneous expanses of dense black needle rush (*Juncus roemerianus*) (Lewis 2009). Often they are accompanied on the waterward side by smooth cordgrass (*Spartina alterniflora*). The *Juncus* and *Spartina* zones are very distinctive and can be separated easily by elevation, with *Spartina* inhabiting the lower, regularly flooded zone, and *Juncus* found in higher, less flooded area. Frequently, additional species of cordgrass (*Spartina* spp.), saltgrass (*Distichlis spicata*), glasswort (*Salicornia virginica*), various sedges (*Scirpus* spp.), and common cane (*Phragmites australis*) occur (Lewis 2009).

**Environmental Consequences**

Within the project area, vegetative habitats at Mashes Sands Park consist of emergent salt marsh, sand dune zones that consist of various coastal grasses, and emergents such as cordgrasses. The proposed boardwalk and kayak/canoe launch within the salt marsh would create a localized, short- and long-term,
minor impact to the associated vegetation during construction through vegetation removal during installation and the long-term shading effect of the boardwalk.

**Wildlife and Wildlife Habitat**

**Affected Resources**
The project site is surrounded by a relatively undisturbed natural environment with a multitude of natural communities, including tidal marsh, shoreline, upland forest, and coastal dune grasslands that support a number of common mammals and birds including shorebirds, wading birds, and waterfowl.

**Environmental Consequences**
The common wildlife of the park and the respective wildlife habitat would face a short-term minor impact during construction from noise produced by construction equipment, as well as minor short- and long-term minor habitat loss due boardwalk and observation platform construction.

**Marine and Estuarine Fauna (fish, shell beds, and benthic organisms)**

**Affected Resources**
Ochlockonee and Apalachee Bays provide habitat for numerous fish and other marine species. Fish commonly caught in the project area are mullet (*Mugil cephalus*), red drum (*Sciaenops ocellatus*), speckled trout (*Cynoscion nebulosus*), white trout (*C. arenarius*), and flounder (*Paralichthys albigutta*). The parks tidal marsh area is supportive of many species, including sheepshead minnow (*Cyprinodon variegatus*), longnose killfish (*Fundulus similis*), sailfin molly (*Poecilia latipinna*), and pinfish (*Lagodon rhomboids*), in addition to being a nursery for many other fish species and benthic invertebrates (University of Florida 2013).

**Environmental Consequences**
Increases in boating opportunities and recreational fishing are not expected to adversely impact fish populations. The number of new trips generated by the park improvements would not be significant in the context of the total number of trips generated by all access points in Florida. Therefore, these impacts would be minor. As much of the renovations would take place in the uplands, the minor in-water work at the boat ramp and installation of a boardwalk within the salt marsh would result in short-term minor adverse impacts for fish and benthic invertebrates present in the area.

**Protected Species**
Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

**Affected Resources**
The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Wakulla County,
Florida Table 12-56 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

Table 12-56. Potential Impacts to Species/Critical Habitats managed by USFWS.

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle, Hawksbill turtle, Kemp’s ridley turtle; Leatherback turtle, Loggerhead turtle</td>
<td>Impacts to any sea turtles using estuarine or marine habitats will be evaluated in consultation with NMFS, the agency that has the jurisdiction to review impacts to sea turtles in the marine and estuarine environments, and are not addressed in this consultation. No nesting habitat is present within the construction area. Therefore, no impacts from construction are anticipated. Sea turtles may nest in areas north and east of the proposed project and these areas could be accessed by users of the facilities proposed in this project. Visitors could accidentally trample nests/hatchlings, or increase predation through inadequate trash disposal. Conservation measures are expected to minimize any visitor impacts to an insignificant and discountable level.</td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>Wakulla County is part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees are unlikely to be using the marsh channel habitats therefore no impacts from construction are expected. Implementation of conservation measures will ensure no impacts to manatees occur. This work will not increase motorized boating in the area, so the risks to West Indian manatees are discountable.</td>
</tr>
<tr>
<td>Piping plover and Red knot.</td>
<td>No habitat for piping plover or red knot is present in the construction area. Therefore, no impacts from construction are anticipated. Piping plover and red knot may rest and forage in areas north and east of the proposed project and these areas could be accessed by users of the facilities proposed in this project. Visitors could accidentally startle birds or increase predation through inadequate trash disposal. Human disturbance could startle individuals. Because other foraging/resting habitats are nearby (less than two miles) the Trustees would expect this temporary displacement to be within normal movement patterns and consider this effect insignificant and discountable. The proposed project will not result in any changes to shoreline habitats where these species could be feeding or resting. Conservation measures are expected to minimize any visitor impacts (including the potential for increased predation) to an insignificant and discountable level.</td>
</tr>
<tr>
<td>Gulf sturgeon</td>
<td>NMFS was consulted on Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon was not considered in the consultation with the USFWS.</td>
</tr>
</tbody>
</table>

In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened

34 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered
Kemp’s Ridley Sea Turtle, *Lepidochelys kempii*, Endangered

Additional information on some of these species is provided below.

**Sea Turtles and Marine Mammals**
There are five species of sea turtles that are found within the Gulf of Mexico: green sea turtle (*Chelonia mydas*), hawksbill sea turtle (*Eretmochelys imbricata*), loggerhead sea turtle (*Caretta caretta*), Kemp’s ridley sea turtle (*Lepidochelys kempii*), and leatherback sea turtle (*Dermochelys coriacea*). All five species of sea turtles found in the Gulf of Mexico are listed under the ESA. The Gulf populations of green (breeding populations in Florida), hawksbill, Kemp’s ridley, and leatherback sea turtles are listed as endangered. Loggerhead (northwest Atlantic distinct population segment) and green (except the Florida breeding population) sea turtles are listed as threatened (NMFS 2013a).

Sea turtles in the Gulf (with the exception of the leatherback turtle) have a life history cycle where hatchlings develop in open ocean areas (e.g., continental shelf), and juvenile and adult turtles move landward and inhabit coastal areas. Leatherback sea turtles spend both the developmental and adult life stages in the open oceanic areas of the Gulf of Mexico. Sea turtles nest on low and high energy ocean beaches and on sandy beaches in some estuarine areas. Immediately after hatchlings emerge from the nest, they begin a period of frenzied activity. Sea turtles utilize resources in coral reefs, shallow water habitat (including areas of seagrasses), and areas with rocky bottoms.

All five species of sea turtles are migratory and thus have a wide geographic range. All species may regularly occur within the waters surrounding Wakulla County though none of have had recent confirmed nesting or nesting attempts in the county according to the Florida Fish and Wildlife Research Institute.

Twenty-two marine mammals are native to the Gulf of Mexico: 21 pelagic species of whales and dolphins, and the West Indian manatee. The endangered West Indian manatee is known to occur in Wakulla Springs and river and is likely to occur in project area waters. Manatees typically seek out shallow seagrass areas as preferred feeding habitat (USFWS 2010) and commonly use the nearby Wakulla River. Additionally, bottlenose dolphin (*Tursiops spp.*) populations are known to migrate into bays, estuaries, and river mouths and could be located in any of the proposed project areas (NMFS 2013b). Bottlenose dolphins have been observed entering and leaving nearshore coastal waters (NMFS 2012).

**Smalltooth Sawfish and Gulf Sturgeon**
The small tooth sawfish (*Pristispectinata*) is federally listed as an endangered species. Formerly common from Texas to North Carolina, its current distribution is mainly restricted to south Florida and the Keys; adults are uncommon in the Florida panhandle (NMFS2009a). Juveniles inhabit shallow coastal waters, especially shallow mudbanks and mangrove habitats. Very few juveniles have been documented in areas north of the current range of mangroves (i.e., north of 29 N latitude). Adults are found with juveniles but also in deeper water habitat (NMFS2009a). The decline of this species is mainly attributed to mortality as by catch in commercial and sportfisheries. The current range of this species has contracted to the
peninsula of Florida, though smalltooth sawfish are common only in the Everglades region at the southern tip of the state.

Gulf sturgeon are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Pearl River in Louisiana to the Suwannee River, in Florida (NMFS 2009). Adult fish reside in rivers for 8 to 9 months each year and in estuarine or Gulf of Mexico waters during the 3 to 4 cooler months of each year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993).

Gulf sturgeon critical habitat was jointly designated by the NMFS and USFWS on April 18, 2003 (50 C.F.R. 226.214). The proposed project site is located within Critical Habitat for Gulf sturgeon. Critical habitat was designated based on seven primary constituent elements (PCEs) essential for its conservation, as defined in the 2003 Federal Register and are listed below. PCE’s 1, 5, 6, and 7 are present within the project area.

The PCE's are:

1. Abundant food items, such as detritus, aquatic insects, worms, and/or mollusks, within riverine habitats for larval and juvenile life stages; and abundant prey items, such as amphipods, lancelets, polychaetes, gastropods, ghost shrimp, isopods, mollusks, and/or crustaceans, within estuarine and marine habitats and substrates for subadult and adult life stages;

2. Riverine spawning sites with substrates suitable for egg deposition and development, such as limestone outcrops and cut limestone banks, bedrock, large gravel or cobble beds, marl, soapstone, or hard clay;

3. Riverine aggregation areas, also referred to as resting, holding, and staging areas, used by adult, subadult, and/or juveniles, generally, but not always, located in holes below normal riverbed depths; these are believed necessary for minimizing energy expenditure during freshwater residency and possibly for osmoregulatory functions;

4. A flow regime (i.e., the magnitude, frequency, duration, seasonality, and rate-of-change of freshwater discharge over time) necessary for normal behavior, growth, and survival of all life stages in the riverine environment, including migration, breeding site selection, courtship, egg fertilization, resting, and staging, and for maintaining spawning sites in suitable condition for egg attachment, egg sheltering, resting, and larval staging;

5. Water quality, including temperature, salinity, pH, hardness, turbidity, oxygen content, and other chemical characteristics necessary for normal behavior, growth, and viability of all life stages;

6. Sediment quality, including texture and chemical characteristics, necessary for normal behavior, growth, and viability of all life stages; and
7. Safe and unobstructed migratory pathways necessary for passage within and between riverine, estuarine, and marine habitats (e.g., an unobstructed river or a dammed river that still allows for passage).

Piping Plover
The sandy beaches and shorelines adjacent to the project area offer suitable foraging and resting habitat for the piping plover during the winter migratory season, and piping plover may forage in the shallow waters of the project area. Natural shorelines in the proposed project vicinity provide suitable winter migration resting habitat for the piping plover. Piping plover wintering habitat includes beaches, mudflats, and sandflats, as well as barrier island beaches and spoil islands (Haig 1992 as cited by USFWS 2013). On the Gulf Coast, preferred foraging areas are associated with wider beaches, mudflats, and small inlets (USFWS 2013).

Red Knot
The red knot, a federal proposed species, uses the state of Florida both for wintering habitat and migration stopover habitat for those that continue to migrate down to specific wintering locations in South America (Niles et al. 2008). Wintering and migrating red knots forage along sandy beaches, tidal mudflats, salt marshes, and peat banks (Harrington 2001). Observations indicate that red knots also forage on oyster reef and exposed bay bottoms, and roost on high sand flats, reefs, and other sites protected from high tides (Niles et al. 2008). In wintering and migration habitats, red knots commonly forage on bivalves, gastropods, and crustaceans. Threats to wintering and stopover habitat in Florida include shoreline development, hardening, dredging, deposition, and beach raking (Niles et al. 2008). The proposed project area at Mashes Sands Park contains tidal marsh that may provide suitable foraging habitat for migrating of wintering red knot.

Essential Fish Habitat (EFH)
EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as "those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Table 12-57 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Wakulla Mashes Sands Improvement site and the Gulf of Mexico.
Table 12-57. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.

<table>
<thead>
<tr>
<th>EFH Category</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Atlantic Highly Migratory Species</strong></td>
<td></td>
</tr>
<tr>
<td>Atlantic Sharpnose Shark - Adult</td>
<td>Atlantic Sharpnose Shark - Adult</td>
</tr>
<tr>
<td>Atlantic Sharpnose Shark - Juvenile</td>
<td>Atlantic Sharpnose Shark - Juvenile</td>
</tr>
<tr>
<td>Atlantic Sharpnose Shark - Neonate</td>
<td>Atlantic Sharpnose Shark - Neonate</td>
</tr>
<tr>
<td>Blacknose Shark - Adult</td>
<td>Blacknose Shark - Adult</td>
</tr>
<tr>
<td>Blacknose Shark - Juvenile</td>
<td>Blacknose Shark - Juvenile</td>
</tr>
<tr>
<td>Blacknose Shark - Neonate</td>
<td>Blacknose Shark - Neonate</td>
</tr>
<tr>
<td>Blacktip Shark - Adult</td>
<td>Blacktip Shark - Adult</td>
</tr>
<tr>
<td>Blacktip Shark - Juvenile</td>
<td>Blacktip Shark - Juvenile</td>
</tr>
<tr>
<td>Blacktip Shark - Neonate</td>
<td>Blacktip Shark - Neonate</td>
</tr>
<tr>
<td>Bonnethead Shark - Adult</td>
<td>Bonnethead Shark - Adult</td>
</tr>
<tr>
<td>Bonnethead Shark - Juvenile</td>
<td>Bonnethead Shark - Juvenile</td>
</tr>
<tr>
<td>Bonnethead Shark - Neonate</td>
<td>Bonnethead Shark - Neonate</td>
</tr>
<tr>
<td>Bull Shark - Adult</td>
<td>Bull Shark - Adult</td>
</tr>
<tr>
<td>Great Hammerhead Shark - All</td>
<td>Great Hammerhead Shark - All</td>
</tr>
<tr>
<td>Lemon Shark - Adult</td>
<td>Lemon Shark - Adult</td>
</tr>
<tr>
<td>Nurse Shark - Adult</td>
<td>Nurse Shark - Adult</td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark - Juvenile</td>
<td>Scalloped Hammerhead Shark - Juvenile</td>
</tr>
<tr>
<td>Scalloped Hammerhead Shark - Neonate</td>
<td>Scalloped Hammerhead Shark - Neonate</td>
</tr>
<tr>
<td>Tiger Shark - Juvenile</td>
<td>Tiger Shark - Juvenile</td>
</tr>
<tr>
<td><strong>Coastal Migratory Pelagics of the Gulf of Mexico AND South Atlantic</strong></td>
<td></td>
</tr>
<tr>
<td>Spanish Mackerel</td>
<td></td>
</tr>
<tr>
<td>Cobia</td>
<td></td>
</tr>
<tr>
<td>King Mackerel</td>
<td></td>
</tr>
<tr>
<td><strong>Gulf of Mexico Shrimp</strong></td>
<td></td>
</tr>
<tr>
<td>Pink Shrimp</td>
<td></td>
</tr>
<tr>
<td>White Shrimp</td>
<td></td>
</tr>
<tr>
<td>Brown Shrimp</td>
<td></td>
</tr>
<tr>
<td><strong>Reef Fish Resources of the Gulf of Mexico</strong></td>
<td></td>
</tr>
<tr>
<td>Lane Snapper</td>
<td></td>
</tr>
<tr>
<td>Lesser Amberjack</td>
<td></td>
</tr>
<tr>
<td>Mutton Snapper</td>
<td></td>
</tr>
<tr>
<td>Nassau Grouper</td>
<td></td>
</tr>
<tr>
<td>Queen Snapper</td>
<td></td>
</tr>
<tr>
<td>Red Grouper</td>
<td></td>
</tr>
<tr>
<td>Red Snapper</td>
<td></td>
</tr>
<tr>
<td>Scamp</td>
<td></td>
</tr>
<tr>
<td>Silk Snapper</td>
<td></td>
</tr>
<tr>
<td>Snowy Grouper</td>
<td></td>
</tr>
<tr>
<td>Speckled Hind</td>
<td></td>
</tr>
<tr>
<td>Tilefish</td>
<td></td>
</tr>
<tr>
<td>Vermilion Snapper</td>
<td></td>
</tr>
<tr>
<td>Warsaw Grouper</td>
<td></td>
</tr>
</tbody>
</table>
### EFH Category

<table>
<thead>
<tr>
<th>EFH Category</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenchman</td>
<td></td>
</tr>
<tr>
<td>Yellowedge Grouper</td>
<td></td>
</tr>
<tr>
<td>Yellowfin Grouper</td>
<td></td>
</tr>
<tr>
<td>Yellowmouth Grouper</td>
<td></td>
</tr>
<tr>
<td>Almaco Jack</td>
<td></td>
</tr>
<tr>
<td>Banded Rudderfish</td>
<td></td>
</tr>
<tr>
<td>Black Grouper</td>
<td></td>
</tr>
<tr>
<td>Blackfin Snapper</td>
<td></td>
</tr>
<tr>
<td>Blueline Tilefish</td>
<td></td>
</tr>
<tr>
<td>Cubera Snapper</td>
<td></td>
</tr>
<tr>
<td>Gag</td>
<td></td>
</tr>
<tr>
<td>Goldface Tilefish</td>
<td></td>
</tr>
<tr>
<td>Gray (Mangrove) Snapper</td>
<td></td>
</tr>
<tr>
<td>Gray Triggerfish</td>
<td></td>
</tr>
<tr>
<td>Greater Amberjack</td>
<td></td>
</tr>
<tr>
<td>Hogfish</td>
<td></td>
</tr>
</tbody>
</table>

**State-Listed Birds, MBTA, and BGEPA**

At Bald Point State Park, located approximately 1 mile south of Mashes Sands Park, approximately 250 species have been observed, while at St. Marks National Wildlife Refuge to the north of the park, over 300 species have been recorded. There are numerous State of Florida—listed bird species with potential for occurrence in and around Mashes Sands Park.

The sandy shores of Mashes Sands Park provide foraging habitat for many shorebird species, while the salt marshes provide habitat for many wading birds and wintering waterfowl.

The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to determine if a permit is needed, and Florida’s *Bald Eagle Management Plan* guidelines would be followed (FWC 2008). One historically used bald eagle nest (last active in 2011) has been recorded in Mashes Sands Park approximately 3,300 feet north of any aspect of the proposed project (FWC 2013).

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-58 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.
Table 12-58. Potential project impacts to different migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oystercatchers and Wilson’s plovers</td>
<td>Nesting, foraging, feeding, resting</td>
<td>These species are known to nest, feed, and rest within Mashes Sands (though not within the construction area).</td>
</tr>
<tr>
<td>Shorebirds/marsh</td>
<td>Foraging, feeding, resting, nesting</td>
<td>Shorebirds nest, forage, feed, and rest, and in the types of habitats consistent with some of the shoreline areas near the proposed project. As such, they may be impacted locally and temporarily by the project.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Resting, roosting, nesting</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats including dunes. However, could startle resting birds, but, because activities will occur during the day, roosting should not be impacted.</td>
</tr>
<tr>
<td>Passerines</td>
<td></td>
<td>Passerines could be foraging, resting, or nesting in nearby grasses, shrubs, or trees.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-59.

Table 12-59. Conservation measures to minimize impacts to migratory bird groups

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oystercatchers and Wilson’s plovers</td>
<td>Educational signage/Kiosks will be posted at various locations at the project site including the existing boat ramp and the new canoe/kayak launch. The signage will be developed in coordination with NMFS, FWC, and the Panama City Ecological Services Field Office and will discuss various trust resources (listed species below and migratory birds) and means to protect species and habitats while enjoying the park. Signage may identify areas to avoid in order to prevent impacts to species. If necessary, breeding areas may need to be posted (during breeding season) for avoidance to further identify sensitive areas that visitors must avoid.</td>
</tr>
<tr>
<td>Shorebirds/Marsh birds</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. The Trustees expect foraging and resting birds would be able to move to another nearby location to continue foraging and resting. If project activities occur during shorebird nesting season (February 15 to August 31), the FWC will be contacted to obtain the most recent guidance to protect nesting shorebirds/marsh birds or rookeries and their recommendations will be implemented.</td>
</tr>
<tr>
<td>Seabirds (terns, gulls, skimmers, double-crested cormorant, American white pelican, brown pelican)</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. Nesting should not be impacted because the project will not occur near nesting habitats.</td>
</tr>
<tr>
<td>Passerines</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. Roosting should not be impacted because the project will occur during daylight hours only. Limited vegetation removal may be necessary. If vegetation removal is necessary during the nesting season, FWC will be contacted for guidance to protect any nesting birds.</td>
</tr>
</tbody>
</table>
Environmental Consequences
The proposed project has been evaluated for potential short- and long-term impacts to state and federally listed threatened and endangered species that may occur within and adjacent to the project areas based on available suitable habitat and restoration goals. Descriptions of these evaluations are provided below.

Protected Species
The USFWS reviewed the proposed Wakulla Mashes Sands Park Improvements project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On March 24, 2014, the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect, five species of sea turtles (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead), piping plover, and red knot (if listed). The USFWS also concurred with the Trustees’ determination that the project will have no effect on West Indian manatee.

Consultation of potential impacts on protected species managed by NMFS from this project was initiated on February 4, 2014. The Trustees’ review of the potential impacts of the project for protected species managed by NMFS determined the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the project implementation area:

- Smalltooth Sawfish – The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Gulf Sturgeon - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Green Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Loggerhead Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Hawksbill Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Leatherback Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.
- Kemp’s Ridley Sea Turtle - The proposed project may affect, but is not likely to adversely affect and will not jeopardize the continued existence of the species.

Concurrence from NMFS with the Trustees’ conclusions for these species and associated critical habitats is still pending.

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.
**Essential Fish Habitat**

The Trustees’ review concluded the project is not likely to adversely affect EFH. The proposed canoe/kayak launch construction will take place adjacent to the existing boat ramp. A very small area of subtidal habitat may be converted by constructing a hard-surfaced boat launch, however, this will take place near the existing boat launch designed for larger vessels, where the habitat is already likely to be significantly disturbed as a result of both the boat traffic to and from the boat ramp and use of the existing boat launch structure and shoreline habitat.

On April 24, 2014 NMFS completed its evaluation of potential EFH impacts and concluded that the project construction is not likely to adversely affect EFH and any disturbance to species will be minor and brief (Fay, 2014).

**Bald Eagle and MBTA**

Bald eagles are not present at the project location so will not be affected. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

**Invasive Species**

**Affected Resources**

Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

**Environmental Consequences**

Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6 Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.
12.87.5.4 Human Uses and Socioeconomics

12.87.5.4.1 Socioeconomics and Environmental Justice

Affected Resources

The proposed project would be located in Wakulla County, Florida. Data and characteristics on the population of Wakulla County are summarized and compared to those same measures for the population of the state as a whole (Table 12-60).

Environmental Consequences

The proposed project would create approximately 40 jobs in the short term during construction. The improved park access and amenities restoration would result in a minor increase in visitation to the site, which would potentially benefit the local economy for multiple years. This project would not create a benefit for any specific group or individual, but rather would produce benefits realized by the local community and visitors. Also, there are no indications that the public park improvements would be contrary to the goals of Executive Order 12898 or would create disproportionate, adverse human health or environmental impacts on minority or low income populations of the surrounding community. Therefore no environmental justice impacts would be anticipated in the short or long term.

Table 12-60. Population characteristics of Wakulla County compared to State of Florida data.

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>WAKULLA COUNTY</th>
<th>FLORIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persons under 5 years, percent, 2012</td>
<td>5.4%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Persons under 18 years, percent, 2012</td>
<td>21.7%</td>
<td>20.7%</td>
</tr>
<tr>
<td>Persons 65 years and over, percent, 2012</td>
<td>12.0%</td>
<td>18.2%</td>
</tr>
<tr>
<td>Female persons, percent, 2012</td>
<td>45.2%</td>
<td>51.1%</td>
</tr>
<tr>
<td>White alone, percent, 2012</td>
<td>82.2%</td>
<td>78.3%</td>
</tr>
<tr>
<td>Black or African American alone, percent, 2012</td>
<td>14.7%</td>
<td>16.6%</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone, percent, 2012</td>
<td>0.7%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Asian alone, percent, 2012</td>
<td>0.5%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander alone, percent, 2012</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Two or More Races, percent, 2012</td>
<td>1.8%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Hispanic or Latino, percent, 2012</td>
<td>3.6%</td>
<td>23.2%</td>
</tr>
<tr>
<td>White alone, not Hispanic or Latino, percent, 2012</td>
<td>79.2%</td>
<td>57.0%</td>
</tr>
<tr>
<td>Homeownership rate, 2007–2011</td>
<td>84.2%</td>
<td>69.0%</td>
</tr>
<tr>
<td>Median household income, 2007–2011</td>
<td>$54,151</td>
<td>$47,827</td>
</tr>
<tr>
<td>Persons below poverty level, percent, 2007–2011</td>
<td>12.8%</td>
<td>14.7%</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau State and County QuickFacts (2013).

12.87.5.5 Cultural Resources

Affected Resources

A review of the Florida Master Site File shows that there are seven previously recorded archaeological sites located within 1 mile of the project location. These sites are all prehistoric and generally consist of shell middens with ceramic artifacts and some faunal remains.
This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

**Environmental Consequences**

A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.87.5.5.1 Infrastructure

**Affected Resources**

The existing infrastructure at Mashes Sands Park consists of access roads, parking areas, restrooms, a boardwalk, a boat ramp, a dock, and both beachfront and boat ramp area pavilions with picnic tables. Access to the park is from County Road 372 traveling west from State Highway 98.

**Environmental Consequences**

The project would have a short-term minor impact on traffic during the construction phase only. No impacts to other infrastructure are anticipated in the project during construction. There may be a small increase in traffic entering the park due to improvements, but this would not be expected to have any impact on existing traffic conditions.

12.87.5.5.2 Land and Marine Management

**Affected Resources**

Wakulla County has a Comprehensive Plan (WakullaCounty 2009) that includes a Recreation and Open Space Element. The Recreation and Open Space Element includes policies and goals for preservation and enhancement of existing park areas and expansion of new areas. The surrounding land use outside the park is currently undisturbed private lands or residential along the southern side of the peninsula. Within Mashes Sands Park land use is primarily recreational. The project would be located in a coastal area that is regulated by the federal Coastal Zone Management Act of 1972 (CZMA) and the Florida Coastal Management Act of 1978.

**Environmental Consequences**

The project would be consistent with current land use and the Wakulla County Comprehensive Plan and would have no adverse impact on land use or marine management in the area.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS. The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process.
Aesthetics and Visual Resources

Affected Resources
Mashes Sands Park is mostly an undeveloped natural park site. A public boat ramp area with picnic and restroom facilities is located near an inlet in the southern portion of the park along Ochlockonee Bay. A residential area is approximately 200 feet west of the park boat ramp area. A small dirt road running south from County Road 372 leads to an existing boardwalk and fishing pier in Ochlockonee Bay.

Environmental Consequences
Temporary impacts to visual resources would result from implementation of the proposed park improvement activities. Construction equipment would be temporarily visible to nearby residents, visitors, and recreational users. There would be new structures placed in various natural areas that would detract from the existing character of the viewshed. These impacts would be long term, but would not be expected to result in a significant detraction from the overall natural viewshed.

Tourism and Recreational Use

Affected Resources
Primary activities and uses that occur at the park are boating access, fishing, bird watching, swimming, and other recreational beach activities. From October 2012 to September 2013, Wakulla County parks and recreation staff estimated approximately 1,404 visitors to Mashes Sands beach and 1,119 visitors to the boat ramp. Use numbers are mostly based on the time period from May 1 to Labor Day when a park attendant is there to charge an entrance fee.

Environmental Consequences
For a short time, the construction process would limit recreational activities near the construction areas. However, if the proposed project is implemented, an increase in visitation for the life of the project is anticipated. Minor long-term beneficial impacts to tourism and recreational use would be expected. There would be a minor short-term adverse impact to tourism or recreational use during construction.

Public Health and Safety and Shoreline Protection

Affected Resources
The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the Emergency Planning and Community Right-to-Know Act, and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of these materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

A review of the EPA’s EnviroMapper revealed that there are no CERCLA sites located within or immediately adjacent to the park (EPA 2013).
Environmental Consequences

Project construction would require mechanical equipment that uses oil, lubricants, and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of construction-related hazardous materials such as vehicle fuels, oil, hydraulic fluid, and other vehicle maintenance fluids. If a release should occur, it would be contained and cleaned up promptly in accordance with all applicable regulations, and the incident would be reported to appropriate agencies. As a result, no adverse impacts associated with construction-related hazardous materials would be anticipated. The period of time during which a release could occur from construction activities would be short term and any release would be expected to be minor.

As no work is expected to take place on the shoreline, the proposed project would have no anticipated adverse impacts on shoreline erosion.

12.87.6 Summary and Next Steps

The Wakulla County Mashes Sands Park Improvements project would improve recreation areas at the Wakulla County Mashes Sands Park. The proposed improvements include constructing observation platforms, boardwalks, and walking paths, improving the boat ramp area, and picnic areas, renovating the parking area, and the restroom facility, and constructing a canoe/kayak launch site. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational boating and beach use opportunities by improving the recreational opportunities at the park. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.87.7 References


Fay, V. 2014. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for the proposed Wakulla County Marshes Sands Park Improvements project in and adjacent to Ochlocknee Bay, Bay County, Florida. April, 24.


2001. *Construction Guidelines in Florida for Minor Piling-Supported Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh or Mangrove Habitat*. August.


12.88 Northwest Florida Estuarine Habitat Restoration, Protection and Education- Fort Walton Beach: Project Description

12.88.1 Project Summary
The proposed Northwest Florida Fort Walton Beach Educational Boardwalk project would construct new boardwalks and connect them to existing boardwalks as well as conducting several small natural resource and habitat enhancement projects in Fort Walton Beach. The proposed improvements include constructing a new educational and interactive boardwalk, expansion of an existing intertidal oyster reef, and restoration of a degraded salt marsh. The total estimated cost of the project is $4,643,547.

12.88.2 Background and Project Description
The Trustees propose to improve and enhance an existing boardwalk as well as expanding an oyster reef and restoration a salt marsh in Fort Walton Beach in Okaloosa County (See Figure 12-53 for general project location). The objective of the proposed project is to enhance and/or increase recreational use opportunities by improving the boardwalks and enhancing adjoining natural resources and habitat. The restoration work proposed includes constructing an educational and interactive boardwalk along the bay shoreline at Fort Walton Beach. The boardwalk would allow public access to areas of Santa Rosa Sound that are currently inaccessible to the public.

The new boardwalk would be 8,390 ft long and would be constructed using a combination of wood and concrete, depending on the specific needs and constraints in different sections of the anticipated project area (current estimates are that mix would be approximately 65% concrete and 35% wood). The boardwalk would extend the length of the City of Fort Walton Beach mostly along Highway 98 and along Santa Rosa Sound from the Highway 98 bridge to the city’s western boundary. The newly constructed boardwalk would also connect existing boardwalks together into one continuous walkway. In locations where the proposed boardwalk would extend across private property the City is obtaining permanent easements.

In addition, the project would take advantage of access and equipment availability to conduct several small natural resource and habitat enhancement projects including a 0.1 acre expansion of an existing intertidal oyster reef and an approximately 0.4 acre restoration of a degraded salt marsh by planting appropriate native vegetation in Santa Rosa Sound. These resource enhancements would provide additional educational opportunities along the new boardwalk for visitors and school groups and would enhance the quality of the experience for those who use it in the respective areas. The boardwalk construction and placement of educational signage would increase access to and enjoyment of the coastal resources in the project area. The project planting of native vegetation would expand the local acreage of estuarine salt marsh. The placement of cultch material would increase local oyster habitat and will support increased oyster production. No new parking lots or additional parking spaces will be developed by implementing this project.
12.88.3 Evaluation Criteria
This proposed project meets the evaluation criteria established for OPA and the Framework Agreement. As a result of the Deepwater Horizon oil spill and related response actions, the public’s access to and enjoyment of the natural resources along Florida’s Panhandle was denied or severely restricted. The proposed Northwest Florida Fort Walton Beach Educational Boardwalk project is intended to enhance and/or increase recreational use opportunities by improving the boardwalks and enhancing adjoining natural resources and habitat. The project would enhance and/or increase opportunities for the public’s use and enjoyment of the natural resources, helping to offset adverse impacts to such uses that resulted from the Spill. Thus, the nexus to resources injured by the Spill is clear. See 15 C.F.R. § 990.54(a)(2); and Sections 6a-6c of the Framework Agreement.

The project is technically feasible and uses proven techniques with established methods and documented results. Further, the project can be implemented with minimal delay. The State of Florida and/or federal resource agencies have successfully completed projects of similar scope throughout Florida over many years. For these reasons, the project has a high likelihood of success. See 15 C.F.R. § 990.54(a)(3); and Section 6e of the Framework Agreement. Additionally, the cost estimates are based on
similar past projects and therefore the project can be conducted at a reasonable cost. See 15 C.F.R. § 990.54(a)(1); and Section 6e of the Framework Agreement.

A thorough environmental review, including review under applicable environmental laws and regulations, as described in section 12.88, indicates that adverse impacts from the project would largely be minor, localized, and often of short duration. In addition, the best management practices and measures to avoid or minimize adverse impacts described in 12.88 would be implemented. As a result, collateral injury would be avoided and minimized during project implementation (construction and installation and operations and maintenance). See 15 C.F.R. § 990.54(a)(4). Finally, this proposed project is not anticipated to negatively affect regional ecological restoration and is therefore not inconsistent with the long-term restoration needs of the State of Florida. See Section 6d of the Framework Agreement.

Many recreational use projects, including ones similar to this project have been submitted as restoration projects on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and to the State of Florida (http://www.deepwaterhorizonflorida.com). In addition to meeting the evaluation criteria for the Framework Agreement and OPA, the Northwest Florida Fort Walton Beach Educational Boardwalk project also meets the State of Florida’s additional criteria that Early Restoration projects occur in the 8-county panhandle area that was impacted by SCAT and response activities, including boom deployment.

12.88.4 Performance Criteria, Monitoring and Maintenance
As part of the project cost, monitoring will be conducted to ensure project plans and designs were correctly implemented and to evaluate project performance. Monitoring has been designed around the project goals and objectives. The project objective is enhance and/or increase recreational use opportunities by improving the boardwalks and enhancing the adjoining natural resources and habitat. Performance monitoring will evaluate: 1) the construction of new boardwalk sections along the Santa Rosa sound shoreline; 2) the expansion of an existing oyster reef by ~0.1 acre; and 3) the enhancement of approximately 0.4 acres of salt marsh. Specific success criteria include: 1) the completion of the construction as designed and permitted, and 2) enhanced and/or increased access is provided to the natural resources, which will be determined by observation that the boardwalks are open and available,

Long term monitoring and maintenance of the boardwalk facilities will be completed by the City of Ft. Walton Beach as part of their regular public facilities maintenance activities. No long-term monitoring activities are envisioned for the habitat enhancement components beyond compliance of design and performance standards. Funding for this post-construction maintenance is not included in the project cost estimate and the expense for these activities will be assumed by the City of Ft. Walton Beach.

During the construction performance monitoring period, the Florida Trustees’ Project Manager will go out twice to the site to record the number of users. Following the post construction performance monitoring period, the City of Ft. Walton Beach will monitor the recreational use activity at the site. The City of Ft. Walton Beach will visit the site twice a year to count the number of users at the boardwalk. The visitation numbers will then be provided to the Florida Department of Environmental Protection.
12.88.5 Offsets
The Trustees and BP negotiated a BCR of 2.0 for the proposed recreational use project. NRD Offsets are $9,287,094 expressed in present value 2013 dollars to be applied against the monetized value of lost recreational use provided by natural resources injured in Florida, which will be determined by the Trustees’ assessment of lost recreational use for the Oil Spill. Please see Chapter 7 of this document (Section 7.2.2) for a description of the methodology used to develop monetized Offsets.\(^\text{35}\)

12.88.6 Costs
The total estimated cost to implement this project is $4,643,547. This cost reflects current cost estimates developed from the most current information available to the Trustees at the time of the project negotiation. The cost includes provisions for planning, engineering and design, construction, monitoring, and contingencies.

\(^{35}\) For the purposes of applying the NRD Offsets to the calculation of injury after the Trustees’ assessment of lost recreational use for the Spill, the Trustees and BP agree as follows:

- The Trustees agree to restate the NRD Offsets in the present value year used in the Trustees’ assessment of lost recreational use for the Spill.
- The discount rate and method used to restate the present value of the NRD Offsets will be the same as that used to express the present value of the damages.
12.89 Northwest Florida Estuarine Habitat Restoration, Protection and Education- Fort Walton Beach: Environmental Review

The proposed project, located in the City of Fort Walton Beach, Florida, and within waters of the surrounding Santa Rosa Sound, involves construction of educational and interactive boardwalk structures (also referred to as Brooks Landing Shorewalk) intended to provide access to commercial, residential, and public areas of Santa Rosa Sound that are currently inaccessible, promote environmental education, and increase economic activity along the shoreline. Another component of the proposed project would include oyster reef creation and estuarine salt marsh habitat restoration along the shoreline and in adjacent waters of Santa Rosa Sound. These proposed projects would enhance public access to the Santa Rosa Sound shoreline, as well as stimulate economic activity on the waterfront and downtown Fort Walton Beach. Shellfish and salt marsh habitat restoration/creation would provide ecological benefits, including improved water quality and marine life inhabiting local nearshore areas, and would help protect the shoreline areas along Santa Rosa Sound and Fort Walton Beach from further degradation from future erosion and human use.

12.89.1 Introduction and Background

In April 2011, the Natural Resource Trustees (Trustees) and BP Exploration and Production, Inc. (BP) entered into the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Under the Framework Agreement, BP agreed to make $1 billion available for Early Restoration project implementation. The Trustees’ key objective in pursuing Early Restoration is to achieve tangible recovery of natural resources and natural resource services for the public’s benefit while the longer-term injury and damage assessment is underway. The Framework Agreement is intended to expedite the start of restoration in the Gulf in advance of the completion of the injury assessment process. Early restoration is not intended to and does not fully address all injuries caused by the Spill. Restoration beyond Early Restoration projects will be required to fully compensate the public for natural resource losses from the Spill.

Pursuant to the process articulated in the Framework Agreement for Early Restoration Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement), the Trustees released, after public review of a draft, a Phase I Early Restoration Plan (ERP) in April 2012. In December 2012, after public review of a draft, the Trustees released a Phase II ERP. On May 6, 2013, the National Oceanic and Atmospheric Administration (NOAA) issued a public notice in the Federal Register on behalf of the Trustees announcing the development of additional future Early Restoration projects for a Draft Phase III Early Restoration Plan (ERP). This boardwalk installation and oyster and estuarine salt marsh restoration project in the city of Fort Walton Beach and adjacent Santa Rosa Sound within Okaloosa County was submitted as an Early Restoration project on the NOAA website (http://www.gulfspillrestoration.noaa.gov) and submitted to the State of Florida. In addition to meeting the evaluation criteria for the Framework Agreement and the Oil Pollution Act (OPA), the project meets Florida’s criteria that Early Restoration projects occur in the eight-county Florida panhandle area that deployed boom and was impacted by the Spill.

The proposed project would achieve two basic objectives: 1) educate the public on the importance of shoreline habitat and stimulating the regional economy through increased tourism by installing an educational interactive waterfront boardwalk, and 2) restore the natural estuarine shoreline using
techniques that encompass oyster reef creation/restoration and salt marsh restoration through the planting of native shoreline grasses. The proposed project would connect phases of a larger initiative included in a long-term city plan that would accomplish the goals of the Coastal and Conservation Element in the City of Fort Walton Beach Comprehensive Plan adopted in 2000 (City of Fort Walton Beach 2000). The Comprehensive Plan states the City of Fort Walton Beach would preserve, protect, and when possible restore the resources of the city’s coastal protection area, specifically coastal wetlands, living marine resources, and wildlife habitats. Currently, portions of the long-term project have been implemented and completed. Those projects included installation of segments of Sound Side Boardwalk, planting of native vegetation along Santa Rosa Sound at Sound Park Boardwalk, construction of an oyster reef in Santa Rosa Sound, and installation of environmental education signage along existing boardwalks, all implemented from 2006 to 2010 (City of Fort Walton Beach 2012a).

The proposed Santa Rosa County boardwalk creation project would construct 8,390 feet of new boardwalk infrastructure along Santa Rosa Sound in the city of Fort Walton Beach to increase opportunities for the public to safely access coastal resources including the beach and ocean, which are currently inaccessible in certain locations. The project would improve existing boardwalks, as well as create new kiosks for recreational and educational use by the public. In addition, the enhancement of the recreational experience from these infrastructure improvements would also be complemented by oyster reef and estuarine salt marsh restoration in Santa Rosa Sound to reduce shoreline erosion and enhance habitat. The proposed project would create a total of approximately 20,460 square feet (0.4 acre) of salt marsh habitat and approximately 7,200 square feet (0.1 acre) of oyster reefs.

12.89.2 Project Location

The proposed project is located on the Gulf Coast in the city of Fort Walton Beach and adjacent Santa Rosa Sound, Okaloosa County, Florida. Newly constructed boardwalk structures will extend the length of the city of Fort Walton Beach from Alconese Pier, east of Brooks Bridge, to Liza Jackson Park following alongside the Santa Rosa Sound shoreline and portions of U.S. Highway 98. Estuarine salt marsh enhancement will occur along the shoreline adjacent to the newly installed boardwalk structure, while oyster reef construction and enhancement actions would be completed in Santa Rosa Sound in areas where living shoreline structures have already been placed. Figure 12-54 and Figure 12-55 illustrate the area where boardwalk construction and installation will take place.
Figure 12-54. Vicinity map for the proposed project.
Figure 12-55. Illustration of the area where boardwalk construction and installation would occur.
12.89.3 Construction and Installation
The proposed project, located in the City of Fort Walton Beach, Florida, and within waters of the surrounding Santa Rosa Sound, involves construction of educational and interactive boardwalk structures (also referred to as Brooks Landing Shorewalk) intended to provide access to commercial, residential, and public areas of Santa Rosa Sound that are currently inaccessible, promote environmental education, and increase economic activity along the shoreline. Another component of the proposed project would include limited oyster reef creation and estuarine salt marsh habitat restoration along the shoreline and in adjacent waters of Santa Rosa Sound. These proposed projects would enhance public access to the Santa Rosa Sound shoreline.

The proposed project is located on the Gulf Coast in the city of Fort Walton Beach and adjacent Santa Rosa Sound, Okaloosa County, Florida. Newly constructed boardwalk structures will extend the length of the city of Fort Walton Beach from Alconese Pier, east of Brooks Bridge, to Liza Jackson Park following alongside the Santa Rosa Sound shoreline and portions of U.S. Highway 98. Estuarine salt marsh enhancement will occur along the shoreline adjacent to the newly installed boardwalk structure, while oyster reef construction and enhancement actions would be completed in Santa Rosa Sound in areas where living shoreline structures have already been placed.

This area is already highly developed with numerous manmade features along the waterfront in the proposed project area including boat slips, docks, marinas, and areas of armored shoreline. Access to the waterfront in this area is mainly provided through side roads off of the main state route 98 in the area or through facilities with parking on the sound side of this road.

Additional details on the individual components of this project follows.

12.89.3.1 Boardwalk Construction
A range of hand tools and mechanized, heavy equipment would likely be used to complete the construction of 8,390-foot new boardwalk and for the installation of educational devices such as U.S.-manufactured pier-mounted coin binoculars, wooden markers to identify bird and fish species, and eight life-size bird statues showing wingspan length. Approximately 65% of the boardwalk would be constructed of concrete and 35% would be constructed of wood. Larger equipment such as backhoes with auger capabilities, graders, tractor trailers, or other equipment may be required to prepare the site for construction, as well as delivery of materials and removal of sand or soil to install pilings or other support structures. The depth of ground/sediment that would be disturbed during construction of the boardwalk would vary by section, location, and finalized design plans, but is not likely to be greater than several feet.

Posts would be required for boardwalk construction and would be placed by mechanically auguring holes to place pre-formed pilings or forms that would be filled with pumped concrete to create new pilings. The holes for the pilings are estimated to be approximately 1 to 2 feet in diameter (this is an estimate, final sizes will depend on final design requirements). In addition, as work proceeds, the project area may be isolated by construction fencing to prevent incidental access. This fencing material would be emplaced by hand driving (e.g., with a sledge hammer or post driver) stakes as necessary. These stakes would likely be less than 2 inches in diameter and driven to a depth of 1 to 2 feet to secure the fencing. Material that would be placed at the site includes construction materials. Cement and
wood would be placed to construct the boardwalk structure while cement, wood, and various other materials would be used to construct educational devices. The footprint of construction activities for most sections of boardwalk installation would occur within the footprint of existing boardwalks or other developed areas of the Fort Walton Beach. New sections of boardwalk would require some minimal area disturbance, as they would occur outside existing areas developed by the municipality or private landowners, but will be limited to the extent possible given the area available between existing developed areas along Santa Rosa Sound and the shoreline.

12.89.3.2 Oyster Reef Construction
An additional part of the project includes expanding an existing constructed oyster reef within the project site (proposed reef is on the Western end of the project area). Construction plans/designs of the oyster reef have yet to be finalized although conceptual plans have been developed. Construction would involve placement of material from shore as the water in the area is too shallow for a barge.

The location for the placement of the reef materials will be marked during construction, most likely using PVC stakes that would be driven by hand using a post driver or other means into the sediment. Following final materials placement these stakes would be removed. Materials would most likely be placed by crane from shore. If this is not feasible materials would be transported from staging areas on shore in shallow draft workboats to the project site. The oyster reef would be constructed with either cured oyster shells or, more likely, mined fossilized oyster shells. Should cured shells be used they will have been stored and dried for a period of time consistent with the existing state guidelines given the final design of the reef bar (time varies based on factors such as proposed relief of the reef off the bottom). The final oyster reef elevation and design would be selected to maximize shoreline protection and meet state regulatory requirements. As part of the final design the risk for creating a structure that poses an entrapment risk would be evaluated and addressed by ensuring gaps are left between constructed units – both new and existing. These gaps would be a minimum of 3 feet wide.

12.89.3.3 Salt Marsh Restoration
Placement and plans/designs of the salt marsh restoration have yet to be finalized although the general area for the marsh is toward Eastern end of project area. Possible restoration techniques would include planting native marsh vegetation in sediment in areas adjacent to the newly constructed boardwalk and along Santa Rosa Sound shoreline. All planting work would be conducted from the shoreline. The created marsh areas would be monitored for natural revegetation and to determine success and identify any corrective action needed. The conceptual plans provide an initial view of the types of marsh plantings that could be used according to the elevation of the planting area.

Potential impacts from construction operations may also be avoided by requiring compliance during all in-water activities with the Sea turtle and Smalltooth Sawfish Construction Conditions (NMFS, 2006) and Standard Manatee Conditions for In-water Work (USFWS, 2011).

12.89.3.4 Anticipated Construction Schedule
Construction work is expected to take 6 months once design plans are finalized. Overall, the project is anticipated to be completed within 2 years. The following schedule is currently planned:

- Design Complete: Summer/Fall 2014
• Permitting Complete: U.S. Army Corps of Engineers (USACE) permits for oyster reef and salt marsh construction have been obtained. All remaining permitting would be obtained once funding is secured.
• Contract Bid: Summer/Fall 2014
• Construction Start: Summer/Fall 2014
• Construction Compete: Summer/Fall 2016

12.89.3.5 Best Management Practices
Standard best management practices (BMPs) for this type of construction with limited in-water work would be used to minimize impacts (e.g., silt fencing, vehicles would be staged and refueled away from waterways).

12.89.4 Operations and Maintenance
Long-term monitoring and maintenance of the boardwalk structure would be conducted by the City of Fort Walton Beach as part of its regular public facilities maintenance activities. Funding for this postconstruction maintenance is not included in the value for the project cost and would be the responsibility of the City of Fort Walton Beach. As part of the project cost, monitoring would be conducted to ensure project plans and designs are correctly implemented. Performance monitoring would evaluate the construction of the boardwalks to ensure successful completion as designed and permitted. Following the construction performance monitoring period, human use and activity at the site would be monitored through the local government’s regular maintenance activities.

As indicated in the feasibility study for Brooks Landing Shorewalk (City of Fort Walton Beach 2009), the University of West Florida’s Department of Environmental Science and Department of Biology would regularly monitor the oyster reef and coastal salt marsh restoration efforts and provide hands-on education outreach to students and the general public.

12.89.5 Affected Environment and Environmental Consequences
Under the National Environmental Policy Act, federal agencies must consider environmental impacts of their actions that include, among others, impacts on social, cultural, and economic resources, as well as natural resources. The following sections describe the affected environment and environmental consequences of the project.

12.89.5.1 No action
Both OPA and NEPA require consideration of the No Action alternative. For this Final Phase III ERP/PEIS proposed project, the No Action alternative assumes that the Trustees would not pursue this project as part of Phase III Early Restoration.

Under No Action, the existing conditions described for the project site in the affected environment subsection would prevail. Restoration benefits associated with this project would not be achieved at this time.
Physical Environment

Geology and Substrates

Affected Resources
According to the Geologic Map of Florida, sites are likely located on the Quaternary system, Holocene series, Pleistocene/Holocene Sediments stratigraphic unit (Scott 2001). This stratigraphic unit consists of siliciclastics, organics, and freshwater carbonates. The siliciclastics are light gray, tan, brown to black, unconsolidated to poorly consolidated, clean to clayey, silty, unfossiliferous, variably organic-bearing sands to blue green to olive green, poorly to moderately consolidated, sandy, silty clays. Gravel is occasionally present. Organics occur as plant debris, roots, disseminated organic matrix, and beds of peat. Freshwater carbonates, or marls, are buff-colored to tan, unconsolidated to poorly consolidated, fossiliferous carbonate muds. Sand, silt, and clay may be present in limited quantities and these carbonates often contain organics. The dominant fossils in the freshwater carbonates are mollusks. (Natural Resources Conservation Service [NRCS] 2004). All sites are located within the geographical division known as the West Florida Coast Strip, which extends from the mouth of the Ochlockonee River west to Mississippi. This geographic region is characterized by coastal islands and narrow peninsulas. Notable geographic features include the long barrier peninsulas of Santa Rosa Island and Perdido Key, as well as Big Lagoon (NRCS 2004).

Topographically, the proposed project lies within the Gulf Coastal Lowlands, a subdivision of Coastal Lowlands physiographic region that extends along Florida’s entire Gulf coastline. In recent geologic times, the Coastal Lowlands were marine terraces (sea floors) during at least three successive high ocean level periods. The area is a flat region, except where remnant dune ridges occur or where the surface has been modified by erosion or underground solution cavities. Landforms typical of this subdivision include barrier islands, such as Santa Rosa Island; lagoons, such as Santa Rosa Sound; estuaries, such as the Choctawhatchee Bay; coastal ridges; sand dune ridges; relict splits and bars; and valleys (NRCS 2004).

Environmental Consequences
Mechanized equipment and hand tools would be used to complete the construction of the boardwalk structures. Some excavation of soils would occur; however, adverse impacts to geology and substrates would be minor. Disturbance would be detectable, but would be short term, small, and localized at each site. There would be no long-term changes to local geology, soils, and sediments associated with each project. Erosion and/or compaction may occur in localized areas. Adverse impacts to geology and substrates will be minor.

Hydrology and Water Quality

Affected Resources
Northwest Florida has seven major watersheds, all of which have been identified as priorities under the Surface Water Management and Improvement (SWIM) program. Water quality protection is the underlying goal of SWIM, along with the preservation and restoration of natural systems and associated public uses and benefits (Northwest Florida Water Management District [NWFWMD] 2011). Santa Rosa Sound is part of the Pensacola Bay watershed system. Santa Rosa Sound receives relatively little direct freshwater inflow and has annual mean salinity of 24 parts per thousand (Hand et al. 1996). Water
quality in Santa Rosa Sound has been assessed as good, but broad issues for this watershed system include water and sediment quality degradation through point and nonpoint pollution sources, habitat quality that is threatened by and degraded through sedimentation and deposition, management and coordination between two states and numerous local governments and agencies, and public education and awareness (Hand et al. 1996).

The CWA requires that the surface waters of each state be classified according to designated uses. Florida has six classes with associated designated uses, which are arranged in order of degree of protection required. According to Florida Administrative Code (FAC) 62.302.400, the proposed project occurs within Class II waters. Therefore, standards to meet the following uses apply to the project area: shellfish propagation or harvesting. The surface waters of the state are Class III waters, unless described differently in Florida rule. There are no designated Outstanding Florida Waters by the State of Florida (Rule 62-302.700, Fla. Admin. Code), located in the project area.

**Wetlands**

Based on the National Wetland Inventory data, the area around the city of Fort Walton Beach is designated as an estuarine wetland (USFWS 2013).

**Floodplains**

Based on Federal Emergency Management Agency (FEMA) flood insurance rate maps (Panel 12091C046H), the boardwalk installation portion of the proposed project appears to be located primarily in Zone AE. Zone AE is defined as other flood areas with a 1% annual chance of flooding and are considered high risk areas by FEMA (FEMA 2006).

**Environmental Consequences**

Water quality would be potentially impacted during construction from equipment leaks or spills or disturbance of sediments that result in siltation, turbidity, and the release of chemicals from sediments. If the disturbed sediments are anoxic, the biological oxygen demand in the water column would increase. With required mitigation in place, the effect on hydrology and water quality would be measurable or detectable, but it would be small, short term, and localized. Water quality impacts would quickly become undetectable, and the area’s hydrology would be only temporarily altered during construction.

All permit conditions would be strictly adhered to, including mitigation measures for siltation, erosion, turbidity, and release of chemicals. During construction, BMPs and boom placement along with other avoidance and mitigation measures required by state and federal regulatory agencies would be employed to minimize any water quality and sedimentation impacts. FDEP permit conditions require erosion and turbidity mitigation measures, which include the following:

- Installation of floating turbidity barriers.
- Installation of erosion control measures along the perimeter of all work areas.
- Stabilization of all filled areas with sod, mats, barriers, or a combination.
- Stoppage of work if turbidity thresholds are exceeded. The soils would then be stabilized, work procedures modified, and the FDEP would be notified.
The FDEP permit also constitutes a Certification of Compliance with State Water Quality Standards under Section 401 of the CWA, which indicates that the project would comply with state water quality standards and other aquatic resource protection requirements.

Impacts from chemicals that could be released from sources such as construction equipment and boats are expected to be negligible. Required spill containment measures would be implemented for applicable construction activities. FDEP permit conditions require spill containment protection and mitigation measures as follows:

- Prohibiting boat repair or fueling facilities over the water.
- Prohibiting vessels from being removed from the water for the purposes of maintenance or repair.
- Prohibited activities include hull cleaning and painting, discharges or release of oils or greases, and related metal-based bottom paints associated with hull scraping, cleaning, and painting.

The proposed discharge of dredged or fill material into waters of the United States, including wetlands, or work affecting navigable waters associated with this project is currently being coordinated with the U.S. Army Corps of Engineers (Corps) pursuant to the Clean Water Act Section 404 and Rivers and Harbors Act (CWA/RHA). Coordination with the Corps and final authorization pursuant to CWA/RHA will be completed prior to project implementation.

This project would not impact groundwater. A wetlands permit is required for the project and would stipulate appropriate BMPs and mitigation.

12.89.5.3 Air Quality and Greenhouse Gas Emissions

**Affected Resources**

The Clean Air Act (CAA) requires the Environmental Protection Agency (EPA) to set National Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to public health and the environment. NAAQS have been set for six common air pollutants (also known as criteria pollutants), consisting of particle pollution or particulate matter, ozone, carbon monoxide, sulfur dioxide (SO₂), nitrogen dioxide, and lead. Particulate matter is defined as fine particulates with a diameter of 10 micrometers or less (PM₁₀) and fine particulates with a diameter of 2.5 or less (PM₂.₅). When a designated air quality area or airshed within a state exceeds a NAAQS, that area may be designated as a “nonattainment” area. Areas with levels of pollutants below the health-based standard are designated as “attainment” areas. To determine whether an area meets the NAAQS, air monitoring networks have been established and are used to measure ambient air quality. The EPA also regulates 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health effects. Air quality in the Florida panhandle is in attainment with the NAAQs (EPA 2013a).
**Greenhouse Gases**

Gases that trap heat in the air are called greenhouse gases (GHGs). The primary GHGs are carbon dioxide (CO$_2$), methane (CH$_4$), nitrous oxide (NO$_x$), and fluorinated gases. Over the past century, human activities have released large amounts of GHGs into the atmosphere, which are contributing to global warming. Global warming is defined as the ongoing rise in global average temperature near the Earth’s surface and is known to cause changes in climate patterns.

According to the EPA, the average annual temperature in the southeast portion of the United States has increased by approximately 2.0 degrees Fahrenheit (°F) since 1970. Winters, in particular, are getting warmer, and the average number of freezing days has decreased by 4 to 7 days per year since the mid-1970s. Most areas are getting wetter; autumn precipitation has increased by 30% since 1901 (EPA 2013b). In many parts of the region, the number of heavy downpours has increased. Despite the increases in fall precipitation, the area affected by moderate and severe drought has increased since the mid-1970s (EPA 2013b).

Average annual temperatures in the region are projected to increase from 4°F to 9°F by 2080. Hurricane-related rainfall is projected to continue to increase. Models suggest that rainfall will arrive in heavier downpours, with increased dry periods between storms. These changes would increase the risk of both flooding and drought. The coasts will likely experience stronger hurricanes and sea level rise. Storm surge could present problems for coastal communities and ecosystems (EPA 2013b).

Total GHG emissions in the state of Florida from 1990 to 2007 have increased at an average rate of 2.1% per year. Total GHG emissions in 2007 were 290 million metric tons of CO$_2$ equivalent (MMTCO$_2$E). In 2007, 91% of GHG emissions in Florida were CO$_2$ emissions (FDEP 2010).

**Environmental Consequences**

Project implementation would require the use of heavy mechanized equipment, which would lead to temporary air pollution (e.g., criteria pollutants, HAPs, GHGs) due to emissions from the operation of construction vehicles and equipment. Project plans have not yet been finalized for the various boardwalk construction and artificial oyster reef and estuarine marsh expansion/restoration; however, any air quality impacts that occur would likely be minor due to their localized nature, short-term duration, and the small size of the project. Available BMPs would be employed to prevent, mitigate, and control potential air pollutants during project implementation. No air quality-related permits would be required. The project area is currently in attainment with NAAQS parameters. The proposed action would not affect the attainment status of the project area or region. A State Implementation Plan conformity determination (42 USC 7506 (c) is not required since the project areas are in attainment for all criteria pollutants.

Project plans have not been finalized for this project. As such, it is unclear what equipment would be used and the duration of use for that equipment. The following table provides GHG emissions estimates for a variety of construction and transportation equipment that would likely be used for the construction of boardwalk structures and artificial oyster reef and salt marsh expansion/restoration. Each of these emissions is based on use of the heavy equipment over an 8-hour day (Table 12-61).
Based on the assumptions described in Table 12-61 above, GHG emissions would not exceed 25,000 metric tons per year. Given the projected construction-phase GHG emissions, the small scale and short duration of the project, and increased park use, predicted impacts on air quality from GHG emissions would be anticipated to be minor on both short term and long term timeframes.

At the completion of the project, boat use could increase due to subsequent monitoring requirements of the oyster reef expansion/restoration, but monitoring would likely require a single boat several times a year. This boat use would likely increase exhaust emissions and could affect air quality, but it would occur over a short-time period and would be temporary so adverse impacts to air quality would be expected to be minor because management actions could be taken to limit boat use.

### 12.89.5.3.1 Noise

**Affected Resources**

Noise can be defined as unwanted sound and noise levels, and its impacts are interpreted in relationship to impacts on nearby visitors to the recreational areas and wildlife in the project vicinity. The Noise Control Act of 1972 (42 USC 4901–4918) was enacted to establish noise control standards and regulate noise emissions from commercial products such as transportation and construction equipment. The standard measurement unit of noise is the decibel (dB), which represents the acoustical energy present. Noise levels are measured in A-weighted decibels (dBA), a logarithmic scale which approaches the sensitivity of the human ear across the frequency spectrum. A 3-dB increase is equivalent to doubling the sound pressure level, but is barely perceptible to the human ear. Table 12-62 shows typical noise levels for common sources expressed in dBA. Noise exposure depends on how much time an individual spends in different locations.


### Table 12-62. Common noise levels.

<table>
<thead>
<tr>
<th>Noise Source or Effect</th>
<th>Sound Level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-and-roll band</td>
<td>110</td>
</tr>
<tr>
<td>Truck at 50 feet</td>
<td>80</td>
</tr>
<tr>
<td>Gas lawnmower at 100 feet</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation indoors</td>
<td>60</td>
</tr>
<tr>
<td>Moderate rainfall on foliage</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>40</td>
</tr>
<tr>
<td>Bedroom at night</td>
<td>25</td>
</tr>
</tbody>
</table>

*Source: Adapted from U.S. Department of Energy and Bonneville Power Administration (1986).*

Noise levels in the project areas vary depending on the season, time of day, number and types of noise sources, and distance from noise sources. Existing sources of noise in the project area are mainly from recreational boating, vehicle traffic on Highway 98, with occasional overhead aircraft or commercial traffic. Ambient natural sounds such as wind, waves, and wildlife also contribute to existing noise levels. Existing ambient noise levels in the project area would be generally low and predominantly result from daily boating activities and vehicle traffic from the adjacent highway (Highway 98).

Noise-sensitive receptors include sensitive land uses and those individuals and/or wildlife that could be affected by changes in noise sources or levels due to the proposed project. Noise-sensitive receptors in the project vicinities include beach and park recreational use and wildlife. The project area is, for the most part, consistent with a developed urban environment. The shoreline of the project area supports a variety of residential and industrial developed areas, and the Gulf of Mexico supports commercial and recreational boat traffic.

### Environmental Consequences

Increased noise would occur during the proposed project. Equipment and vehicles used during the construction of the project would generate noise. Construction would be short term and temporary and would only occur during daylight hours. The project would be completed over a 2-year period, and the noise in the project areas during boardwalk construction and artificial oyster reef and salt marsh expansion/restoration would be slightly elevated for short periods of time, so adverse impacts to the soundscape would be minor.

After completion of the project, the soundscape would return to pre-project levels. The potential for increased public use of the boardwalk areas would likely result in a slight increase in noise levels in the downtown area of Fort Walton Beach. Oyster reef and salt marsh monitoring in subsequent years after initial expansion/restoration would likely require the use of boats to visit the project site, so increased noise may result from monitoring, but this would be short term and temporary. Overall, long-term noise impacts from recreational activities and project monitoring would remain minor.
12.89.5.4 Biological Environment

12.89.5.4.1 Living Coastal and Marine Resources

Vegetation

Affected Resources
According to the Natural Vegetation of Florida, the project area would be historically located in pine flatwood forest, composed of three species of pine: longleaf (*Pinus palustris*), slash (*P. elliottii*), and pond (*P. serotina*). Many herbs, saw palmetto (*Serenoa repens*), shrubs, and small trees form an understory. This vegetation type also includes small hardwood forests, many kinds of cypress swamps, prairies, marshes, and bay tree swamps (Davis 1967). However, the proposed project area is located with highly developed urban areas of the city of Fort Walton Beach. Based on aerial reviews, the site of the boardwalk construction portion of the proposed project appears to contain mainly unvegetated sandy beach adjacent to large areas of urban development. A small number of native plants would likely be located in the project area. Two state-listed plant species have the potential to occur within the project area, Gulf Coast lupine (*Lupinus westinosus*) and Cruise’s golden-aster (*Chrysopsis gossypina cruiseana*).

Submerged aquatic vegetation may be present in areas where oyster reef placement is proposed. Santa Rosa Sound has approximately 3,032 acres of mapped seagrass beds composed primarily of turtle grass (*Thalassia testudinum*) along with some shoal grass (*Halodule wrightii*), but seagrasses are sparse and stunted (FDEP 2011).

A review of Florida’s Efficient Transportation Decision Making tool indicates that while submerged aquatic vegetation (seagrasses) are present off the coastline, they are not present within the project area (Florida Department of Transportation 2013).

Environmental Consequences
There would be multi-phase construction events associated with this project, mainly in urban developed areas and along Santa Rosa Sound shoreline. During the construction and placement of the proposed boardwalk structure, any vegetation that may be present would be disturbed during construction and would result in the permanent removal of vegetation within the construction footprint. The use of equipment and disturbance of soil and existing vegetation would also potentially introduce a risk of noxious weed or invasive vegetation species. However, replanting of native grasses and other native vegetation is a portion of the proposed project, so impacts on native vegetation would not be expected.

Project installation activities would use BMPs, including impact avoidance of existing seagrass habitat through the use of small vessels for construction of oyster reefs. Every effort would be made to access the oyster reef placement sites during periods of high tide using shallow draft vessels to minimize potential adverse impacts to seagrass habitat as a result of navigation. Therefore, impacts to seagrass would be short term and minor, localized, and would not alter natural conditions.
Wildlife

Affected Resources
The project site is surrounded by an urban environment and common wildlife that potentially occurs at the project site includes raccoons (Procyon lotor), opossums (Didelphis virginiana), skunks (Spilogale putorius, Mephitis mephitis), armadillos (Dasypus novemcinctus), squirrels (Sciurus carlinensis), multiple bat, snake, avian and rodent species.

Environmental Consequences
Although common wildlife may be disturbed from construction activities, these species live in an urban environment where ambient noise levels are high. Habitat conditions after construction would be similar to the existing conditions, and no impacts to common wildlife would be anticipated.

Marine and Estuarine Fauna (fish, shell beds, and benthic organisms)

Affected Resources
The proposed project area is located at the confluence of Santa Rosa Sound and Choctawhatchee Bay. Santa Rosa Sound is a 42.4-square-mile lagoon that connects Choctawhatchee Bay to the east and Pensacola Bay to the west and has similar marine and estuarine resources as these two bay systems. More than 200 species of fish and shellfish have been reported in the estuarine waters of the Pensacola Bay system. Choctawhatchee Bay provides habitat for numerous fish and other marine species similar to that of Pensacola Bay. The value of marine habitats at the project site, as well as the Pensacola and Choctawhatchee Bay systems as a whole, has been affected by population growth, development, and wastewater disposal. Increased coastal development, in particular, has contributed to displaced habitats, loss of wetlands, and greater amounts of stormwater runoff entering the river, bay, and tributaries (NWFWMD 2011). Nonetheless, the marine environment at the project site provides habitat to an array of aquatic species, including ladyfish (Elops saurus), hardhead catfish (Arius felis), gafftopsail catfish (Bagre marinus), pigfish (Orthopristis chrysoptera), Gulf sturgeon (Acipenser oxyrinchus desotoi), Alabama shad (Alosa alabamae), and striped bass (Morone saxatilis). Other species native to the area include bay anchovy (Anchoa mitchilli), spotted seatrout (Cynoscion nebulosus), Gulf menhaden (Brevoortia patronus), channel catfish (Ictalurus punctatus), striped mullet (Mugil cephalus), blue crab (Callinectes sapidus), American oyster (Crassostrea virginica), and Penaeid shrimp (Penaeus spp.), among others (Florida Fish and Wildlife Commission [FWC] 2001; Livingston 1999). Benthic organisms such as bivalves, gastropods and other mollusks, anemones, amphipods, annelids, crustaceans, and echinoderms and are also abundant in these waters (FWC 2001).

Environmental Consequences
The proposed project would likely result in short-term, minor adverse impacts to fish that may be present during the in-water construction as a result of turbidity and noise disturbance during construction/restoration of the artificial oyster reef. Benthic organisms that may be present in the substrate may also be adversely affected during reef construction. However, the proposed project is intended to increase available oyster habitat by providing surface for attachment of sessile organisms, so reef construction impacts would be short term and minor and in the long term would benefit the ecosystem around the expanded oyster reef.
Protected Species
Protected species and their habitats include ESA-listed species and designated critical habitats, which are regulated by either the USFWS or the NMFS. Protected species also include marine mammals protected under the Marine Mammal Protection Act, essential fish habitat (EFH) protected under the Magnuson-Stevens Fishery Conservation and Management Act, migratory birds protected under the Migratory Bird Treaty Act (MBTA) and bald eagles protected under the Bald and Golden Eagle Protection Act (BGEPA).

Affected Resources
The Trustees have reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA for species managed by USFWS. For this, the Trustees first reviewed the species list for Okaloosa County, Florida. Table 12-63 presents a summary of these potentially affected species/critical habitats and the nature of the potential impact that could result from project implementation.

Table 12-63. Potential Impacts to Species/Critical Habitats managed by USFWS.

<table>
<thead>
<tr>
<th>SPECIES/CRITICAL HABITAT</th>
<th>SPECIES/CRITICAL HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green turtle*, Hawksbill turtle*, Kemp’s ridley turtle; Leatherback turtle*, Loggerhead turtle</td>
<td>Sea turtle nesting is not expected in the project area because of its shoreside location within the Santa Rosa Sound and lack of suitable nesting habitat. Rather the turtles use the beaches directly along the Gulf Coast for nesting. Therefore, no impacts to sea turtles in terrestrial habitats are expected. No proposed or designated critical habitat for sea turtles occurs within the action area; including the limited area of in-water work, therefore, none will be adversely modified or destroyed.</td>
</tr>
<tr>
<td>West Indian manatee</td>
<td>The counties in the project area are not part of the 36 Florida counties that are identified as being counties where manatees regularly occur in coastal and inland waters (U.S. Department of the Interior, 2011). However, manatees could be present in the project waters and would potentially seek out shallow seagrass areas as they are preferred feeding habitat (U.S. Department of the Interior, 2011). The main risk to manatees during execution of this project would come from boat collisions which could result in harm or mortality.</td>
</tr>
<tr>
<td>Gulf sturgeon</td>
<td>NMFS was consulted on Gulf sturgeon and its Critical Habitat in the estuarine environment. As a result, Gulf Sturgeon was not considered in the consultation with the USFWS.</td>
</tr>
</tbody>
</table>

---

36 The U.S. Fish and Wildlife, Panama City office website (http://www.fws.gov/panamacity/specieslist.html) provides a county-based list of federal threatened, endangered, and other species of concern likely to occur in the Florida Panhandle. Information downloaded March 13, 2013.
In addition to the protected species managed by USFWS, the Trustees reviewed the proposed projects and associated actions for potential impacts to the following protected species (status indicated) and their associated critical habitat, if appropriate, managed by NMFS:

- Gulf Sturgeon, *Acipenser oxyrinchus desotoi*, Threatened
- Smalltooth Sawfish, *Pristis pectinata*, Endangered
- Green Sea Turtle, *Chelonia mydas*, Endangered
- Loggerhead Sea Turtle, *Caretta caretta*, Threatened
- Hawksbill Sea Turtle, *Eretmochelys imbricata*, Endangered
- Leatherback Sea Turtle, *Dermochelys coriacea*, Endangered
- Kemp’s Ridley Sea Turtle, *Lepidochelys kempii*, Endangered

Additional information on some of these species is provided below.

**Sea Turtles and Marine Mammals**

There are five species of endangered or threatened sea turtles that may occur or have potential to occur within the project area. These include green turtle (*Chelonia mydas*), hawksbill turtle (*Eretmochelys imbricata*), Kemp’s ridley turtle (*Lepidochelys kempii*), leatherback turtle (*Dermochelys coriacea*), and loggerhead turtle (*Caretta caretta*). Sea turtles forage in the waters of the coastal Florida panhandle region and have potential to occur within the waters where in-water work is proposed. The project site does not contain suitable sea turtle nesting habitat and is surrounded by urban development.

Twenty-two marine mammals are native to the Gulf of Mexico: 21 pelagic species of whales and dolphins, and the West Indian manatee. The endangered West Indian manatee has the potential to occur in project area waters. Manatees typically seek out shallow seagrass areas as preferred feeding habitat (FWC 2007). Additionally, bottlenose dolphins (*Tursiops* spp.) populations are known to migrate into bays, estuaries, and river mouths and could be located in any of the proposed project areas (NMFS 2013a). Bottlenose dolphins have been observed entering and leaving Choctawhatchee Bay and on nearshore coastal waters (NMFS 2012).

**Smalltooth Sawfish, Gulf Sturgeon, and Gulf Sturgeon Critical Habitat**

Smalltooth sawfish (*Pristis pectinata*) do not typically use northern Gulf of Mexico waters (NMFS 2013b). Gulf sturgeon are restricted to the Gulf of Mexico and its drainages, occurring primarily from the Pearl River in Louisiana to the Suwannee River, in Florida (NMFS 2009). Adult fish reside in rivers for 8 to 9 months each year and in estuarine or Gulf of Mexico waters during the 3 to 4 cooler months of each year (NMFS 2009). Important marine habitats include seagrass beds with sand and mud substrates (Mason and Clugston 1993).

Gulf sturgeon critical habitat was jointly designated by the NMFS and the USFWS on April 18, 2003 (50 C.F.R. 226.214). The proposed project site is located within Critical Habitat for Gulf sturgeon. See Figure 12-56 for a map of critical habitat in the project area. Critical habitat was designated based on seven primary constituent elements (PCEs) essential for its conservation, as defined in the 2003 *Federal Register* and are listed below. PCE’s 1, 5, 6, and 7 occur within the project site.
1. Abundant food items, such as detritus, aquatic insects, worms, and/or mollusks, within riverine habitats for larval and juvenile life stages, and abundant prey items, such as amphipods, lancelets, polychaetes, gastropods, ghost shrimp, isopods, mollusks, and/or crustaceans, within estuarine and marine habitats and substrates for subadult and adult life stages;
2. Riverine spawning sites with substrates suitable for egg deposition and development, such as limestone outcrops and cut limestone banks, bedrock, large gravel or cobble beds, marl, soapstone, or hard clay;
3. Riverine aggregation areas, also referred to as resting, holding, and staging areas, used by adult, subadult, and/or juveniles, generally, but not always, located in holes below normal riverbed depths; these are believed necessary for minimizing energy expenditure during freshwater residency and possibly for osmoregulatory functions;
4. A flow regime (i.e., the magnitude, frequency, duration, seasonality, and rate-of-change of freshwater discharge over time) necessary for normal behavior, growth, and survival of all life stages in the riverine environment, including migration, breeding site selection, courtship, egg fertilization, resting, and staging, and for maintaining spawning sites in suitable condition for egg attachment, egg sheltering, resting, and larval staging;
5. Water quality, including temperature, salinity, pH, hardness, turbidity, oxygen content, and other chemical characteristics necessary for normal behavior, growth, and viability of all life stages;
6. Sediment quality, including texture and chemical characteristics, necessary for normal behavior, growth, and viability of all life stages; and
7. Safe and unobstructed migratory pathways necessary for passage within and between riverine, estuarine, and marine habitats (e.g., an unobstructed river or a dammed river that still allows for passage).
Figure 12-56. Map of Gulf sturgeon critical habitat adjacent to the proposed project area.
Essential Fish Habitat (EFH)
EFH is defined in the Magnuson-Stevens Fishery Conservation and Management Act as “those waters and substrates necessary to fish for spawning, breeding, feeding or growth to maturity.” The designation and conservation of EFH seeks to minimize adverse impacts on habitat caused by fishing and non-fishing activities. The NMFS has identified EFH habitats for the Gulf of Mexico in its Fishery Management Plan Amendments. These habitats include estuarine emergent wetlands, seagrass beds, algal flats, mud, sand, shell, and rock substrates, and the estuarine water column. The EFH within the project area include emergent wetlands, mud substrate, and estuarine water columns for species of fish, such as red drum, brown shrimp, pink shrimp, and white shrimp. There are no marine components of EFH in the vicinity of the project site.

Table 12-64 provides a list of the species that NMFS manages under the federally Implemented Fishery Management Plan in the vicinity of the Northwest Florida Fort Walton Beach Educational Boardwalk site and Santa Rosa Sound.

Table 12-64. Federally managed fisheries with designated Essential Fish Habitat (EFH) in the proposed project area.

<table>
<thead>
<tr>
<th>EFH Category</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Highly Migratory Species</td>
<td>Atlantic Sharpnose Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Bull Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Bull Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Nurse Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Sandbar Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Scalloped Hammerhead Shark-Neonate</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark-Adult</td>
</tr>
<tr>
<td></td>
<td>Spinner Shark-Juvenile</td>
</tr>
<tr>
<td></td>
<td>Tiger Shark-Juvenile</td>
</tr>
</tbody>
</table>

State-Listed Birds, MBTA, and BGEPA
All migratory bird species are protected under MBTA. There are numerous State of Florida–listed bird species with potential for occurrence in and around the boardwalk construction and artificial oyster reef and salt marsh expansion/restoration site. These include Arctic peregrine falcon (*Falco peregrinus tundrius*), least tern (*Sterna antillarum*), southeastern American kestrel (*Falco sparverius paullus*), American oystercatcher (*Haematopus palliates*), and southeastern/Cuban snowy plover (*Charadrius alexandrinus tenuirostris*).

The bald eagle was delisted by the USFWS and is not listed as threatened or endangered by the FWC. The bald eagle is, however, protected by state law pursuant to 68A-16, Fla. Admin. Code and by the U.S. government under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Bald eagles feed on fish and other readily available mammalian and avian species and are dependent on large, open expanses of water for foraging habitat. In Florida, conservation measures to protect active nest sites during nesting season must be considered to reduce potential disturbances of certain project activities. If bald eagles are found nesting within 660 feet of a proposed construction area, then activities would need to occur outside of nesting season or coordination with the USFWS would occur to
determine if a permit is needed, and Florida’s *Bald Eagle Management Plan* guidelines would be followed (FWC 2008).

The proposed project was also reviewed for impacts to bald eagles and migratory birds in accordance with the Bald and Golden Eagle Protection Act (BGEPA) of 1940 (16 U.S.C. 668-668c) and the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703–712), respectively. Table 12-65 provides a summary of the different migratory bird groups specifically addressed by this review and summarizes the potential impacts to these groups and associated habitats that could result from the implementation of this project.

**Table 12-65. Potential project impacts to different migratory bird groups.**

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>BEHAVIOR</th>
<th>SPECIES/HABITAT IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>Loafing/Foraging</td>
<td>Construction noise and increased human disturbance during construction may cause birds to temporarily stop foraging or loafing or cause them to temporarily relocate. The Trustees expect that birds in the project area are likely habituated to human activity and would not experience more than short-term impacts. No nesting is known to occur within the project site due to a lack of habitat.</td>
</tr>
<tr>
<td>Seabirds</td>
<td>Resting, roosting, nesting</td>
<td>Seabirds forage in water and rest/roost in terrestrial habitats. However, the level of project activity in open water is unlikely to disturb roosting as all construction will occur during the day.</td>
</tr>
</tbody>
</table>

Considering the nature of the potential project and the potential impacts to migratory bird groups and associated habitats, a number of conservation measures were identified and will be followed to minimize potential impacts. These measures are summarized in Table 12-66.

**Table 12-66. Conservation measures to minimize impacts to migratory bird groups**

<table>
<thead>
<tr>
<th>SPECIES/SPECIES GROUP</th>
<th>CONSERVATION MEASURES TO MINIMIZE IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebirds</td>
<td>The Trustees expect foraging and resting birds would be able to move to another nearby location to continue foraging and resting. Shorebird nesting is not expected. However if project activities occur during shorebird nesting season (February 15 to August 31), the FWC will be contacted to obtain the most recent guidance to protect nesting shorebirds or rookeries and their recommendations will be implemented.</td>
</tr>
<tr>
<td>Seabirds</td>
<td>Care will be taken to minimize noise and physical disruptions near areas where foraging or resting birds are encountered. All disturbances will be localized and temporary. The general behavior of these birds is to mediate their own exposure to human activity when given the opportunity, which they will have. Roosting should not be impacted because the project will occur during daylight hours only. Nesting should not be impacted because the project will not occur near nesting habitats.</td>
</tr>
</tbody>
</table>
Environmental Consequences

The proposed project has been evaluated for potential short- and long-term impacts to state and federally listed threatened and endangered species that may occur within and adjacent to the project areas based on available suitable habitat and restoration goals. Descriptions of these evaluations are provided below.

Protected Species

The USFWS reviewed the proposed project for potential impacts to listed, candidate, and proposed species and designated and proposed critical habitats in accordance with Section 7 of the ESA. On March 10, 2014 the review of potential impacts to species managed by USFWS was completed (McClain, 2014). The USFWS concurred with the Trustees’ determination that the proposed project may affect, but is not likely to adversely affect West Indian manatee. The review also concurred with the Trustees’ assessment that there would be no effect to five species of sea turtles (green, hawksbill, Kemp’s ridley, leatherback, and loggerhead).

Consultation of potential impacts on protected species managed by NMFS from this project was initiated on February 19, 2014. The Trustees’ review of the potential impacts of the project for protected species managed by NMFS determined the proposed action “may affect, but is not likely to adversely affect” the following species and associated critical habitats in the project implementation area:

- Gulf Sturgeon - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.
- Gulf Sturgeon Critical Habitat – The project footprint does fall within Gulf sturgeon critical habitat (Critical Habitat Unit 10, Santa Rosa Sound); however, it has been determined that the construction activities associated with this project will not adversely modify designated Gulf sturgeon critical habitat.
- Green Sea Turtle - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.
- Loggerhead Sea Turtle - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.
- Hawksbill Sea Turtle - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.
- Leatherback Sea Turtle - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.
- Kemp’s Ridley Sea Turtle - The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.
- Smalltooth Sawfish – The restoration operations associated with this project may affect, but not likely to adversely affect and will not jeopardize the continued existence of the species.

Concurrence from NMFS with the Trustees’ conclusions for these species and associated critical habitats is still pending.

The Trustees also evaluated the potential for take of Marine Mammals under the MMPA and due to these species’ mobility and the implementation of NMFS’ Sea Turtle and Smalltooth Sawfish
Construction Conditions (NMFS, 2006), Standard Manatee Conditions for In-Water Work (USFWS 2011), and USFWS recommended conservation measures for listed species and other trust resources, take of marine mammals under the MMPA is not anticipated.

**Essential Fish Habitat**

The Trustees’ review of potential impacts to EFH from the project implementation concluded the project is not likely to adversely affect EFH. Restoring the oyster reef and planting native salt marsh vegetation may result in a small area of existing habitat being converted from one EFH habitat to another type; however, both habitat changes will be small and are anticipated to have a net beneficial impact to habitat quality and species found in the area. Disturbance to any EFH and species using the habitat in areas adjacent to locations where restoration would occur would be brief and insignificant, with risks further mitigated by following identified best management practices during construction. No adverse impacts to other EFH types would result from the proposed restoration techniques.

On April 4, 2014 NMFS completed its evaluation of potential EFH impacts and concluded that the project construction is not likely to adversely affect EFH and any disturbance to species will be minor and brief (Fay, 2014).

**State-Listed Birds, MBTA, and BGEPA**

According to the FWC Bald Eagle Nest Locater, there are no bald eagle nests within 5 miles of the project site (FWC 2012) so bald eagles would not be affected by the project. At the same time, implementation of the conservation measures previously identified in the review of potential impacts to migratory birds will prevent take of the identified migratory bird groups.

**Invasive Species**

**Affected Resources**

Non-native invasive species could alter the existing terrestrial or aquatic ecosystem within the project area, and possibly expand out into adjacent areas after the initial introduction. The invasive species threat, once realized, could result in economic damages. Prevention is ecologically responsible and economically sound. Chapter 7 addresses invasive species, pathways, impacts, and prevention. At this time specific invasive species that may be present on the project site or could be introduced through the project have not yet been identified.

**Environmental Consequences**

Best Management Practices (BMPs) to control the spread of any invasive species present, and prevent the introduction of new invasive species due to the project will be implemented. In general, best management practices would primarily address risk associated with vectors (e.g., construction equipment, personal protective equipment, delivery services, foot traffic, vehicles/ vessels, shipping material). There are many resources that provide procedures for disinfection, pest-free storage, monitoring methods, evaluation techniques, and general guidelines for integrated pest management that can be prescribed based upon specific site conditions and vectors anticipated. In addition, to best management practices, outreach and educational materials may be provided to project workers and potential users/visitors. Other measures that could be implemented are identified in the Chapter 6
Appendix. Due to the implementation of BMPs, the Trustees expect impacts due to invasive species introduction and spread to be short term and minor.

12.89.5.5 Human Uses and Socioeconomics

12.89.5.5.1 Socioeconomics and Environmental Justice

Affected Resources
The population of Okaloosa County is 180,822. Table 12-67 contains population/minority data for Okaloosa County and Florida (U.S. Census Bureau 2010).

Table 12-67. Population characteristics of Okaloosa County compared to State of Florida data.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Florida</th>
<th>Okaloosa County</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 total population</td>
<td>18,688,787</td>
<td>180,822</td>
</tr>
<tr>
<td>White alone</td>
<td>14,270,053</td>
<td>146,582</td>
</tr>
<tr>
<td>Black or African American alone</td>
<td>2,946,899</td>
<td>16,797</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone</td>
<td>58,192</td>
<td>1,068</td>
</tr>
<tr>
<td>Asian alone</td>
<td>455,403</td>
<td>5,328</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander alone</td>
<td>11,005</td>
<td>354</td>
</tr>
<tr>
<td>Some other race alone</td>
<td>564,351</td>
<td>3,592</td>
</tr>
<tr>
<td>Two or more races</td>
<td>382,884</td>
<td>7,101</td>
</tr>
<tr>
<td>Median household income, 2007–2011</td>
<td>$47,827</td>
<td>$54,140</td>
</tr>
<tr>
<td>Persons below poverty level, percent, 2007–2011</td>
<td>14.7%</td>
<td>11.7%</td>
</tr>
</tbody>
</table>

Environmental Consequences
Newly constructed boardwalk structures in downtown Fort Walton Beach would have a direct, beneficial effect for people that live near the area. Improvements would encourage more people to visit Fort Walton Beach and participate in outdoor activities along and within Santa Rosa Sound. This might benefit the health and well being of the local population. The proposed installation of the boardwalk would draw more visitors to the county and, specifically, Fort Walton Beach. Long-term, indirect, moderate benefits would result from increasing recreational and fishing value of the area. Greater fishing success may increase the number of fishing trips in the area, which could generate ancillary purchases such as license fees, fuel, equipment or other ancillary purchases. Local revenue for businesses located along the boardwalk would likely increase after construction provided increased access to businesses located in downtown Fort Walton Beach and along the Santa Rosa Sound shoreline.

Direct, short-term, moderate benefits through local job creation would result from construction activities. The proposed improvement would create approximately 10 to 20 temporary construction jobs. This project is not designed to create a benefit for any group or individual, but rather would provide benefits to a local and regional basis. Because the project occurs in an area that is not disproportionately minority or low income (see Table 12-67), there are no indications that the proposed project would be contrary to the goals of Executive Order 12898 or would create disproportionate, adverse human health or environmental impacts on minority or low income populations of the surrounding community.
12.89.5.5.2 Cultural Resources

Affected Resources
A review of the Florida Master Site File shows that there are numerous previously recorded cultural resources within 0.25 mile of the boardwalk project area. These include prehistoric and historic archaeological sites, historic standing structures, structures listed on the National Register of Historic Places (NRHP), and at least one NRHP historic district.

The city of Fort Walton Beach has been historically occupied since at least the 1830s. Camp Anderson/Camp Walton (Site 8OK780) was utilized from 1838 to at least the 1940s. The NRHP-listed Fort Walton Historic District is located just north of the beach at the vicinity of Shell Street and First Street. Historically a boardwalk along with a casino, restaurant, dance pavilion, and beach cottages were located along the beach. Many of these structures were burned and/or destroyed in a fire in 1942 (Hamilton 1955).

There are several prehistoric archaeological sites that are located along the beach. These range from surface scatters to mounds, and most of them are of unknown eligibility.

This project is currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. While the Section 106 review process is ongoing, an initial review of the project has not identified the presence of a historic property within the project area.

Environmental Consequences
A complete review of this project under Section 106 of the NHPA is ongoing and would be completed prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse impacts on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources.

12.89.5.5.3 Land and Marine Management

Affected Resources
The land use surrounding the boardwalk installation location is primarily zoned as mixed-use high, community facilities, and recreation (City of Fort Walton Beach 2012b). Fort Walton Beach Landing Park and Liza Jackson Park are adjacent to the proposed project footprint. Both parks and the boardwalk installation would be managed by the City of Fort Walton Beach.

The mixed-use land use allows single and multi-family residential, commercial, limited industrial (such as artisan studios or cottage industries), educational, public, civic, cultural, and specific tourist-related activities. The City of Fort Walton Beach intends that mixed-use development within the mixed-use land use category provides a range of uses to achieve a diverse, compatible, and pedestrian-friendly area. The civic land use category provides for public educational facilities and civic uses while the recreational land use category provides locations for active or passive parks, and public or private recreation lands (City of Fort Walton Beach 2000). Under the Comprehensive Plan (2000), the City of Fort Walton Beach
will also continue to implement measures that would further develop the waterfront areas of the city to increase revenue through tourism and recreation opportunities.

The project would be located in a coastal area that is regulated by the CZMA and the Florida Coastal Management Act of 1978.

**Environmental Consequences**

Although the action would require several permits for the short-term construction period, it would not require a variance, zoning change, or amendment to a land-use area or comprehensive management plan. The long-term impact of the project would be minor because it would not affect overall use and management beyond the local boardwalk area and would be consistent with current land use. The proposed boardwalk would align with city development measures in the Fort Walton Beach Comprehensive Plan allowing structures to be constructed in the mixed-use zoned areas along Santa Rosa Sound. The proposed boardwalk would provide educational and recreational activities and is intended to increase local tourism.

Under the Coastal Zone Management Act of 1972, the selection of the projects for early restoration must be consistent to the maximum extent practicable with the federally-approved coastal management programs for the states where the activities would affect a coastal use or resource. The Federal Trustees submitted a consistency determination for appropriate state review coincident with the public review of the Phase III DERP/PEIS (Federal Trustees 2013). The State of Florida responded and concurred with the federal determination of consistency at this point in the early restoration planning process (Milligan 2014).

12.89.5.5.4  **Tourism and Recreational Use**

**Affected Resources**

Tourism and recreation are common activities throughout the Florida panhandle region. Downtown Fort Walton Beach, where the proposed project is located, provides public access to Santa Rosa Sound for tourism and recreation use. Recreational activities on and around downtown Fort Walton Beach include fishing, boating, passive recreation, cultural and heritage enrichment, and wildlife viewing.

**Environmental Consequences**

During the construction period, recreational visitors would have very limited access to the Santa Rosa Sound shoreline and would experience negative impacts from noise and visual disturbances associated with the use of construction equipment. These limitations would be a minor inconvenience to visitors. Construction would have a short-term, minor, direct adverse impact on tourism and recreational use of the project area. Once completed, the project would result in a long-term, direct positive impact on tourism and recreational use by providing access to local restaurants, bars, shops, and lodging that would likely enhance revenue and recreational opportunities in downtown Fort Walton Beach.

12.89.5.6  **Aesthetics and Visual Resources**

**Affected Resources**

The landward side of the proposed project has a variety of land uses that provide access for residents, visitors, and commuters, including Liza Jackson Park and Fort Walton Beach Landing Park. Existing
aesthetics and visual resources to the south of the boardwalk from the project site are views of developed areas and the open water of Santa Rosa Sound.

**Environmental Consequences**

Aesthetics would be reduced in the project area during the construction operations, due to the physical presence of the equipment used to transport the material, as well as the presence of other land-based support equipment. However, these impacts would be minor, direct, and temporary because they would only be visible from a small portion of the project area and would not dominate the viewshed or detract from current visitor activities. Following construction, the boardwalk structure and artificial reef and salt marsh expansion/restoration would provide for minor, direct benefits through improved aesthetics to the local area. These changes would be readily apparent but minor because they are consistent with other facilities in the surrounding areas and would not attract attention, dominate the view, or detract from visitor experiences.

12.89.5.6.1 **Infrastructure**

**Affected Resources**

The proposed boardwalk installation is located in the developed, downtown area of Fort Walton Beach. The project area is bordered by residential and commercial buildings and public parks immediately north of the boardwalk footprint and the shoreline of Santa Rosa Sound to the immediate south.

**Environmental Consequences**

The project is not anticipated to have an adverse impact because it is believed that the proposed project would hook up to existing utilities and other public facilities that have capacity.

12.89.5.7 **Public Health and Safety and Shoreline Protection**

**Affected Resources**

The management of hazardous materials is regulated under various federal and state environmental and transportation laws and regulations, including the Resource Conservation and Recovery Act (RCRA); the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); the Emergency Planning and Community Right-to-Know Act; and the Hazardous Materials Transportation Act. The purpose of the regulatory requirements set forth under these laws is to ensure the protection of human health and the environment through proper management (identification, use, storage, treatment, transport, and disposal) of these materials. Some of these laws provide for the investigation and cleanup of sites that have already been contaminated by releases of hazardous materials, wastes, or substances.

A review of the EPA’s EnviroMapper revealed that there are no Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Resource Conservation and Recovery Act (RCRA), or Permit Compliance System (PCS) sites on or immediately adjacent to the boardwalk installation site or the artificial oyster reef and salt marsh expansion/restoration (EPA 2013c).

**Environmental Consequences**

Project construction would require mechanical equipment that uses oil, lubricants, and fuels. The contractor would be required to take appropriate actions to prevent, minimize, and control the spill of
construction-related hazardous materials such as vehicle fuels, oil, hydraulic fluid, and other vehicle maintenance fluids.

12.89.6 Summary and Next Steps
The Northwest Florida Fort Walton Beach Educational Boardwalk project would expand existing boardwalks as well as conducting several small natural resource and habitat enhancement projects in Fort Walton Beach. The proposed improvements include constructing a new educational and interactive boardwalk, expansion of an existing intertidal oyster reef, and restoration of a degraded salt marsh. The project is consistent with the selected alternative in the Final Phase III ERP/PEIS (Alternative 4), under which the Trustees propose to implement projects emphasizing the restoration of habitat and living coastal and marine resources as well as projects emphasizing the restoration of recreational opportunities.

NEPA analysis of the environmental consequences suggests that while minor adverse impacts to some resource categories, no moderate to major adverse impacts are anticipated to result. The project would enhance and/or increase recreational use opportunities by improving the boardwalks and enhancing adjoining natural resources and habitat. The Trustees considered public comment and information relevant to environmental concerns bearing on the proposed actions or their impacts. The Trustees’ determination on selection of the project will be included in the Record of Decision.

12.89.7 References


Fay, V. 2014. Memorandum to Leslie Craig, Essential Fish Habitat (EFH) assessment review for Northwest Florida Fort Walton Beach Educational Boardwalk project in Santa Rosa Sound, Okaloosa County, Florida. April 4.


Gulf of Mexico Fishery Management Council (GMFMC). 2005. FINAL Generic Amendment Number 3 for Addressing Essential Fish Habitat Requirements, Habitat Areas of Particular Concern, and Adverse Effects of Fishing in the following Fishery Management Plans of the Gulf of Mexico: Shrimp Fishery of the Gulf of Mexico, United States Waters; Red Drum Fishery of the Gulf of Mexico; Reef Fish Fishery of the Gulf of Mexico; Coastal Migratory Pelagic Resources (Mackerels) in the Gulf of Mexico and South Atlantic Stone Crab Fishery of the Gulf of Mexico; Spiny Lobster in the Gulf of Mexico and South Atlantic; Coral and Coral Reefs of the Gulf of Mexico. Tampa: Gulf of Mexico Fishery Management Council.


12.90 Cumulative Impacts

The CEQ regulations for implementing NEPA require the assessment of cumulative impacts in the decision-making process for federal projects. The regulations define cumulative impacts as the:

impact on the environment which results from the incremental impact of the action when added to other past, present and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions.

In the context of the Phase III Early Restoration Program, cumulative impacts assessment requires the Trustees to (1) define appropriate spatial and temporal boundaries for the analysis; (2) describe existing environmental and/or socioeconomic conditions for affected resources within the spatial and temporal boundaries; (3) identify past, present and reasonably foreseeable future government and private actions that could have or contribute to potentially significant impacts on the affected resources; and (4) characterize the cumulative impacts of the proposed project assuming implementation of the other past, present, and reasonably foreseeable future actions.

Given the broad geographic scope of the Phase III program, the requirement for cumulative impacts analysis poses unique challenges. Although Early Restoration encompasses projects located across hundreds of miles of Gulf of Mexico coastline, a cumulative analysis of all impacts across the Gulf is not practically feasible. Moreover, at that scale, local or regional detail would not be sufficient for analysis. Instead, the Trustees have developed a cumulative impacts approach built around discrete, state-by-state, spatially-based project groupings that focus the analysis on the most likely areas for cumulative resource impacts (e.g., watersheds, estuaries or counties). This is designed to supplement the programmatic cumulative impact analysis found in Chapter 6. Following the CEQ guidance for scoping cumulative analyses, the goal is not to capture every theoretically possible impact, but instead ‘to count what counts.’ Defining spatial boundaries in this manner also facilitates identification and analysis of existing environmental and socioeconomic conditions.

Once the project spatial groups have been selected and baseline conditions characterized, the cumulative impacts analysis depends heavily on the availability of information and data about past, present, and reasonable foreseeable future actions. For the analysis of the Phase III program, the Trustees identified past, present, and reasonably foreseeable future actions through consultations with local, state and federal environmental experts familiar with major environmental and development initiatives that have a potential to contribute substantially to cumulative impacts. In some cases, environmental analyses of reasonably foreseeable actions are available to inform the Trustees’ analyses. But in the absence of such completed analyses, the Trustees generally had to rely on expert judgments, primarily qualitative, about the potential for impacts, using publicly available information about the likely design and location of these actions.

For the 30 Florida Phase III Early Restoration projects, the Trustees believe the cumulative impact analyses discussed here represent best estimates of how current environmental and socioeconomic conditions may be changed by the proposed actions when their impacts are combined with other past, present, and reasonably foreseeable future actions. However, the cumulative impacts analysis remains subject to uncertainties and data limitations. Nonetheless, because the proposed Florida Phase III Early Restoration projects are all designed to improve environmental quality directly or to increase public
access and enjoyment of natural resources, the Trustees concluded that although some of the projects may have an incremental contribution to adverse cumulative impacts, the contribution would not be substantial over the long term. The reasons for this conclusion are detailed in the remainder of this chapter.

Spatial and Temporal Boundaries for Florida Projects

Spatial Boundaries
The Phase III Early Restoration projects proposed in Florida are physically separated from each other and are distributed across a wide geographical range in Florida. The projects were therefore grouped geographically in order to analyze the potential for cumulative impacts at appropriate regional scales.

In developing the following cumulative impact analysis, the cumulative actions discussed in Chapter 6 were considered (e.g. marine transportation, oil and gas, etc.). As part of the cumulative analysis, past, present and reasonably foreseeable future actions were identified (past actions are considered part of the existing conditions analyzed in the individual environmental reviews). This analysis considers the incremental contribution of proposed Phase III early restoration projects to potential cumulative impacts to resources discussed in Chapter 3. The analysis includes resources that are relevant to the concerns identified on the regional scale.

For Florida Phase III Early Restoration projects, eight regional or spatial groupings were developed. They are: Grouping 1 – Pensacola Bay (Escambia and Santa Rosa Counties); Grouping 2 – Santa Rosa Sound/Choctawhatchee Bay (Okaloosa and Walton Counties); Grouping 3 – Walton County; Grouping 4 – St. Andrew Bay (Bay County); Grouping 5 – St. Joseph Bay (Bay and Gulf Counties); Grouping 6 – Apalachicola Bay (Franklin County); Grouping 7 – Apalachicola and Apalachee Bays (Franklin and Wakulla Counties); Grouping 8 – Offshore Waters of Florida. Regional group were analyzed for, past, present, and reasonably foreseeable future actions which could result in cumulative impacts to the affected resource when combined with the impacts of the projects being considered (Figure 12-57) below.
Figure 12-57. Map of Florida Phase III Early Restoration projects which have been divided into eight regional groupings.
Cultural resource investigations and consultations would be completed for all the proposed projects that are selected for implementation. Although no cumulative impacts to cultural resources are anticipated, there is insufficient information at this time to make such determinations. If cultural resources would be impacted, mitigation identified during the consultation process would be implemented.

New construction or projects that could increase recreational use capacity have the potential to result in indirect impacts on marine habitats, marine resources, or protected resources. These impacts include increased fishing pressure, wildlife-vehicle collisions, wildlife harassment from domestic pets, and additional human presence disturbance. Although in certain instances, including the development of new facilities, roads, and piers, planned Phase III Early Restoration projects designed to address recreational use in Florida have the potential to cause these impacts, the projects are not expected to substantially exacerbate these issues. Where appropriate, project-specific analysis is included in the project reviews.

**Temporal Boundaries**
As detailed in Chapter 6 of the Phase III ERP/PEIS, the temporal boundary may vary by each resource and project. Once the impacts of the proposed actions are no longer experienced by the affected resource, the cumulative impacts of the other past, present, and reasonably foreseeable future actions need no longer be considered. For the most part, actions are qualified as those that are anticipated to persist beyond the construction phase for proposed Phase III Early Restoration projects and those that are ongoing for other actions considered in the cumulative analysis.

**Identification of Other Actions Included in the Cumulative Impact Scenarios**
For purposes of the cumulative impacts analyses in this Chapter, past actions are assumed to be represented in the existing conditions discussed in the Environmental Reviews for the Florida projects.

Present actions are those that are occurring now and result in ongoing impacts to the same resources that the proposed action will impact.

Reasonably foreseeable future actions are those actions that are likely to occur and affect the same resource as the proposed alternatives. The determination of what future actions should be considered requires a level of certainty that they will occur to ensure that the consideration of future actions is not overly speculative. This level of certainty could be met by a number of factors such as the completion of permit applications, the subject of approved proposals or planning documents, or other similar evidence. Determining how far into the future to consider actions is based on the impact of the alternatives being considered.

**Group 1 Phase III Early Restoration Projects: Pensacola Bay Area**
Table 12-68 summarizes the impacts to resources associated with proposed Florida projects in the Pensacola Bay coastal region, comprising habitat, living coastal and marine resources, and recreational use projects. The projects occur within Pensacola Bay, the shoreline of Pensacola Bay, or along the keys that are adjacent to Pensacola Bay. Projects are evaluated together to determine if they have any cumulative impacts that, when combined with other past, present, and reasonably foreseeable future actions in Pensacola Bay and its watershed, may result in cumulative impacts to resources. Projects are
currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. Although no cumulative impacts to cultural resources are anticipated, there is insufficient information at this time to make determinations. If cultural resources would be impacted, mitigation identified during the consultation process would be implemented. In order to comply with the National Park Service’s Director’s Order 12, additional cumulative impacts analysis for the projects at Gulf Islands National Seashore can be found in sections 12.90 and 12.92.

Table 12-68. Summary of Impacts of Proposed Phase III Early Restoration Projects.
Existing Conditions
Existing environmental and socio-economic conditions in and around Group 1 Phase III Early Restoration projects are represented by the affected environment in the preceding environmental reviews for Group 1 Phase III Early Restoration projects. The existing conditions include the environmental impacts of past projects in the area and therefore are the assumed existing conditions for the cumulative analysis of impacts for past, present, and reasonably foreseeable future actions.

Summary of Impacts: Group 1 Phase III Early Restoration Projects
All of the resource areas listed in Table 12-68 above would be affected by at least some of the project proposed under Group 1 Phase III Early Restoration. These impacts would not be anticipated to extend beyond the construction period for the most part. Some resource areas would be affected long term, some beneficially and some adversely. However, none of the projects proposed under Group 1 Phase III Early Restoration would result in any long-term adverse impacts that rise above a minor status. In fact, many of the projects proposed under Group 1 Phase III Early Restoration would result in long-term benefits to certain resources. Overall, long-term benefits from projects proposed in the Group 1 Phase III Early Restoration region are expected to outweigh the short-term adverse impacts necessary for project implementation as well as long-term minor adverse impacts.

Identification of Past, Present and Reasonably Foreseeable Future Actions and Impacts
The table below identifies past, present, and reasonably foreseeable future projects in each of the applicable categories described in Chapter 6. For each of the actions, the table provides (1) a brief description of the action and (2) a listing of NEPA resource categories that are the most likely areas of concern for cumulative impacts when the action is considered in conjunction with implementation of Group 1 Phase III Early Restoration projects. In most cases, detailed environmental impact data are not available for these other actions. Consequently, the analyses generally reflect qualitative discussions about potential impacts based on best professional judgment. Also, as noted previously, the focus of the cumulative impacts analysis is on the resource areas that are deemed most likely to exhibit cumulative impacts; hence the analysis does not include in the listing those resources where impacts have been judged to be de minimis.

Table 12-69. Other Activities Identified in Group 1 Region

<table>
<thead>
<tr>
<th>Category/Projects</th>
<th>Project Description</th>
<th>Key Resource Areas with Potential to Contribute to Cumulative Impacts</th>
</tr>
</thead>
</table>
| ERP I – Florida Boat Ramp Facilities | The Florida Public Boat Ramp Enhancement provided boaters enhanced access to public waterways within Pensacola Bay, Perdido Bay, and offshore areas. The project included repairs to existing boat ramps and new boat ramps and construction of kiosks to provide environmental education to boaters re: | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice |
<table>
<thead>
<tr>
<th>Category/Projects</th>
<th>Project Description</th>
<th>Key Resource Areas with Potential to Contribute to Cumulative Impacts</th>
</tr>
</thead>
</table>
| **ERP I – The Florida (Pensacola Beach) Dune Restoration Project** | The Florida (Pensacola Beach) Dune Restoration Project would help restore primary vegetated dune habitat lost due to spill-related activities. The project would help restore an area of the beach where oiling and the extensive use of all-terrain vehicles and heavy equipment has inhibited plant growth and prevented the natural seaward expansion of the dunes since June 2010. | • Geology and Substrates  
• All other impacts determined de minimus in EA for ERP I |
| **ERP II – Restoring the Night Sky** | Restoring the Night Sky aims to improve the quality of sea turtle nesting habitat in Escambia, Santa Rosa, Okaloosa, Walton, Bay, Gulf and Franklin County beaches by reducing negative impacts on turtles from artificial lighting. This will be accomplished by installing turtle-friendly lighting in place of more harmful traditional lighting within the vicinity of nesting beaches, increased enforcement of local lighting ordinances, and a public awareness campaign. | • All impacts determined de minimus in EA for ERP II |
| **ERP II – Enhanced Management of Avian Breeding Habitat Injured by Response Activities in the Florida Panhandle** | Escambia, Santa Rosa, Okaloosa, Walton, Bay, Gulf and Franklin Counties. Predator control, placement of symbolic fencing, protection of nesting bird areas and monitoring. | • All impacts determined de minimus in EA for ERP II |
| **Other Restoration Projects** | Projects to restore Pensacola Beach and Perdido Key Beach to repair damages sustained from previous storm events. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Tourism and Recreational Use |
| **Pensacola Beach FL and Perdido Key Beach Restoration Project Phase 2 (FDEP Beach Erosion Control Program)** | FDEP and FWCC are developing and constructing Living Shoreline projects throughout Pensacola Bay. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual Resources |
<table>
<thead>
<tr>
<th>Category/Projects</th>
<th>Project Description</th>
<th>Key Resource Areas with Potential to Contribute to Cumulative Impacts</th>
</tr>
</thead>
</table>
| **Oyster Enhancement in East Bay (Garcon Point and White Point)**                | Garcon Point: 2 miles-18 acre oyster breakwaters, with fossilized shell (currently 870 reefs) encompassing 22 acres restored fish habitat; White Point: 2 miles – 18 acres oyster breakwaters | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice |
| **The Enhanced Management of Avian Breeding Habitat Project**                    | This early restoration Phase II project helps restore avian breeding habitat injured by response activities and includes visitor education, predator control, surveying for shorebird nesting behaviors and their nests, and placing symbolic fencing with signage around nesting areas to keep visitors from disturbing nests. The project occurs in several areas, including the Seashore units on Santa Rosa Island and Perdido Key. | • Socioeconomics and Environmental Justice  
• Protected Species |
| **Littoral Zone Placement of Dredge Spoil on Perdido Key Project**                | Approximately 557 cubic yards of sand was placed on the southern beach of the Perdido Key Area of Gulf Islands National Seashore from mile markers R64 to R52, December 9, 2011 – January 18, 2012. The dredge material was obtained during maintenance dredging of the Pensacola Harbor Gulf Entrance Channel, by the U.S. Army Corps of Engineers, Mobile District. | • Geology and Substrates  
• Protected Species |
| **Asphalt Debris Removal/Disposal Project**                                      | In 2012 approximately 3,000 cubic yards of asphalt fragments and road base materials were removed from approximately 50-100 acres of beach at the Santa Rosa (Opal Beach) and Fort Pickens areas. | • Geology and Substrates  
• Living Coastal and Marine Resources  
• Protected Species  
• Aesthetics and Visual Resources  
• Tourism and Recreational Use |
| **Military Operations**                                                          |                                                                                                                                                                                                                      |                                                                                                                                                                |
| **Revised Draft Supplemental EIS for the F-35 Beddown at Eglin Air Force Base, Florida Gulf Regional Airspace Strategic Initiative - Eglin Air Force Base, Florida** | To analyze the beddown location and operational alternatives and examine mitigations for the 59 F-35 PAA authorized for delivery, including the use of Duke Field airfield and construction of a new runway(s) at Eglin Main Base. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHGs  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual Resources  
• Infrastructure |
| **Pensacola Naval Air Station (U.S. Navy)**                                       | Continuing operations at the Pensacola Naval Air Station.                                                                                                                                                             | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHGs  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats |
<table>
<thead>
<tr>
<th>Category/Projects</th>
<th>Project Description</th>
<th>Key Resource Areas with Potential to Contribute to Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine Transportation</td>
<td></td>
<td>• Socioeconomics and Environmental Justice • Infrastructure</td>
</tr>
<tr>
<td><strong>Perdido Pass Navigation Project</strong></td>
<td>The Perdido Pass Navigation Project was initiated in 1965 to create a vessel navigation channel between the Gulf of Mexico and Perdido Bay. Project construction and maintenance dredging is carried out by the U.S. Army Corps of Engineers</td>
<td>• Geology and substrates • Hydrology and Water Resources • Air quality and GHGs • Noise • Living Coastal and Marine Resources • Protected species • Habitats • Socioeconomic and Environmental Justice • Aesthetics and Visual Resources • Infrastructure • Tourism and Recreational Use</td>
</tr>
<tr>
<td><strong>Fort Pickens Ferry Support Facilities and Shuttle Service Project</strong></td>
<td>A transportation study has been prepared and an Environmental Assessment is being prepared for the establishment of support facilities and operation of a landside shuttle tram service at the Fort Pickens Historic District of Gulf Islands National Seashore to complement the future water ferry service (see #4 above and #22 below). Several historic buildings would be repurposed to serve as a visitor center, retail area, restrooms, and shuttle shelters for the shuttle service. Existing parking areas would be repurposed as shuttle pull-off areas. The shuttle service would connect those arriving on the passenger ferry to visitor amenities and points of interest throughout the historic district on the western end of the island. The shuttle service would begin operating around 2017, would use electric trams or other alternative fuels, and would operate on a schedule that mirrored that of the passenger ferry service.</td>
<td>• Noise • Socioeconomics and Environmental Justice • Aesthetics and Visual Resources • Tourism and Recreational Use • Infrastructure</td>
</tr>
<tr>
<td><strong>Fort Pickens Road Realignment, Resurfacing, and Entrance Station Reconfiguration Project</strong></td>
<td>An Environmental Assessment is being prepared for the realignment of 1.67 miles of the road farther to the north, and removal and restoration of the old roadbed, resurfacing 4.5 miles of Fort Pickens Road and two parking lots (lots 21 and 22), and reconfiguring the existing entrance station area there to accommodate more vehicles. Project implementation is proposed to begin in 2015.</td>
<td>• Geology and Substrates • Air Quality and GHG • Noise • Living Coastal and Marine Resources • Protected Species • Socioeconomics and Environmental Justice • Aesthetics and Visual Resources • Tourism and Recreational Use • Infrastructure</td>
</tr>
<tr>
<td><strong>Fort Pickens Pier and Ferry Service Project</strong></td>
<td>An Environmental Assessment was prepared in 2011 for the establishment of a ferry service between the Fort Pickens area at the Seashore, the City of Pensacola, and Pensacola Beach, and also for the</td>
<td>• Air Quality and GHG • Noise • Protected Species • Socioeconomics and Environmental Justice • Tourism and Recreational Use</td>
</tr>
<tr>
<td>Category/Projects</td>
<td>Project Description</td>
<td>Key Resource Areas with Potential to Contribute to Cumulative Impacts</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------------------------------------------------------------</td>
</tr>
<tr>
<td>Construction a ferry docking pier at Fort Pickens. Although the ferry service has yet to be established, the pier was constructed in 2012. The ferry service is anticipated to run two ferries at a time and make approximately three trips each per day during the peak season, and fewer or no trips during the shoulder and off seasons, respectively. Ferry service is expected to begin in 2017.</td>
<td>![Not applicable]</td>
<td>![Infrastructure]</td>
</tr>
<tr>
<td>Maintenance dredging of Intracoastal Waterways and Pensacola Harbor Gulf Entrance Channel</td>
<td>Involves placement of dredge material at Robertson Island and other dredge disposal areas within the boundaries and waters of Gulf Islands National Seashore. Dredge material was removed from the ICW and placed on Robertson Island (Disposal Area 45) within GUIS boundaries in January 2014. Other schedules are not known. Work conducted under contract to the US Army Corps of Engineers, Mobile District.</td>
<td>![Air Quality and GHG] ![Noise] ![Protected Species] ![Socioeconomics and Environmental Justice]</td>
</tr>
<tr>
<td>Energy Activities (Offshore oil production, Offshore Natural Gas Facilities, State Oil and Gas Activities)</td>
<td>No known projects.</td>
<td>![Not applicable]</td>
</tr>
<tr>
<td>Marine Mineral Mining, Including Sand and Gravel Mining</td>
<td>No known projects</td>
<td>![Not applicable]</td>
</tr>
<tr>
<td>Coastal Development and Land Use</td>
<td>![Not applicable]</td>
<td>![Not applicable]</td>
</tr>
<tr>
<td>FDOT Pensacola Bay Bridge Replacement Project</td>
<td>The bridge between Pensacola and Gulf Breeze, FL on US Highway 98 is considered “structurally deficient”; therefore FDOT is</td>
<td>![Hydrology and Water Quality] ![Air Quality and GHGs]</td>
</tr>
</tbody>
</table>
Cumulative Impacts Analysis for Group 1 Phase III Early Restoration Projects

Table 12-69 identifies the following resource categories where there is a possibility that impacts of past, present and reasonably foreseeable future actions might overlap those of the Group 1 Phase III Early Restoration projects and therefore result in adverse cumulative impacts not identified through analysis of the Group 1 Phase III Early Restoration projects alone. The following resource categories are identified for further cumulative impacts analysis:

- Geology and Substrates;
- Hydrology and Water Resources;
- Air quality and GHGs;
- Noise;
- Living Coastal and Marine Resources;
- Protected Species;
- Habitat;
- Socioeconomics and Environmental Justice;
- Aesthetics and Visual Resources;
- Tourism and Recreational Use; and
- Infrastructure.

Cumulative impacts for each of these categories are discussed below.
**Geology and Substrates**

Group 1 Phase III Early Restoration projects would have both short-term and long-term minor adverse impacts to geology and substrate. There would be short-term adverse impacts to geology and substrate from the construction at a number of the proposed project sites. Long-term minor adverse impacts would result from the projects like the Fish Hatchery permanently converting upland geology and the Gulf Islands Ferry project converting submerged substrates with the installation of pilings. Long-term benefits to geology and substrate would include the removal of asphalt from the Gulf Islands National Seashore.

Fourteen projects in Table 12-69 are identified as potential contributors to cumulative impacts on geology and substrates when their impacts are combined with those of the Group 1 Phase III Early Restoration projects. Actions related to coastal development or upland military installations would result in permanent alterations to existing geology for construction of foundations, roadways and other permanent structures. Other actions such as construction of boat ramps or living shorelines would result in placement of hard structure on submerged sandy sediments and permanent conversion of those areas. The projects would have relatively small footprint for conversion of soil and substrate to hard structure.

When Group 1 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term and long-term cumulative adverse impacts to geology and substrates would likely occur. Group 1 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 1 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term, beneficial cumulative impacts to geology and substrates.

**Hydrology and Water Resources**

Group 1 Phase III Early Restoration projects would have both short-term and long-term minor adverse impacts to hydrology and water resources. The majority of the projects proposed in the Group 1 Phase III Early Restoration would result in short-term adverse impacts to water quality during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. The Gulf Islands Ferry project would result in long-term minor adverse impacts through the continuing operation of the ferry service. Long-term benefits to hydrology and water resources would result from living shoreline and oyster reef creation.

Ten projects in Table 12-69 are identified as having potential contributors to cumulative impacts on hydrology and water resources when their impacts are combined with those of the Group 1 Phase III Early Restoration projects. These include coastal development, marine transportation, recreational boat ramps and ongoing military operations. These activities would contribute to long-term hydrologic or water quality impacts as a result of shipping and navigation, increased development and impervious surface area that may result in increases in stormwater runoff and pollutants carried in that runoff and increased recreational use in the waterways. Oyster reefs and artificial reefs contribute long term water quality benefit from biological filtering. Long-term beneficial impacts are anticipated from marshes that are created by beneficial use of dredge materials.
When Group 1 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term and long-term cumulative adverse impacts to hydrology and water resources would likely occur. Group 1 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 1 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term, beneficial cumulative impacts to hydrology and water resources.

**Air Quality and GHGs**

Group 1 Phase III Early Restoration projects would have both short-term and long term minor adverse impacts to air quality and GHGs. The majority of the projects proposed in the Group 1 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. Where appropriate, BMPs would be implemented to minimize these short-term impacts. The Gulf Islands Ferry project would result in long-term minor adverse impacts through the continuing operation of the ferry service.

Fourteen projects in Table 12-69 are identified as potential contributors to cumulative impacts to air quality or GHG when their impacts are combined with those of the Group 1 Phase III Early Restoration projects. The impacts would occur mainly during construction with limited long term operational impacts. Construction and operations impacts of each project would be short to long-term in nature, would constitute a very small portion of the overall inventory of air emissions in the region, and would not be expected to violate state or federal standards. For operations, all facilities, would follow applicable federal and state regulations, and would not be expected to change the air quality attainment status of the region.

When Group 1 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term and long-term cumulative adverse impacts to air quality and GHGs would likely occur. Group 1 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Noise**

Group 1 Phase III Early Restoration projects would have both short-term and long-term minor adverse impacts to noise. The majority of the projects proposed in the Group 1 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. Where appropriate, BMPs would be implemented to minimize these short-term impacts. The Gulf Islands Ferry project and the Florida Fish Hatchery would result in long-term minor adverse impacts through the continuing operation of the ferry service and the hatchery.

Fifteen projects in Table 12-69 are identified as potential contributors to cumulative impacts to noise levels when their impacts are combined with those of the Group 1 Phase III Early Restoration projects. Project types include military operations, marine transportation and coastal development. In most cases the noise impacts would be of relatively short duration, ending upon completion of construction activities, and are projected to result in only minor adverse impacts. Noise levels from military and facility operations and use will be increased but not at an excessive level given the surrounding land use.
When Group 1 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term and long-term cumulative adverse impacts to noise would likely occur. Group 1 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Living Coastal and Marine Resources**

Group 1 Phase III Early Restoration projects would have both short-term and long-term minor adverse impacts to living coastal and marine resources. The majority of the projects proposed in the Group 1 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. The Gulf Islands Ferry project and the Escribano Point project would result in long-term minor adverse impacts due to the continuing operation of the ferry service and increased use of Escribano Point. Long-term beneficial impacts would result from dune restoration, living shoreline and oyster reef creation, enhancing the Gulf Islands National Seashore, and fixing dune walkovers.

Twelve projects in Table 12-69 are identified as potential contributors to cumulative impacts to living coastal and marine resources when their impacts are combined with those of the Group 1 Phase III Early Restoration projects. Ongoing military operations and coastal development have affected upland and aquatic living coastal and marine resources due to human disturbances including noise, domestic pets, introduction of invasive species, placement of roadways and traffic, recreational use, etc. These ongoing activities have all contributed to habitat losses and habitat fragmentation in areas that living and coastal marine resources rely on for breeding, foraging and other uses. These impacts are anticipated to continue into the future. Long-term benefits are anticipated from reef and marsh creation which will provide habitat for smaller organisms mainly consisting of crustaceans and mollusks, such as juvenile shrimp, crab, oysters and mussels that live on the reef and in the sediment.

When Group 1 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term and long-term cumulative adverse impacts to living coastal and marine resources would likely occur. Group 1 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 1 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to living and coastal marine resources.

**Protected Species**

Group 1 Phase III Early Restoration projects would have both short-term and long-term minor adverse impacts to protected species. The majority of the projects proposed in the Group 1 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. The Gulf Islands Ferry project would result in long-term minor adverse impacts due to the continuing operation of the ferry service. Long-term beneficial impacts would result from dune restoration, oyster reef creation, enhancing the Gulf Islands National Seashore, and fixing dune walkovers.

Seventeen projects in Table 12-69 are identified as potential contributors to cumulative impacts to protected species when their impacts are combined with those of the Group 1 Phase III Early Restoration projects. The ongoing military, marine transportation and coastal development activities
have adversely affected protected species through human related disturbances such as noise, vessel traffic and pollution, placement of roadways and traffic, domestic pets, loss of habitats, introduction of invasive species and habitat fragmentation. These impacts are anticipated to continue into the future. Long-term benefits are anticipated from living shorelines and oyster reefs which will provide will potentially provide habitat for protected species. Furthermore, the Phase II habitat restoration projects will provide long-term benefits to nesting species and sea turtles.

When Group 1 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term and long-term cumulative adverse impacts to protected species would likely occur. Group 1 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 1 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to protected species.

**Habitats**

Group 1 Phase III Early Restoration projects would have both short-term and long-term minor adverse impacts to habitats. The majority of the projects proposed in the Group 1 Phase III Early Restoration would result in short term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. The Gulf Islands Ferry project would result in long-term minor adverse impacts due to the continuing operation of the ferry service. Long-term beneficial impacts would result from dune restoration, living shoreline and oyster reef creation, enhancing the Gulf Islands National Seashore, and fixing dune walkovers.

Nine projects in Table 12-69 are identified as potential contributors to cumulative impacts to habitats when their impacts are combined with those of the Group 1 Phase III Early Restoration projects. The ongoing military, coastal development and marine transportation activities have adversely affected habitats through human related disturbances such as loss of habitats to developed areas, introduction of invasive species and habitat fragmentation. These impacts are anticipated to continue into the future. Long-term benefits are anticipated from living shorelines and oyster reefs which will provide will provide habitat. Furthermore, the Phase II Early Restoration projects will provide long-term benefits to nesting birds and sea turtles habitat.

When Group 1 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term and long-term cumulative adverse impacts to habitats would likely occur. Group 1 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 1 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to habitats.

**Socioeconomics and Environmental Justice**

Group 1 Phase III Early Restoration projects would have short-term adverse impacts to socioeconomics. The oyster project proposed in the Group 1 Phase III Early Restoration would result in short-term adverse impacts during the construction time frame due to potential closure of the oyster reef. However, these projects and the other projects would benefit the local economies adjacent to the
project site in both the short-term and long-term from increased employment during the project construction and by increasing use of the facilities.

Sixteen projects in Table 12-69 are identified as potential contributors to cumulative beneficial impacts to socioeconomics when their impacts are combined with those of the Group 1 Phase III Early Restoration projects. Many of the projects actions in the table may affect socioeconomics in the short-term and long-term through job creation, increased local sales, and potential increased demand for local business services. Additionally, the increase in workers and tourism related activities would increase revenues in local communities.

When Group 1 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to socioeconomics would likely occur. Group 1 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 1 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative socioeconomic impacts.

**Aesthetics and Visual Resources**

Group 1 Phase III Early Restoration projects would have both short-term and long-term minor adverse impacts to aesthetics and visual resources. The majority of the projects proposed in the Group 1 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. Both the Florida Fish Hatchery and the Gulf Islands Ferry project would result in long-term minor adverse impacts due to the construction of the fish hatchery and the operation of the ferry service. Long term beneficial impacts would result from enhancing the Gulf Islands National Seashore, restoring dunes and upgrading facilities.

Eight projects in Table 12-69 are identified as potential contributors to adverse cumulative impacts to aesthetics and visual resources when their impacts are combined with those of the Group 1 Phase III Early Restoration projects. Many of the actions described in the table above may affect aesthetics and visual resources in the short-term and long-term. Temporary impacts to visual resources would result from restoration, construction, maintenance and recreational use. Long-term impacts would occur with coastal development.

When Group 1 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term and long-term cumulative adverse impacts to aesthetics and visual resources would likely occur. Group 1 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 1 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative aesthetics and visual resources impacts.

**Tourism and Recreational Use**

Group 1 Phase III Early Restoration projects would have short-term adverse impacts to tourism and recreational use. The majority of the projects proposed in the Group 1 Phase III Early Restoration would
result in short-term adverse impacts from potential facility closures during construction related activities. However once the construction activities are completed, the Group 1 Phase III Early Restoration projects will provide long-term benefits through enhanced and/or increased access to the natural resources.

Nine projects in Table 12-69 are identified as potential contributors to cumulative impacts to tourism and recreational use when their impacts are combined with those of the Group 1 Phase III Early Restoration projects. Enhanced and/or increased visitation at the boat ramps and the renourished beach is expected to provide long-term beneficial impacts to tourism and recreational use.

When Group 1 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to tourism and recreational use would likely occur. Group 1 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 1 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative tourism and recreational use impacts.

**Infrastructure**

Group 1 Phase III Early Restoration projects would have both short-term and long-term minor adverse impacts to infrastructure. The projects proposed in the Group 1 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. Some of the projects have the potential to lead to increased use of existing public facilities and access roadways. However, the contribution of these projects to cumulative adverse impacts to infrastructure would not be substantial due to their relative small size and the proposed public facility or roadway use increases that may result. Furthermore, some of the projects have the potential to provide long-term beneficial impacts through the enhancement of parking at some of the recreational use facilities.

Ten projects in Table 12-69 are identified as potential contributors to cumulative impacts to infrastructure when their impacts are combined with those of the Group 1 Phase III Early Restoration projects. These include military operations, which add personnel and increase population pressures on existing infrastructure. Marine transportation improvements also can affect infrastructure by increasing vessel trips to local ports, use marine facilities and increase truck or rail traffic for moving imported goods. Coastal development also increases pressure on existing infrastructure. These impacts are anticipated to continue into the future.

When Group 1 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term and long-term cumulative adverse impacts to infrastructure would likely occur. Group 1 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 1 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative infrastructure impacts.
Summary of Cumulative Impacts
Based on the above analysis of past, present, and reasonably foreseeable future actions and the anticipated resources to be impacted for these actions (see Table 12-69), the Group 1 Phase III Early Restoration projects would not substantially contribute to adverse cumulative impacts to resources in the Group 1 Phase III Early Restoration region. Group 1 Phase III Early Restoration projects, carried out in conjunction with other projects, have the potential to provide long-term beneficial cumulative impacts to geology and substrates, hydrology and water resources, living coastal and marine resources, habitat, socioeconomic, aesthetics and visual resources, tourism and recreational use, and infrastructure.

Group 2 Phase III Early Restoration Projects: Choctawhatchee Bay Projects
Table 12-70 summarizes the impacts to resources associated with proposed Florida projects in the Choctawhatchee Bay coastal region, comprising of recreational use projects. The projects occur within the Choctawhatchee Bay, the shoreline of the Choctawhatchee Bay, or in areas slightly inland that are adjacent or in the vicinity of the Bay. Projects are evaluated together to determine if they have any cumulative impacts that, when combined with other past, present, and reasonably foreseeable future actions in Choctawhatchee Bay and the nearby vicinity, may result in cumulative impacts to resources. Projects are currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. Although no cumulative impacts to cultural resources are anticipated, there is insufficient information at this time to make determinations. If cultural resources would be impacted, mitigation identified during the consultation process would be implemented.
Table 12-70. Summary of Impacts of Proposed Phase III Early Restoration Projects.

<table>
<thead>
<tr>
<th>Group 2 Projects</th>
<th>Geology and Substrates</th>
<th>Hydrology and Water Resources</th>
<th>Air Quality and GHGs</th>
<th>Noise</th>
<th>Living Coastal and Marine Resources</th>
<th>Protected Species</th>
<th>Habitats</th>
<th>Socioeconomics and Environmental Justice</th>
<th>Land and Marine Management</th>
<th>Aesthetics and Visual Resources</th>
<th>Tourism and Recreational Use</th>
<th>Infrastructure</th>
<th>Public Health and Safety and Shoreline Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navarre Beach Park Coastal Access</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$/+</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>NE</td>
<td>S/+</td>
<td>$</td>
<td>$</td>
<td>$/+</td>
</tr>
<tr>
<td>Navarre Beach Park Gulfside Walkover Complex</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$/+</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>NE</td>
<td>S/+</td>
<td>$</td>
<td>$</td>
<td>$/+</td>
</tr>
<tr>
<td>Northwest Florida Fort Walton Beach Educational Boardwalk</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$/+</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>NE</td>
<td>S/+</td>
<td>$</td>
<td>$</td>
<td>$/+</td>
</tr>
<tr>
<td>Norriego Point Restoration and Recreation Project</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$/+</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>NE</td>
<td>S/+</td>
<td>$</td>
<td>$</td>
<td>$/+</td>
</tr>
<tr>
<td>Choctawhatchee Bay Scallop Enhancement</td>
<td>NE</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$/+</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>NE</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>S</td>
</tr>
<tr>
<td>Lafayette Creek Boat Dock</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>NE</td>
<td>S/+</td>
<td>$</td>
<td>S/</td>
<td>$</td>
</tr>
</tbody>
</table>

Adverse effect: -
Beneficial effect: +
Short term adverse effect: S
No effect: NE

Existing Conditions
Existing environmental and socio-economic conditions in and around Group 2 Phase III Early Restoration projects are represented by the affected environment in the preceding environmental reviews for Group 2 Phase III Early Restoration projects. The existing conditions include the environmental impacts of past projects in the area and therefore are the assumed existing conditions for the cumulative analysis of impacts for past, present and reasonably foreseeable future actions.

Summary Impacts Group 2 Phase III Early Restoration Projects
All of the resource areas listed in Table 12-70 above, with the exception of land and marine management, would be affected by at least some of the project proposed under Group 2 Phase III Early Restoration. These impacts would not be anticipated to extend beyond the construction period for the most part. None of the projects proposed under Group 2 Phase III Early Restoration would result in any long-term adverse impacts. In fact, many of the projects proposed under Group 2 Phase III Early Restoration would result in long-term benefits to certain resources. Overall, long-term benefits from projects proposed in the Group 2 Phase III Early Restoration region are expected to outweigh the short-term adverse impacts necessary for project implementation.
Identification of Past, Present, and Reasonably Foreseeable Future Actions and Impacts

The table below identifies past, present, and reasonably foreseeable future projects in each of the applicable categories described in Chapter 6. For each of the actions, the table provides (1) a brief description of the action and (2) a listing of NEPA resource categories that are the most likely areas of concern for cumulative impacts when the action is considered in conjunction with implementation of Group 2 Phase III Early Restoration projects. In most cases, detailed environmental impact data are not available for these other actions. Consequently, the analyses generally reflect qualitative discussions about potential impacts based on best professional judgment. Also, as noted previously, the focus of the cumulative impacts analysis is on the resource areas that are deemed most likely to exhibit cumulative impacts; hence the analysis does not include in the listing those resources where impacts have been judged to be *de minimis*.

**Table 12-71: Other Activities Identified in Group 2 Region**

<table>
<thead>
<tr>
<th>Category/Projects</th>
<th>Project Description</th>
<th>Key Resource Areas with Potential to Contribute to Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Restoration Related to the Spill</strong> (Early Restoration Phases I &amp; II, Restore Act, Gulf Environmental Benefit Fund, North American Wetlands Conservation Fund, National Academy of Sciences)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>ERP II – Restoring the Night Sky</strong></td>
<td>Restoring the Night Sky aims to improve the quality of sea turtle nesting habitat in Escambia, Santa Rosa, Okaloosa, Walton, Bay, Gulf and Franklin County beaches by reducing negative impacts on turtles from artificial lighting. This will be accomplished by installing turtle-friendly lighting in place of more harmful traditional lighting within the vicinity of nesting beaches, increased enforcement of local lighting ordinances, and a public awareness campaign.</td>
<td>• All impacts determined <em>de minimus</em> in EA for ERP II</td>
</tr>
<tr>
<td><strong>ERP II - Comprehensive Program for Enhanced Management of Avian Breeding</strong></td>
<td>Escambia, Santa Rosa, Okaloosa, Walton, Bay, Gulf and Franklin Counties: Predator control, placement of symbolic fencing, protection of nesting bird areas and monitoring.</td>
<td>• All impacts determined <em>de minimus</em> in EA for ERP II</td>
</tr>
<tr>
<td><strong>Other Restoration Projects</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Multiple living shorelines &amp; oyster recycling program</strong> <em>(CBA, Northwest Florida State College)</em></td>
<td>Construction of living shorelines and to collect oyster shells that would go to landfills and reuse them to construct oyster reef habitat.</td>
<td>• Geology and Substrates • Hydrology and Water Resources • Air Quality and GHG • Noise • Living Coastal and Marine Resources • Protected species • Habitats • Socioeconomics and Environmental Justice</td>
</tr>
<tr>
<td><strong>Navarre Beach Berm and Dune Restoration Project</strong> <em>(FDEP Beach Erosion Control Program)</em></td>
<td>Project includes renourishing Navarre Beach as well restoring the dune system to repair damages sustained from previous storm events.</td>
<td>• Geology and Substrates • Hydrology and Water Resources • Air Quality and GHG • Noise • Living Coastal and Marine Resources • Protected species</td>
</tr>
<tr>
<td>Category/Projects</td>
<td>Project Description</td>
<td>Key Resource Areas with Potential to Contribute to Cumulative Impacts</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| FDEP/FWCC 10 Living Shoreline Projects (proposed or underway) | FDEP and FWCC are developing and constructing Living Shoreline projects throughout Pensacola Bay. | • Habitats  
• Socioeconomics and Environmental Justice  
• Tourism and Recreational Use |
| Oyster Enhancement in East Bay (Garcon Point and White Point) | Garcon Point: 2 miles-18 acre oyster breakwaters, with fossilized shell (currently 870 reefs) encompassing 22 acres restored fish habitat; White Point: 2 miles – 18 acres oyster breakwaters | • Geology and Substrates  
• Hydrology and Water Resources  
• Air quality and GHGs  
• Noise  
• Living Coastal and Marine Resources  
• Protected species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual Resources |
| Military Operations | | |
| Revised Draft Supplemental EIS for the F-35 Beddown at Eglin Air Force Base, Florida Gulf Regional Airspace Strategic Initiative - Eglin Air Force Base, Florida | To analyze the beddown location and operational alternatives and examine mitigations for the 59 F-35 PAA authorized for delivery, including the use of Duke Field airfield and construction of a new runway(s) at Eglin Main Base. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air quality and GHGs  
• Noise  
• Living Coastal and Marine Resources  
• Protected species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual Resources  
• Infrastructure |
| Naval Air Station Whiting Field, Santa Rosa County | Continuing operations at the Naval Air Station at Whiting Field. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHGs  
• Noise  
• Living Coastal and Marine Resources  
• Protected species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Infrastructure |
| Marine Transportation | | |
| No known projects. | | |
| Energy Activities (Offshore oil production, Offshore Natural Gas Facilities, State Oil and Gas Activities) | | |
| No known projects. | | |
| Marine Mineral Mining, Including Sand and Gravel Mining | | |

355
### Category/Projects | Project Description | Key Resource Areas with Potential to Contribute to Cumulative Impacts
--- | --- | ---
**No known projects** |  |  |
**Coastal Development and Land Use** |  |  |
*Navarre Beach Master Plan* | Plan provides the supporting documentation for the development of the Navarre Beach Planning and Zoning Overlay Zone, which entails a set of Comprehensive Plan goals, objectives, policies and Land Development Code regulations that are applied only to the property within the boundaries of the overlay zone. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Living Coastal and Marine Resources  
• Protected species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual Resources  
• Tourism and Recreational Use  
• Infrastructure |
**Fisheries and Aquaculture** |  |  |
*No known projects.* |  |  |
**Tourism and Recreation** |  |  |
*No known projects.* |  |  |

**Cumulative Impacts Analysis for Group 2 Projects**

Table 12-71 identifies the following resource categories where there is a possibility that impacts of past, present and reasonably foreseeable future actions might overlap those of Group 2 Phase III Early Restoration projects and therefore result in adverse cumulative impacts not identified through the analysis of the Group 2 Phase III Early Restoration projects alone. The following resource categories are identified for further cumulative impacts analysis:

- Geology and Substrates;
- Hydrology and Water Resources;
- Air Quality and GHGs;
- Noise;
- Living Coastal and Marine Resources;
- Protected Species;
- Habitat;
- Socioeconomics and Environmental Justice;
- Aesthetics and Visual Resources;
- Tourism and Recreational Use; and
- Infrastructure.

Cumulative impacts for each of these categories are discussed below.
**Geology and Substrates**

Group 2 Phase III Early Restoration projects would have short-term adverse impacts to geology and substrate. There would be short-term adverse impacts to geology and substrate from the construction at a number of the proposed project sites.

Seven projects in Table 12-71 are identified as potential contributors to cumulative impacts to geology and substrates when their impacts are combined with those of the Group 2 Phase III Early Restoration projects. Actions related to coastal development or upland military installations have resulted in permanent alterations to existing geology for construction of foundations, roadways and other permanent structures. Other actions such as construction of boat ramps or living shorelines may have resulted in placement of hard structure on submerged sandy sediments and permanent conversation of those areas. The projects would have relatively small footprint for conversion of soil and substrate to hard structure.

When Group 2 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to geology and substrates would likely occur. Group 2 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Hydrology and Water Resources**

Group 2 Phase III Early Restoration projects would have short-term adverse impacts to hydrology and water resources. The projects proposed in the Group 2 Phase III Early Restoration would result in short-term adverse impacts to water quality during construction related activities. These short-term impacts would be minimized through the implementation of BMPs.

Seven projects in Table 12-71 are identified as potential contributors to cumulative impacts to hydrology and water resources when their impacts are combined with those of the Group 2 Phase III Early Restoration projects. These include coastal development and ongoing military operations. These activities may contribute to long-term hydrologic or water quality impacts as a result of increased development and impervious surface area that may result in increases in stormwater runoff and pollutants carried in that runoff and increased recreational use in the waterways.

When Group 2 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to hydrology and water quality would likely occur. Group 2 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Air Quality and GHGs**

Group 2 Phase III Early Restoration projects would have short-term adverse impacts to air quality and GHGs. The projects proposed in the Group 2 Phase III Early Restoration would result in short-term construction related impacts. Where appropriate, BMPs would be implemented to minimize these short-term impacts.

Seven projects in Table 12-71 are identified as potential contributors to cumulative impacts to air quality or GHG impacts when their impacts are combined with those of the Group 2 Phase III Early Restoration projects.
Restoration projects. The impacts would occur mainly during construction with limited long term operational impacts. Construction and operations impacts of each project would be short to long-term in nature, would constitute a very small portion of the overall inventory of air emissions in the region, and would not be expected to violate state or federal standards. For operations, all facilities, would follow applicable federal and state regulations, and would not be expected to change the air quality attainment status of the region.

When Group 2 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to air quality and GHGs would likely occur. Group 2 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Noise**
Group 2 Phase III Early Restoration projects would have short-term adverse impacts to noise. The projects proposed in the Group 2 Phase III Early Restoration would result in short-term adverse impacts from construction related activities. Where appropriate, BMPs would be implemented to minimize these short-term impacts.

Seven projects in Table 12-71 are identified as potential contributors to cumulative impacts to noise levels when their impacts are combined with those of the Group 2 Phase III Early Restoration projects. In most cases the noise impacts would be of relatively short duration, ending upon completion of construction activities, and are projected to result in only minor adverse impacts. Noise levels from military and facility operations and use will be increased but not an excessive level given the surrounding land use.

When Group 2 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to noise would likely occur. Group 2 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Living Coastal and Marine Resources**
Group 2 Phase III Early Restoration projects would have short-term adverse impacts to living coastal and marine resources. The projects proposed in the Group 2 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. Long-term beneficial impacts would result from the reef and marsh creation as well as building boardwalks and walkovers that will funnel foot traffic away from sensitive resources.

Seven projects in Table 12-71 are identified as potential contributors to cumulative impacts to living coastal and marine resources when their impacts are combined with those of the Group 2 Phase III Early Restoration projects. Ongoing military operations, existing and proposed coastal development have affected upland and aquatic living coastal and marine resources due to human disturbances including noise, domestic pets, introduction of invasive species, placement of roadways and traffic, recreational use, etc. These ongoing activities have all contributed to habitat losses and habitat fragmentation in areas that living and coastal marine resources rely on for breeding, foraging and other uses. These
impacts are anticipated to continue into the future. Long-term benefits are anticipated from reef and marsh creation which will provide habitat for smaller organisms mainly consisting of crustaceans and mollusks, such as juvenile shrimp, crab, oysters and mussels that live on the reef and in the sediment.

When Group 2 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to living coastal and marine resources would likely occur. Group 2 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 2 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to living and coastal marine resources.

**Protected Species**

Group 2 Phase III Early Restoration projects would have short-term adverse impacts to protected species. The projects proposed in the Group 2 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. Long-term beneficial impacts would result from oyster reef creation.

Seven projects in Table 12-71 are identified as potential contributors to cumulative impacts to protected species when their impacts are combined with those of the Group 2 Phase III Early Restoration projects. The ongoing military and coastal development activities have adversely affected protected species through human related disturbances such as noise, vessel traffic and pollution, placement of roadways and traffic, domestic pets, loss of habitat, introduction of invasive species and habitat fragmentation. These impacts are anticipated to continue into the future. Long-term benefits are anticipated from living shorelines and oyster reefs which will provide potential habitat for protected species. Furthermore, the Phase II habitat restoration projects will provide long-term benefits to nesting birds and sea turtles.

When Group 2 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to protected species would likely occur. Group 2 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 2 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to protected species.

**Habitats**

Group 2 Phase III Early Restoration projects would have short-term adverse impacts to habitats. The majority of the projects proposed in the Group 2 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. Long-term benefits impacts would result from the building of boardwalks and walkovers that will minimize impacts to sensitive habitats.

Seven projects in Table 12-71 are identified as potential contributors to cumulative impacts to habitats when their impacts are combined with those of the Group 2 Phase III Early Restoration projects. The
ongoing military and coastal development have adversely affected habitats through human related disturbances such as loss of habitats to developed areas, introduction of invasive species and habitat fragmentation. These impacts are anticipated to continue into the future. Long-term benefits are anticipated from living shorelines and oyster reefs which will provide will provide habitat. Furthermore, the Phase II Early Restoration projects will provide long-term benefits to nesting birds and sea turtles habitat.

When Group 2 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to habitats would likely occur. Group 2 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 2 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to habitats.

**Socioeconomics and Environmental Justice**

Group 2 Phase III Early Restoration projects would have long-term beneficial impacts to socioeconomics. The projects proposed in the Group 2 Phase III Early Restoration would benefit the local economies adjacent to the project site in both the short-term and long-term from increased employment during the project construction and by increasing use of the facilities.

Seven projects in Table 12-71 are identified as potential contributors to cumulative beneficial impacts to socioeconomics when their impacts are combined with those of the Group 2 Phase III Early Restoration projects. Many of the projects actions in the table may affect socioeconomics in the short-term and long-term through job creation, increased local sales, and potential increased demand for local business services. Additionally, the increase in workers and tourism related activities would increase revenues in local communities.

When Group 2 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, no cumulative short-term adverse impacts to socioeconomics would likely occur. Group 2 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 2 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative socioeconomic impacts.

**Aesthetics and Visual Resources**

Group 2 Phase III Early Restoration projects would have short-term adverse impacts to aesthetics and visual resources. The projects proposed in the Group 2 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. Long-term beneficial impacts would result from enhancing coastal habitat and constructing a boardwalk to enhance the public’s view of the coastal resources.

Two projects in Table 12-71 is identified as potential contributors to cumulative impacts to aesthetic or visual resources when their impacts are combined with those of the Group 2 Phase III Early Restoration
projects. Many of the projects described in the table above may affect aesthetics and visual resources in the short-term and long-term. Temporary impacts to visual resources would result from restoration, construction, maintenance and recreational use. Long-term impacts would occur with coastal development.

When Group 2 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to aesthetics and visual resources would likely occur. Group 2 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 2 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative aesthetics and visual resources impacts.

**Tourism and Recreational Use**

Group 2 Phase III Early Restoration projects would have short-term adverse to tourism and recreational use. The projects proposed in the Group 2 Phase III Early Restoration would result in short-term adverse impacts from potential facility closures during construction related activities. However once the construction activities are completed, the Group 2 Phase III Early Restoration projects will provide long-term benefits through enhanced and/or increased access to the natural resources.

Two of the projects in Table 12-71 are identified as potential contributors to cumulative impacts to tourism and recreational use when their impacts are combined with those of the Group 2 Phase III Early Restoration projects. Enhanced and/or increased visitation at the renourished beach and potential new coastal development is expected to provide long-term beneficial impacts to tourism and recreational use.

When Group 2 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to tourism and recreational use would likely occur. Group 2 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 2 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative tourism and recreational use.

**Infrastructure**

Group 2 Phase III Early Restoration projects would have short-term adverse impacts. The Lafayette Creek project would result in short-term adverse impacts during construction related activities. The Norriego Point project would provide long-term beneficial impacts through the enhancement of the point as well as additional facilities.

Three projects in Table 12-71 are identified as potential contributors to cumulative impacts to infrastructure when their impacts are combined with those of the Group 2 Phase III Early Restoration projects. These include military operations, which add personnel and increase population pressures on existing infrastructure. Coastal development also increases pressure on existing infrastructure. These impacts are anticipated to continue into the future.
When Group 2 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to infrastructure would likely occur. Group 2 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 2 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative infrastructure impacts.

**Summary of Cumulative Impacts**

Based on the above analysis of past, present, and reasonably foreseeable future actions and the anticipated resources to be impacted for these actions (see Table 12-71), the Group 2 Phase III Early Restoration projects would not substantially contribute to adverse cumulative impacts to resources in the Group 2 Phase III Early Restoration region. Group 2 Phase III Early Restoration projects, carried out in conjunction with other projects, have the potential to provide long-term benefits cumulative impacts to living coastal and marine resources, protected species, habitat, socioeconomics, aesthetics and visual resources, tourism and recreational use, and infrastructure.

**Group 3 Phase III Early Restoration Projects: Walton County Florida Recreational Enhancement and Access Projects**
Table 12-72 summarizes the impacts to resources associated with proposed Florida projects in the shoreline area of Walton County that comprise of recreational and visitor enhancement and access projects focusing on beach access and boardwalk improvements. The projects occur within southeast Walton County, along the shoreline and along Choctawhatchee Bay. Projects are evaluated together to determine if they have any cumulative impacts that, when combined with other past, present, and reasonably foreseeable future actions in southeast Walton County and the nearby vicinity, may result in cumulative impacts to resources. Projects are currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. Although no cumulative impacts to cultural resources are anticipated, there is insufficient information at this time to make determinations. If cultural resources would be impacted, mitigation identified during the consultation process would be implemented.
### Table 12-72. Summary of Impacts of Proposed Phase III Early Restoration Projects.

<table>
<thead>
<tr>
<th>Resource Areas</th>
<th>Geology and Substrates</th>
<th>Hydrology and Water Resources</th>
<th>Air Quality and GHGs</th>
<th>Noise</th>
<th>Living Coastal and Marine Resources</th>
<th>Protected Species</th>
<th>Habitats</th>
<th>Socio-economic and Environmental Justice</th>
<th>Land and Marine Management</th>
<th>Aesthetics and Visual Resources</th>
<th>Tourism and Recreational Use</th>
<th>Infrastructure</th>
<th>Public Health and Safety and Shoreline Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Group 3 Projects</strong></td>
<td></td>
</tr>
<tr>
<td>Palms of Dune Beach Access</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>+</td>
</tr>
<tr>
<td>Ed Walline Beach Access</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>+</td>
</tr>
<tr>
<td>Gulfview Heights Beach Access</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>+</td>
</tr>
<tr>
<td>Grayton Dunes Beach Access Boardwalks</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>+</td>
</tr>
<tr>
<td>Bayside Ranchettes Park Boardwalks</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>+</td>
</tr>
<tr>
<td>Dothan Beach Access Boardwalks</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>+</td>
</tr>
<tr>
<td>Deer Lake State Park</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NE</td>
<td>NE</td>
<td>S</td>
<td>+</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

**Adverse effect:** -
**Beneficial effect:** +
**Short term adverse effect:** S
**No effect:** NE

### Existing Conditions
Existing environmental and socio-economic conditions in and around Group 3 Phase III Early Restoration projects are represented by the affected environment in the preceding environmental reviews for Group 3 Phase III Early Restoration projects. The existing conditions include the environmental impacts of past projects in the area and therefore are the assumed existing conditions for the cumulative analysis of impacts for past, present and reasonably foreseeable future actions.

### Summary Impacts Group 3 Phase III Early Restoration Projects
All of the resource areas listed in Table 12-72 above, with the exception of land and marine management, would be affected by at least some of the project proposed under Group 3 Phase III Early Restoration. These impacts would not be anticipated to extend beyond the construction period for the most part. None of the projects proposed under Group 3 Phase III Early Restoration would result in any long-term adverse impacts. In fact, many of the projects proposed under Group 3 Phase III Early Restoration would result in long-term benefits to certain resources. Overall, long-term benefits from projects proposed in the Group 3 Phase III Early Restoration region are expected to outweigh the short-term adverse impacts necessary for project implementation.

364
**Identification of Past, Present, and Reasonably Foreseeable Future Actions and Impacts**

The table below identifies past, present, and reasonably foreseeable future projects in each of the categories described in Chapter 6. For each of the actions, the table provides (1) a brief description of the action and (2) a listing of NEPA resource categories that are the most likely areas of concern for cumulative impacts when the action is considered in conjunction with implementation of Group 3 Phase III Early Restoration projects. In most cases, detailed environmental impact data are not available for these other actions. Consequently, the analyses generally reflect qualitative discussions about potential impacts based on best professional judgment. Also, as noted previously, the focus of the cumulative impacts analysis is on the resource areas that are deemed most likely to exhibit cumulative impacts; hence the analysis does not include in the listing those resources where impacts have been judged to be *de minimis*.

**Table 12-73: Other Activities Identified in Group 3 Region**

<table>
<thead>
<tr>
<th>Category/Projects</th>
<th>Project Description</th>
<th>Key Resource Areas with Potential to Contribute to Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Restoration Related to the Spill (Early Restoration Phases I &amp; II, Restore Act, Gulf Environmental Benefit Fund, North American Wetlands Conservation Fund, National Academy of Sciences)</strong></td>
<td></td>
<td>• All impacts determined <em>de minimus</em> in EA for ERP II</td>
</tr>
<tr>
<td><strong>ERP II – Restoring the Night Sky</strong></td>
<td>Restoring the Night Sky aims to improve the quality of sea turtle nesting habitat in Escambia, Santa Rosa, Okaloosa, Walton, Bay, Gulf and Franklin County beaches by reducing negative impacts on turtles from artificial lighting. This will be accomplished by installing turtle-friendly lighting in place of more harmful traditional lighting within the vicinity of nesting beaches, increased enforcement of local lighting ordinances, and a public awareness campaign.</td>
<td></td>
</tr>
<tr>
<td><strong>ERP II - Comprehensive Program for Enhanced Management of Avian Breeding</strong></td>
<td>Escambia, Santa Rosa, Okaloosa, Walton, Bay, Gulf and Franklin Counties. Predator control, placement of symbolic fencing, protection of nesting bird areas and monitoring.</td>
<td>• All impacts determined <em>de minimus</em> in EA for ERP II</td>
</tr>
<tr>
<td><strong>Other Restoration Projects</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Walton County Hurricane and Storm Damage Restoration Project (FDEP Beach Erosion Control Program)</strong></td>
<td>Construct berms and dunes along Walton County shoreline to reduce coastal storm damage.</td>
<td>• Geology and Substrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hydrology and Water Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Air Quality and GHG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Noise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Living Coastal and Marine Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Protected Species</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Habitats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Socioeconomics and Environmental Justice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tourism and Recreational Use</td>
</tr>
<tr>
<td><strong>Military Operations</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Revised Draft Supplemental EIS for the F-35 Beddown at Eglin Air Force Base, Florida</strong></td>
<td>To analyze the beddown location and operational alternatives and examine mitigations for the 59 F-35 PAA authorized</td>
<td>• Geology and Substrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hydrology and Water Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Air Quality and GHGs</td>
</tr>
<tr>
<td>Category/Projects</td>
<td>Project Description</td>
<td>Key Resource Areas with Potential to Contribute to Cumulative Impacts</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| **Gulf Regional Airspace Strategic Initiative - Eglin Air Force Base, Florida**   | for delivery, including the use of Duke Field airfield and construction of a new runway(s) at Eglin Main Base. | • Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual Resources  
• Infrastructure |
| **Marine Transportation**                                                        | No known projects.                                                                    |                                                                       |
| **Energy Activities (Offshore oil production, Offshore Natural Gas Facilities, State Oil and Gas Activities)** | No known projects.                                                                    |                                                                       |
| **Marine Mineral Mining, Including Sand and Gravel Mining**                      | No known projects.                                                                    |                                                                       |
| **Coastal Development and Land Use**                                             | An action plan could identify projects and management actions to decrease bacteria Choctawhatchee / St. Andrew Bay. | • Geology and substrates  
• Hydrology and Water Resources  
• Air Quality and GHGs  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Infrastructure |
| **Implementation of Total Maximum Daily Loads for Fecal Coliform for Choctawhatchee/St. Andrew Bay (FDEP)** | Construction of a new four-lane roadway from US 98 (SR 30) east of Peach Creek in Walton County to SR 77 in Bay County. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual Resources  
• Tourism and Recreational use  
• Infrastructure |
| **FDOT West Bay Parkway Project (Walton, Washington and Bay Counties)**           | Continuing operation of the airport.                                                  | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual Resources  
• Tourism and Recreational Use |
| **Northwest Florida Beaches Airport**                                             | Construction of a new four-lane roadway from US 98 (SR 30) east of Peach Creek in Walton County to SR 77 in Bay County. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual Resources  
• Tourism and Recreational Use |
### Cumulative Impacts Analysis for Group 3 Phase III Early Restoration Projects

Table 12-73 identifies the following resource categories where there is a possibility that impacts of past, present and reasonably foreseeable future actions might overlap those of the Group 3 Phase III Early Restoration projects and therefore result in adverse cumulative impacts not identified through analysis of the Group 3 Phase III Early Restoration projects alone. The following resource categories are identified for further cumulative impacts analysis:

- Geology and Substrates;
- Hydrology and Water Resources;
- Air quality and GHGs;
- Noise;
- Living Coastal and Marine Resources;
- Protected Species;
- Habitat;
- Socioeconomics and Environmental Justice;
- Aesthetics and Visual Resources;
- Tourism and Recreational Use; and
- Infrastructure.

Cumulative impacts for each of these categories are discussed below.

**Geology and Substrates**

Group 3 Phase III Early Restoration projects would have short-term adverse impacts to geology and substrate. There would be short-term adverse impacts to geology and substrate from the construction at a number of the proposed project sites.

Five projects in Table 12-73 are identified as potential contributors to cumulative impacts to geology and substrates when their impacts are combined with those of the Group 3 Phase III Early Restoration projects. Actions related to coastal development or upland military installations have resulted in permanent alterations to existing geology for construction of foundations, roadways and other permanent structures. Other actions would lead to short-term and long-term minor adverse impacts.
resulting from construction of new facilities. Long-term benefits would result from the proposed beach renourishment project.

When Group 3 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to geology and substrates would likely occur. Group 3 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Hydrology and Water Resources**

Group 3 Phase III Early Restoration projects would have short-term adverse impacts to hydrology and water resources. The projects proposed in the Group 3 Phase III Early Restoration would result in short-term adverse impacts to water quality during construction related activities. These short-term impacts would be minimized through the implementation of BMPs.

Five projects in Table 12-73 are identified as potential contributors to cumulative impacts to hydrology and water resources when their impacts are combined with those of the Group 3 Phase III Early Restoration projects. These include storm protection projects, coastal development, and ongoing military operations. These activities may contribute to long-term hydrologic or water quality impacts as a result of increased development and impervious surface area that may result in increases in stormwater runoff and pollutants carried in that runoff.

When Group 3 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to hydrology and water quality would likely occur. Group 3 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Air Quality and GHGs**

Group 3 Phase III Early Restoration projects would have short-term adverse impacts to air quality and GHGs. The projects proposed in the Group 3 Phase III Early Restoration would result in short-term adverse impacts related to construction activities. Where appropriate, BMPs would be implemented to minimize these short-term impacts.

Five projects in Table 12-73 are identified as potential contributors to cumulative impacts to air quality or GHG impacts when their impacts are combined with those of the Group 3 Phase III Early Restoration projects. The impacts would occur mainly during construction with limited long term operational impacts. Construction and operations impacts of each project would be short to long-term in nature, would constitute a very small portion of the overall inventory of air emissions in the region, and would not be expected to violate state or federal standards. For operations, all facilities, would follow applicable federal and state regulations, and would not be expected to change the air quality attainment status of the region.

When Group 3 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to air quality and GHGs would likely occur. Group 3 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.
Noise

Group 3 Phase III Early Restoration projects would have short-term adverse impacts to noise. The projects proposed in the Group 3 Phase III Early Restoration would result in short-term adverse impacts related to construction activities. Where appropriate, BMPs would be implemented to minimize these short-term impacts.

Five projects in Table 12-73 are identified as potential contributors to cumulative impacts to noise levels when their impacts are combined with those of the Group 3 Phase III Early Restoration projects. Project types include military operations and coastal development. In most cases the noise impacts would be of relatively short duration, ending upon completion of construction activities, and are projected to result in only minor adverse impacts. Noise levels from military and airport operations will be increased but not an excessive level given the surrounding land use.

When Group 3 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to noise would likely occur. Group 3 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

Living Coastal and Marine Resources

Group 3 Phase III Early Restoration projects would have short-term adverse impacts to living coastal and marine resources. The projects proposed in the Group 3 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs.

Four projects in Table 12-73 are identified as potential contributors to cumulative impacts to living coastal and marine resources when their impacts are combined with those of the Group 3 Phase III Early Restoration projects. Ongoing military operations, existing and proposed coastal development have affected upland and aquatic living coastal and marine resources due to human disturbances. These ongoing activities have all contributed to habitat losses and habitat fragmentation in areas that living and coastal marine resources rely on for breeding, foraging and other uses. These impacts are anticipated to continue into the future.

When Group 3 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to living coastal and marine resources would likely occur. Group 3 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

Protected Species

Group 3 Phase III Early Restoration projects would have short-term adverse impacts to protected species. The projects proposed in the Group 3 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs.

Five projects in Table 12-73 are identified as potential contributors to cumulative impacts to protected species when their impacts are combined with those of the Group 3 Phase III Early Restoration projects.
The ongoing military and coastal development activities have adversely affected protected species through human-related disturbances such as noise, vessel traffic and pollution, placement of roadways and traffic, domestic pets, loss of habitat, introduction of invasive species and habitat fragmentation. These impacts are anticipated to continue into the future. The Phase II habitat restoration projects will provide long-term benefits to nesting birds and sea turtles.

When Group 3 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to protected species would likely occur. Group 3 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Habitats**

Group 3 Phase III Early Restoration projects would have short-term adverse impacts to habitats. Construction related activities from the projects proposed in the Group 3 Phase III Early Restoration would result in short-term adverse impacts to habitats. These short-term impacts would be minimized through the implementation of BMPs.

Five projects in Table 12-73 are identified as potential contributors to cumulative impacts to habitats when their impacts are combined with those of the Group 3 Phase III Early Restoration projects. The ongoing military and coastal development have adversely affected habitats through human-related disturbances such as loss of habitats to developed areas, introduction of invasive species and habitat fragmentation. These impacts are anticipated to continue into the future. The Phase II Early Restoration projects will provide long-term benefits to nesting birds and sea turtles habitat.

When Group 3 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to habitats would likely occur. Group 3 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Socioeconomics and Environmental Justice**

Group 3 Phase III Early Restoration projects would have long-term beneficial impacts to socioeconomics. The projects proposed in the Group 3 Phase III Early Restoration would benefit the local economies adjacent to the project site in both the short-term and long-term from increased employment during the project construction and by increasing use of the facilities.

Five projects in Table 12-73 are identified as potential contributors to cumulative beneficial impacts to socioeconomics when their impacts are combined with those of the Group 3 Phase III Early Restoration projects. Many of the projects in the table may affect socioeconomics in the short-term and long-term through job creation, increased local sales, and potential increased demand for local business services. Additionally, the increase in workers and tourism-related activities would increase revenues in local communities.

When Group 3 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, no cumulative adverse impacts to socioeconomics would
likely occur. Group 3 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 3 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative socioeconomic impacts.

**Aesthetics and Visual Resources**

Group 3 Phase III Early Restoration projects would have short-term adverse impacts to aesthetics and visual resources. Construction related activities from the projects proposed in the Group 3 Phase III Early Restoration would result in short-term adverse impacts.

Three project in Table 12-73 are identified as potential contributors to cumulative impacts to aesthetic or visual resources when their impacts are combined with those of the Group 3 Phase III Early Restoration projects. Many of the projects described in the table above may affect aesthetics and visual resources in the short-term and long-term. Temporary impacts to visual resources would result from restoration, construction, maintenance and recreational use. Long-term impacts would occur with coastal development.

When Group 3 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to aesthetics and visual resources would likely occur. Group 3 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Tourism and Recreational Use**

Group 3 Phase III Early Restoration projects would have short-term and long-term beneficial impacts to tourism and recreational use. The Group 3 Phase III Early Restoration projects will provide long-term benefits through enhanced and/or increased access to the natural resources.

Two projects in Table 12-73 are identified as potential contributors to cumulative impacts to tourism and recreation when their impacts are combined with those of the Group 3 Phase III Early Restoration projects. Enhanced and/or increased visitation at the renourished beach along with the increased traffic at the airport and on the proposed road is expected to provide long-term beneficial impacts to tourism and recreational use.

When Group 3 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, no cumulative adverse impacts to tourism and recreational use would likely occur. Group 3 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 3 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative impacts to tourism and recreational use.

**Infrastructure**

Group 3 Phase III Early Restoration projects would have short-term adverse impacts. The proposed Deer Lake project would result in short-term adverse impacts during construction related activities.
Four projects in Table 12-73 are identified as potential contributors to cumulative impacts to infrastructure when their impacts are combined with those of the Group 3 Phase III Early Restoration projects. These include military operations, which add personnel and increase population pressures on existing infrastructure. Coastal development also increases pressure on existing infrastructure. These impacts are anticipated to continue into the future.

When Group 3 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to infrastructure resources would likely occur. Group 3 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Summary of Cumulative Impacts**
Based on the above analysis of past, present, and reasonably foreseeable future actions and the anticipated resources to be impacted for these actions (see Table 12-73), the Group 3 Phase III Early Restoration projects would not substantially contribute to adverse cumulative impacts to resources in the Group 3 Phase III Early Restoration region. Group 3 Phase III Early Restoration projects, carried out in conjunction with other projects, have the potential to provide long-term beneficial cumulative impacts to socioeconomics, aesthetics and visual resources, and tourism and recreational use.

**Group 4 Phase III Early Restoration Projects: Panama City and St. Andrews Bay Projects**
Table 12-74 summarizes the impacts to resources associated with proposed Florida projects in the area of Panama City and St. Andrews Bay that comprise of habitat restoration projects including oyster cultch, and seagrass recovery as well as recreational and visitor enhancement and access projects including two boat ramps, one marina, scallop enhancement and two fishing piers. The projects occur within Panama City and St. Andrews Bay, all in central Bay County. Projects are evaluated together to determine if they have any cumulative impacts that, when combined with other past, present, and reasonably foreseeable future actions in Panama City and St. Andrews Bay and the nearby vicinity, may result in cumulative impacts to resources. Projects are currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. Although no cumulative impacts to cultural resources are anticipated, there is insufficient information at this time to make determinations. If cultural resources would be impacted, mitigation identified during the consultation process would be implemented.
### Table 12-74. Summary of Impacts of Proposed Phase III Early Restoration Projects.

<table>
<thead>
<tr>
<th>Resource Areas</th>
<th>Geology and Substrates</th>
<th>Hydrology and Water Resources</th>
<th>Air Quality and GHGs</th>
<th>Noise</th>
<th>Living Coastal and Marine Resources</th>
<th>Protected Species</th>
<th>Habitats</th>
<th>Socioeconomics and Environmental Justice</th>
<th>Land and Marine Management</th>
<th>Tourism and Recreational Use</th>
<th>Aesthetics and Visual Resources</th>
<th>Infrastructure</th>
<th>Public Health and Safety and Shoreline Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Group 4 Projects</strong></td>
<td></td>
</tr>
<tr>
<td>St. Andrews Marina</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NE</td>
<td>S/+</td>
<td>S/+</td>
<td>S/+</td>
<td>S/+</td>
<td>NE</td>
<td>S</td>
</tr>
<tr>
<td>Bay Scallop Enhancement</td>
<td>NE</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>+</td>
<td>+</td>
<td>NE</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Panama City Marina</td>
<td>S</td>
<td>-</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>S/+</td>
<td>S/+</td>
<td>S/+(S)</td>
<td>S/+(S)</td>
<td></td>
</tr>
<tr>
<td>Parker-Earl Gilbert Dock and Boat Ramp</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NE</td>
<td>S</td>
<td>S/+(S)</td>
<td>NE</td>
<td>S/+(S)</td>
<td>S/+(S)</td>
<td>S/+(S)</td>
<td></td>
</tr>
<tr>
<td>Oakshore Drive Pier</td>
<td>S</td>
<td>-</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>S/+(S)</td>
<td>S/+(S)</td>
<td>s/+(S)</td>
<td>S/+(S)</td>
<td>S/+(S)</td>
<td></td>
</tr>
</tbody>
</table>

Adverse effect: -
Beneficial effect: +
Short term adverse effect: S
No effect: NE

**Existing Conditions**

Existing environmental and socio-economic conditions in and around Group 4 Phase III Early Restoration projects are represented by the affected environment in the preceding environmental reviews for Group 4 Phase III Early Restoration projects. The existing conditions include the environmental impacts of past projects in the area and therefore are the assumed existing conditions for the cumulative analysis of impacts for past, present, and reasonably foreseeable future actions.

**Summary Impacts Group 4 Phase III Early Restoration Projects**

All of the resource areas listed in
Table 12-74 above would be affected by at least some of the project proposed under Group 4 Phase III Early Restoration. These impacts would not be anticipated to extend beyond the construction period for the most part. Some resource areas would be affected long term, some beneficially and some adversely. However, none of the projects proposed under Group 4 Phase III Early Restoration would result in any long-term adverse impacts that rise above a minor status. In fact, many of the projects proposed under Group 4 Phase III Early Restoration would result in long-term benefits to certain resources. Overall, long-term benefits from projects proposed in the Group 4 Phase III Early Restoration region are expected to outweigh the short-term adverse impacts necessary for project implementation as well as long-term minor adverse impacts.

**Identification of Past, Present, and Reasonably Foreseeable Future Actions and Impacts**

The table below identifies past, present, and reasonably foreseeable future projects in each of the categories described in Chapter 6. For each of the actions, the table provides (1) a brief description of the action and (2) a listing of NEPA resource categories that are the most likely areas of concern for cumulative impacts when the action is considered in conjunction with implementation of Group 4 Phase III Early Restoration projects. In most cases, detailed environmental impact data are not available for these other actions. Consequently, the analyses generally reflect qualitative discussions about potential impacts based on best professional judgment. Also, as noted previously, the focus of the cumulative impacts analysis is on the resource areas that are deemed most likely to exhibit cumulative impacts; hence the analysis does not include in the listing those resources where impacts have been judged to be *de minimis*.

**Table 12-75. Other Activities Identified in Group 4 Region**

<table>
<thead>
<tr>
<th>Category/Projects</th>
<th>Project Description</th>
<th>Key Resource Areas with Potential to Contribute to Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP II – Restoring the Night Sky</td>
<td>Restoring the Night Sky aims to improve the quality of sea turtle nesting habitat in Escambia, Santa Rosa, Okaloosa, Walton, Bay, Gulf and Franklin County beaches by reducing negative impacts on turtles from artificial lighting. This will be accomplished by installing turtle-friendly lighting in place of more harmful traditional lighting within the vicinity of nesting beaches, increased enforcement of local lighting ordinances, and a public awareness campaign.</td>
<td>• All impacts determined <em>de minimus</em> in EA for ERP II</td>
</tr>
<tr>
<td>ERP II - Comprehensive Program for Enhanced Management of Avian Breeding</td>
<td>Escambia, Santa Rosa, Okaloosa, Walton, Bay, Gulf and Franklin Counties. Predator control, placement of symbolic fencing, protection of nesting bird areas and monitoring.</td>
<td>• All impacts determined <em>de minimus</em> in EA for ERP II</td>
</tr>
<tr>
<td><strong>Other Restoration Projects</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restoring shorelines,</td>
<td>Local entity is implementing projects to</td>
<td>• Geology and Substrates</td>
</tr>
<tr>
<td>Category/Projects</td>
<td>Project Description</td>
<td>Key Resource Areas with Potential to Contribute to Cumulative Impacts</td>
</tr>
<tr>
<td>---------------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>wetlands, seagrasses in St. Andrews Bay (St. Andrew Bay Resource Management Association, Inc.)</td>
<td>restore shorelines, wetlands and seagrasses in St. Andrews Bay.</td>
<td>• Hydrology and Water Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Air quality and GHGs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Noise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Living Coastal and Marine Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Protected Species</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Habitats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Socioeconomics and Environmental Justice</td>
</tr>
<tr>
<td>St. Andrews Inlet Management Plan Implementation: Gator Lake Shoreline Stabilization and Beach Access Improvement Project (Florida State Parks)</td>
<td>The project proposes to reduce the erosion rate along the shoreline fronting Gator Lake; reduce the rate of the “Grand Lagoon” spit growth; increase the transfer of sand downdrift of the pass; and increase sand bypassing efficiency.</td>
<td>• Geology and Substrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hydrology and Water Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Air Quality and GHGs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Noise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Living Coastal and Marine Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Protected Species</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Habitats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Socioeconomics and Environmental Justice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Aesthetics and Visual Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tourism and Recreational Use</td>
</tr>
<tr>
<td>Northwest Florida Water Management District St. Andrews Bay Stormwater Improvements</td>
<td>Water Management district provides funding for stormwater retrofit projects that will improve water quality in the St. Andrew Bay watershed.</td>
<td>• Geology and Substrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hydrology and Water Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Air Quality and GHG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Noise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Living Coastal and Marine Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Protected species</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Habitats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Socioeconomics and Environmental Justice</td>
</tr>
<tr>
<td>Northwest Florida Water Management District St. Andrews Drainage Stabilization Project</td>
<td>Project will reduce nonpoint source pollution entering waterbodies.</td>
<td>• Geology and Substrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hydrology and Water Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Air Quality and GHG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Noise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Living Coastal and Marine Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Protected Species</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Habitats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Socioeconomics and Environmental Justice</td>
</tr>
<tr>
<td>Military Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-going CERCLA Remediation at Tyndall Air Force Base</td>
<td>The Air Force is operating a cleanup program at Tyndall Air Force Base.</td>
<td>• Geology and Substrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hydrology and Water Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Air Quality and GHGs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Noise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Living Coastal and Marine Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Protected Species</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Habitats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Socioeconomics and Environmental Justice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Aesthetics and Visual Resources</td>
</tr>
<tr>
<td>Gulf Regional Airspace Strategic Initiative (GRASI) Landscape Initiative EIS, Tyndall Air Force Base</td>
<td>GRASI is a US Air Force-led partnership with the State of Florida and other states and federal agencies to ensure near optimum use of airspace by civilians and the military throughout the Gulf Coast region.</td>
<td>• Geology and Substrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hydrology and Water Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Air Quality and GHGs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Noise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Living Coastal and Marine Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Protected Species</td>
</tr>
<tr>
<td>Category/Projects</td>
<td>Project Description</td>
<td>Key Resource Areas with Potential to Contribute to Cumulative Impacts</td>
</tr>
<tr>
<td>-------------------------------------------------------</td>
<td>---------------------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Marin Transportation</td>
<td>No known projects.</td>
<td></td>
</tr>
<tr>
<td>Energy Activities (Offshore oil production, Offshore Natural Gas Facilities, State Oil and Gas Activities)</td>
<td>No known projects.</td>
<td></td>
</tr>
<tr>
<td>Marine Mineral Mining, Including Sand and Gravel Mining</td>
<td>No known projects</td>
<td></td>
</tr>
<tr>
<td>Coastal Development and Land Use</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Implementation of Total Maximum Daily Loads for Fecal Coliform for Choctawhatchee/St. Andrew Bay (FDEP) | An action plan could identify projects and management actions to decrease bacteria Choctawhatchee / St. Andrew Bay. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHGs  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Infrastructure |
| Bay County Long Range Beach Management and Erosion Control Plan for Panama City Beaches (FDEP) | Plan is to address issues of beach preservation and beach renourishment.               | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Living Coastal and Marine Resources  
• Protected species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Tourism and Recreational Use |
| Northwest Florida Beaches Airport                     | Continuing operation of the airport.                                                  | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Protected species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual Resources  
• Tourism and Recreational Use  
• Infrastructure |
| Bayview Boardwalk and Signage Enhancement Project (Panama City) | Project consists of replacing decking and redesigning the railing to incorporate historical signage. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise |
<table>
<thead>
<tr>
<th>Category/Projects</th>
<th>Project Description</th>
<th>Key Resource Areas with Potential to Contribute to Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisheries and Aquaculture</td>
<td>No known projects.</td>
<td></td>
</tr>
<tr>
<td>Tourism and Recreation</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Pirates’ Cove Marina Expansion</strong></td>
<td>Project is increasing the capacity of dry storage at the Pirate’s Cove Marina.</td>
<td>• Geology and Substrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hydrology and Water Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Air Quality and GHG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Noise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Living Coastal and Marine Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Protected Species</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Habitats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Socioeconomics and Environmental Justice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Aesthetics and Visual Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tourism and Recreational Use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Infrastructure</td>
</tr>
<tr>
<td><strong>Panama City Marina Redevelopment Project</strong></td>
<td>Project will involve making improvements to the seawall, construction of a new civic plaza, improvements to the marina facilities, and a marina park.</td>
<td>• Geology and Substrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hydrology and Water Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Air Quality and GHG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Noise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Living Coastal and Marine Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Protected Species</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Habitats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Socioeconomics and Environmental Justice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Aesthetics and Visual Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tourism and Recreational Use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Infrastructure</td>
</tr>
</tbody>
</table>

**Cumulative Impacts Analysis for Group 4 Phase III Early Restoration Projects**

Table 12-75 identifies the following resource categories where there is a possibility that impacts of past, present and reasonably foreseeable future actions might overlap those of the Group 4 Phase III Early Restoration projects and therefore result in adverse cumulative impacts not identified through analysis of the Group 4 Phase III Early Restoration projects alone. The following resource categories are identified for further cumulative impacts analysis:

- Geology and Substrates;
- Hydrology and Water Resources;
- Air Quality and GHGs;
Noise; Living Coastal and Marine Resources; Protected Species; Habitat; Socioeconomics and Environmental Justice; Aesthetics and Visual Resources; Tourism and Recreational Use; and Infrastructure.

Cumulative impacts for each of these categories are discussed below.

**Geology and Substrates**

Group 4 Phase III Early Restoration projects would have short-term adverse impacts to geology and substrate. There would be short-term adverse impacts to geology and substrate from the construction at a number of the proposed project sites.

Twelve projects in Table 12-75 are identified as potential contributors to cumulative impacts to geology and substrates when their impacts are combined with those of the Group 4 Phase III Early Restoration projects. Actions related to coastal development or upland military installations have resulted in permanent alterations to existing geology for construction of foundations, roadways and other permanent structures. Other actions such as construction of boat ramps or living shorelines may have resulted in placement of hard structure on submerged sandy sediments and permanent conversion of those areas. The projects would have relatively small footprint for conversion of soil and substrate to hard structure.

When Group 4 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to geology and substrates would likely occur. Group 4 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Hydrology and Water Resources**

Group 4 Phase III Early Restoration projects would have both short-term and long-term minor adverse impacts to hydrology and water resources. The projects proposed in the Group 4 Phase III Early Restoration would result in short-term adverse impacts to water quality during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. The Panama City Marina and the Oakshore Drive Pier would result in long-term minor adverse impacts through the continuing use of the fishing piers. Long-term benefits to hydrology and water resources would result from and oyster reef creation and seagrass recovery.

Twelve projects in Table 12-75 are identified as potential contributors to cumulative impacts to hydrology and water resources when their impacts are combined with those of the Group 4 Phase III Early Restoration projects. These include coastal development and ongoing military operations. These activities may contribute to long-term hydrologic or water quality impacts as a result of increased development and impervious surface area that may result in increases in stormwater runoff and pollutants carried in that runoff and increased recreational use in the waterways. Artificial reefs
contribute long term water quality benefit from biological filtering. Long-term beneficial impacts are anticipated from seagrass plantings.

When Group 4 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term and long-term cumulative adverse impacts to hydrology and water resources would likely occur. Group 4 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 4 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term, beneficial cumulative impacts to hydrology and water resources.

**Air Quality and GHGs**

Group 4 Phase III Early Restoration projects would have short-term adverse impacts to air quality and GHGs. The projects proposed in the Group 4 Phase III Early Restoration would result in short-term adverse impacts to air quality during construction related activities. Where appropriate, BMPs would be implemented to minimize these short-term impacts.

Twelve projects in Table 12-75 are identified as potential contributors to cumulative impacts to air quality or GHG impacts when their impacts are combined with those of the Group 4 Phase III Early Restoration projects. The impacts would occur mainly during construction with limited long-term operational impacts. Construction and operations impacts of each project would be short to long-term in nature, would constitute a very small portion of the overall inventory of air emissions in the region, and would not be expected to violate state or federal standards. For operations, all facilities, would follow applicable federal and state regulations, and would not be expected to change the air quality attainment status of the region.

When Group 4 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to air quality and GHGs would likely occur. Group 4 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Noise**

Group 4 Phase III Early Restoration projects would have short-term adverse impacts to noise. Construction related activities from the projects proposed in the Group 4 Phase III Early Restoration would result in short-term adverse impacts. Where appropriate, BMPs would be implemented to minimize these short-term impacts.

Twelve projects in Table 12-75 are identified as potential contributors to cumulative impacts to noise levels when their impacts are combined with those of the Group 4 Phase III Early Restoration projects. Project types include military operations and coastal development. In most cases the noise impacts would be of relatively short duration, ending upon completion of construction activities, and are projected to result in only minor adverse impacts. Noise levels from military and airport operations will be increased but not at an excessive level given the surrounding land use.

When Group 4 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to noise would likely
occur. Group 4 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.
Living Coastal and Marine Resources

Group 4 Phase III Early Restoration projects would have short-term adverse impacts to living coastal and marine resources. The projects proposed in the Group 4 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. Long-term beneficial impacts would result from oyster reef creation and seagrass plantings.

Eleven projects in Table 12-75 are identified as potential contributors to cumulative impacts to living coastal and marine resources when their impacts are combined with those of the Group 4 Phase III Early Restoration projects. Ongoing military operations, existing and proposed coastal development have affected upland and aquatic living coastal and marine resources due to human disturbances including noise, domestic pets, introduction of invasive species, placement of roadways and traffic, recreational uses, etc. These ongoing activities have all contributed to habitat losses and habitat fragmentation in areas that living and coastal marine resources rely on for breeding, foraging and other uses. These impacts are anticipated to continue into the future. Long-term benefits are anticipated from reef and marsh creation which will provide habitat for smaller organisms mainly consisting of crustaceans and mollusks, such as juvenile shrimp, crab, oysters and mussels that live on the reef and in the sediment.

When Group 4 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to living coastal and marine resources would likely occur. Group 4 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 4 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to living and coastal marine resources.

Protected Species

Group 4 Phase III Early Restoration projects would have short-term adverse impacts to protected species. The projects proposed in the Group 4 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. Long-term beneficial impacts would result from oyster reef creation and plating of seagrass.

Twelve projects in Table 12-75 are identified as potential contributors to cumulative impacts to protected species when their impacts are combined with those of the Group 4 Phase III Early Restoration projects. The ongoing military and coastal development activities have adversely affected protected species through human related disturbances such as noise, vessel traffic and pollution, placement of roadways and traffic, domestic pets, loss of habitat, introduction of invasive species and habitat fragmentation. These impacts are anticipated to continue into the future. Long-term benefits are anticipated from living shorelines and wetlands which will provide habitat for protected species. Furthermore, the Phase II habitat restoration projects will provide long-term benefits to nesting birds and sea turtles.

When Group 4 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to protected species
would likely occur. Group 4 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 4 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to protected species.

**Habitats**

Group 4 Phase III Early Restoration projects would have short-term adverse impacts to habitats. The projects proposed in the Group 4 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. Long-term beneficial impacts would result from oyster reef creation and planting of seagrass.

Twelve projects in Table 12-75 are identified as potential contributors to cumulative impacts to habitats when their impacts are combined with those of the Group 4 Phase III Early Restoration projects. The ongoing military and coastal development have adversely affected habitats through human related disturbances such as loss of habitats to developed areas, introduction of invasive species and habitat fragmentation. These impacts are anticipated to continue into the future. Long-term benefits are anticipated from living shorelines and wetlands which will provide habitat. Furthermore, the Phase II Early Restoration projects will provide long-term benefits to nesting birds and sea turtles habitat.

When Group 4 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to habitats would likely occur. Group 4 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 4 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to habitats.

**Socioeconomics and Environmental Justice**

Group 4 Phase III Early Restoration projects would have short-term adverse impacts to socioeconomics. The oyster project proposed in the Group 4 Phase III Early Restoration would result in short term adverse impacts during the construction time frame due to potential closure of the oyster reef. However, this project and the other projects would benefit the local economies adjacent to the project site in both the short-term and long-term from increased employment during the project construction and by increasing use of the facilities.

Twelve projects in Table 12-75 are identified as potential contributors to cumulative beneficial impacts to socioeconomics when their impacts are combined with those of the Group 4 Phase III Early Restoration projects. Many of the projects actions in the table may affect socioeconomics in the short-term and long-term through job creation, increased local sales, and potential increased demand for local business services. Additionally, the increase in workers and tourism related activities would increase revenues in local communities.
When Group 4 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to socioeconomics would likely occur. Group 4 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 4 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative socioeconomic impacts.

Aesthetics and Visual Resources
Group 4 Phase III Early Restoration projects would have short-term adverse impacts to aesthetics and visual resources. The projects proposed in the Group 4 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. Long-term beneficial impacts would result from seagrass plantings.

Six projects in Table 12-75 are identified as potential contributors to adverse cumulative impacts to aesthetics and visual resources when their impacts are combined with those of the Group 4 Phase III Early Restoration projects. Many of the projects described in the table above may affect aesthetics and visual resources in the short-term and long-term. Temporary impacts to visual resources would result from restoration, construction, maintenance and recreational use. Long-term impacts would occur with coastal development.

Tourism and Recreational Use
Group 4 Phase III Early Restoration projects would have short-term adverse to tourism and recreational use. The majority of the projects proposed in the Group 4 Phase III Early Restoration would result in short-term adverse impacts from potential facility closures during construction related activities. However once the construction activities are completed, the Group 4 Phase III Early Restoration projects will provide long-term benefits through enhanced and/or increased access to the natural resources.

Six projects in Table 12-75 are identified as potential contributors to cumulative impacts to tourism and recreational use when their impacts are combined with those of the Group 4 Phase III Early Restoration projects. Enhanced and/or increased visitation at the renourished beach, revamped boardwalk and renovated marina along with the increased traffic at the airport and on the proposed road is expected to provide long-term beneficial impacts to tourism and recreational use.

When Group 4 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to tourism and recreational use would likely occur. Group 4 Phase III Early Restoration projects would not contribute
substantially to cumulative adverse impacts. Group 4 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative tourism and recreational impacts.

**Infrastructure**

Group 4 Phase III Early Restoration projects would have short-term adverse impacts. The projects proposed in the Group 4 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. Some of the projects have the potential to provide long-term beneficial impacts through the enhancement of parking at some of the recreational use facilities.

Six projects in Table 12-75 are identified as potential contributors to cumulative impacts to infrastructure when their impacts are combined with those of the Group 4 Phase III Early Restoration projects. These include military operations, which add personnel and increase population pressures on existing infrastructure. Coastal development also increases pressure on existing infrastructure. These impacts are anticipated to continue into the future.

When Group 4 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts infrastructure resources would likely occur. Group 4 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 4 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative infrastructure impacts.

**Summary of Cumulative Impacts**

Based on the above analysis of past, present and reasonably foreseeable future actions and the anticipated resources to be impacted for these actions (see Table 12-75), the Group 4 Phase III Early Restoration projects would not substantially contribute to adverse cumulative impacts to resources in the Group 4 Phase III Early Restoration region. Group 4 Phase III Early Restoration projects, carried out in conjunction with other projects, have the potential to provide long-term beneficial cumulative impacts to hydrology and water resources, living coastal and marine resources, protected species, habitats, socioeconomics, aesthetics and visual resources, tourism and recreational use, and infrastructure.

**Group 5 Phase III Early Restoration: St. Joseph Bay (Gulf County and a small portion of Bay County)**

Table 12-76 summarizes the impacts to resources associated with proposed Florida projects in the St Joseph Bay region (Gulf and Bay Counties) comprising habitat, and recreational use projects. The projects occur within St. Joseph Bay or on the shoreline of St. Joseph Bay. Projects are evaluated together to determine if they have any cumulative impacts that, when combined with other past, present, and reasonably foreseeable future actions in St Joseph’s Bay and its watershed, may result in cumulative impacts to resources. Projects are currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. Although no cumulative impacts to cultural resources are
anticipated, there is insufficient information at this time to make determinations. If cultural resources
would be impacted, mitigation identified during the consultation process would be implemented.

Table 12-76. Summary of Impacts of Proposed Phase III Early Restoration Projects.

<table>
<thead>
<tr>
<th>Group 5 Projects</th>
<th>Geology and Substrates</th>
<th>Hydrology and Water Resources</th>
<th>Air Quality and GHGs</th>
<th>Noise</th>
<th>Living Coastal and Marine Resources</th>
<th>Protected Species</th>
<th>Habitats</th>
<th>Socioeconomics and Environmental Justice</th>
<th>Land and Marine Management</th>
<th>Aesthetics and Visual Resources</th>
<th>Tourism and Recreational Use</th>
<th>Infrastructure</th>
<th>Public Health and Safety and Shoreline Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexico Beach Marina</td>
<td>S</td>
<td>S</td>
<td>S/NE</td>
<td>S</td>
<td>S/NE</td>
<td>NE</td>
<td>S</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>NE</td>
<td>S/NE</td>
<td>NE</td>
</tr>
<tr>
<td>Beacon Hill Veterans’ Memorial Park</td>
<td>S</td>
<td>S</td>
<td>S/NE</td>
<td>S</td>
<td>S/NE</td>
<td>NE</td>
<td>S</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>NE</td>
<td>S/NE</td>
<td>NE</td>
</tr>
<tr>
<td>Windmark Fishing Pier</td>
<td>-</td>
<td>-</td>
<td>S</td>
<td>S</td>
<td>S/NE</td>
<td>+</td>
<td>NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>NE</td>
<td>S/NE</td>
<td>NE</td>
</tr>
<tr>
<td>Florida Seagrass Recovery</td>
<td>S</td>
<td>S+</td>
<td>S/NE</td>
<td>S</td>
<td>S/NE</td>
<td>+</td>
<td>NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>NE</td>
<td>S/NE</td>
<td>NE</td>
</tr>
<tr>
<td>Highland View Boat Ramp</td>
<td>S</td>
<td>S/NE</td>
<td>S</td>
<td>S</td>
<td>S/NE</td>
<td>S/NE</td>
<td>NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>NE</td>
<td>S/NE</td>
<td>NE</td>
</tr>
<tr>
<td>St. Joe’s Bay Scallop Enhancement</td>
<td>NE</td>
<td>S</td>
<td>S/NE</td>
<td>S</td>
<td>S/NE</td>
<td>+</td>
<td>NE</td>
<td>+</td>
<td>S/NE</td>
<td>S/NE</td>
<td>NE</td>
<td>S/NE</td>
<td>NE</td>
</tr>
<tr>
<td>Port St. Joe Boat Ramp</td>
<td>S</td>
<td>S</td>
<td>S/NE</td>
<td>S</td>
<td>S/NE</td>
<td>NE</td>
<td>S</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>NE</td>
<td>S/NE</td>
<td>NE</td>
</tr>
</tbody>
</table>

Beneficial effect: +
Short term adverse effect: S
Adverse effect: -
No effect: NE

Existing Conditions

Existing environmental and socio-economic conditions in and around Group 5 Phase III Early Restoration
projects are represented by the affected environment in the preceding environmental reviews for Group
5 Phase III Early Restoration projects. The existing conditions include the environmental impacts of past
projects in the area and therefore are the assumed existing conditions for the cumulative analysis of
impacts for past, present, and reasonably foreseeable future actions.

Summary Impacts Group 5 Phase III Early Restoration Projects

All of the resource areas listed in Table 12-76 above, with the exception of land and marine
management, would be affected by at least some of the project proposed under Group 5 Phase III Early
Restoration. These impacts would not be anticipated to extend beyond the construction period for the
most part. Some resource areas would be affected long term, some beneficially and some adversely.
However, none of the projects proposed under Group 5 Phase III Early Restoration would result in any
long-term adverse impacts that rise above a minor status. In fact, many of the projects proposed under
Group 5 Phase III Early Restoration would result in long-term benefits to certain resources. Overall, long-
term benefits from projects proposed in the Group 5 Phase III Early Restoration region are expected to
outweigh the short-term adverse impacts necessary for project implementation as well as long-term minor adverse impacts.

**Identification of Past, Present, and Reasonably Foreseeable Future Actions and Impacts**

The table below identifies past, present, and reasonably foreseeable future projects in each of the categories described in Chapter 6. For each of the actions, the table provides (1) a brief description of the action and (2) a listing of NEPA resource categories that are the most likely areas of concern for cumulative impacts when the action is considered in conjunction with implementation of Group 5 Phase III Early Restoration projects. In most cases, detailed environmental impact data are not available for these other actions. Consequently, the analyses generally reflect qualitative discussions about potential impacts based on best professional judgment. Also, as noted previously, the focus of the cumulative impacts analysis is on the resource areas that are deemed most likely to exhibit cumulative impacts; hence the analysis does not include in the listing those resources where impacts have been judged to be *de minimis*.

**Table 12-77. Other Activities Identified in Group 5 Region**

<table>
<thead>
<tr>
<th>Category/Projects</th>
<th>Project Description</th>
<th>Key Resource Areas with Potential to Contribute to Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restoration Related to the Spill (Early Restoration Phases I &amp; II, Restore Act, Gulf Environmental Benefit Fund, North American Wetlands Conservation Fund, National Academy of Sciences)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>ERP II – Restoring the Night Sky</strong></td>
<td>Restoring the Night Sky aims to improve the quality of sea turtle nesting habitat in Escambia, Santa Rosa, Okaloosa, Walton, Bay, Gulf and Franklin County beaches by reducing negative impacts on turtles from artificial lighting. This will be accomplished by installing turtle-friendly lighting in place of more harmful traditional lighting within the vicinity of nesting beaches, increased enforcement of local lighting ordinances, and a public awareness campaign.</td>
<td>• All impacts determined <em>de minimus</em> in EA for ERP II</td>
</tr>
<tr>
<td><strong>ERP II - Comprehensive Program for Enhanced Management of Avian Breeding</strong></td>
<td>Escambia, Santa Rosa, Okaloosa, Walton, Bay, Gulf and Franklin Counties: Predator control, placement of symbolic fencing, protection of nesting bird areas and monitoring.</td>
<td>• All impacts determined <em>de minimus</em> in EA for ERP II</td>
</tr>
</tbody>
</table>
| **Other Restoration Projects** | | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Tourism and Recreational Use |
<p>| <em>St. Joseph Peninsula Beach Restoration Project, Gulf County, FL</em> | Project will reduce nonpoint source pollution entering waterbodies. | |</p>
<table>
<thead>
<tr>
<th>Category/Projects</th>
<th>Project Description</th>
<th>Key Resource Areas with Potential to Contribute to Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Military Operations</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **On-going CERCLA Remediation at Tyndall Air Force Base** | The Air Force is operating a cleanup program at Tyndall Air Force Base. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHGs  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual resources |
| **Gulf Regional Airspace Strategic Initiative (GRASI) Landscape Initiative EIS, Tyndall Air Force Base** | GRASI is a US Air Force-led partnership with the State of Florida and other states and federal agencies to ensure near optimum use of airspace by civilians and the military throughout the Gulf Coast region. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHGs  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual resources |
| **Marine Transportation** | | |
| **No known projects.** | | |
| **Energy Activities (Offshore oil production, Offshore Natural Gas Facilities, State Oil and Gas Activities)** | | |
| **No known projects.** | | |
| **Marine Mineral Mining, Including Sand and Gravel Mining** | | |
| **No known projects** | | |
| **Coastal Development and Land Use** | | |
| **Historic Lighthouse Rescue/Cape San Blas Lighthouse** | The historic Cape San Blas Lighthouse has been approved for moving from its present, eroding location on the Cape to the City of Port St. Joe. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual resources  
• Tourism and Recreational Use  
• Infrastructure |
Cumulative Impacts Analysis for Group 5 Phase III Early Restoration Projects

Table 12-77 identifies the following resource areas where there is a possibility that impacts of past, present and reasonably foreseeable future actions might overlap those of the Group 5 Phase III Early Restoration projects and therefore result in adverse cumulative impacts not identified through analysis of the Group 5 Phase III Early Restoration projects alone. The following resource categories are identified for further cumulative impacts analysis:

- Geology and Substrates;
- Hydrology and Water Resources;
- Air Quality and GHGs;
- Noise;
- Living Coastal and Marine Resources;
- Protected Species;
- Habitat;
- Socioeconomics and Environmental Justice
- Aesthetics and Visual Resources;
- Tourism and Recreational Use; and
- Infrastructure.

Cumulative impacts for each of these categories are discussed below.

Geology and Substrates
Group 5 Phase III Early Restoration projects would have both short-term and long-term minor adverse impacts to geology and substrate. There would be short-term adverse impacts to geology and substrate from the construction at a number of the proposed project sites. Long-term minor adverse impacts would result from the Windmark Fishing Pier converting submerged substrates with the installation of pilings.

Four projects in Table 12-77 are identified as potential contributors to cumulative impacts to geology and substrates when their impacts are combined with those of the Group 5 Phase III Early Restoration projects. Actions related to coastal development or upland military installations have resulted in permanent alterations to existing geology for construction of foundations, roadways and other permanent structures. Other actions would lead to short-term and long-term minor adverse impacts.
resulting from construction of new facilities. Long-term benefits would result from the proposed beach renourishment project.

When Group 5 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term and long-term cumulative adverse impacts to geology and substrates would likely occur. Group 5 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Hydrology and Water Resources**
Group 5 Phase III Early Restoration projects would have both short-term and long-term minor adverse impacts to hydrology and water resources. The projects proposed in the Group 5 Phase III Early Restoration would result in short-term adverse impacts to water quality during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. The Windmark Fishing Pier project would result in long-term minor adverse impacts through the continuing use of the fishing pier. Long-term benefits to hydrology and water resources would result from the planting of seagrass.

Four projects in Table 12-77 are identified as potential contributors to cumulative impacts to hydrology and water resources when their impacts are combined with those of the Group 5 Phase III Early Restoration projects. These include coastal development and ongoing military operations. These activities may contribute to long-term hydrologic or water quality impacts as a result of increased development and impervious surface area that may result in increases in stormwater runoff and pollutants carried in that runoff and increased recreational use in the waterways.

When Group 5 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term and long-term cumulative adverse impacts to hydrology and water resources would likely occur. Group 5 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 5 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term, beneficial cumulative impacts to hydrology and water resources.

**Air Quality and GHGs**
Group 5 Phase III Early Restoration projects would have short-term adverse impacts to air quality and GHGs. The projects proposed in the Group 5 Phase III Early Restoration would result in short-term adverse impacts during construction activities. Where appropriate, BMPs would be implemented to minimize these short-term impacts.

Four projects in Table 12-77 are identified as potential contributors to cumulative impacts to air quality or GHG impacts when their impacts are combined with those of the Group 5 Phase III Early Restoration projects. The impacts would occur mainly during construction with limited long term operational impacts. Construction and operations impacts of each project would be short to long-term in nature, would constitute a very small portion of the overall inventory of air emissions in the region, and would not be expected to violate state or federal standards. For operations, all facilities, would follow applicable federal and state regulations, and would not be expected to change the air quality attainment status of the region.
When Group 5 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to air quality and GHGs would likely occur. Group 5 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Noise**

Group 5 Phase III Early Restoration projects would have short-term adverse impacts to noise. The projects proposed in the Group 5 Phase III Early Restoration would result in short-term adverse impacts related to construction activities. Where appropriate, BMPs would be implemented to minimize these short-term impacts.

Four projects in Table 12-77 are identified as potential contributors to cumulative impacts to noise levels when their impacts are combined with those of the Group 5 Phase III Early Restoration projects. Project types include military operations and coastal development. In most cases the noise impacts would be of relatively short duration, ending upon completion of construction activities, and are projected to result in only minor adverse impacts. Noise levels from military operations will be increased but not an excessive level given the surrounding land use.

When Group 5 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to noise would likely occur. Group 5 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Living Coastal and Marine Resources**

Group 5 Phase III Early Restoration projects would have short-term adverse impacts to living coastal and marine resources. Construction related activities from the projects proposed in the Group 5 Phase III Early Restoration would result in short-term adverse impacts. These short-term impacts would be minimized through the implementation of BMPs. Long-term beneficial impacts would result from seagrass plantings and scallop enhancement.

Four projects in Table 12-77 are identified as potential contributors to cumulative impacts to living coastal and marine resources when their impacts are combined with those of the Group 5 Phase III Early Restoration projects. Ongoing military operations, existing and coastal development have affected upland and aquatic living coastal and marine resources due to human disturbances including noise, domestic pets, introduction of invasive species, placement of roadways and traffic, recreational uses, etc. These ongoing activities have all contributed to habitat losses and habitat fragmentation in areas that living and coastal marine resources rely on for breeding, foraging and other uses. These impacts are anticipated to continue into the future.

When Group 5 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to living coastal and marine resources would likely occur. Group 5 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 5 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to living and coastal marine resources.
**Protected Species**

Group 5 Phase III Early Restoration projects would have short-term adverse impacts to protected species. Construction related activities from the proposed in the Group 5 Phase III Early Restoration would result in short term adverse impacts. These short-term impacts would be minimized through the implementation of BMPs. Long-term beneficial impacts would result from the plantings of seagrass.

Four projects in Table 12-77 are identified as potential contributors to cumulative impacts to protected species when their impacts are combined with those of the Group 5 Phase III Early Restoration projects. The ongoing military and coastal development activities have adversely affected protected species through human related disturbances such as noise, vessel traffic and pollution, placement of roadways and traffic, domestic pets, loss of habitat, introduction of invasive species and habitat fragmentation. These impacts are anticipated to continue into the future. The Phase II habitat restoration projects will provide long-term benefits to nesting birds and sea turtles.

When Group 5 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to protected species would likely occur. Group 5 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 5 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to protected species.

**Habitats**

Group 5 Phase III Early Restoration projects would have short-term adverse impacts to habitats. The projects proposed in the Group 5 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs.

Four projects in Table 12-77 are identified as potential contributors to cumulative impacts to habitats when their impacts are combined with those of the Group 5 Phase III Early Restoration projects. The ongoing military and coastal development have adversely affected habitats through human related disturbances such as loss of habitats to developed areas, introduction of invasive species and habitat fragmentation. These impacts are anticipated to continue into the future. The Phase II Early Restoration projects will provide long-term benefits to nesting birds and sea turtles habitat.

When Group 5 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to habitats would likely occur. Group 5 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 5 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to habitats.
**Socioeconomics and Environmental Justice**

Group 5 Phase III Early Restoration projects would have short-term adverse impacts to socioeconomics. The Highland View Boat Ramp project would result in short-term adverse impacts during the construction phase of the project due to disruption of local fishing. However, this project and the projects proposed in the Group 5 Phase III Early Restoration would benefit the local economies adjacent to the project site in both the short-term and long-term from increased employment during the project construction and by increasing use of the facilities.

Four projects in Table 12-77 are identified as potential contributors to cumulative beneficial impacts to socioeconomics when their impacts are combined with those of the Group 5 Phase III Early Restoration projects. Many of the projects in the table may affect socioeconomics in the short-term and long-term through job creation, increased local sales, and potential increased demand for local business services. Additionally, the increase in workers and tourism related activities would increase revenues in local communities.

When Group 5 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term adverse impacts to socioeconomics would likely occur. Group 5 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 5 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative socioeconomic impacts.

**Aesthetics and Visual Resources**

Group 5 Phase III Early Restoration projects would have short-term adverse impacts to aesthetics and visual resources. The majority of the projects proposed in the Group 5 Phase III Early Restoration would result in short-term adverse impacts from construction related activities. Long-term beneficial impacts would result from planting seagrass.

Three projects in Table 12-77 are identified as potential contributors to cumulative impacts to aesthetic or visual resources when their impacts are combined with those of the Group 5 Phase III Early Restoration projects. Many of the projects described in the table above may affect aesthetics and visual resources in the short-term and long-term. Temporary impacts to visual resources would result from restoration, construction, maintenance and recreational use. Long-term impacts would occur with coastal development.

When Group 5 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to aesthetics and visual resources would likely occur. Group 5 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 5 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative aesthetics and visual resources impacts.
**Tourism and Recreational Use**

Group 5 Phase III Early Restoration projects would have short-term adverse impacts to tourism and recreational use. The majority of the projects proposed in the Group 5 Phase III Early Restoration would result in short-term adverse impacts from potential facility closures during construction-related activities. However, once the construction activities are completed, the Group 5 Phase III Early Restoration projects will provide long-term benefits through enhanced and/or increased access to the natural resources.

Two projects in Table 12-77 are identified as potential contributors to cumulative impacts to tourism and recreation when their impacts are combined with those of the Group 5 Phase III Early Restoration projects. Enhanced and/or increased visitation at the renourished beach and the relocated lighthouse is expected to provide long-term beneficial impacts to tourism and recreational use.

When Group 5 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to tourism and recreational use would likely occur. Group 5 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 5 Phase III Early Restoration projects, carried out in conjunction with other actions, have the potential to provide some long-term beneficial cumulative tourism and recreational use impacts.

**Infrastructure**

Group 5 Phase III Early Restoration projects would have short-term adverse impacts. The projects proposed in the Group 5 Phase III Early Restoration would result in short-term adverse impacts during construction-related activities. Some of the projects have the potential to provide long-term beneficial impacts through the enhancement of parking at some of the recreational use facilities.

Two projects in Table 12-77 are identified as potential contributors to cumulative impacts to infrastructure when their impacts are combined with those of the Group 5 Phase III Early Restoration projects. These include military operations, which add personnel and increase population pressures on existing infrastructure. Coastal development also increases pressure on existing infrastructure. These impacts are anticipated to continue into the future.

When Group 5 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to infrastructure would likely occur. Group 5 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 5 Phase III Early Restoration projects, carried out in conjunction with other actions, have the potential to provide some long-term beneficial cumulative infrastructure impacts.

**Summary of Cumulative Impacts**

Based on the above analysis of past, present, and reasonably foreseeable future actions and the anticipated resources to be impacted for these actions (see Table 12-77), the Group 5 Phase III Early Restoration projects would not substantially contribute to adverse cumulative impacts to resources in
the Group 5 Phase III Early Restoration region. Group 5 Phase III Early Restoration projects, carried out in conjunction with other projects, have the potential to provide long-term beneficial cumulative impacts to hydrology and water resources, living coastal and marine resources, protected species, habitats, socioeconomics, aesthetics and visual resources, tourism and recreational use, and infrastructure.

**Group 6 Phase III Early Restoration Projects: Apalachicola Bay (Franklin County)**

Table 12-78 summarizes the impacts to resources associated with proposed Florida projects in the Apalachicola Bay region, comprising habitat, living coastal and marine resources, and recreational use projects. The projects occur mainly within Apalachicola Bay with a few upland park improvement projects proposed. Projects are evaluated together to determine if they have any cumulative impacts that, when combined with other past, present, and reasonably foreseeable future actions in Apalachicola Bay and its watershed, may result in cumulative impacts to resources. Projects are currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. Although no cumulative impacts to cultural resources are anticipated, there is insufficient information at this time to make determinations. If cultural resources would be impacted, mitigation identified during the consultation process would be implemented.

**Table 12-78. Summary of Impacts of Proposed Phase III Early Restoration Projects.**

<table>
<thead>
<tr>
<th>Projects</th>
<th>Geology and Substrates</th>
<th>Hydrology and Water Resources</th>
<th>Air Quality and GHGs</th>
<th>Noise</th>
<th>Living Coastal and Marine Resources</th>
<th>Protected Species</th>
<th>Habitats</th>
<th>Socioeconomics and Environmental Justice</th>
<th>Land and Marine Management</th>
<th>Aesthetics and Visual Resources</th>
<th>Tourism and Recreational Use</th>
<th>Infrastructure</th>
<th>Public Health and Safety and Shoreline Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterfront Park</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>S</td>
<td>S/+</td>
<td>S/+</td>
<td>S/+</td>
<td>NE</td>
<td>S/+</td>
</tr>
<tr>
<td>Indian Creek Park</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>S</td>
<td>S/+</td>
<td>S/+</td>
<td>S/+</td>
<td>NE</td>
<td>S/+.</td>
</tr>
<tr>
<td>Apalachicola Bay Oyster Cultch</td>
<td>NE</td>
<td>S/+</td>
<td>S</td>
<td>S</td>
<td>S/+</td>
<td>S/+</td>
<td>S/+</td>
<td>+</td>
<td>S</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>Cash Bayou</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NE</td>
<td>NE</td>
<td>S</td>
<td>S/+</td>
<td>+</td>
<td>NE</td>
<td>NE</td>
<td>S/+.</td>
</tr>
<tr>
<td>Sand Beach</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NE</td>
<td>NE</td>
<td>S</td>
<td>S/+</td>
<td>+</td>
<td>NE</td>
<td>NE</td>
<td>S/+.</td>
</tr>
</tbody>
</table>

Adverse effect: -
Beneficial effect: +
Short term adverse effect: S
No effect: NE
Existing Conditions
Existing environmental and socio-economic conditions in and around Group 6 Phase III Early Restoration projects are represented by the affected environment in the preceding environmental reviews for Group 6 Phase III Early Restoration projects. The existing conditions include the environmental impacts of past projects in the area and therefore are the assumed existing conditions for the cumulative analysis of impacts for past, present, and reasonably foreseeable future actions.

Summary Impacts Group 6 Phase III Early Restoration Projects
All of the resource areas listed in Table 12-78 above would be affected by at least some of the project proposed under Group 6 Phase III Early Restoration. These impacts would not be anticipated to extend beyond the construction period for the most part. Some resource areas would be affected long term, some beneficially and some adversely. However, none of the projects proposed under Group 6 Phase III Early Restoration would result in any long-term adverse impacts that rise above a minor status. In fact, many of the projects proposed under Group 6 Phase III Early Restoration would result in long-term benefits to certain resources. Overall, long-term benefits from projects proposed in the Group 6 Phase III Early Restoration region are expected to outweigh the short-term adverse impacts necessary for project implementation as well as long-term minor adverse impacts.

Identification of Past, Present, and Reasonably Foreseeable Future Actions and Impacts
The table below identifies past, present, and reasonably foreseeable future projects in each of the categories described in Chapter 6. For each of the actions, the table provides (1) a brief description of the action and (2) a listing of NEPA resource categories that are the most likely areas of concern for cumulative impacts when the action is considered in conjunction with implementation of Group 6 Phase III Early Restoration projects. In most cases, detailed environmental impact data are not available for these other actions. Consequently, the analyses generally reflect qualitative best professional judgment about potential impacts. Also, as noted previously, the focus of the cumulative impacts analysis is on the resource areas that are deemed most likely to exhibit cumulative impacts; hence the analysis does not include in the listing those resources where impacts have been judged to be de minimis.

Table 12-79. Other Activities Identified in Group 6 Region

<table>
<thead>
<tr>
<th>Category/Projects</th>
<th>Project Description</th>
<th>Key Resource Areas with Potential to Contribute to Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restoration Related to the Spill (Early Restoration Phases I &amp; II, Restore Act, Gulf Environmental Benefit Fund, North American Wetlands Conservation Fund, National Academy of Sciences)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERP II – Restoring the Night Sky</td>
<td>Restoring the Night Sky aims to improve the quality of sea turtle nesting habitat in Escambia, Santa Rosa, Okaloosa, Walton, Bay, Gulf and Franklin County beaches by reducing negative impacts on turtles from artificial lighting. This will be accomplished by installing turtle-friendly lighting in place of more harmful traditional lighting within the vicinity of nesting beaches, increased</td>
<td>• All impacts determined de minimus in EA for ERP II</td>
</tr>
</tbody>
</table>

395
<table>
<thead>
<tr>
<th>Category/Projects</th>
<th>Project Description</th>
<th>Key Resource Areas with Potential to Contribute to Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP II - Comprehensive Program for Enhanced Management of Avian Breeding</td>
<td>Enforcement of local lighting ordinances, and a public awareness campaign.</td>
<td>• All impacts determined <em>de minimus</em> in EA for ERP II</td>
</tr>
<tr>
<td>Other Restoration Projects</td>
<td>Escambia, Santa Rosa, Okaloosa, Walton, Bay, Gulf and Franklin Counties; Predator control, placement of symbolic fencing, protection of nesting bird areas and monitoring.</td>
<td></td>
</tr>
</tbody>
</table>
| Water quality improvements and stormwater retrofits in Apalachicola Bay (NW FL Water Management District) | Projects to improve quality as well as constructing stormwater treatment facilities. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Infrastructure  
• Socioeconomics and Environmental Justice |
| Military Operations | No known projects. |  |
| Marine Transportation | No known projects. |  |
| Energy Activities (Offshore oil production, Offshore Natural Gas Facilities, State Oil and Gas Activities) | No known projects. |  |
| Marine Mineral Mining, Including Sand and Gravel Mining | No known projects |  |
| Coastal Development and Land Use | Big Ben Scenic Byway (FDOT) Expansion of the Big Bend Scenic Highway. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual Resources  
• Tourism and Recreational Use  
• Infrastructure |
| Tates Hell State Forest Hydrologic Restoration Plan (NW FL Water Management District) Plan provides for: 1) improving the water quality of surface water flows and runoff discharged into the surrounding water bodies, 2) restoring historic surface water drainage patterns and hydrologic connectivity; 3) enhancing wetland hydrology and function; and 4) restoring a | | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species |
Cumulative Impacts Analysis for Group 6 Phase III Early Restoration Projects

Table 12-79 identifies the following resource areas where there is a possibility that impacts of past, present and reasonably foreseeable future actions might result overlap those of the Group 6 Phase III Early Restoration projects and therefore result in adverse cumulative impacts not identified through analysis of the Group 6 Phase III Early Restoration projects alone. The following resource categories are identified for further cumulative impacts analysis:

- Geology and Substrates;
- Hydrology and Water Resources;
- Air Quality and GHGs;
- Noise;
- Living Coastal and Marine Resources;
- Protected Species;
- Habitat;
- Socioeconomics and Environmental Justice;
- Aesthetics and Visual Resources;
- Tourism and Recreational Use; and
- Infrastructure.

Cumulative impacts for each of these categories are discussed below.

**Geology and Substrates**

Group 6 Phase III Early Restoration projects would have short-term adverse impacts to geology and substrate. There would be short-term adverse impacts to geology and substrate from the construction at a number of the proposed project sites. Long-term beneficial impacts would result from living shoreline creation.

Three projects in Table 12-79 are identified as potential contributors to cumulative impacts to geology and substrates when their impacts are combined with those of the Group 6 Phase III Early Restoration projects. Actions related to coastal development or upland military installations have resulted in permanent alterations to existing geology for construction of foundations, roadways and other
permanent structures. Other proposed actions would lead to short-term and long-term minor adverse impacts resulting from construction of new facilities.

When Group 6 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to geology and substrates would likely occur. Group 6 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 6 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term, beneficial cumulative impacts to geology and substrates.

**Hydrology and Water Resources**

Group 6 Phase III Early Restoration projects would have short-term adverse impacts to hydrology and water resources. The projects proposed in the Group 6 Phase III Early Restoration would result in short-term adverse impacts to water quality during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. Long-term benefits to hydrology and water resources would result from living shoreline creation.

Four projects in Table 12-79 are identified as potential contributors to cumulative impacts to hydrology and water resources when their impacts are combined with those of the Group 6 Phase III Early Restoration projects. These include coastal development and ongoing military operations. These activities may contribute to long-term hydrologic or water quality impacts as a result of increased development and impervious surface area that may result in increases in stormwater runoff and pollutants carried in that runoff and increased recreational use in the waterways. Long-term beneficial impacts to water quality would come from implementing stormwater retrofit projects.

When Group 6 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to hydrology and water resources would likely occur. Group 6 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 6 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term, beneficial cumulative impacts to hydrology and water resources.

**Air Quality and GHGs**

Group 6 Phase III Early Restoration projects would have short-term adverse impacts to air quality and GHGs. The projects proposed in the Group 6 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. Where appropriate, BMPs would be implemented to minimize these short-term impacts.

Three projects in Table 12-79 are identified as potential contributors to cumulative impacts to air quality or GHG impacts when their impacts are combined with those of the Group 6 Phase III Early Restoration projects. The impacts would occur mainly during construction with limited long term operational impacts. Construction and operations impacts of each project would be short to long-term in nature, would constitute a very small portion of the overall inventory of air emissions in the region, and would not be expected to violate state or federal standards. For operations, all facilities, would
follow applicable federal and state regulations, and would not be expected to change the air quality attainment status of the region.

When Group 6 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to air quality and GHGs would likely occur. Group 6 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Noise**

Group 6 Phase III Early Restoration projects would have both short-term and long-term minor adverse impacts to noise. The majority of the projects proposed in the Group 6 Phase III Early Restoration would only result in short-term adverse impacts during construction related activities. The Cash Bayou and Sane Beach projects would result in long-term minor adverse impacts through the use of new facilities but not at an excessive level given the surrounding land use.

Three projects in Table 12-79 are identified as potential contributors to cumulative impacts to noise levels when their impacts are combined with those of the Group 6 Phase III Early Restoration projects. Project types include coastal development. In most cases the noise impacts would be of relatively short duration, ending upon completion of construction activities, and are projected to result in only minor adverse impacts.

When Group 6 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term and long-term cumulative adverse impacts to noise would likely occur. Group 6 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Living Coastal and Marine Resources**

Group 6 Phase III Early Restoration projects would have short-term adverse impacts to living coastal and marine resources. The projects proposed in the Group 6 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. Long-term beneficial impacts to living coastal and marine resources would result from living shoreline and oyster reef creation.

Three projects in Table 12-79 are identified as potential contributors to cumulative impacts to living coastal and marine resources when their impacts are combined with those of the Group 6 Phase III Early Restoration projects. Existing coastal development has affected upland and aquatic living coastal and marine resources due to human disturbances including noise, domestic pets, introduction of invasive species, placement of roadways and traffic, recreational uses, etc. These ongoing activities have all contributed to habitat losses and habitat fragmentation in areas that living and coastal marine resources rely on for breeding, foraging and other uses. These impacts are anticipated to continue into the future.

When Group 6 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to living coastal and marine resources would likely occur. Group 6 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 6 Phase III Early Restoration projects, carried out in
conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to living and coastal marine resources.

**Protected Species**
Group 6 Phase III Early Restoration projects would have short-term adverse impacts to protected species. The projects proposed in the Group 6 Phase III Early Restoration would result in short term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. Long-term beneficial impacts would result from oyster reef creation.

Three projects in Table 12-79 are identified as potential contributors to cumulative impacts to protected species when their impacts are combined with those of the Group 6 Phase III Early Restoration projects. The ongoing coastal development activities have adversely affected protected species through human related disturbances such as noise, vessel traffic and pollution, placement of roadways and traffic, domestic pets, loss of habitat, introduction of invasive species and habitat fragmentation. These impacts are anticipated to continue into the future. The Phase II habitat restoration projects will provide long-term benefits to nesting birds and sea turtles.

When Group 6 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to protected species would likely occur. Group 6 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 6 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to protected species.

**Habitats**
Group 6 Phase III Early Restoration projects would have short-term adverse impacts to habitats. The majority of the projects proposed in the Group 6 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. Long-term beneficial impacts would result from living shoreline and oyster reef creation.

Three projects in Table 12-79 are identified as potential contributors to cumulative impacts to habitats when their impacts are combined with those of the Group 6 Phase III Early Restoration projects. The ongoing coastal development has adversely affected habitats through human related disturbances such as loss of habitats to developed areas, introduction of invasive species and habitat fragmentation. These impacts are anticipated to continue into the future. The Phase II Early Restoration projects will provide long-term benefits to nesting birds and sea turtles habitat.

When Group 6 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to habitats would likely occur. Group 6 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 6 Phase III Early Restoration projects, carried out in conjunction
with other restoration efforts, have the potential to result in some long-term beneficial impacts to habitats.

**Socioeconomics and Environmental Justice**

Group 6 Phase III Early Restoration projects would have short-term adverse impacts to socioeconomics. The oyster project proposed in the Group 6 Phase III Early Restoration would result in short-term adverse impacts during the construction time frame due to potential closure of the oyster reef. However, this project and the other projects would benefit the local economies adjacent to the project site in both the short and long term from increased employment during the project construction and by increasing use of the facilities.

Three projects in Table 12-79 are identified as potential contributors to cumulative beneficial impacts to socioeconomics when their impacts are combined with those of the Group 6 Phase III Early Restoration projects. Many of the projects actions in the table may affect socioeconomics in the short-term and long-term through job creation, increased local sales, and potential increased demand for local business services. Additionally, the increase in workers and tourism related activities would increase revenues in local communities.

When Group 6 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short term cumulative adverse impacts to socioeconomics would likely occur. Group 6 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 6 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative socioeconomic impacts.

**Aesthetics and Visual Resources**

Group 6 Phase III Early Restoration projects would have short-term adverse impacts to aesthetics and visual resources. Construction related activities from the projects proposed in the Group 6 Phase III Early Restoration would result in short-term adverse impacts.

One project in Table 12-79 is identified as a potential contributor to cumulative impacts to aesthetic or visual resources when their impacts are combined with those of the Group 6 Phase III Early Restoration projects. Many of the projects described in the table above may affect aesthetics and visual resources in the short-term and long-term. Temporary impacts to visual resources would result from restoration, construction, maintenance and recreational use. Long-term impacts would occur with coastal development.

When Group 6 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to aesthetics and visual resources would likely occur. Group 6 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.
Tourism and Recreational Use
Group 6 Phase III Early Restoration projects would have short-term adverse impacts to tourism and recreational use. The majority of the projects proposed in the Group 6 Phase III Early Restoration would result in short-term adverse impacts from potential facility closures during construction related activities. However once the construction activities are completed, the Group 6 Phase III Early Restoration projects will provide long-term benefits through enhanced and/or increased access to the natural resources.

One project in Table 12-79 is identified as a potential contributor to cumulative impacts to tourism and recreation when their impacts are combined with those of the Group 6 Phase III Early Restoration projects. Enhanced and/or increased visitation due to the potential increase of traffic on the proposed road is expected to provide long-term beneficial impacts to tourism and recreational use.

When Group 6 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to tourism and recreational use would likely occur. Group 6 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 6 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative tourism and recreational use impacts.

Infrastructure
Group 6 Phase III Early Restoration projects would have short-term adverse to infrastructure. The projects proposed in the Group 6 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. Some of the projects have the potential to provide long-term beneficial impacts through the enhancement of parking at some of the recreational use facilities.

Three projects in Table 12-79 are identified as potential contributors to cumulative impacts to infrastructure when their impacts are combined with those of the Group 6 Phase III Early Restoration projects. These include military operations, which add personnel and increase population pressures on existing infrastructure. Coastal development also increases pressure on existing infrastructure. These impacts are anticipated to continue into the future.

When Group 6 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to infrastructure would likely occur. Group 6 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 6 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative infrastructure impacts.

Summary of Cumulative Impacts
Based on the above analysis of past, present, and reasonably foreseeable future actions and the anticipated resources to be impacted for these actions (see Table 12-79), the Group 6 Phase III Early Restoration projects would not substantially contribute to adverse cumulative impacts to resources in
the Group 6 Phase III Early Restoration region. Group 6 Phase III Early Restoration projects, carried out in conjunction with other projects, have the potential to provide long-term beneficial cumulative impacts to geology and substrates, hydrology and water resources, living coastal and marine resources, protected species, habitats, socioeconomics, aesthetics and visual resources, tourism and recreational use, and infrastructure.

**Group 7 Phase III Early Restoration: Apalachee Bays (Wakulla County)**

Table 12-80 summarizes the impacts to resources associated with proposed Florida projects in the area of Apalachicola and Apalachee Bays that are comprised of habitat restoration projects including, Seagrass recovery, and scallop enhancement as well as recreational and visitor enhancement and access projects including, one beach nourishment project, improvements to two parks (constructing observation platforms, boardwalks, and walking paths, improving the boat ramp area, and picnic areas, renovating the parking area, and the restroom facility, and constructing a canoe/kayak launch site), and a dock. The projects occur in Apalachicola and Apalachee Bays, in central Franklin and Wakulla Counties. Projects are evaluated together to determine if they have any cumulative impacts that, when combined with other past, present, and reasonably foreseeable future actions in Apalachicola and Apalachee Bays and the nearby vicinity, may result in cumulative impacts to resources. Projects are currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. Although no cumulative impacts to cultural resources are anticipated, there is insufficient information at this time to make determinations. If cultural resources would be impacted, mitigation identified during the consultation process would be implemented.
Table 12-80. Summary of Impacts of Proposed Phase III Early Restoration Projects.

<table>
<thead>
<tr>
<th>Group 7 Projects</th>
<th>Geology and Substrates</th>
<th>Hydrology and Water Resources</th>
<th>Air Quality and GHGs</th>
<th>Noise</th>
<th>Living Coastal and Marine Resources</th>
<th>Protected Species</th>
<th>Habitats</th>
<th>Socioeconomics and Environmental Justice</th>
<th>Land and Marine Management</th>
<th>Aesthetics and Visual Resources</th>
<th>Tourism and Recreational Use</th>
<th>Infrastructure</th>
<th>Public Health and Safety and Shoreline Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franklin Scallop Enhancement</td>
<td>NE</td>
<td>S</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>+</td>
<td>+</td>
<td>NE</td>
<td>S</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
</tr>
<tr>
<td>Florida Seagrass Recovery</td>
<td>S</td>
<td>S/+</td>
<td>S</td>
<td>+</td>
<td>NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>NE/NE</td>
</tr>
<tr>
<td>Wakulla Mashes Sands Park</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S/NE</td>
<td>NE</td>
<td>S/NE</td>
<td>S</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
</tr>
<tr>
<td>Shell Point Beach Nourishment</td>
<td>S/NE</td>
<td>+</td>
<td>S</td>
<td>S</td>
<td>+</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
</tr>
<tr>
<td>Saint Marks Boat Ramp</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S/NE</td>
<td>NE</td>
<td>S/NE</td>
<td>S</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
<td>S/NE</td>
</tr>
</tbody>
</table>

Adverse effect: -
Beneficial effect: +
Short term adverse effect: S
No effect: NE

**Existing Conditions**
Existing environmental and socio-economic conditions in and around Group 7 Phase III Early Restoration projects are represented by the affected environment in the preceding environmental reviews for Group 7 Phase III Early Restoration projects. The existing conditions include the environmental impacts of past projects in the area and therefore are the assumed existing conditions for the cumulative analysis of impacts for past, present, and reasonably foreseeable future actions.

**Summary Impacts Group 7 Phase III Early Restoration Projects**
All of the resource areas listed in Table 12-80 above would be affected by at least some of the project proposed under Group 7 Phase III Early Restoration. These impacts would not be anticipated to extend beyond the construction period for the most part. None of the projects proposed under Group 7 Phase III Early Restoration would result in any long-term adverse impacts. In fact, many of the projects proposed under Group 7 Phase III Early Restoration would result in long-term benefits to certain
resources. Overall, long-term benefits from projects proposed in the Group 7 Phase III Early Restoration region are expected to outweigh the short-term adverse impacts necessary for project implementation.

Identification of Past, Present, and Reasonably Foreseeable Future Actions and Impacts

The table below identifies past, present and reasonably foreseeable future projects in each of the categories described in Chapter 6. For each of the actions, the table provides (1) a brief description of the action and (2) a listing of NEPA resource categories that are the most likely areas of concern for cumulative impacts when the action is considered in conjunction with implementation of Group 7 Phase III Early Restoration projects. In most cases, detailed environmental impact data are not available for these other actions. Consequently, the analyses generally reflect qualitative discussions about potential impacts due to best professional judgment. Also, as noted previously, the focus of the cumulative impacts analysis is on the resource areas that are deemed most likely to exhibit cumulative impacts; hence the analysis does not include in the listing those resources where impacts have been judged to be de minimis.

**Table 12-81. Other Activities Identified in Group 7 Region**

<table>
<thead>
<tr>
<th>Category/Projects</th>
<th>Project Description</th>
<th>Key Resource Areas with Potential to Contribute to Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Restoration Projects</td>
<td>No known projects.</td>
<td></td>
</tr>
<tr>
<td>Military Operations</td>
<td>No known projects.</td>
<td></td>
</tr>
<tr>
<td>Marine Transportation</td>
<td>No known projects.</td>
<td></td>
</tr>
<tr>
<td>Energy Activities (Offshore oil production, Offshore Natural Gas Facilities, State Oil and Gas Activities)</td>
<td>No known projects.</td>
<td></td>
</tr>
<tr>
<td>Marine Mineral Mining, Including Sand and Gravel Mining</td>
<td>No known projects</td>
<td></td>
</tr>
<tr>
<td>Coastal Development and Land Use</td>
<td>Big Ben Scenic Byway (FDOT)</td>
<td>Expansion of the Big Bend Scenic Highway.</td>
</tr>
<tr>
<td>Category/Projects</td>
<td>Project Description</td>
<td>Key Resource Areas with Potential to Contribute to Cumulative Impacts</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| **Wakulla Land Tract Acquisition (Wakulla Aquatic Association)** | The continuing purchasing of tracts of land for conservation purposes. | • Aesthetics and Visual Resources  
• Tourism and Recreational Use  
• Infrastructure  
• Hydrology and Water Resources  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Aesthetics and Visual Resources |
| **Fisheries and Aquaculture** |  | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual Resources  
• Tourism and Recreational Use  
• Infrastructure |
| **Tourism and Recreation** |  | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual Resources  
• Tourism and Recreational Use  
• Infrastructure |
| **Wakulla County Bicycle, Pedestrian and Blueways Master Plan (Wakulla County)** | Series of projects that aim to connect and promote a system of walking, cycling and paddling trails within Wakulla County. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual Resources  
• Tourism and Recreational Use  
• Infrastructure |
| **Big Bend Maritime Center** | Plans to build a center that is a collection of buildings, boats and equipment, interpretive displays and activities depicting life as it was and still is in Coastal Florida. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats  
• Socioeconomics and Environmental Justice  
• Aesthetics and Visual Resources  
• Tourism and Recreational Use  
• Infrastructure |
Cumulative Impacts Analysis for Group 7 Phase III Early Restoration Projects

Table 12-81 identifies the following resource areas where there is a possibility that impacts of past, present, and reasonably foreseeable future actions might overlap those of the Group 7 Phase III Early Restoration projects and therefore result in adverse cumulative impacts not identified through analysis of the Group 7 Phase III Early Restoration projects alone. The following resource categories are identified for further cumulative impacts analysis:

- Geology and Substrates;
- Hydrology and Water Resources;
- Air Quality and GHGs;
- Noise;
- Living Coastal and Marine Resources;
- Protected Species;
- Habitat;
- Socioeconomics and Environmental Justice;
- Aesthetics and Visual Resources;
- Tourism and Recreational Use; and
- Infrastructure.

Cumulative impacts for each of these categories are discussed below.

**Geology and Substrates**

Group 7 Phase III Early Restoration projects would have short-term adverse impacts to geology and substrate. There would be short-term adverse impacts to geology and substrate from the construction at a number of the proposed project sites. Long-term benefits to geology and substrate would include the renourishment of Shell Point.

Three projects in Table 12-81 are identified as potential contributors to cumulative impacts to geology and substrates when their impacts are combined with those of the Group 7 Phase III Early Restoration projects. Actions related to coastal development have resulted in permanent alterations to existing geology for construction of foundations, roadways and other permanent structures. Other proposed actions would lead to short-term and long-term minor adverse impacts resulting from construction of new facilities.

When Group 7 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to geology and substrates would likely occur. Group 7 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 7 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term, beneficial cumulative impacts to geology and substrates.
**Hydrology and Water Resources**

Group 7 Phase III Early Restoration projects would have short-term adverse impacts to hydrology and water resources. The majority of the projects proposed in the Group 7 Phase III Early Restoration would result in short-term adverse impacts to water quality during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. Long-term beneficial impacts would result from the planting of seagrass.

Four projects in Table 12-81 are identified as potential contributors to cumulative impacts to hydrology and water resources when their impacts are combined with those of the Group 7 Phase III Early Restoration projects. These include coastal development and tourism and recreational use projects. These activities may contribute to long-term hydrologic or water quality impacts as a result of increased development and impervious surface area that may result in increases in stormwater runoff and pollutants carried in that runoff and increased recreational use in the waterways. Long-term beneficial impacts are anticipated from the purchasing of land for conservation measures.

When Group 7 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to hydrology and water resources would likely occur. Group 7 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 7 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term, beneficial cumulative impacts to hydrology and water resources.

**Air Quality and GHGs**

Group 7 Phase III Early Restoration projects would have short-term adverse impacts to air quality and GHGs. The projects proposed in the Group 7 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. Where appropriate, BMPs would be implemented to minimize these short-term impacts.

Three projects in Table 12-81 are identified as potential contributors to cumulative impacts to air quality or GHG impacts when their impacts are combined with those of the Group 7 Phase III Early Restoration projects. The impacts would occur mainly during construction with limited long-term operational impacts. Construction and operations impacts of each project would be short to long-term in nature, would constitute a very small portion of the overall inventory of air emissions in the region, and would not be expected to violate state or federal standards. For operations, all facilities, would follow applicable federal and state regulations, and would not be expected to change the air quality attainment status of the region.

When Group 7 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to air quality and GHGs would likely occur. Group 7 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.
**Noise**

Group 7 Phase III Early Restoration projects would have short-term adverse impacts to noise. The majority of the projects proposed in the Group 7 Phase III Early Restoration would result in short-term, adverse impacts during construction related activities. Where appropriate, BMPs would be implemented to minimize these short-term impacts.

Three projects in Table 12-81 are identified as potential contributors to cumulative impacts to noise levels when their impacts are combined with those of the Group 7 Phase III Early Restoration projects. Project types include coastal development and tourism and recreational. In most cases the noise impacts would be of relatively short duration, ending upon completion of construction activities, and are projected to result in only minor adverse impacts.

When Group 7 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to noise would likely occur. Group 7 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Living Coastal and Marine Resources**

Group 7 Phase III Early Restoration projects would have short-term adverse impacts to living coastal and marine resources. The projects proposed in the Group 7 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. Long-term beneficial impacts would result from seagrass plantings as well as enhancement of the scallop population.

Four projects in Table 12-81 are identified as potential contributors to cumulative impacts to living coastal and marine resources when their impacts are combined with those of the Group 7 Phase III Early Restoration projects. Existing coastal development has affected upland and aquatic living coastal and marine resources due to human disturbances including noise, domestic pets, introduction of invasive species, placement of roadways and traffic, recreational uses, etc. These ongoing activities have all contributed to habitat losses and habitat fragmentation in areas that living and coastal marine resources rely on for breeding, foraging and other uses. These impacts are anticipated to continue into the future. Long-term beneficial impacts would result from the purchasing of land for conservation measures.

When Group 7 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to living coastal and marine resources would likely occur. Group 7 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 7 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to living coastal and marine resources.

**Protected Species**

Group 7 Phase III Early Restoration projects would have short-term adverse impacts to protected species. The projects proposed in the Group 7 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized
through the implementation of BMPs. Long-term beneficial impacts would result from the planting of new seagrass.

Four projects in Table 12-81 are identified as potential contributors to cumulative impacts to protected species when their impacts are combined with those of the Group 7 Phase III Early Restoration projects. Coastal development activities have adversely affected protected species through human related disturbances such as noise, vessel traffic and pollution, placement of roadways and traffic, domestic pets, loss of habitat, introduction of invasive species and habitat fragmentation. These impacts are anticipated to continue into the future. Long-term beneficial impacts would result from the purchasing of land for conservation measures.

When Group 7 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to protected species would likely occur. Group 7 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 7 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to protected species.

**Habitats**

Group 7 Phase III Early Restoration projects would have short-term adverse impacts to habitats. The majority of the projects proposed in the Group 7 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. Long-term beneficial impacts would result from the planting of new seagrass.

Three projects in Table 12-81 are identified as potential contributors to cumulative impacts to habitats when their impacts are combined with those of the Group 7 Phase III Early Restoration projects. Coastal development has adversely affected habitats through human related disturbances such as loss of habitats to developed areas, introduction of invasive species and habitat fragmentation. These impacts are anticipated to continue into the future. Long-term benefits would result from the purchasing of tracts of land for conservation measures.

When Group 7 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to habitats would likely occur. Group 7 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 7 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to habitats.

**Socioeconomics and Environmental Justice**

Group 7 Phase III Early Restoration projects would have long-term beneficial impacts to socioeconomics. The projects proposed in the Group 7 Phase III Early Restoration would benefit the local economies adjacent to the project site in both the short-term and long-term from increased employment during the project construction and by increasing use of the facilities.
Three projects in Table 12-81 are identified as potential contributors to cumulative beneficial impacts to socioeconomics when their impacts are combined with those of the Group 7 Phase III Early Restoration projects. Many of the projects in the table may affect socioeconomics in the short-term and long-term through job creation, increased local sales, and potential increased demand for local business services. Additionally, the increase in workers and tourism related activities would increase revenues in local communities.

When Group 7 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, no cumulative adverse impacts to socioeconomics would likely occur. Group 7 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 7 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative socioeconomic impacts.

**Aesthetics and Visual Resources**
Group 7 Phase III Early Restoration projects would have short-term adverse impacts to aesthetics and visual resources. The majority of the projects proposed in the Group 7 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. Long-term beneficial impacts would result from enhancing Shell Point and the Bald Point State Park.

Three projects in Table 12-81 is identified as potential contributors to cumulative impacts to aesthetic or visual resources when their impacts are combined with those of the Group 7 Phase III Early Restoration projects. Many of the projects described in the table above may affect aesthetics and visual resources in the short-term and long-term. Temporary impacts to visual resources would result from restoration, construction, maintenance and recreational use. Long-term impacts would occur with coastal development.

When Group 7 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to aesthetics and visual resources would likely occur. Group 7 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 7 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative aesthetics and visual resources impacts.

**Tourism and Recreational Use**
Group 7 Phase III Early Restoration projects would have short-term adverse impacts to tourism and recreational use. The majority of the projects proposed in the Group 7 Phase III Early Restoration would result in short-term adverse impacts from potential facility closures during construction related activities. However once the construction activities are completed, the Group 7 Phase III Early Restoration projects will provide long-term benefits through enhanced and/or increased access to the natural resources.
Three projects in Table 12-81 are identified as potential contributors to cumulative impacts to tourism and recreation when their impacts are combined with those of the Group 7 Phase III Early Restoration projects. Enhanced and/or increased visitation at the proposed maritime center and on the bicycle, pedestrian and blueways trails is expected to provide long-term beneficial impacts to tourism and recreational use.

When Group 7 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to tourism and recreational use would likely occur. Group 7 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 7 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative tourism and recreational use impacts.

**Infrastructure**

Group 7 Phase III Early Restoration projects would have short-term adverse impacts to infrastructure. The projects proposed in the Group 7 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. However, some of the projects have the potential to provide long-term beneficial impacts through the enhancement of parking at some of the recreational use facilities.

Three projects in Table 12-81 are identified as potential contributors to cumulative impacts to infrastructure when their impacts are combined with those of the Group 7 Phase III Early Restoration projects. These include coastal development and tourism and recreational use projects which increase pressure on existing infrastructure. These impacts are anticipated to continue into the future.

When Group 7 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to infrastructure would likely occur. Group 7 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 7 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative infrastructure impacts.

**Summary of Cumulative Impacts**

Based on the above analysis of past, present, and reasonably foreseeable future actions and the anticipated resources to be impacted for these actions (see Table 12-81), the Group 7 Phase III Early Restoration projects would not substantially contribute to adverse cumulative impacts to resources in the Group 7 Phase III Early Restoration region. Group 7 Phase III Early Restoration projects, carried out in conjunction with other projects, have the potential to provide long-term beneficial cumulative impacts to geology and substrates, hydrology and water resources, living coastal and marine resources, protected species, habitats, socioeconomics, aesthetics and visual resources, tourism and recreational use, and infrastructure.
Group 8 Phase III Early Restoration Projects: Artificial Reef Placement Gulf Coast Waters

Table 12-82 summarizes the impacts to resources associated with proposed Florida habitat restoration projects in the area of the Gulf Coastal Waters off of the Florida coast. These projects involve the installation of multiple deep water and shallow water “snorkeling” reefs. The projects occur off of Escambia, Santa Rosa, Okaloosa, Walton and Bay County shorelines and because they are the same type of project, offering the same impacts, have been grouped together. Therefore, Group 8 Phase III Early Restoration projects are evaluated together to determine if they have any cumulative impacts that, when combined with other past, present, and reasonably foreseeable future actions in the Gulf waters off of the Florida coast, may result in cumulative impacts to resources. Projects are currently being reviewed under Section 106 of the NHPA to identify any historic properties located within the project area and to evaluate whether the project would affect any historic properties. Although no cumulative impacts to cultural resources are anticipated, there is insufficient information at this time to make determinations. If cultural resources would be impacted, mitigation identified during the consultation process would be implemented.

**Table 12-82. Summary of Impacts of Proposed Phase III Early Restoration Projects.**

<table>
<thead>
<tr>
<th>Group 8 Projects</th>
<th>Geology and Substrates</th>
<th>Hydrology and Water Resources</th>
<th>Air Quality and GHGs</th>
<th>Noise</th>
<th>Living Coastal and Marine Resources</th>
<th>Protected Species</th>
<th>Habitats</th>
<th>Socionomics and Environmental Justice</th>
<th>Land and Marine Management</th>
<th>Aesthetics and Visual Resources</th>
<th>Tourism and Recreational Use</th>
<th>Infrastructure</th>
<th>Public Health and Safety and Shoreline Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escambia Artificial Reefs</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S/+</td>
<td>S/+</td>
<td>+</td>
<td>NE</td>
<td>S/+</td>
<td>S/+</td>
<td>S/+</td>
<td>S</td>
<td>NE</td>
<td></td>
</tr>
<tr>
<td>Santa Rosa Artificial Reefs</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S/+</td>
<td>S/+</td>
<td>+</td>
<td>NE</td>
<td>S/+</td>
<td>S/+</td>
<td>S/+</td>
<td>S</td>
<td>NE</td>
<td></td>
</tr>
<tr>
<td>Okaloosa Artificial Reefs</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S/+</td>
<td>S/+</td>
<td>+</td>
<td>NE</td>
<td>S/+</td>
<td>S/+</td>
<td>S/+</td>
<td>S</td>
<td>NE</td>
<td></td>
</tr>
<tr>
<td>Bay Artificial Reefs</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S/+</td>
<td>S/+</td>
<td>+</td>
<td>NE</td>
<td>S/+</td>
<td>S/+</td>
<td>S/+</td>
<td>S</td>
<td>NE</td>
<td></td>
</tr>
</tbody>
</table>

Adverse effect: -
Beneficial effect: +
Short term adverse effect: S
No effect: NE
**Existing Conditions**

Existing environmental and socio-economic conditions in and around Group 8 Phase III Early Restoration projects are represented by the affected environment in the preceding environmental reviews for Group 8 Phase III Early Restoration projects. The existing conditions include the environmental impacts of past projects in the area and therefore are the assumed existing conditions for the cumulative analysis of impacts for past, present and reasonably foreseeable future actions.

**Summary Impacts Group 8 Phase III Early Restoration Projects**

All of the resource areas listed in Table 12-82 above, with the exception of land and marine management, infrastructure, and public health and safety and shoreline protection, would be affected by at least some of the project proposed under Group 8 Phase III Early Restoration. These impacts would not be anticipated to extend beyond the construction period for the most part. None of the projects proposed under Group 8 Phase III Early Restoration would result in any long-term adverse impacts. In fact, many of the projects proposed under Group 8 Phase III Early Restoration would result in long-term benefits to certain resources. Overall, long-term benefits from projects proposed in the Group 8 Phase III Early Restoration region are expected to outweigh the short-term adverse impacts necessary for project.

**Identification of Past, Present, and Reasonably Foreseeable Future Actions and Impacts**

The table below identifies past, present, and reasonably foreseeable future projects in each of the categories described in Chapter 6. For each of the actions, the table provides (1) a brief description of the action and (2) a listing of NEPA resource categories that are the most likely areas of concern for cumulative impacts when the action is considered in conjunction with implementation of Group 8 Phase III Early Restoration projects. In most cases, detailed environmental impact data are not available for these other actions. Consequently, the analyses generally reflect qualitative best professional judgment about potential impacts. Also, as noted previously, the focus of the cumulative impacts analysis is on the resource areas that are deemed most likely to exhibit cumulative impacts; hence the analysis does not include in the listing those resources where impacts have been judged to be *de minimis*.

**Table 12-83. Other Activities Identified in Group 8 Region**

<table>
<thead>
<tr>
<th>Category/Projects</th>
<th>Project Description</th>
<th>Key Resource Areas with Potential to Contribute to Cumulative Impacts</th>
</tr>
</thead>
</table>
| **Other Restoration Projects** | Program places a number of artificial reefs each year in state waters. | • Geology and Substrates  
• Hydrology and Water Resources  
• Air Quality and GHG  
• Noise  
• Living Coastal and Marine Resources  
• Protected Species  
• Habitats |
<table>
<thead>
<tr>
<th>Category/Projects</th>
<th>Project Description</th>
<th>Key Resource Areas with Potential to Contribute to Cumulative Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Military Operations</strong></td>
<td>No known projects.</td>
<td>• Socioeconomics and Environmental Justice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Aesthetics and Visual Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tourism and Recreational Use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Infrastructure</td>
</tr>
<tr>
<td><strong>Marine Transportation</strong></td>
<td>No known projects.</td>
<td></td>
</tr>
<tr>
<td><strong>Energy Activities (Offshore oil production, Offshore Natural Gas Facilities, State Oil and Gas Activities)</strong></td>
<td>No known projects.</td>
<td></td>
</tr>
<tr>
<td><strong>Marine Mineral Mining, Including Sand and Gravel Mining</strong></td>
<td>No known projects</td>
<td></td>
</tr>
<tr>
<td><strong>Coastal Development and Land Use</strong></td>
<td>No known projects.</td>
<td></td>
</tr>
<tr>
<td><strong>Fisheries and Aquaculture</strong></td>
<td>No known projects.</td>
<td></td>
</tr>
<tr>
<td><strong>Tourism and Recreation</strong></td>
<td>No known projects.</td>
<td></td>
</tr>
</tbody>
</table>

**Cumulative Impacts Analysis for Group 8 Phase III Early Restoration Projects**

Table 12-83 identifies the following resource areas where there is a possibility that impacts of past, present and reasonably foreseeable future actions might overlap those of the Group 8 Phase III Early Restoration projects and therefore result in adverse cumulative impacts not identified through analysis of the Group 8 Phase III Early Restoration projects alone. The following resource categories are identified for further cumulative impacts analysis:

- Geology and Substrates;
- Hydrology and Water Resources;
- Air quality and GHGs;
- Noise;
- Living Coastal and Marine Resources;
- Protected Species;
- Habitat;
- Socioeconomics and Environmental Justice;
- Aesthetics and Visual Resources;
Tourism and Recreational Use; and
Infrastructure.

Cumulative impacts for each of these categories are discussed below.

**Geology and Substrates**
Group 8 Phase III Early Restoration projects would have short-term adverse impacts to geology and substrate. There would be short-term adverse impacts to geology and substrate during the placement of the artificial reefs.

The project in Table 12-83 is identified as a potential contributor to cumulative impacts to geology and substrates when their impacts are combined with those of the Group 8 Phase III Early Restoration projects. Actions related to FWC Artificial Reef Program have resulted in placement of hard structure on submerged sandy sediments and permanent conversation of those areas. The project has and would continue to have relatively small footprint for conversion of substrate to hard structure.

When Group 8 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to geology and substrates would likely occur. Group 8 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Hydrology and Water Resources**
Group 8 Phase III Early Restoration projects would have short-term adverse impacts to hydrology and water resources. The projects proposed in the Group 8 Phase III Early Restoration would result in short-term adverse impacts to water quality during construction related activities. These short-term impacts would be minimized through the implementation of BMPs.

The project in Table 12-83 is identified as a potential contributor to cumulative impacts to hydrology and water resources when their impacts are combined with those of the Group 8 Phase III Early Restoration projects. Actions related to FWC Artificial Reef Program have resulted in short-term adverse impacts to water quality during the placement of the artificial reef structures.

When Group 8 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to hydrology and water resources would likely occur. Group 8 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Air Quality and GHGs**
Group 8 Phase III Early Restoration projects would have short-term adverse impacts to air quality and GHGs. The projects proposed in the Group 8 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. Where appropriate, BMPs would be implemented to minimize these short-term impacts.

The project in Table 12-83 is identified as a potential contributor to cumulative impacts to air quality or GHG impacts when their impacts are combined with those of the Group 8 Phase III Early Restoration.
projects. The impacts would occur during placement of the artificial reefs. Construction impacts of the project would be short-term in nature, would constitute a very small portion of the overall inventory of air emissions in the region, and would not be expected to violate state or federal standards.

When Group 8 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to air quality and GHGs would likely occur. Group 8 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Noise**

Group 8 Phase III Early Restoration projects would have both short-term and long-term minor adverse impacts to noise. The majority of the projects proposed in the Group 8 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. Where appropriate, BMPs would be implemented to minimize these short-term impacts. Long-term adverse minor impacts have the potential to result from any increases in motor boat access to the emplacement areas.

The project in Table 12-83 is identified as a potential contributor to cumulative impacts to noise levels when their impacts are combined with those of the Group 8 Phase III Early Restoration projects. The majority of the noise is related to temporary construction activities. Noise levels from increases in motor boat access to the emplacement areas will be increased but not at an excessive level given the surrounding land use.

When Group 8 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term and long-term cumulative adverse impacts to noise would likely occur. Group 8 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Living Coastal and Marine Resources**

Group 8 Phase III Early Restoration projects would have short-term adverse impacts to living coastal and marine resources. The projects proposed in the Group 8 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. Long-term beneficial impacts would result from the placement of artificial reef structures.

The project in Table 12-83 is identified as a potential contributor to cumulative impacts to living coastal and marine resources when their impacts are combined with those of the Group 8 Phase III Early Restoration projects. Actions related to FWC Artificial Reef Program have resulted in short-term adverse impacts to during the placement of the artificial reef structures. Long-term beneficial impacts would result from the placement of artificial reef structures which would enhance living coastal and marine resources.

When Group 8 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to living coastal and marine resources would likely occur. Group 8 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 8 Phase III Early Restoration projects, carried out in
conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to living and coastal marine resources.

**Protected Species**

Group 8 Phase III Early Restoration projects would have short-term adverse impacts to protected species. The projects proposed in the Group 8 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. Long-term beneficial impacts would result from the placement of artificial reef structures.

The project in Table 12-83 is identified as a potential contributor to cumulative impacts to protected species when their impacts are combined with those of the Group 8 Phase III Early Restoration projects. Actions related to FWC Artificial Reef Program have resulted in short-term adverse impacts to protected species during the placement of the artificial reef structures. Long-term beneficial impacts to protected species would result from the placement of artificial reef structures which would create more habitat for protected species.

When Group 8 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to protected species would likely occur. Group 8 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 8 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to protected species.

**Habitats**

Group 8 Phase III Early Restoration projects would have short-term adverse impacts to habitats. The projects proposed in the Group 8 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. These short-term impacts would be minimized through the implementation of BMPs. Long-term beneficial impacts would result from the placement of artificial reef structures.

The project in Table 12-83 is identified as a potential contributor to cumulative impacts to habitats when their impacts are combined with those of the Group 8 Phase III Early Restoration projects. Actions related to FWC Artificial Reef Program have resulted in short-term adverse impacts to habitats during the placement of the artificial reef structures. Long-term beneficial impacts to habitats would result from the placement of artificial reef structures which would create additional habitat.

When Group 8 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to habitats would likely occur. Group 8 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 8 Phase III Early Restoration projects, carried out in conjunction with other restoration efforts, have the potential to result in some long-term beneficial impacts to habitats.
**Socioeconomics and Environmental Justice**

Group 8 Phase III Early Restoration projects would have long-term beneficial impacts to socioeconomics. The projects proposed in the Group 8 Phase III Early Restoration would benefit the local economies adjacent to the project site in both the short-term and long-term from increased employment during the project construction and by increasing use of the facilities.

The project in Table 12-83 are identified as potential contributors to cumulative beneficial impacts to socioeconomics when their impacts are combined with those of the Group 8 Phase III Early Restoration projects. The FWC artificial reef program may affect socioeconomics in the short-term and long-term through job creation, increased local sales, and potential increased demand for local business services. Additionally, the increase in workers and tourism related activities would increase revenues in local communities.

When Group 8 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, no cumulative adverse impacts to socioeconomics would likely occur. Group 8 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 8 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative socioeconomic impacts.

**Aesthetics and Visual Resources**

Group 8 Phase III Early Restoration projects would have short-term adverse impacts to aesthetics and visual resources. The projects proposed in the Group 8 Phase III Early Restoration would result in short-term adverse impacts during construction related activities. Long term beneficial impacts would result from the placement of artificial reef structures.

The project in Table 12-83 are identified as potential contributors to adverse cumulative impacts to aesthetics and visual resources. The FWC artificial reef program has resulted in short-term impacts during the placement of artificial reef structures. Long-term beneficial impacts to aesthetics and visual resources would result from the placement of artificial reef structures.

When Group 8 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to aesthetics and visual resources would likely occur. Group 8 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 8 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative aesthetics and visual resource impacts.

**Tourism and Recreational Use**

Group 8 Phase III Early Restoration projects would have short-term adverse to tourism and recreational use. The projects proposed in the Group 8 Phase III Early Restoration would result in short term adverse impacts during the placement of artificial reef structures. However once the placement is done,
the Group 8 Phase III Early Restoration projects will provide long-term benefits through enhanced and/or increased access to the natural resources.

The project in Table 12-83 is identified as potential contributors to cumulative impacts to tourism and recreation when their impacts are combined with those of the Group 8 Phase III Early Restoration projects. The FWC Artificial Reef Project has resulted in short-term adverse impacts during the placement of the artificial reef structures. Long-term beneficial impacts to tourism and recreational use would result from the placement of the artificial reef structures which would increase the number of reefs to fish and dive at.

When Group 8 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to tourism and recreational use would likely occur. Group 8 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts. Group 8 Phase III Early Restoration projects, carried out in conjunction with other actions have the potential to provide some long-term beneficial cumulative tourism and recreational use impacts.

**Infrastructure**

Group 8 Phase III Early Restoration projects would have short-term adverse impacts. During the construction phase, there may be short-term impacts in the transportation corridors when the artificial reef structures are moved to the staging locations.

The project in Table 12-83 is identified as potential contributors to cumulative impacts to infrastructure when their impacts are combined with those of the Group 8 Phase III Early Restoration projects. The FWC Artificial Reef program has resulted in short-term adverse impacts during the construction phase. There are no anticipated long-term cumulative impacts to infrastructure.

When Group 8 Phase III Early Restoration projects are analyzed in combination with other past, present, and reasonably foreseeable future actions, short-term cumulative adverse impacts to infrastructure would likely occur. Group 8 Phase III Early Restoration projects would not contribute substantially to cumulative adverse impacts.

**Summary of Cumulative Impacts**

Based on the above analysis of past, present, and reasonably foreseeable future actions and the anticipated resources to be impacted for these actions (see Table 12-83), the Group 8 Phase III Early Restoration projects would not substantially contribute to adverse cumulative impacts to resources in the Group 8 Phase III Early Restoration region. Group 8 Phase III Early Restoration projects, carried out in conjunction with other projects, have the potential to provide long-term beneficial cumulative impacts to living coastal and marine resources, protected species, habitats, socioeconomic, aesthetics and visual resources, and tourism and recreational use.
Other Planning Considerations

In addition to foreseeable actions identified in the table above, in November 2013, NFWF announced initial projects to receive funding from the Gulf Environmental Benefit Fund (http://www.nfwf.org/gulf/pages/gulf-projects.aspx). More than $112 million was obligated for 22 projects designed to protect, restore and enhance natural and living resources across the Gulf Coast. Six of these projects are in Florida:

1. Management & Restoration of Escribano Point Coastal Habitat – Phase I
2. Government Street Regional Stormwater Pond at Corrine Jones Park
3. Apalachicola Bay Oyster Restoration
4. Comprehensive Panhandle Coastal Bird Conservation
5. Eliminating Light Pollution on Sea Turtle Nesting Beaches
6. Enhanced Assessment for Recovery of Gulf of Mexico Fisheries – Phase I
12.91 Beach Enhancement Project at Gulf Islands National Seashore - Cumulative Impacts Analysis

12.91.1 Introduction
The impacts of the Beach Enhancement Project at Gulf Islands National Seashore (“Seashore”) are fully considered in Chapter 12A, section 12.2.5, Affected Environment and Environmental Consequences. Additionally, Chapter 12E analyzes cumulative impacts of this and other Phase III Early Restoration projects at the regional level. The Beach Enhancement project is included in that analysis within “Group 1” (e.g. the greater Pensacola Bay area including Escambia and Santa Rosa counties). What follows here is a site-specific analysis focusing solely on the project area at the Seashore. It examines impacts to the same resource topics considered in section 12.2.5. The list of actions in the following analysis were chosen based on whether or not the resources they affect overlap in time and space with any of the same resources associated with the Beach Enhancement project.

Of course, not every action in the list below would impact every resource at the Seashore in the footprint of the Beach Enhancement project. For example, an in-water construction project taking place in Pensacola Bay a mile from the Beach Enhancement project area could not affect the geology and substrates or terrestrial wildlife at the Seashore but could affect Gulf sturgeon critical habitat or air quality resources that the two projects share. Where actions are not mentioned in the cumulative impacts analyses below, no effect from that project is expected on the resource.

The projects noted below with an asterisk (*) are other Phase III early restoration projects; the projects listed below those are other past, present, and reasonably foreseeable future actions within or near the Seashore. In-depth project descriptions for the former are given in Chapters 12A-B and 12E; brief project descriptions of all projects and actions considered are provided below.

1. Perdido Key Dune Restoration Project* – would restore appropriate dune vegetation to approximately 20 acres of degraded beach dune habitat in Perdido Key, Florida, including habitat used by the federally endangered Perdido Key Beach Mouse. The project will consist of planting appropriate dune vegetation (e.g., sea oats, panic grasses, cord grasses, sea purslane, beach elder) approximately 20 – 60’ seaward of the existing primary dune to provide a buffer to the primary dune and enhance dune habitats. In addition, gaps in existing dunes within the project area would be re-vegetated to provide a continuous dune structure.

2. Big Lagoon State Park Boat Ramp Improvement Project* – would involve enhancing an existing boat ramp and surrounding facilities in the Big Lagoon State Park in Escambia County. These improvements would include adding an additional lane to the boat ramp, expanding boat trailer parking, improving traffic circulation at the boat ramp, and providing a new restroom facility to connect the park to the Emerald Coast Utility Authority (ECUA) regional sanitary sewer collection system.

3. Perdido Key State Park Beach Boardwalk Improvements Project* – would improve a number of existing boardwalks in Perdido Key State Park in Escambia County. The proposed improvements...
include removing and replacing six existing boardwalks leading to the beach from two public access areas.

4. Ferry Purchase (and Dock Facility Improvements) Project* – would fund the purchase of up to three ferries to be used to ferry visitors (no automobiles) between the City of Pensacola, Pensacola Beach, and the Fort Pickens area of the Seashore in Florida. It also involves the connected but separate actions of: constructing two passenger queuing areas (one with a small ticketing facility); constructing a floating dock, a landing, and a ramp between the two in one area; and constructing a dock that is fixed to and extending from an existing pier in another area. Should the ferries be delivered before the docks are funded or completed, DOI has identified the “interim option” of docking the ferries at the existing Plaza de Luna marina and operating them from the docks there and at Quietwater Beach (and at the Fort Pickens pier as originally planned). Council on Environmental Quality (CEQ) regulations require connected actions\(^{37}\) to be analyzed in the same NEPA analysis as a proposed action (40 C.F.R. §1508.25(a)1). These connected actions would not utilize funds from this proposed project, but rather would be funded by a non-federal partner.

5. Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle Project* – would involve enhancing local scallop populations in targeted areas in the Florida Panhandle. The proposed improvements include the harvesting and redistribution of naturally-occurring juvenile scallops supplemented with stocking from a commercial scallop hatchery.

6. Florida Artificial Reef Creation and Restoration Project* – Artificial reefs would be constructed on several sites using a similar process; however, the average water depth and substrate composition of the water bottom at each reef site may differ. A survey would be conducted to determine the placement, alignment, and boundaries of the artificial reefs. In Escambia County, reefs would likely use a concrete, prefabricated tetrahedral artificial reef module commonly deployed in the northeastern Gulf of Mexico, like Florida Limestone or EcoSystem Reef modules from Walter Marine. The “Florida Limestone” module measures 10 feet along each base and is 8 feet in height, yielding a total volume (per module) of approximately 116 cubic feet. Each module covers approximately 43.3 square feet of seafloor area.

7. Bob Sikes Pier, Parking and Trail Restoration Project* – would improve access to a fishing pier in the Pensacola area in Escambia County as well as enhancing the quality of the experience for its recreational users. The proposed improvements include renovating parking areas, enhancing bicycle/pedestrian access, and aesthetic improvements to the surrounding area.

8. Gulf Breeze Wayside Park Boat Ramp Project* – would improve the existing boat ramp at Wayside Park in the City of Gulf Breeze, Santa Rosa County, FL. The proposed improvements include repairing the existing boat ramp and seawall cap, constructing a public restroom facility, and repairing and enhancing the parking area to improve access.

9. Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center Project* – would involve constructing and operating a saltwater sportfish hatchery in Pensacola, Florida. This project would

\(^{37}\) The National Park Service defines connected actions as those that are “closely related” to the proposal and alternatives. Actions are connected if they automatically trigger other actions that may have environmental impacts; they cannot or will not proceed unless other actions have been taken previously or simultaneously; or they are interdependent parts of a larger action and depend on the larger action for their justification (NPS Director’s Order 12 Handbook).
increase and/or enhance recreational fishing opportunities by producing and releasing highly sought-after sportfish species.

10. The Enhanced Management of Avian Breeding Habitat Project – This early restoration Phase II project helps restore avian breeding habitat injured by response activities and includes visitor education, predator control, surveying for shorebird nesting behaviors and their nests, and placing symbolic fencing with signage around nesting areas to keep visitors from disturbing nests. The project occurs in several areas, including the Seashore units on Santa Rosa Island and Perdido Key.

11. FDEP Beach Erosion Control Program at Pensacola Beach and Perdido Key, FL Project – The 2012 and 2013 Pensacola Beach Restoration Project was a beach nourishment project for approximately 8.2 miles of shoreline in Escambia County and was implemented to restore damage sustained from Tropical Storm Gustav in 2008. It included the installation of a berm, the placement of sand, native plantings, and the installation of sand fencing. The 2012 Perdido Key Beach Restoration Project restored approximately 6.5 miles of shoreline in Escambia County through the addition of sand that was recovered during a dredging of Pensacola Bay.

12. Littoral Zone Placement of Dredge Spoil on Perdido Key Project – Approximately 557 cubic yards of sand was placed on the southern beach of the Perdido Key Area of Gulf Islands National Seashore from mile markers R64 to R52, December 9, 2011 – January 18, 2012. The dredge material was obtained during maintenance dredging of the Pensacola Harbor Gulf Entrance Channel, by the U.S. Army Corps of Engineers, Mobile District.

13. Restore Visitor Access to Fort Pickens and Santa Rosa areas at Gulf Islands National Seashore Project – In 2009 approximately seven miles of road through the Fort Pickens and Santa Rosa areas of the Seashore were reconstructed, repaired, or realigned, thereby restoring damage done by hurricanes and storms in 2004 and 2005. The project reconnected both the Fort Pickens area of the Seashore and the City of Navarre Beach with the city of Pensacola Beach.

14. Asphalt Debris Removal/Disposal Project – In 2012 approximately 3,000 cubic yards of asphalt fragments and road base materials were removed from approximately 50-100 acres of beach at the Santa Rosa (Opal Beach) and Fort Pickens areas.


16. Pensacola Naval Air Station continued operations – Pensacola Naval Air Station is generally located on the northwest side of Pensacola Bay. It employs more than 16,000 military and 7,400 civilian personnel and includes extensive training and education facilities. The Blue Angels Navy Flight Demonstration Squadron operates out of there. There are no navy homeported ships; the only homeported ships are a 210-ft USCGC vessel, a USAF 93-ft service craft, and some smaller boats under 40 ft.

17. FDEP/FWCC Living Shoreline Projects – These ten projects are located at various points, including along Pensacola Bay and East Bay, and include projects that are both proposed and underway. Living shoreline creation is a technique that protects tidal shorelines from erosion. They generally include planting native wetland plants and placement of bioengineered materials to protect vegetation and soils from tidal movement.
18. Two FWC Oyster Restoration Projects – Project areas include Garcon Point and White Point in East Bay in the larger Pensacola Bay system. Project consists of distributing cultch material (usually recycled oyster shell) over existing appropriate substrates and using a hatchery to provide seed oysters where spat set is nonexistent or unreliable.

19. FDOT Pensacola Bay Bridge Replacement Project – The bridge between Pensacola and Gulf Breeze, FL on US Highway 98 is considered “structurally deficient”; therefore FDOT is required to plan for a replacement bridge within the next 3-5 years. A Project Development and Environmental Study is currently in progress.

20. Fort Pickens Ferry Support Facilities and Shuttle Service Project - – A transportation study has been prepared and an Environmental Assessment is being prepared for the establishment of support facilities and operation of a landside shuttle tram service at the Fort Pickens Historic District of Gulf Islands National Seashore to complement the future water ferry service (see #4 above and #22 below). Several historic buildings would be repurposed to serve as a visitor center, retail area, restrooms, and shuttle shelters for the shuttle service. Existing parking areas would be repurposed as shuttle pull-off areas. The shuttle service would connect those arriving on the passenger ferry to visitor amenities and points of interest throughout the historic district on the western end of the island. The shuttle service would begin operating around 2017, would use electric trams or other alternative fuels, and would operate on a schedule that mirrored that of the passenger ferry service.

21. Fort Pickens Road Realignment, Resurfacing, and Entrance Station Reconfiguration Project – An Environmental Assessment is being prepared for the realignment of 1.67 miles of the road farther to the north, and removal and restoration of the old roadbed, resurfacing 4.5 miles of Fort Pickens Road and two parking lots (lots 21 and 22), and reconfiguring the existing entrance station area there to accommodate more vehicles. Project implementation is proposed to begin in 2015.

22. Fort Pickens Pier and Ferry Service Project – An Environmental Assessment was prepared in 2011 for the establishment of a ferry service between the Fort Pickens area at the Seashore, the City of Pensacola, and Pensacola Beach, and also for the construction a ferry docking pier at Fort Pickens. Although the ferry service has yet to be established, the pier was constructed in 2012. The ferry service is anticipated to run two ferries at a time and make approximately three trips each per day during the peak season, and fewer or no trips during the shoulder and off seasons, respectively. Ferry service is expected to begin in 2017.

Cumulative impacts are determined below for each resource and for each of the four Alternatives in the Environmental Review (Chapter 12A, section 12.2). The analysis follows the same structure as the Affected Environment and Environmental Consequences section (12.2.5). In each analysis, spatial and temporal boundaries were established to identify the past, present, and reasonably foreseeable future actions (including other Phase III projects) whose resources overlapped in space and time with those in the Beach Enhancement project area. These actions are listed for each resource impact topic below. The type of impact (adverse or beneficial), level of intensity (minor, moderate, or major), and duration (short- or long-term) are stated after each action. Then, 1) the cumulative impacts of the listed actions are assessed and 2) added to the impacts (if any) of the Beach Enhancement project, and 3) a cumulative impact is stated for the additive impact of both the listed projects and the Beach Enhancement project together. Finally, an approximation of the increment added to the cumulative impact by the Beach Enhancement project is stated.
The impact thresholds used are based on the duration and intensity definitions provided above in Table 6.2 of Chapter 6. Each of the summary statements below about the cumulative impacts to a resource under a given Alternative are based on an assessment made using those definitions.

12.91.2 Physical Environment

12.1.1.1 Potential Impacts to Geology and Substrates

Impacts of Alternative 1: No Action

Under the No Action Alternative, the proposed Beach Enhancement Project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following actions are impacting and will impact the project area’s geology and substrates as follows:

1. The 2012 Asphalt Debris Removal/Disposal Project at the Seashore has long-term beneficial impacts to the resource by removing foreign objects from the substrate, albeit in a relatively small area. This returned the resource to its natural composition and allows it to now move and form naturally in that area.
2. The Restore Visitor Access to Fort Pickens and Santa Rosa areas at Gulf Islands National Seashore Project has long-term moderate adverse impacts to the resource because of the compaction and paving of the road which essentially removes the resource from the area by covering it up, but only in the fraction of the area where the road footprints exists.
3. The upcoming Fort Pickens Road Realignment, Resurfacing, and Entrance Station Reconfiguration Project is anticipated to have two different impacts: the realignment of one mile of the road will cause short-term minor adverse impacts by increasing the area that is compacted and disturbed during construction, thus temporarily preventing the resource from moving and forming naturally in the construction footprint; the reconfiguration of the entrance station will have a long-term moderate adverse effect on a very small area where the footprint of the entrance area is slightly increased, thus essentially removing the resource from the area by covering it up. Resurfacing the already paved road should have no impact on the resource.
4. The Littoral Zone Placement of Dredge Spoil on Perdido Key Project has long-term beneficial impacts on the geology and substrates of Perdido Key due to the addition of sand substrate materials to the geological system of Perdido Key.

The past, present, and reasonably foreseeable future actions (#1–4, above) would result, on balance, in long-term moderate adverse cumulative impacts on the resource. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources

Under Alternative 2, the same four actions as are described above in the No Action Alternative are expected to impact the geology and substrates of the area; no other actions impacting this resource are anticipated. Therefore the cumulative impacts of Alternative 2 would be the same as for Alternative 1:
long-term moderate adverse, short-term minor adverse, and long-term beneficial cumulative. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the past, present, and reasonably foreseeable future actions #1-4 described in Alternative 1 above are expected to impact geology and substrates in the same way as stated there. Additionally under Alternative 3:

1. The proposed Beach Enhancement Project would have short-term minor adverse impacts due to brief ground disturbance at discreet work locations during project implementation, and substantial long-term beneficial impacts over the entire several-hundred-acre project area. Effects are beneficial because the resource is returned to its natural composition and is allowed to move and form more naturally.

The four past, present, and reasonably foreseeable future actions described in Alternative 1 (#1-4), when combined with the short-term minor adverse and substantial long-term beneficial impacts of implementing the proposed project (#5, above), would result, on balance, in long-term moderate adverse, short-term minor adverse, and long-term beneficial cumulative impacts on the resource. The Beach Enhancement project would contribute a substantial long-term beneficial increment to this cumulative impact.

**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same five actions as are described in Alternative 3 above would be likely to impact the geology and substrates of the area; no other actions impacting this resource are anticipated. Therefore, the cumulative impacts of Alternative 4 would be the same as for Alternative 3: long-term moderate adverse, short-term minor adverse, and long-term beneficial cumulative. The Beach Enhancement project would contribute a substantial long-term beneficial increment to this cumulative impact.

**12.1.1.2 Potential Impacts to Hydrology, Water Quality, and Floodplains**

**Impacts of Alternative 1: No Action**

Under the No Action Alternative, the proposed Beach Enhancement Project would not occur. And, although other past, present, and reasonably foreseeable future actions are and would be occurring, none would occur in close enough proximity to impact the project area’s hydrology, water quality, or floodplains. As such, there are no cumulative impacts on this resource – adverse or beneficial – under Alternative 1.
**Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources**

Under Alternative 2, the same scenario as described above in the No Action Alternative would apply. As such, there are no cumulative impacts on hydrology, water quality, or floodplains – adverse or beneficial – under Alternative 2.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the same scenario as described above in the No Action Alternative would apply. However, under this Alternative, the Beach Enhancement project would occur and would impact hydrology, water quality, and floodplains as follows:

1. The Beach Enhancement Project would have short-term minor adverse impacts to water quality due to localized sediment disturbance and turbidity as backhoes disturb the sandy benthic substrate to remove asphalt, road base materials, and/or concrete chunks from the intertidal and sub-tidal zones. This work would occur in a very small space at any one time, and the total affected area would not exceed five acres total over the two-mile-long area. Any impacts, therefore, would be extremely limited in scope and duration.

The lack of any other past, present, and reasonably foreseeable future actions noted in this Alternative or in Alternative 1 means that there are only impacts from the project itself and that there are no cumulative impacts on this resource.

**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same action as described in Alternative 3 above would be likely to impact the water quality of the area; no other actions impacting this resource are anticipated. Therefore, there are only impacts from the project itself and there are no cumulative impacts on this resource.

**12.1.1.3 Potential Impacts to Air Quality and Greenhouse Gas Emissions**

**Impacts of Alternative 1: No Action**

Under the No Action Alternative, the proposed Beach Enhancement project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following actions are impacting and will impact the project area’s air quality and greenhouse gas (GHG) emissions as follows:

1. The Pensacola Naval Air Station continued operations have long-term minor adverse impacts on the resource because of emissions from aircraft and other vehicles.
2. The Revised Draft Supplemental EIS for the F-35 Beddown at Eglin Air Force Base allows for long-term minor adverse impacts on the resource because of emissions from aircraft and other vehicles.
3. The Restore Visitor Access to Fort Pickens and Santa Rosa areas at Gulf Islands National Seashore Project has long-term minor adverse impacts because it re-established the roads in the area and allows vehicular traffic and their emissions back into the area.
4. The Fort Pickens Road Realignment, Resurfacing, and Entrance Station Reconfiguration Project would have short term minor adverse impacts to the resource because of emissions caused by construction machinery such as backhoes, bulldozers, and excavators.

5. The Ferry Service and Fort Pickens Pier would have long-term minor adverse impacts within the project area due to emissions from the ferries.

The past, present, and reasonably foreseeable future actions (#1-5, above) would result, on balance, in short- and long-term minor adverse cumulative impacts on the resource. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources**

Under Alternative 2, the same five actions as are described above in the No Action Alternative are expected to impact the air quality and GHG emissions of the area; no other actions impacting this resource are anticipated. Therefore the cumulative impacts of Alternative 2 would be the same as for Alternative 1: short- and long-term minor adverse cumulative. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the past, present, and reasonably foreseeable future actions #1-5 described in Alternative 1 above are expected to impact air quality and GHG emissions in the same way as stated there. Additionally under Alternative 3:

1. The Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle Project would have short-term minor adverse impacts within the project area during implementation caused by emissions from boats carry materials to, and working at, the site.

2. The Florida Artificial Reef Creation and Restoration Project would also have short-term minor adverse impacts within the project area during implementation caused by emissions from boats carry materials to, and working at, the site.

3. The Beach Enhancement Project would have short-term minor adverse impacts because of emissions from vehicles and equipment used during project implementation.

The five past, present, and reasonably foreseeable future actions described in Alternative 1 (#1-5) and the two actions above (#6-7), when combined with the short-term, minor adverse impacts of implementing the proposed project (#8, above), would result, on balance, in short- and long-term minor adverse cumulative impacts on the resource. The Beach Enhancement project would contribute a very small adverse increment to this cumulative impact.
**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same eight actions as are described in Alternative 3 above would be likely to impact the air quality and GHG emissions of the area; no other actions impacting this resource are anticipated. Therefore, the cumulative impacts of Alternative 4 would be the same as for Alternative 3: short- and long-term minor adverse cumulative. The Beach Enhancement project would contribute a very small adverse increment to this cumulative impact.

**12.1.1.4 Potential Impacts to Noise/Natural Soundscape**

**Impacts of Alternative 1: No Action**

Under the No Action Alternative, the proposed Beach Enhancement project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following actions are impacting and will impact the project area’s noise/natural soundscape as follows:

1. The Pensacola Naval Air Station continued operations have long-term minor adverse impacts on the resource because of the noise related to any aircraft flying over or near the project area.
2. The Revised Draft Supplemental EIS for the F-35 Beddown at Eglin Air Force Base allows for long-term minor adverse impacts because of the noise related to any aircraft flying over or near the project area.
3. The Restore Visitor Access to Fort Pickens and Santa Rosa areas at Gulf Islands National Seashore Project returned vehicular traffic to the island after a several year absence. The noise associated with that traffic will have a long-term minor adverse impact on the natural soundscapes within the project area for as long as the road is in use.
4. The Fort Pickens Road Realignment, Resurfacing, and Entrance Station Reconfiguration Project will have a short-term minor adverse impact to the natural soundscapes in the project area during project construction because of the noise associated with road-building equipment.
5. The Fort Pickens Ferry Support Facilities and Shuttle Service Project will have a long-term minor adverse impact on the natural soundscapes of the project area because of the noise generated by both its operation (which should be very minor if the shuttle is electric, as anticipated) and also by the conversations of the shuttle’s potential riders.
6. The Ferry Service and Ft. Pickens Pier will have long-term minor adverse impacts to the natural soundscape within the project area if the route it takes is close enough to the north side of Santa Rosa Island to be heard from the project area.

The past, present, and reasonably foreseeable future actions (#1-6, above) would result, on balance, in short- and long-term minor adverse cumulative impacts on the resource. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources**

Under Alternative 2, the same six actions as are described above in the No Action Alternative are expected to impact the noise/natural soundscape of the area; no other actions impacting this resource
are anticipated. Therefore the cumulative impacts of Alternative 2 would be the same as for Alternative 1: short- and long-term minor adverse cumulative. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the past, present, and reasonably foreseeable future actions #1-6 described in Alternative 1 above are expected to impact noise/natural soundscape in the same way as stated there. Additionally under Alternative 3:

7. The Big Lagoon State Park Boat Ramp Improvement Project would result in more pleasure boating in the vicinity of the project area, and would therefore have a long-term minor adverse impact to the natural soundscapes of the project area.
8. The Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle Project may have short-term minor adverse impacts on the natural soundscapes of the area due to the boat noise associated with project implementation.
9. The Florida Artificial Reef Creation and Restoration Project may have short-term minor adverse impacts on the natural soundscapes of the area due to the boat noise associated with project implementation.
10. The Beach Enhancement Project would have short-term minor adverse impacts to the natural soundscapes of the area because of the noise associated with vehicles and equipment used during project implementation.

The six past, present, and reasonably foreseeable future actions described in Alternative 1 (#1-6) and the three actions described immediately above (#7-9), when combined with the short-term minor adverse impacts of implementing the proposed project (#10, immediately above), would result, on balance, in short- and long-term minor adverse cumulative impacts on the resource. The Beach Enhancement project would contribute a very small adverse increment to this cumulative impact.

**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same ten actions as are described in Alternative 3 above would be likely to impact the noise/natural landscape of the area; no other actions impacting this resource are anticipated. Therefore, the cumulative impacts of Alternative 4 would be the same as for Alternative 3: short- and long-term minor adverse cumulative. The Beach Enhancement project would contribute a very small adverse increment to this cumulative impact.

**12.91.3 Biological Environment - Living Coastal and Marine Resources**

**12.91.3.1 Potential Impacts to Coastal and Submerged Aquatic Vegetation**

**Impacts of Alternative 1: No Action**

Under the No Action Alternative, the proposed Beach Enhancement project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following actions are impacting and will impact the project area’s coastal and submerged aquatic vegetation as follows:
1. The FDEP Beach Erosion Control Program at Pensacola Beach and Perdido Key, FL Project has long-term beneficial impacts to the area’s coastal vegetation because the installation of sand fencing helps create dunes in which coastal vegetation can take root. In addition, the project included the planting of native vegetation.

2. The Restore Visitor Access to Fort Pickens and Santa Rosa areas at Gulf Islands National Seashore Project has had a long-term minor adverse impact to the coastal vegetation of the area because, during road construction, some plants were destroyed in the relatively small footprint of the road and possible plant habitat was covered up with pavement.

3. The Fort Pickens Road Realignment, Resurfacing, and Entrance Station Reconfiguration Project will have both long-term, minor, adverse impacts on the vegetation where the new section of road will be located due to destruction of some existing vegetation and covering up of vegetation habitat, and also long-term beneficial impacts on vegetation where the old section of road will be removed and returned to natural habitat. As such, these long-term impacts cancel each other out. Still the realignment project will have short-term minor adverse impacts on coastal vegetation in the project area during, and shortly after, the road construction and demolition project as both the new and old sections are paved and devoid of vegetation. Additionally, the reconfiguration of the Fort Pickens area entrance station will have long-term moderate adverse impacts on vegetation in the very small area where the footprint of the station will be expanded and some vegetation may be destroyed and habitat covered up with pavement.

4. The 2012 Asphalt Debris Removal/Disposal Project at the Seashore has long-term beneficial impacts to the coastal vegetation of the area because it removed foreign objects from the soil which inhibited root growth and normal plant establishment.

The past, present, and reasonably foreseeable future actions (#1-4, above) would result, on balance, in short-term minor adverse, long-term moderate adverse, and long-term beneficial cumulative impacts on the resource. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources**

Under Alternative 2, the same four actions as are described above in the No Action Alternative are expected to impact the coastal vegetation of the area; no other actions impacting this resource are anticipated. Therefore the cumulative impacts of Alternative 2 would be the same as for Alternative 1: short-term minor adverse, long-term moderate adverse, and long-term beneficial cumulative. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the past, present, and reasonably foreseeable future actions #1-4 described in Alternative 1 above are expected to impact coastal vegetation in the same way as stated there. Additionally under Alternative 3:
1. The Beach Enhancement Project would have short-term minor adverse impacts to coastal vegetation in the area due to unavoidable collateral damage to plants during the cleanup process. However, all plants destroyed would be replaced. This project would also have long-term beneficial impacts because it would remove foreign objects from the growth substrate and allow vegetation to grow and establish in the area more naturally.

The four past, present, and reasonably foreseeable future actions described in Alternative 1 (#1-4), when combined with the short-term minor adverse and long-term beneficial impacts of implementing the proposed project (#5, above), would result, on balance, in short-term minor adverse, long-term moderate adverse, and long-term beneficial cumulative impacts on the resource. The Beach Enhancement project would contribute a substantial long-term beneficial increment to this cumulative impact.

**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same five actions as are described in Alternative 3 above would be likely to impact the coastal vegetation of the project area; no other actions impacting this resource are anticipated. The cumulative impacts of Alternative 4 would be the same as for Alternative 3: short-term minor adverse, long-term moderate adverse, and long-term beneficial cumulative. The Beach Enhancement project would contribute a substantial long-term beneficial increment to this cumulative impact.

**Potential Impacts to Terrestrial Wildlife Species, Migratory Birds, Bald Eagles, Protected Terrestrial Species, and Critical Terrestrial Habitats**

**Impacts of Alternative 1: No Action**

Under the No Action Alternative, the proposed Beach Enhancement project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following actions are impacting and would impact the project area’s terrestrial wildlife species, migratory birds, bald eagles, protected terrestrial species, and critical terrestrial habitats as follows:

1. The FDEP Beach Erosion Control Program at Pensacola Beach and Perdido Key, FL Project has long-term beneficial impacts to the terrestrial wildlife species in the project area; this includes protected species and species of concern such as Perdido Key and Santa Rosa beach mice, piping plover and their critical habitats, as well as sea turtles and migratory birds. The impacts are beneficial because the action improves the habitat in which these animals and birds live (including critical habitat for Perdido Key beach mouse and piping plover) by improving dune structure via nourishment, sand fence installation, and the planting of native vegetation. In addition, the planting of native vegetation has provided additional sources of food and cover.

2. The Littoral Zone Placement of Dredge Spoil on Perdido Key Project has long-term beneficial impacts on the Perdido Key beach mouse, Perdido Key beach mouse critical habitat, sea turtles, loggerhead sea turtle critical habitat, and migratory birds by increasing the sand substrate to the geological system of Perdido Key, thus allowing nesting/foraging/resting habitat for these animals and birds to increase and improve.
3. The Restore Visitor Access to Fort Pickens and Santa Rosa areas at Gulf Islands National Seashore Project has long-term minor adverse impacts to terrestrial wildlife species in the project area; this includes protected species and species of concern such as Santa Rosa beach mice, piping plover and their critical habitats, as well as sea turtles and migratory birds. The impacts occur because the action reintroduced the road surface that, in that footprint, covered up and removed the habitat in which these animals and birds live (including critical habitat for Santa Rosa beach mouse and piping plover). It also reintroduced vehicles and visitors into the area which disturb the animals and birds.

4. The Fort Pickens Road Realignment, Resurfacing, and Entrance Station Reconfiguration Project would have short-term minor adverse impacts to terrestrial wildlife species in the project area; this includes protected species and species of concern such as Santa Rosa beach mice, piping plover and their critical habitats, as well as sea turtles and migratory birds. The impacts are adverse because individuals would be disturbed during construction and construction would temporarily reduce the availability of quality habitat during the realignment. Additionally, the realignment should have long-term beneficial impacts on the same terrestrial wildlife, protected species, critical habitat, and migratory birds in the project area by moving the road to a location where its destruction by storms and overwash is less likely to occur and result in degradation of the habitat used by these animals and birds.

5. The 2012 Asphalt Debris Removal/Disposal Project at the Seashore has long-term beneficial impacts to terrestrial wildlife species in the project area; this includes protected species and species of concern such as Santa Rosa beach mice, piping plover and their critical habitats, as well as sea turtles and migratory birds. The impacts are beneficial because they removed the foreign objects that degraded the habitat for these animals and birds.

6. The Enhanced Management of Avian Breeding Habitat Project would have short-term minor adverse impacts to terrestrial wildlife populations in the project area such as raccoons and coyotes because the predator control portion of the action includes trapping and/or euthanizing those species. However, the action would also have long-term beneficial impacts to protected species such as migratory birds (including the piping plover and red knot) as well as to the Santa Rosa and Perdido Key beach mice, because reducing predator pressure in these areas would allow more of these individuals to live to successfully reproduce.

The past, present, and reasonably foreseeable future actions (#1-6, above) would result, on balance, in short- and long-term minor adverse, and long-term beneficial cumulative impacts on the resource. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources**

Under Alternative 2, the same six actions as are described above in the No Action Alternative are expected to impact the terrestrial wildlife, protected terrestrial species and critical terrestrial habitat, and migratory birds of the area. Additionally under Alternative 2:
1. The Perdido Key Dune Restoration Project would have localized short-term minor adverse impacts to terrestrial wildlife species in the area; this includes protected species such as Perdido Key beach mice, piping plover and their critical habitats, as well as sea turtles (and loggerhead turtle critical habitat) and migratory birds. This would be caused during implementation as individuals are startled or disturbed and habitat is impacted by equipment. The project would also have long-term beneficial impacts to these same animals, birds and critical habitat because it would improve habitat by improving dune habitat and plant composition which are used as sources of food and cover.

These impacts, however, would have only an “edge effect” on the Beach Enhancement project area since it would occur outside of – but immediately adjacent to – just one of the three project areas (the Perdido Key area). Therefore, the cumulative impacts of Alternative 2 would be essentially the same as for Alternative 1: short- and long-term minor adverse, and long-term beneficial cumulative. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the past, present, and reasonably foreseeable future actions #1-6 described in Alternative 1 above are expected to impact terrestrial wildlife, protected species and critical habitat, and migratory birds of the area in the same way as stated there. Additionally under Alternative 3:

1. The Perdido Key State Park Beach Boardwalk Improvements Project would have localized, short-term minor adverse impacts to terrestrial wildlife species; this includes protected species such as Perdido Key beach mice, piping plover and their critical habitats, as well as sea turtles (and loggerhead turtle critical habitat) and migratory birds. This impact would be caused during implementation as individuals are startled or disturbed and habitat is impacted by equipment. The project would also have long-term, beneficial impacts to these animals and birds and their habitat (including critical habitat for the Perdido Key beach mouse, piping plover, and loggerhead turtle) after project completion because the boardwalk would be raised off the ground, allowing for more area to be used as habitat for these animals and birds.

2. The Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle Project would have short-term minor adverse impacts on piping plover and red knot by disturbing their roosting and foraging habitat adjacent to project work areas. It may also have short-term minor adverse impacts on bald eagles by disturbing nests adjacent to the project area.

3. The Gulf Breeze Wayside Park Boat Ramp Project would have short-term minor adverse impacts on migratory birds by possibly disturbing them with noise and activity as they nest/rest/roost in areas adjacent to the project area.

4. The Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center Project would have short-term minor adverse impacts on bald eagles by possibly disturbing them with noise and activity as they nest/rest/roost in areas adjacent to the project area.
5. The Ferry Purchase (and Dock Facility Improvements) Project would cause short-term minor adverse impacts to migratory birds and bald eagles by disturbing them if they happened to nest/rest/roost in the project area.

6. The Beach Enhancement Project would have short-term minor adverse impacts to terrestrial wildlife species; this includes protected species such as Perdido Key beach mice, loggerhead turtles, and their critical habitats, as well as other sea turtles, piping plover, and migratory birds. This would be caused during implementation as individuals are startled or disturbed and habitat is impacted by equipment. The project would also have widespread, long-term beneficial impacts to these animals and birds and their habitat (including critical habitat for Perdido Key beach mouse, piping plover, and loggerhead turtle) after project completion because it would remove the foreign objects from the area and improve the several-hundred-acre area for nesting, foraging, cover, etc.

The six past, present, and reasonably foreseeable future actions described in Alternative 1 (#1-6) and the action described immediately above (#8-12), when combined with the short-term minor adverse and long-term beneficial impacts of implementing the proposed project (#13, above), would result, on balance, in short- and long-term minor adverse, and long-term beneficial cumulative impacts on the resource. The Beach Enhancement project would contribute a small short-term adverse increment and a substantial beneficial increment to this cumulative impact.

**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same 12 actions as are discussed in Alternative 3 above, as well as the action (#7) described in Alternative 2 above, would be likely to impact the terrestrial wildlife, protected species and critical habitat, and migratory birds of the area; no other actions impacting this resource are anticipated. Therefore, and since the Perdido Key Dune Restoration project in Alternative 2 would have only an “edge effect” on the Beach Enhancement project area, the cumulative impacts of Alternative 4 would be the same as for Alternative 3: short- and long-term minor adverse, and long-term beneficial cumulative. The Beach Enhancement project would contribute a small short-term adverse increment and a substantial beneficial increment to these cumulative impacts.

**12.91.3.2 Potential Impacts to Marine and Estuarine Fauna, including Related Protected Species and Critical Habitats**

**Impacts of Alternative 1: No Action**

Under the No Action Alternative, the proposed Beach Enhancement project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following actions are impacting and would impact the project area’s marine and estuarine fauna or related protected species and critical habitat as follows:

1. The FDEP/FWCC Living Shoreline Projects would have short-term minor adverse impacts on Gulf sturgeon, Gulf sturgeon critical habitat and potentially other marine/estuarine species as well because of the noise, activity, and turbidity caused in the area during project implementation.
2. The Two FWC Oyster Restoration Projects would have short-term minor adverse impacts on Gulf sturgeon, Gulf sturgeon critical habitat and potentially other marine/estuarine species as well because of the noise, activity, and turbidity caused in the area during project implementation.

3. FDOT Pensacola Bay Bridge Replacement Project would have short-term minor adverse impacts on Gulf sturgeon, Gulf sturgeon critical habitat and potentially other marine/estuarine species as well because of the noise, activity, and turbidity caused in the area during project implementation.

The past, present, and reasonably foreseeable future actions (#1-3, above) would result, on balance, in short-term minor adverse cumulative impacts on the resource. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources
Under Alternative 2, the same three actions as are described above in the No Action Alternative are expected to impact the project area’s marine and estuarine fauna or related protected species and critical habitat; no other actions impacting this resource are anticipated. Therefore the cumulative impacts of Alternative 2 would be the same as for Alternative 1: short-term minor adverse cumulative. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities
Under Alternative 3, the same scenario as described above in the No Action Alternative would apply. However, under this Alternative, the Beach Enhancement project would occur and would impact marine and estuarine fauna or related protected species and critical habitat as follows:

1. The Florida Artificial Reef Creation and Restoration Project would have short-term minor adverse impacts to marine fauna such as fish and benthic organisms due to a temporary increase in turbidity around the reef construction site. It would also have short-term minor adverse impacts on protected marine species such as sea turtles, manatees, dolphins, Gulf sturgeon and its critical habitat, and Essential Fish Habitat – all mostly due to noise and turbidity during project implementation. This project would also have long-term beneficial impacts to marine fauna such as reef-dwelling species. It would also have long-term benefits on protected marine species’ habitat such as Essential Fish Habitat (by creating more habitat in the area).

2. Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle Project would have short-term minor adverse impacts on sea turtles, Gulf sturgeon, Gulf sturgeon critical habitat, manatees and dolphins because of the noise, activity, and turbidity caused in the area during project implementation.

3. The Gulf Breeze Wayside Park Boat Ramp Project would have short-term minor adverse impacts on sea turtles, Gulf sturgeon, Gulf sturgeon critical habitat, manatees and dolphins from the noise, activity, and turbidity caused in the area during project implementation.
4. The Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center Project would have short-term minor adverse impacts on sea turtles, Gulf sturgeon, Gulf sturgeon critical habitat, manatees and dolphins from the noise, activity, and turbidity caused in the area during project implementation.

5. The Ferry Purchase (and Dock Facility Improvements) Project would cause short-term minor adverse impacts to sea turtles, Gulf sturgeon, Gulf sturgeon critical habitat, manatees, and marine mammals from the noise, activity, and turbidity caused in the area during project implementation. The operation of the ferries around these two dock areas would cause long-term minor adverse impacts to marine mammals due to the risk of vessel strikes. If the interim docking option is utilized, only the same long-term minor adverse impacts to marine mammals due to the risk of vessel strikes would occur.

6. The Beach Enhancement Project would have short term minor adverse impacts to marine fauna such as fish, shellfish, manatees, and dolphins due to noise and increased turbidity during project implementation. It would also have short-term minor adverse impacts on protected marine species such as sea turtles, Gulf sturgeon and their critical habitat, and Essential Fish Habitat – also due to noise and increased turbidity during implementation. This project would also have long-term beneficial impacts to marine fauna such as fish and shellfish and to protected marine species’ habitat such as Essential Fish Habitat due to the removal of foreign materials from sandy benthos.

The three past, present, and reasonably foreseeable future actions noted in Alternative 1 and the five actions described immediately above (#4-8), when combined with the short-term minor adverse and long-term beneficial impacts of implementing the proposed project (#9, above), would result, on balance, in short-term minor adverse and long-term beneficial cumulative impacts on the resource. The Beach Enhancement project would contribute a small adverse and a small beneficial increment to this cumulative impact.

**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same nine actions as described in Alternative 3 above would be likely to impact the marine and estuarine fauna or related protected species and critical habitat of the project area; no other actions impacting this resource are anticipated. Therefore, the cumulative impacts of Alternative 4 would be the same as for Alternative 3: short-term minor adverse and long-term beneficial cumulative. The Beach Enhancement project would contribute a small adverse and a small beneficial increment to this cumulative impact.

**12.91.3.3 Potential Impacts because of Non-Native Species**

**Impacts of Alternative 1: No Action**

Under the No Action Alternative, the proposed Beach Enhancement Project would not occur. And, although other past, present, and reasonably foreseeable future actions are and would be occurring, none would occur in close enough proximity to impact the project area’s non-native species. As such, there are no cumulative impacts on this resource – adverse or beneficial – under Alternative 1.
Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources
Under Alternative 2, the same scenario as described above in the No Action Alternative would apply. As such, there are no cumulative impacts on non-native species – adverse or beneficial – under Alternative 2.

Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities
Under Alternative 3, the only action to occur which would impact the non-native species composition in the project area is:

1. The Beach Enhancement project, which would cause short-term minor adverse impacts by increasing the risk that non-native species would be introduced into the area because of the risk of equipment bringing non-native seed sources and because of non-native species’ tendency to colonize recently disturbed areas.

The lack of any other past, present, and reasonably foreseeable future actions noted in this Alternative or in Alternative 1 means that there are only impacts from the project itself and that there are no cumulative impacts on this resource.

Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities
Under Alternative 4, the same action as described in Alternative 3 above would be likely to impact the non-native species in the project area; no other actions impacting this resource are anticipated. Therefore, there are only impacts from the project itself and there are no cumulative impacts on this resource.

12.91.4 Human Uses and Socioeconomics

12.1.1.5 Potential Impacts to Socioeconomics and Environmental Justice

Impacts of Alternative 1: No Action
Under the No Action Alternative, the proposed Beach Enhancement project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following actions are impacting and would impact the project area’s socioeconomics and environmental justice as follows:

1. The Restore Visitor Access to Fort Pickens and Santa Rosa areas at Gulf Islands National Seashore Project has long-term beneficial impacts on the socioeconomics of the Seashore and surrounding communities by restoring the roads through the Fort Pickens and Santa Rosa areas of the Seashore and bringing back visitors and commuters who spend money in the area.
2. The Pensacola Naval Air Station continued operations have long-term beneficial impacts on the socioeconomics of the Seashore and surrounding communities by employing a large workforce that spends its money in the area.
3. Two FWC Oyster Restoration Projects would have short-term beneficial socioeconomic impacts on communities surrounding the project area because of workers buying goods and services
from local businesses during project construction. It would also have long-term beneficial impacts by attracting oyster harvesters (and their dollars) to the area during harvesting.

4. The FDOT Pensacola Bay Bridge Replacement Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because of workers buying goods and services from local businesses during project construction. It would also have long-term beneficial impacts on the socioeconomics of the Seashore and surrounding communities by ensuring flow of visitors (and their dollars) into the area over reliable and attractive new infrastructure.

5. The Fort Pickens Ferry Support Facilities and Shuttle Service Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because of workers buying goods and services from local businesses during project construction. It would also have long-term beneficial impacts by attracting visitors (and their dollars) to the surrounding communities and to the Seashore to use them in conjunction with the ferry service.

6. The Fort Pickens Road Realignment, Resurfacing, and Entrance Station Reconfiguration Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because of workers buying goods and services from local businesses during project construction. It would also have long-term beneficial impacts by attracting visitors (and their dollars) to the Fort Pickens area with improved roads and especially a new entrance station that can allow in more visitors (and their dollars) more rapidly than the current arrangement.

7. The Fort Pickens Pier and Ferry Service Project would have long-term beneficial impacts on socioeconomics of the Seashore and surrounding communities, especially Pensacola Beach and the City of Pensacola, by attracting visitors (and their dollars) to the area to ride the ferry.

The past, present, and reasonably foreseeable future actions (#1-7, above) would result, on balance, in short- and long-term beneficial cumulative impacts on the resource. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources**

Under Alternative 2, the same seven actions as are described above in the No Action Alternative are expected to impact the socioeconomics of the area. Additionally under Alternative 2:

1. The Perdido Key Dune Restoration Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because of workers buying goods and services from local businesses during project construction.

Under Alternative 2, the same seven actions as are described above in the No Action Alternative are expected to impact the socioeconomics of the area as is the action above (#8); no other actions impacting this resource are anticipated. The cumulative impacts of Alternative 2 end up being the same as for Alternative 1: long-term beneficial cumulative. Since the Beach Enhancement project would not
be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the past, present, and reasonably foreseeable future actions #1-7 described in Alternative 1 above are expected to impact socioeconomics in the same way as stated there. Additionally under Alternative 3:

1. The Big Lagoon State Park Boat Ramp Improvement Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because of workers buying goods and services from local businesses during project construction. It would also have long-term beneficial impacts by attracting boaters (and their dollars) to the area.

2. The Perdido Key State Park Beach Boardwalk Improvements Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because of workers buying goods and services from local businesses during project construction.

3. The Ferry Purchase (and Dock Facility Improvements) Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because of workers buying goods and services from local businesses during construction of the dock facilities. There would also be long-term beneficial impacts due to money coming into the area once facilities are in place. There may be long-term environmental justice benefits by providing another regional transportation option. If the interim docking option is utilized, there could be long-term (i.e., until the new dock facilities are built) minor adverse impacts to socioeconomics if normal marina users (i.e., boat owners/users) used the marina less or differently than they currently are due to the presence of the ferries and passengers. However, there should also be long-term beneficial impacts in the areas served by the ferry operation. There may also be long-term environmental justice benefits by providing an additional regional transportation option.

4. The Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because of workers buying goods and services from local businesses during project construction. It would also have long-term beneficial impacts by attracting scallop fishermen (and their dollars) to the area.

5. The Florida Artificial Reef Creation and Restoration Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because of workers buying goods and services from local businesses during project construction. It would also have long-term beneficial impacts by attracting snorkelers and scuba divers (and their dollars) to the area.

6. Bob Sikes Pier, Parking and Trail Restoration Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because of workers buying goods and services from local businesses during project construction. It would also have long-term beneficial impacts by attracting visitors and fishermen (and their dollars) to the area.

7. The Beach Enhancement Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because of workers buying goods and services from local businesses during project implementation.
The seven past, present, and reasonably foreseeable future actions described in Alternative 1 (#1-7) and the action described immediately above (#9-14), when combined with the short-term beneficial impacts of implementing the proposed project (#15, above), would result, on balance, in short- and long-term beneficial cumulative impacts on the resource. The Beach Enhancement project would contribute a small beneficial increment to this cumulative impact.

**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same 14 actions as are described in Alternative 3 above and the action in Alternative 2 above (#8) would be likely to impact the socioeconomics of the project area; no other actions impacting this resource are anticipated. Since the impacts of the action in Alternative 2 is so small relative to Alternative 3, the cumulative impacts of Alternative 4 (which combines the two) would be essentially the same as for Alternative 3: short- and long-term beneficial cumulative. The Beach Enhancement project would contribute a small beneficial increment to this cumulative impact.

12.91.4.1 Potential Impacts to Cultural Resources

**Impacts of Alternative 1: No Action**

Under the No Action Alternative, the proposed Beach Enhancement Project would not occur. And, although other past, present, and reasonably foreseeable future actions are and would be occurring, none would occur in close enough proximity to impact the project area’s cultural resources. As such, there are no cumulative impacts on this resource – adverse or beneficial – under Alternative 1.

**Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources**

Under Alternative 2, the same scenario as described above in the No Action Alternative would apply. As such, there are no cumulative impacts on cultural resources – adverse or beneficial – under Alternative 2.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the proposed Beach Enhancement Project will undergo a complete review under Section 106 of the NHPA prior to any project activities that would restrict consideration of measures to avoid, minimize or mitigate any adverse effects on historic properties located within the project area. This project would be implemented in accordance with all applicable laws and regulations concerning the protection of cultural and historic resources. However since no other past, present, and reasonably foreseeable future actions are and would be impacting the project area’s cultural resources, there are no cumulative impacts on this resource – adverse or beneficial – under Alternative 3.

**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same scenario as described above in Alternative 3 would apply. As such, there are no cumulative impacts on cultural resources – adverse or beneficial – under Alternative 4.
12.91.4.2  Potential Impacts to Infrastructure

Impacts of Alternative 1: No Action
Under the No Action Alternative, the proposed Beach Enhancement project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following actions are impacting and would impact the project area’s infrastructure as follows:

1. The Restore Visitor Access to Fort Pickens and Santa Rosa areas at Gulf Islands National Seashore Project has had a long-term beneficial impact to infrastructure in the area because it rebuilt the road on Santa Rosa Island, making the island more accessible by vehicles and bicycles.
2. The Fort Pickens Ferry Support Facilities and Shuttle Service Project would have a long-term beneficial impact to infrastructure in the area because it would create an alternative means of transportation between the Fort Pickens Historic area and certain other locations on the island. Repurposing historic buildings would also have a beneficial impact, as buildings in use are better maintained than those used only for storage.
3. The Fort Pickens Road Realignment, Resurfacing, and Entrance Station Reconfiguration Project would have a long-term beneficial impact on the infrastructure in the area because it would improve the longevity and function of the road by realigning part of it (to lessen impacts from storms), resurfacing it, and reconfiguring and improving traffic flow at the entrance and fee station.
4. The Fort Pickens Pier and Ferry Service Project would have a long-term beneficial impact on the infrastructure of the area because it would create an entirely new means of transportation between Fort Pickens, Pensacola, and Pensacola Beach. The construction of the pier at Fort Pickens Historic area also benefits the project area’s infrastructure because it makes it possible for large boats – including ferries – to dock there.

The past, present, and reasonably foreseeable future actions (#1-4, above) would result, on balance, in long-term beneficial cumulative impacts on the resource. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources
Under Alternative 2, the same four actions as are described above in the No Action Alternative are expected to impact the infrastructure of the area; no other actions impacting this resource are anticipated. Therefore the cumulative impacts of Alternative 2 would be the same as for Alternative 1: long-term beneficial cumulative. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities
Under Alternative 3, the past, present, and reasonably foreseeable future actions #1-4 described in Alternative 1 above are expected to impact infrastructure in the same way as stated there. Additionally under Alternative 3:
1. The Ferry Purchase (and Dock Facility Improvements) Project would have long-term beneficial impacts to the area’s infrastructure because it would allow for an entirely new means of transportation to the Fort Pickens area. The “connected actions” of improving the ferry dock facilities at the City of Pensacola and Pensacola Beach also benefits the project area’s infrastructure because it facilitates large boats – including ferries – docking there. Conversely, there could be long-term minor adverse impacts on infrastructure in the area that gets more use from ferry passengers but is not upgraded.

2. The Ferry Purchase (and Interim Dock Facilities) Project would also have long-term beneficial impacts to the project area’s infrastructure because it would allow for an entirely new means of transportation to the Fort Pickens area. Similarly, there could be long-term minor adverse impacts on infrastructure in the area that gets more use from ferry passengers but is not upgraded.

3. The Beach Enhancement Project would have short-term minor adverse impacts on the area’s infrastructure if cleanup equipment impedes the normal flow of traffic and parking on the existing road and parking lot infrastructure in the project area.

The four past, present, and reasonably foreseeable future actions described in Alternative 1 (#1-4) and the project described immediately above (#5), when combined with the short-term minor adverse impacts of implementing the proposed project (#7, above), would result, on balance, in short- and long-term minor adverse, and long-term beneficial cumulative impacts on the resource. The Beach Enhancement project would contribute all of the short-term adverse increment to this cumulative impact.

When actions #1-4 in Alternative 1 and the “Interim” action #6 immediately above are combined with the short-term minor adverse impacts of implementing the proposed project (#7, above), the result would also be, on balance, short- and long-term minor adverse, and long-term beneficial cumulative. The Beach Enhancement project would contribute all of the short-term adverse increment to this cumulative impact.

**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same six actions as are described in Alternative 3 above would be likely to impact the infrastructure of the area; no other actions impacting this resource are anticipated under this Alternative. Therefore, the cumulative impacts of Alternative 4 would be the same as for Alternative 3: short- and long-term minor adverse, and long-term beneficial cumulative. The Beach Enhancement project would contribute all of the short-term adverse increment to this cumulative impact.

**12.91.4.3 Potential Impacts to Land and Marine Management**

**Impacts of Alternative 1: No Action**

Under the No Action Alternative, the proposed Beach Enhancement project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following actions are impacting and would impact the project area’s land and marine management as follows:
1. The Restore Visitor Access to Fort Pickens and Santa Rosa areas at Gulf Islands National Seashore Project has long-term beneficial impacts on land management because by re-establishing these roads, 1) public access to these areas was restored and 2) the areas can continue to be managed for the benefit of human enjoyment.

2. The Fort Pickens Ferry Support Facilities and Shuttle Service Project would have long-term beneficial impacts on land and marine management by 1) improving public access to the resources at the Fort Pickens area, 2) allowing the resources there to be managed for the benefit of human enjoyment, and 3) aligning with and furthering the management goals of the Seashore.

3. The Fort Pickens Pier and Ferry Service Project would have long-term beneficial impacts on land management by 1) improving public access to the resources at the Fort Pickens area, 2) allowing the resources there to be managed for the benefit of human enjoyment, and 3) aligning with and furthering the management goals of the Seashore.

The past, present, and reasonably foreseeable future actions (#1-3, above) would result, on balance, in long-term beneficial cumulative impacts on the resource. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources**

Under Alternative 2, the same three actions as are described above in the No Action Alternative are expected to impact the land management of the area; no other actions impacting this resource are anticipated. Therefore the cumulative impacts of Alternative 2 would be the same as for Alternative 1: long-term beneficial cumulative. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the past, present, and reasonably foreseeable future actions #1-3 described in Alternative 1 above are expected to impact land management in the same way as stated there. Additionally under Alternative 3:

1. The Beach Enhancement project would have long-term beneficial impacts on land and marine management by 1) allowing the resources there to be managed for the benefit of the environment and of human enjoyment, and 2) aligning with and furthering the management goals of the Seashore for this area.

The three past, present, and reasonably foreseeable future actions described in Alternative 1 (#1-3), when combined with the long-term beneficial impacts of implementing the proposed project (#4, above), would result, on balance, in long-term beneficial cumulative impacts on the resource. The Beach Enhancement project would contribute a substantial beneficial increment to this cumulative impact.
**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the four actions as described in Alternative 3 above would be likely to impact the land and marine management of the area; no other actions impacting this resource are anticipated. Therefore, the cumulative impacts of Alternative 4 would be the same as for Alternative 3: long-term beneficial cumulative. The Beach Enhancement project would contribute a substantial beneficial increment to this cumulative impact.

**12.91.4.4 Potential Impacts to Aesthetics and Visual Resources**

**Impacts of Alternative 1: No Action**

Under the No Action Alternative, the proposed Beach Enhancement project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following actions are impacting and would impact the project area’s aesthetics and visual resources as follows:

1. The Fort Pickens Ferry Support Facilities and Shuttle Service Project would have a long-term, minor, adverse impact to the area’s aesthetics and visual resources because some people may not like seeing the shuttle from the beach.
2. The FDEP Erosion Control Program at Pensacola Beach has a long-term beneficial impact to the area’s aesthetics and visual resources because it improves the sand quality and quantity on the beach and fosters dune accretion.
3. The 2012 Asphalt Debris Removal/Disposal Project at the Seashore has long-term beneficial impact to the area’s aesthetics and visual resources because it removed foreign objects that looked out of place from the area, returning it to a more natural condition.
4. The Revised Draft Supplemental EIS for the F-35 Beddown at Eglin Air Force Base has a long-term minor adverse impact on the area’s aesthetics and visual resources because of fly-overs.
5. The Pensacola Naval Air Station continued operations have a long-term minor adverse impact on the area’s aesthetics and visual resources because of fly-overs.
6. The Fort Pickens Road Realignment, Resurfacing, and Entrance Station Reconfiguration Project would have a short-term minor adverse impact to the area’s aesthetics and visual resources during project implementation while the old road is torn up and the new one built, while the road is resurfaced, and while the entrance station is reconfigured.

The past, present, and reasonably foreseeable future actions (#1-6, above) would result, on balance, in short- and long-term minor adverse, and long-term beneficial cumulative impacts on the resource. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources**

Under Alternative 2, the same six actions as are described above in the No Action Alternative are expected to impact the aesthetics and visual resources of the area; no other actions impacting this resource are anticipated. Therefore the cumulative impacts of Alternative 2 would be the same as for Alternative 1: short- and long-term minor adverse, and long-term beneficial cumulative. Since the
Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities
Under Alternative 3, the past, present, and reasonably foreseeable future actions #1-6 described in Alternative 1 above are expected to impact aesthetics and visual resources in the same way as stated there. Additionally under Alternative 3:

1. The Florida Artificial Reef Creation and Restoration Project would have short-term minor adverse impacts on aesthetics and visual resources in the project area during the time that Seashore visitors can see the boats at the reef project site.
2. The Beach Enhancement Project would have short-term minor adverse impacts on aesthetics and visual resources in the project area during implementation. This would be caused by cleanup equipment, vehicles, and work crews moving through the natural environment in plain sight of Seashore visitors. The project would also have very substantial long-term beneficial impacts by removing the unnatural, foreign materials from several hundred acres such that they are no longer seen or walked on by Seashore visitors.

The six past, present, and reasonably foreseeable future actions described in Alternative 1 (#1-6) and the project described above (#7), when combined with the short-term minor adverse impacts and very substantial long-term beneficial impacts of implementing the proposed project (#8, above), would result, on balance, in short- and long-term minor adverse, and long-term beneficial cumulative impacts on the resource. The Beach Enhancement project would contribute a very substantial beneficial increment to this cumulative impact.

Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities
Under Alternative 4, the same eight actions as are described in Alternative 3 above would be likely to impact the aesthetics and visual resources of the area; no other actions impacting this resource are anticipated. Therefore, the cumulative impacts of Alternative 4 would be the same as for Alternative 3: short- and long-term minor adverse, and long-term beneficial cumulative. The Beach Enhancement project would contribute a very substantial beneficial increment to this cumulative impact.

12.91.4.5 Potential Impacts to Tourism and Recreational Use

Impacts of Alternative 1: No Action
Under the No Action Alternative, the proposed the Beach Enhancement project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following actions are impacting and would impact the project area’s tourism and recreational use as follows:

1. The FDEP Erosion Control Program at Pensacola Beach and Perdido Key has long-term beneficial impact to the area’s tourism and recreational use by building up beach habitat that attracts tourists to this area.
2. The Restore Visitor Access to Fort Pickens and Santa Rosa areas at Gulf Islands National Seashore Project has a long-term beneficial impact on the area’s tourism and recreational use
because restoring the road increased visitor access to and use of many beach and picnic areas in the project area on Santa Rosa Island.

3. The 2012 Asphalt Debris Removal/Disposal Project at the Seashore has long-term beneficial impacts on the area’s tourism and recreational use because cleaner beaches attract more visitors over time.

4. The Fort Pickens Road Realignment, Resurfacing, and Entrance Station Reconfiguration Project would have short-term minor adverse impacts to the area’s tourism and recreational use by disrupting the normal flow of traffic or visitors into or through the area during project implementation. It would also have long-term beneficial impacts to the area’s tourism and recreational use by allowing more visitors to enter the park more rapidly, and by reducing the likelihood of missed trips due to road closures from flooding or road erosion after extreme storm events.

5. The Fort Pickens Pier and Ferry Service Project would have long-term beneficial impacts to the area’s tourism and recreational use by providing an additional tourist attraction near the project area (especially once the support facilities and shuttle service are operating) and also an additional means of transportation to take visitors to – or near – the project area.

6. The Fort Pickens Ferry Support Facilities and Shuttle Service Project would have long-term, beneficial impacts to the tourism and recreational use in the area by providing an additional means of transportation to take visitors to – or near – the project area from the ferry dock.

The past, present, and reasonably foreseeable future actions (#1-6, above) would result, on balance, in short-term minor adverse, and long-term beneficial cumulative impacts on the resource. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources**

Under Alternative 2, the same six actions as are described above in the No Action Alternative are expected to impact tourism and recreational use in the area; no other actions impacting these are anticipated. Therefore the cumulative impacts of Alternative 2 would be the same as for Alternative 1: short-term minor adverse, and long-term beneficial cumulative. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the past, present, and reasonably foreseeable future actions #1-6 described in Alternative 1 above are expected to impact tourism and recreational use in the same way as stated there. Additionally under Alternative 3:

1. The Big Lagoon State Park Boat Ramp Improvement Project would have long-term beneficial impacts to tourism and recreational use in the area because it would improve the boat launching experience and would draw more tourists to the general area, including the project area.
2. Ferry Purchase (and Dock Facility Improvements) Project would have long-term beneficial impacts to tourism and recreational use by facilitating the establishment of a successful ferry service which would function as an additional tourist attraction near the project area (especially once the support facilities and shuttle service are operating) and also as an additional means of transportation to take visitors to – or near – the project area. If the interim docking option is utilized, there could be long-term (i.e., until the new dock facilities are built) minor adverse impacts to tourism and recreational use because of potential crowding and other inconveniences associated with the lack of the new docking facilities.

3. The Beach Enhancement Project would have short-term minor adverse impacts on tourism and recreational use if project activities keep visitors from using certain areas while they are being cleaned. It would also have long-term beneficial impacts to tourism and recreational use in the area by removing foreign objects from the sands; this would encourage more visitation and use by tourists of certain areas of the Seashore – e.g. beaches or swimming/wading areas where asphalt fragments are no longer especially numerous and bothersome.

The six past, present, and reasonably foreseeable future actions described in Alternative 1 (#1-6) and the two described above (#7-8), when combined with the short-term minor adverse impacts and long-term beneficial impacts of implementing the proposed project (#9, above), would result, on balance, in short-term minor adverse and long-term beneficial cumulative impacts on the resource. The Beach Enhancement project would contribute a small beneficial increment to this cumulative impact.

Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities

Under Alternative 4, the same nine actions as are described in Alternative 3 above would be likely to impact tourism and recreational use in the area; no other actions impacting this resource are anticipated. Therefore, the cumulative impacts of Alternative 4 would be the same as for Alternative 3: short-term minor adverse, and long-term beneficial cumulative. The Beach Enhancement project would contribute a small beneficial increment to this cumulative impact.

12.91.4.6 Potential Impacts to Public Health and Safety and Shoreline Protection

Impacts of Alternative 1: No Action

Under the No Action Alternative, the proposed Beach Enhancement project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following actions are impacting and would impact the project area’s public health and safety and shoreline protection as follows:

1. The FDEP Erosion Control Program at Pensacola Beach and Perdido Key has a long-term beneficial impact to the area’s public health and safety and shoreline protection because it has stabilized dunes and beaches near the boundaries of the project area through sand fencing, planting native vegetation, and adding sand to the system, making the shoreline more resilient to storms and thereby improving public safety.

2. Littoral Zone Placement of Dredge Spoil on Perdido Key Project has long-term beneficial impacts to public health and safety and shoreline protection by increasing the sand substrate to the
The geological system of Perdido Key, thus making the shoreline more resilient to storms and thereby improving public safety.

3. The Fort Pickens Road Realignment, Resurfacing, and Entrance Station Reconfiguration Project would have long-term beneficial impacts to the area’s public health and safety because it would realign a portion of the road through the Fort Pickens area into an area where it would be less likely to flood or erode during extreme storms, thereby increasing the safety of the public traveling it.

4. The Fort Pickens Pier and Ferry Service Project would have a long-term beneficial impact to the area’s public health and safety because it would provide an alternative means of access to and egress from the barrier island in the event that an extreme storm destroys the road to/from the Fort Pickens Historic Area or makes it impassable.

The past, present, and reasonably foreseeable future actions (#1-4, above) would result, on balance, in long-term beneficial cumulative impacts on the resource. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources**

Under Alternative 2, the same four actions as are described above in the No Action Alternative are expected to impact public health and safety and shoreline protection in the area. Additionally under Alternative 2:

1. The Perdido Key Dune Restoration Project would have a long-term beneficial impact on the area’s public health and safety and shoreline protection because the planting of additional native vegetation would help create and grow dunes, which help stabilize shorelines and buffer storm surges, thereby increasing public safety.

These impacts, however, would have only an “edge effect” on the Beach Enhancement project area since it would occur outside of – but immediately adjacent to – just one of the three project areas. Therefore, the cumulative impacts of Alternative 2 would be essentially the same as for Alternative 1: long-term beneficial cumulative. Since the Beach Enhancement project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the past, present, and reasonably foreseeable future actions #1-4 described in Alternative 1 above are expected to impact public health and safety and shoreline protection in the same way as stated there. Additionally underAlternative 3:

1. Ferry Purchase (and Dock Facility Improvements) Project would have short-term minor adverse impacts to public health and safety during construction because of tripping hazards and other potential dangers from construction and construction equipment, and long-term minor adverse impacts around the two dock areas during ferry operations because of the potential for injury while loading and unloading the ferries. There would also be long-term beneficial impacts on the area’s public health and safety by facilitating the establishment of a successful ferry service.
which would provide an alternative means of access to – and egress from – the barrier island in the event that an extreme storm destroys the road to/from the Fort Pickens Historic Area or makes it impassable. If the interim docking option is utilized, impacts on public safety would be more adverse, but still long-term (i.e., until the new dock facilities are built) and minor, because the docking areas in particular would not be optimally sized or constructed to accommodate the greater number of people using them. There may also be some long-term beneficial impacts if boat trips – presumably safer than car trips – reduce risk to the public who are traveling between the areas serviced by the ferries.

2. The Beach Enhancement Project would have a long-term beneficial impact on the area’s public health and safety and shoreline protection because removing the foreign objects in the area would encourage dune creation which thereby improves shoreline protection and increases public safety. It also would also no longer be an environment where minor injuries (e.g. cuts or abrasions on feet) could occur due to contact with the asphalt fragments.

The four past, present, and reasonably foreseeable future actions described in Alternative 1 (#1-4) and the action described immediately above (#6), when combined with the long-term beneficial impacts of implementing the proposed project (#7, above), would result, on balance, in long-term beneficial cumulative impacts on the resource. The Beach Enhancement project would contribute a small beneficial increment to this cumulative impact.

**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same six actions as are described in Alternative 3 above and the action in Alternative 2 above (#5) would be likely to impact the public health and safety and shoreline protection in the project area; no other actions impacting this resource are anticipated. The impacts of the Perdido Key project (#5 above) would have only an “edge effect” on the Beach Enhancement project area since it would occur outside of – but immediately adjacent to – just one of the three project areas. Therefore, the cumulative impacts of Alternative 4 would be essentially the same as for Alternative 3: long-term beneficial cumulative. The Beach Enhancement project would contribute a small beneficial increment to this cumulative impact.
12.92 Ferry Purchase (and Dock Facility Improvements) Project at Gulf Islands National Seashore - Cumulative Impacts Analysis

12.92.1 Introduction
The impacts of the Ferry Purchase (and Dock Facility Improvements) Project at Gulf Islands National Seashore (“Seashore”) are fully considered in Chapter 12A, section 12.4.5, Affected Environment and Environmental Consequences. Additionally, Chapter 12E analyzes cumulative impacts of this and other Phase III Early Restoration projects at the regional level. The Ferry Purchase (and Dock Facility Improvements) project is included in that analysis within “Group 1” (e.g. the greater Pensacola Bay area including Escambia and Santa Rosa Counties). What follows here is a narrower, site-specific analysis. It examines potential impacts to the same resource topics considered in section 12.4.5, but only in the footprint of the Ferry Project’s “connected actions”\(^{38}\) as defined below:

- Constructing a dock and improving facilities at the Plaza de Luna area at the City of Pensacola
- Constructing a dock and improving facilities at the Quietwater Beach area at Pensacola Beach
- The operation of the ferries around these two docks

Like the regional analysis, the following site-specific analysis includes not only other Group 1 Phase III projects but also other past, present, and/or reasonably foreseeable actions in the project area. The actions below were chosen based on whether or not the resources they affect overlap in time and space with any of the same resources associated with the Ferry Purchase (and Dock Facility Improvements) project. In the unlikely event that the ferries are delivered before the docks are funded or completed, DOI has identified the interim option of docking the ferries at the existing Plaza de Luna marina and operating the ferries from the existing docks at Plaza de Luna marina and Quietwater Beach (and the Fort Pickens pier as originally planned). This option is included in the cumulative impacts analysis below.

Of course, not every action in the list below would impact every resource in the project area. For example, an in-water construction project taking place in Pensacola Bay a mile from the Ferry Purchase (and Dock Facility Improvements) project area could not affect the geology and substrates of the project area, but could affect Gulf sturgeon critical habitat or air quality resources that the two projects share. Where actions are not mentioned in the cumulative impacts analyses below, no effect from that project is expected on the resource.

The projects noted below with an asterisk (*) are other Phase III early restoration projects; the projects listed below those are other past, present, and reasonably foreseeable future actions that overlap, somehow, within the project area. Extensive project descriptions for the Phase III early restoration projects are given in Chapters 12A-B and 12E. Brief project descriptions for all actions considered are provided below.

---

\(^{38}\) The National Park Service defines connected actions as those that are “closely related” to the proposal and alternatives. Actions are connected if they automatically trigger other actions that may have environmental impacts; they cannot or will not proceed unless other actions have been taken previously or simultaneously; or they are interdependent parts of a larger action and depend on the larger action for their justification (NPS Director’s Order 12 Handbook).
1. Big Lagoon State Park Boat Ramp Improvement Project* – would involve enhancing an existing boat ramp and surrounding facilities in the Big Lagoon State Park in Escambia County. These improvements would include adding an additional lane to the boat ramp, expanding boat trailer parking, improving traffic circulation at the boat ramp, and providing a new restroom facility to connect the park to the Emerald Coast Utility Authority (ECUA) regional sanitary sewer collection system.

2. Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle Project* – would involve enhancing local scallop populations in targeted areas in the Florida Panhandle. The proposed improvements include the harvesting and redistribution of naturally-occurring juvenile scallops supplemented with stocking from a commercial scallop hatchery.

3. Florida Artificial Reef Creation and Restoration Project* – Artificial reefs would be constructed on several sites using a similar process; however, the average water depth and substrate composition of the water bottom at each reef site may differ. A survey would be conducted to determine the placement, alignment, and boundaries of the artificial reefs. In Escambia County, reefs would likely use a concrete, prefabricated tetrahedral artificial reef module commonly deployed in the northeastern Gulf of Mexico, like Florida Limestone or EcoSystem Reef modules from Walter Marine. The “Florida Limestone” module measures 10 feet along each base and is 8 feet in height, yielding a total volume (per module) of approximately 116 cubic feet. Each module covers approximately 43.3 square feet of seafloor area.

4. Bob Sikes Pier, Parking and Trail Restoration Project* – would improve access to a fishing pier in the Pensacola area in Escambia County as well as enhancing the quality of the experience for its recreational users. The proposed improvements include renovating parking areas, enhancing bicycle/pedestrian access, and aesthetic improvements to the surrounding area.

5. Gulf Breeze Wayside Park Boat Ramp Project* – would improve the existing boat ramp at Wayside Park in the City of Gulf Breeze, Santa Rosa County, FL. The proposed improvements include repairing the existing boat ramp and seawall cap, constructing a public restroom facility, and repairing and enhancing the parking area to improve access.

6. Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center Project* – would involve constructing and operating a saltwater sportfish hatchery in Pensacola, Florida. This project would increase and/or enhance recreational fishing opportunities by producing and releasing highly sought-after sportfish species.

7. Pensacola Bay Living Shorelines Project* – would employ living shoreline techniques that utilize natural and/or artificial breakwater material to reduce shoreline erosion and provide habitat at two sites within a portion of Pensacola Bay. This project would create reefs to reduce wave energy, increase benthic secondary productivity, and create salt marsh habitat. Proposed activities constructing breakwaters that will provide reef habitat and create salt marsh habitat at both sites. In total, approximately 18.8 acres of salt marsh habitat and 4 acres of reefs would be created.

8. Beach Enhancement Project* – would remove remnant asphalt and road base material from the Perdido Key, Fort Pickens, and Santa Rosa Island areas of Gulf Islands National Seashore. This project would take place primarily on non-vegetated beaches, but would have a small component that would occur in the intertidal area at Fort Pickens (where a backhoe would be used from the beach), and also some work would be done with hand tools in areas where vegetation may be
damaged or destroyed by the use of mechanized equipment. Damaged vegetation would be replaced.

9. **Restore Visitor Access to Fort Pickens and Santa Rosa areas at Gulf Islands National Seashore Project** – In 2009 approximately seven miles of road through the Fort Pickens and Santa Rosa areas of the Seashore were reconstructed, repaired, or realigned, thereby restoring damage done by hurricanes and storms in 2004 and 2005. The project reconnected both the Fort Pickens area of the Seashore and the City of Navarre Beach with the city of Pensacola Beach.


11. **Pensacola Naval Air Station continued operations** – Pensacola Naval Air Station is generally located on the northwest side of Pensacola Bay. It employs more than 16,000 military and 7,400 civilian personnel and includes extensive training and education facilities. The Blue Angels Navy Flight Demonstration Squadron operates out of there. There are no navy homeported ships; the only homeported ship is a 210-ft USCGC vessel, a USAF 93-ft service craft, and some smaller boats under 40 ft.

12. **Maintenance dredging of Intracoastal Waterways and Pensacola Harbor Gulf Entrance Channel** – involves placement of dredge material at Robertson Island and other dredge disposal areas within the boundaries and waters of Gulf Islands National Seashore. Dredge material was removed from the ICW and placed on Robertson Island (Disposal Area 45) within GUIS boundaries in January 2014. Other schedules are not known. Work conducted under contract to the US Army Corps of Engineers, Mobile District.

13. **City of Pensacola Community Maritime Park** – This is a small baseball stadium, park, and outdoor amphitheater about ¼ mile west of the Plaza de Luna site.

14. **FDEP/FWCC Living Shoreline Projects** – These ten projects are located at various points, including along Pensacola Bay and East Bay, and include projects that are both proposed and underway. Living shoreline creation is a technique that protects tidal shorelines from erosion. They generally include planting native wetland plants and placement of bioengineered materials to protect vegetation and soils from tidal movement.

15. **Two FWC Oyster Restoration Projects** – Project areas include Garcon Point and White Point in East Bay in the larger Pensacola Bay system. Project consists of distributing cultch material (usually recycled oyster shell) over existing appropriate substrates and using a hatchery to provide seed oysters where spat set is nonexistent or unreliable.

16. **FDOT Pensacola Bay Bridge Replacement Project** – The bridge between Pensacola and Gulf Breeze, FL on US Highway 98 is considered “structurally deficient”; therefore FDOT is required to plan for a replacement bridge within the next 3-5 years. A Project Development and Environmental Study is currently in progress.

17. **Fort Pickens Ferry Support Facilities and Shuttle Service Project** – A transportation study has been prepared and an Environmental Assessment is being prepared for the establishment of support facilities and operation of a landside shuttle tram service at the Fort Pickens Historic District of Gulf Islands National Seashore to complement the future water ferry service (see #19, below). Several historic buildings would be repurposed to serve as a visitor center, retail area, restrooms, and
shuttle shelters for the shuttle service. Existing parking areas would be repurposed as shuttle pull-off areas. The shuttle service would connect those arriving on the passenger ferry to visitor amenities and points of interest throughout the historic district on the western end of the island. The shuttle service would begin operating around 2017, would use electric trams or other alternative fuels, and would operate on a schedule that mirrored that of the passenger ferry service.

18. Fort Pickens Road Realignment, Resurfacing, and Entrance Station Reconfiguration Project – An Environmental Assessment is being prepared for the realignment of 1.67 miles of the road farther to the north, and removal and restoration of the old roadbed, resurfacing 4.5 miles of Fort Pickens Road and two parking lots (lots 21 and 22), and reconfiguring the existing entrance station area there to accommodate more vehicles. Project implementation is proposed to begin in 2015.

19. Fort Pickens Pier and Ferry Service Project – An Environmental Assessment was prepared in 2011 for the establishment of a ferry service between the Fort Pickens area at the Seashore, the City of Pensacola, and Pensacola Beach, and also for the construction a ferry docking pier at Fort Pickens. Although the ferry service has yet to be established, the pier was constructed in 2012. The ferry service is anticipated to run two ferries at a time and make approximately three trips each per day during the peak season, and fewer or no trips during the shoulder and off seasons, respectively. Ferry service is expected to begin in 2017.

Cumulative impacts are determined below for each resource and for each of the four Alternatives in the Environmental Review (Chapter 12A, section 12.4). The analysis follows the same structure as the Affected Environment and Environmental Consequences section (12.4.5). In each analysis, spatial and temporal boundaries were established to identify the past, present, and reasonably foreseeable future actions (including other Phase III projects) whose resources overlapped in space and time with those in the Ferry Purchase (and Dock Facilities Improvement) project area. These actions are listed for each resource impact topic below. The type of impact (adverse or beneficial), level of intensity (minor, moderate, or major), and duration (short- or long-term) are stated after each action. Then, 1) the cumulative impacts of the listed actions are assessed and 2) added to the impacts (if any) of the Ferry Purchase (and Dock Facility Improvements) project, and 3) a cumulative impact is stated for the additive impact of both the listed projects and the Ferry Purchase (and Dock Facility Improvements) project together. Finally, an approximation of the increment added to the cumulative impact by the Ferry Purchase (and Dock Facility Improvements) project is stated.

The impact thresholds used are based on the duration and intensity definitions provided above in Table 6.2 of Chapter 6. Each of the summary statements below about the cumulative impacts to a resource under a given Alternative are based on an assessment made using those definitions.
12.92.2 Physical Environment

12.92.2.1 Potential Impacts to Geology and Substrates

Impacts of Alternative 1: No Action
Under the No Action Alternative, the proposed Ferry Purchase (and Dock Facility Improvements) Project would not occur. And, although other past, present, and reasonably foreseeable future actions are and would be occurring, none would occur near enough to the Ferry Purchase and Dock Facility Improvements to impact the same geology and substrates. As such, there are no cumulative impacts on this resource – adverse or beneficial – under Alternative 1.

Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources
Under Alternative 2, the same scenario as described above in the No Action Alternative would apply. As such, there are no cumulative impacts on geology and substrates – adverse or beneficial – under Alternative 2.

Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities
Under Alternative 3, the same scenario as described above in the No Action Alternative would apply. However, under this Alternative, the Ferry Purchase (and Dock Facility Improvements) project would occur and would impact geology and substrates as follows:

1a. Ferry Purchase (and Dock Facility Improvements) would have long-term minor adverse impacts on geology and substrates in the benthic areas of the two docks. This is due to the disturbance that would occur when pilings are driven into to the substrate.

1b. Ferry Purchase (and Interim Dock Facilities) would have no impact on geology and substrates since no pilings would be installed.

The lack of any other past, present, and reasonably foreseeable future actions noted in this Alternative or in Alternative 1 means that there are only impacts from the project itself and that there are no cumulative impacts on this resource.

Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities
Under Alternative 4, the same action as described in Alternative 3 above would be likely to impact the geology and substrates of the area; no other actions impacting this resource are anticipated. Therefore, there are only impacts from the project itself and there are no cumulative impacts on this resource.

12.92.2.2 Potential Impacts to Hydrology, Water Quality, and Floodplains

Impacts of Alternative 1: No Action
Under the No Action Alternative, the proposed Ferry Purchase (and Dock Facility Improvements) project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following actions are impacting and will impact the project area’s Hydrology, Water Quality, and Floodplains as follows:
1. FDOT Pensacola Bay Bridge Replacement would have short-term minor adverse impacts on water quality when equipment and pile-driving (or other foundation-building) activities disturb sediment and cause turbidity or leak fuel into the water of Pensacola Bay.
2. FDEP/FWC 10 Living Shoreline Projects would have short-term minor adverse impacts on water quality when equipment and activities disturb sediment and cause turbidity during project implementation. They would also have long-term beneficial impacts on water quality by providing vegetation that will help filter out any contaminants from runoff going into the Bay.

The past, present, and reasonably foreseeable future actions (#1-2, above) would result, on balance, in both short-term minor adverse and long-term beneficial cumulative impacts on the resource. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources**

Under Alternative 2, the same two actions as are described above in the No Action Alternative are expected to impact the area’s Hydrology, Water Quality, and Floodplains of the area. Additionally under Alternative 2:

1. Pensacola Bay Living Shorelines project would have short-term minor adverse impacts on water quality when equipment and activities disturb sediment and cause turbidity during project implementation. They would also have long-term beneficial impacts on water quality by providing vegetation that would help filter out any contaminants from runoff going into the Bay.

The cumulative impacts of Alternative 2 would be essentially the same as for Alternative 1 only slightly more pronounced: short-term minor adverse and long-term beneficial cumulative. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the past, present, and reasonably foreseeable future actions #1-2 described in Alternative 1 above are expected to impact area’s Hydrology, Water Quality, and Floodplains in the same way as stated there. Additionally under Alternative 3:

1. Scallop Enhancement for Recreational Fishing Opportunities project would have short-term minor adverse impacts on water quality by causing turbidity and possible contamination from equipment leaks or spills during project implementation.
2. Bob Sikes Pier Restoration project would have short-term minor adverse impacts on water quality by causing turbidity during project implementation. It would also have long-term beneficial impacts by improving runoff quality off of the adjacent parking lot.
3. Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center would have short-term minor adverse impacts on water quality by sediment runoff during project implementation causing
turbidity. It would also have long-term beneficial impacts by improving the quality of runoff from that area into the Bay.

4. (a) Ferry Purchase (and Dock Facility Improvements) would have short-term minor adverse impacts on water quality by causing turbidity during project implementation (i.e., pile driving in the water). It would also have long-term minor adverse impacts to water quality from fuel or oil leaks or spills from the ferries into the water around the docks.

7. (b) Ferry Purchase (and Interim Docking Facilities) would have long-term minor adverse impacts to water quality from fuel or oil leaks or spills from the ferries into the water around the docks.

The two past, present, and reasonably foreseeable future actions described in Alternative 1 (#1-2) and the actions described immediately above (#4-6), when combined with the short-term and long-term minor, adverse impacts of implementing the complete version of the proposed project (#7a, above), would result, on balance, in short- and long-term minor adverse, and long-term beneficial cumulative impacts on the resource. This project would contribute a substantial adverse increment to the short-term cumulative impact.

If the Interim version of this project (#7b, above) were implemented instead, the cumulative impacts for Alternative 3 would be, on balance, slightly less adverse than the complete project, but still short- and long-term minor adverse, and long-term beneficial. This version of the project would contribute a small adverse increment to the cumulative impact.

**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same six actions as are described in Alternative 3 above, plus the action in Alternative 2 above (#3), would be likely to impact the area’s Hydrology, Water Quality, and Floodplains of the project area; no other actions impacting this resource are anticipated. When combined with the complete version of the proposed project (#7a, above), the cumulative impacts of Alternative 4 would be slightly more adverse but essentially the same as for Alternative 3: short- and long-term minor adverse, and long-term beneficial cumulative. The Ferry Purchase (and Dock Facility Improvements) project would contribute a substantial short- and long-term adverse increment to this cumulative impact.

If the Interim version of the project (#7b, above) were implemented instead, the cumulative impacts would be slightly less adverse than if the complete version were done, and essentially the same as the Interim version cumulative impacts in Alternative 3 – i.e., short- and long-term minor adverse, and long-term beneficial cumulative. The Interim project would contribute a substantial long-term adverse increment to the cumulative impact.

**12.92.2.3 Potential Impacts to Air Quality and Greenhouse Gas Emissions**

**Impacts of Alternative 1: No Action**

Under the No Action Alternative, the proposed Ferry Purchase (and Dock Facility Improvements) project would not occur; however, other past, present, and reasonably foreseeable future actions are and
would. The following actions are impacting and will impact the project area’s air quality and greenhouse gas (GHG) emissions as follows:

1. FDOT Pensacola Bay Bridge Replacement would have short-term minor adverse impacts on air quality and GHG due to emissions from construction equipment during project implementation.
2. The Pensacola Naval Air Station continued operations have long-term minor adverse impacts on the resource because of emissions from aircraft and other vehicles;
3. The Revised Draft Supplemental EIS for the F-35 Beddown at Eglin Air Force Base allows for long-term minor adverse impacts on the resource because of emissions from aircraft and other vehicles;
4. FDEP/FWC 10 Living Shoreline Projects would have short-term minor adverse impacts on air quality and GHG due to emissions from construction equipment during project implementation.
5. Maintenance dredging of Intracoastal Waterways and Pensacola Harbor Gulf Entrance Channel would have short-term minor adverse impacts on air quality and GHG due to emissions from dredging equipment during dredging activities.
6. The Restore Visitor Access to Fort Pickens and Santa Rosa areas at Gulf Islands National Seashore Project has long-term minor adverse impacts because it re-established the roads in the area and allows vehicular traffic and their emissions back into the area.

The past, present, and reasonably foreseeable future actions (#1-6, above) would result, on balance, in short- and long-term minor adverse cumulative impacts on the resource. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

*Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources*

Under Alternative 2, the same six actions as are described above in the No Action Alternative are expected to impact the air quality and GHG of the area. Additionally under Alternative 2:

1. Pensacola Bay Living Shorelines project would have short-term minor adverse impacts to air quality and GHG from vehicle and equipment emissions during project implementation.

The cumulative impacts of Alternative 2 would be slightly greater than Alternative 1 but still be essentially the same: short- and long-term minor adverse cumulative. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.
Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities

Under Alternative 3, the past, present, and reasonably foreseeable future actions #1-6 described in Alternative 1 above are expected to impact air quality and GHG emissions in the same way as stated there. Additionally under Alternative 3:

1. The Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle Project would have short-term, minor adverse impacts within the project area during implementation caused by emissions from boats carrying materials to, and working at, the site;
2. Bob Sikes Pier Restoration would have short-term minor adverse impacts to air quality and GHG from vehicle and equipment emissions during project implementation.
3. Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center would have short-term minor adverse impacts to air quality and GHG from vehicle and equipment emissions during project implementation.
4. (a) Ferry Purchase (and Dock Facility Improvements) would have short-term minor adverse impacts to air quality and GHG from vehicle and equipment emissions during project implementation. It would also have long-term minor adverse impacts due to emissions from the ferries and any additional vehicles in the parking lots at the docking facilities for the length of time that the ferry service operates.
5. (b) Ferry Purchase (and Interim Dock Facilities) would have long-term minor adverse impacts due to emissions from the ferries and any additional vehicles in the parking lots at the docking facilities for the length of time that the ferry service operates.

The six past, present, and reasonably foreseeable future actions described in Alternative 1 (#1-6) and the three actions above (#8-10), when combined with the short- and long-term minor adverse impacts of implementing the proposed project (#11a, above), would result, on balance, in both short- and long-term minor adverse cumulative impacts on the resource. The Ferry Purchase (and Dock Facility Improvements) project would contribute a substantial adverse increment to both the short-term and long-term cumulative impacts.

If the Interim version of this project (#11b, above) were implemented instead, the cumulative impacts for this Alternative would be lower, but still both short- and long-term minor adverse cumulative. This Interim project would contribute a substantial long-term adverse increment to the cumulative impact.

Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities

Under Alternative 4, the same ten actions as are described in Alternative 3 above, plus the action in Alternative 2 above (#7), would be likely to impact the air quality and GHG of the project area; no other actions impacting this resource are anticipated. If the complete version of the project (#11a, above) is done, the cumulative impacts of Alternative 4 would be slightly greater than Alternative 3, but would still be essentially the same: short-term minor and long-term minor adverse cumulative. The Ferry Purchase (and Dock Facility Improvements) project would contribute a substantial adverse increment to both the short- and long-term adverse cumulative impacts.
If the Interim version of the project (#11b, above) were implemented instead, the cumulative impacts would be slightly less adverse than if the complete version were done, and essentially the same as the Interim version cumulative impacts in Alternative 3 – i.e., short- and long-term minor adverse cumulative. The Interim project would contribute a substantial adverse long-term increment to the cumulative impact.

12.92.2.4 Potential Impacts to Noise/Natural Soundscape

Impacts of Alternative 1: No Action

Under the No Action Alternative, the proposed Ferry Purchase (and Dock Facility Improvements) project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following actions are impacting and will impact the project area’s noise/natural soundscape as follows:

1. FDOT Pensacola Bay Bridge Replacement would have short-term minor adverse impacts on noise/natural soundscape as construction equipment and activities make noise during project implementation.
2. The Pensacola Naval Air Station continued operations have long-term minor adverse impacts on the resource because of the noise related to any aircraft flying over or near the project area.
3. The Revised Draft Supplemental EIS for the F-35 Beddown at Eglin Air Force Base allows for long-term minor adverse impacts because of the noise related to any aircraft flying over or near the project area.
4. FDEP/FWC 10 Living Shoreline Projects would have short-term minor adverse impacts on noise/natural soundscape as construction equipment and activities make noise during project implementation.
5. Maintenance dredging of Intracoastal Waterways and Pensacola Harbor Gulf Entrance Channel would have short-term minor adverse impacts on noise/natural soundscape as dredging equipment makes noise during dredging activities.

The past, present, and reasonably foreseeable future actions (#1-5, above) would result, on balance, in both short- and long-term minor adverse cumulative impacts on the resource. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources

Under Alternative 2, the same five actions as are described above in the No Action Alternative are expected to impact the noise/natural soundscape of the area. Additionally under Alternative 2:

1. Pensacola Bay Living Shorelines would have short-term minor adverse impacts on noise/natural soundscape as construction equipment and activities make noise during project implementation.
The cumulative impacts of Alternative 2 would be slightly greater than Alternative 1 but still be essentially the same: short- and long-term minor adverse cumulative. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the past, present, and reasonably foreseeable future actions #1-5 described in Alternative 1 above are expected to impact noise/natural soundscape in the same way as stated there. Additionally under Alternative 3:

1. The Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle Project may have short-term minor adverse impacts on the natural soundscapes of the area due to the boat noise associated with project implementation.
2. Bob Sikes Pier Restoration would have short-term minor adverse impacts on noise/natural soundscape as construction equipment and activities make noise during project implementation. It would also have long-term minor adverse impacts on noise/natural soundscape since more visitors would presumably be visiting the area because of the pier improvements.
3. Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center would have short-term minor adverse impacts on noise/natural soundscape as construction equipment and activities make noise during project implementation.
4. (a) Ferry Purchase (and Dock Facility Improvements) would have short-term minor adverse impacts on noise/natural soundscape as construction equipment and activities make noise during project implementation. It would also have long-term minor adverse impacts due to noise made by ferries and passengers in the area for the length of time that the ferry service operates.
5. (b) Ferry Purchase (and Interim Docking Option) would have long-term minor adverse impacts due to noise made by ferries and passengers in the area for the length of time that the ferry service operates.

The five past, present, and reasonably foreseeable future actions described in Alternative 1 (#1-5) and the three actions above (#7-9), when combined with the short-term and long-term, minor adverse impacts of implementing the proposed project (#10(a), above), would result, on balance, in both short- and long-term minor adverse cumulative impacts on the resource. The Ferry Purchase (and Dock Facility Improvements) project would contribute a substantial and medium adverse increment to both the short- and long-term cumulative impacts, respectively.

If the Interim version of the project were implemented instead, the cumulative impacts would be slightly lower, but would still be short- and long-term minor adverse cumulative. The Interim project would contribute a medium adverse increment to the long-term cumulative impacts.
Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities

Under Alternative 4, the same nine actions as are described in Alternative 3 above, plus the action in Alternative 2 above (#6), would be likely to impact the noise/natural soundscape of the project area; no other actions impacting this resource are anticipated. If the complete version of the project (#10a, above) is done, the cumulative impacts of Alternative 4 would be slightly greater than Alternative 3, but would still be essentially the same: short- and long-term minor adverse cumulative. The Ferry Purchase (and Dock Facility Improvements) project would contribute a substantial and medium adverse increment to both the short-term and long-term adverse cumulative impacts, respectively.

If the Interim version of the project (#10b, above) were implemented instead, the cumulative impacts would be slightly less adverse than if the complete version were done, but slightly greater than the Interim version cumulative impacts in Alternative 3 – i.e., short- and long-term minor adverse cumulative. The Interim project would contribute a medium adverse increment to the long-term cumulative impact.

12.92.3 Biological Environment - Living Coastal and Marine Resources

12.92.3.1 Potential Impacts to Coastal and Submerged Aquatic Vegetation

Impacts of Alternative 1: No Action

Under the No Action Alternative, the proposed Ferry Purchase (and Dock Facility Improvements) Project would not occur. And, although other past, present, and reasonably foreseeable future actions are and would be occurring, none would occur in close enough proximity to the project area’s coastal and submerged aquatic vegetation resources to contribute cumulatively to impacts. As such, there are no cumulative impacts on this resource – adverse or beneficial – under Alternative 1.

Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources

Under Alternative 2, the same scenario as described above in the No Action Alternative would apply. As such, there are no cumulative impacts on coastal and submerged aquatic vegetation resources – adverse or beneficial – under Alternative 2.

Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities

Under Alternative 3, the proposed Ferry Purchase (and Dock Facility Improvements) Project would occur but would have no effect on coastal and submerged aquatic vegetation resources; neither would the Ferry Purchase (and Interim Docking Facilities) option if it were implemented. And, although other past, present, and reasonably foreseeable future actions are and would be occurring, none would impact the project area’s coastal and submerged aquatic resources. As such, there are no cumulative impacts on this resource – adverse or beneficial – under Alternative 3.

Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities

Under Alternative 4, the same scenario as described above in Alternative 3 would apply. As such, there are no cumulative impacts on coastal and submerged aquatic vegetation resources – adverse or beneficial – under Alternative 4.
12.92.3.2 Potential Impacts to Terrestrial Wildlife Species, Migratory Birds, Bald Eagles, Protected Terrestrial Species, and Critical Terrestrial Habitats

Impacts of Alternative 1: No Action
Under the No Action Alternative, the proposed Ferry Purchase (and Dock Facility Improvements) project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following action is impacting and would impact the project area’s terrestrial wildlife species, migratory birds, bald eagles, protected terrestrial species, and critical terrestrial habitats as follows:

1. FDEP/FWC 10 Living Shoreline Projects would have short-term minor adverse impacts to terrestrial species, including migratory birds, during project implementation because of the noise, activity, and disruption associated with construction. The action would also have long-term beneficial impacts to migratory birds because living shorelines improve and restore habitat for many migratory birds that could be found in the project area.

The action (#1, above) would result, on balance, in short-term minor adverse, and long-term beneficial cumulative impacts on migratory birds in the project area. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources
Under Alternative 2, the same action described above in the No Action Alternative is expected to impact the terrestrial wildlife, protected terrestrial species and critical terrestrial habitat, and migratory birds of the area. Additionally under Alternative 2:

1. Pensacola Bay Living Shorelines would have short-term minor adverse impacts to terrestrial species, including migratory birds, during project implementation because of the noise, activity, and disruption associated with construction. The action would also have long-term beneficial impacts to migratory birds because living shorelines improve and restore habitat for many migratory birds that could be found in the project area.

The cumulative impacts of Alternative 2 would be greater than Alternative 1 but still be essentially the same: short-term minor adverse, and long-term beneficial cumulative. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities
Under Alternative 3, the past, present, and reasonably foreseeable future action described in Alternative 1 above (#1) is expected to impact terrestrial wildlife, protected terrestrial species and critical terrestrial habitat, and migratory birds in the same way as stated there. Additionally under Alternative 3:

1. Bob Sikes Pier Restoration would have short-term minor adverse impacts to migratory birds during project implementation because of the noise, activity, and disruption associated with construction. However, the planting of native vegetation at the end of project completion would
have a long-term benefit to birds in the project area because it would increase the habitat quality.

2. The Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center Project would have short-term minor adverse impacts to migratory birds during project implementation because of the noise, activity, and disruption associated with construction.

3. Ferry Purchase (and Dock Facility Improvements) would have short-term minor adverse impacts to migratory birds during project implementation because of the noise, activity, and disruption associated with construction.

The action described in Alternative 1 (#1) and the two actions above (#3-4), when combined with the short-term minor adverse impacts of implementing the proposed project (#5, above), would result, on balance, in both short-term minor adverse and long-term beneficial cumulative impacts on migratory birds. The Ferry Purchase (and Dock Facility Improvements) project would contribute a small adverse increment to the short-term cumulative impacts.

The Ferry Purchase (and Interim Dock Facilities) option would have no impacts on these resources.

**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same four actions as are described in Alternative 3 above, plus the action in Alternative 2 above (#2), would be likely to impact the terrestrial wildlife species, migratory birds, bald eagles, protected terrestrial species, and critical terrestrial habitats of the project area; no other actions impacting this resource are anticipated. If the complete version of the project (#5, above) is implemented, the cumulative impacts of Alternative 4 would be slightly more adverse and slightly more beneficial than Alternative 3, but would still be essentially the same: short-term minor adverse and long-term beneficial cumulative. The Ferry Purchase (and Dock Facility Improvements) project would contribute a small adverse increment to the short-term cumulative impacts.

The Ferry Purchase (and Interim Dock Facilities) option would have no impacts on these resources.

**12.92.3.3 Potential Impacts to Marine and Estuarine Fauna, including Related Protected Species and Critical Habitats**

**Impacts of Alternative 1: No Action**

Under the No Action Alternative, the proposed Ferry Purchase (and Dock Facility Improvements) project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following past, present, and reasonably foreseeable future actions are impacting and would impact the project area’s marine and estuarine fauna, related protected species and critical habitats as follows:

1. The FDEP/FWCC Living Shoreline Projects would have short-term minor adverse impacts on Gulf sturgeon and Gulf sturgeon critical habitat during project implementation because of the noise, activity, turbidity and disruption associated with construction. However, the project would have long-term beneficial impacts to these species after construction when the project improves shoreline habitat quality and water quality.
2. Two FWC Oyster Restoration Projects would have short-term minor adverse impacts on Gulf sturgeon, Gulf sturgeon critical habitat, and presumably other marine/estuarine species during project implementation because of the noise, activity, turbidity and disruption associated with construction.

3. FDOT Pensacola Bay Bridge would have short-term minor adverse impacts on Gulf sturgeon, Gulf sturgeon critical habitat, and presumably other marine/estuarine species during project implementation because of the noise, activity, turbidity and disruption associated with construction.

4. Fort Pickens Pier and Ferry Service would have long-term minor adverse impacts to manatees and sea turtles because vehicle strikes, while unlikely, could occur.

5. Maintenance Dredging of Intracoastal Waterways and Pensacola Harbor Gulf Entrance Channel would have short-term minor, adverse impacts to Gulf sturgeon and presumably other marine/estuarine species during dredging because it increases turbidity and the activity can startle animals.

The past, present, and reasonably foreseeable future actions (#1-5, above) would result, on balance, in short- and long-term minor adverse, and long-term beneficial cumulative impacts on primarily Gulf sturgeon and their critical habitat and potentially other marine/estuarine species in the project area. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources**

Under Alternative 2, the same action described above in the No Action Alternative are expected to impact marine and estuarine fauna, related protected species and critical habitats in the area. Additionally under Alternative 2:

1. Pensacola Bay Living Shorelines would have short-term minor, adverse impacts to marine and estuarine fauna, including Gulf sturgeon and their critical habitat, during project implementation because of the noise, activity, turbidity and disruption associated with construction. However, the project would have long-term beneficial impacts to these species after construction when the project improves the shoreline habitat quality and water quality.

The adverse cumulative impacts of Alternative 2 would be slightly greater than Alternative 1 but still be essentially the same: short- and long-term minor adverse, and long-term beneficial cumulative. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the past, present, and reasonably foreseeable future actions described in Alternative 1 above (#1-5) are expected to impact marine and estuarine fauna, related protected species and critical habitats in the same way as stated there. Additionally under Alternative 3:
1. Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle Project would have short-term minor adverse impacts on sea turtles, Gulf sturgeon, Gulf sturgeon critical habitat, manatees and dolphins by the noise, activity, and turbidity caused in the area during project implementation.

2. The Gulf Breeze Wayside Park Boat Ramp Project would have short-term minor adverse impacts to fish, sea turtles, manatees, dolphins, Gulf sturgeon, Gulf sturgeon critical habitat, and to EFH during the in-water construction as a result of turbidity and noise disturbance during repairs to the boat ramp and seawalls.

3. The Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center Project would have short-term minor adverse impacts on sea turtles, Gulf sturgeon, Gulf sturgeon critical habitat, manatees, dolphins, and EFH because of the noise, activity, and turbidity caused in the area during project implementation. It would also have long-term beneficial impacts to estuarine and marine resources by supplementing native populations of fish species.

4. Big Lagoon State Park Boat Ramp Improvements would have short-term minor adverse impacts to marine mammals because vehicle strikes, while unlikely, could occur, and would also have short-term minor adverse impacts to Gulf sturgeon, Gulf sturgeon critical habitat, and EFH because of the noise, activity, and turbidity caused in the area during project implementation.

5. Beach Enhancement Project at GUIS, which would have short-term, minor, adverse impacts to Gulf sturgeon, Gulf sturgeon critical habitat, manatees, and sea turtles because of the noise, activity, and turbidity caused in the area during project implementation.

6. (a) The Ferry Purchase (and Dock Facility Improvements) Project would cause short-term minor adverse impacts to sea turtles, Gulf sturgeon, Gulf sturgeon critical habitat, manatees, fish, and shellfish by the noise, activity, and turbidity caused in the area during project implementation. It would also have long-term minor adverse impacts to marine mammals because vessel strikes, while unlikely, could occur. It would also have long-term minor adverse impacts to EFH because of the very small benthic site which would have pilings inserted during dock construction.

7. (b) Ferry Purchase (and Interim Dock Facilities) would have long-term minor adverse impacts to marine mammals because vessel strikes near the docks, while unlikely, could occur.

The action described in Alternative 1 (#1-5) and the five actions above (#7-11), when combined with the short- and long-term minor adverse impacts of implementing the proposed project (#12a, above), would result, on balance, in short- and long-term minor adverse, and long-term beneficial cumulative impacts on primarily Gulf sturgeon, Gulf sturgeon critical habitat, sea turtle and manatee, and to a lesser extent, dolphins, fish, shellfish, and EFH. The Ferry Purchase (and Dock Facility Improvements) project would contribute small short- and long-term adverse increments to the cumulative impacts.

If the Interim proposed project (#12b, above) were implemented instead, the cumulative impacts of Alternative 3 would be slightly lower because the dock facilities would not be built, but would still be
essentially the same: short- and long-term minor adverse, and long-term beneficial cumulative. The Interim project would contribute a very small long-term adverse increment to the cumulative impact.

**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same 11 actions as are described in Alternative 3 above, plus the action in Alternative 2 above (#6), would be likely to impact marine and estuarine fauna, related protected species and critical habitats of the project area; no other actions impacting this resource are anticipated. If the complete version of the project (#12a, above) is done, the cumulative impacts of Alternative 4 would be essentially the same: short- and long-term minor adverse, and long-term beneficial cumulative (and on the same species and habitat). The Ferry Purchase (and Dock Facility Improvements) project would contribute small short- and long-term adverse increments to the cumulative impacts.

If the Interim version of the project (#12b, above) were implemented instead, the cumulative impacts would be less adverse than if the complete version were done, but slightly greater than the Interim version cumulative impacts in Alternative 3 – i.e., short- and long-term minor adverse, and long-term beneficial cumulative. The Interim project would contribute a very small long-term adverse increment to the cumulative impact.

**12.92.3.4 Potential Impacts because of Non-Native Species**

**Impacts of Alternative 1: No Action**

Under the No Action Alternative, the proposed Ferry Purchase (and Dock Facility Improvements) Project would not occur. And, although other past, present, and reasonably foreseeable future actions are and would be occurring, none would impact the project area’s non-native species. As such, there are no cumulative impacts on this resource – adverse or beneficial – under Alternative 1.

**Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources**

Under Alternative 2, the same scenario as described above in the No Action Alternative would apply. As such, there are no cumulative impacts on non-native species – adverse or beneficial – under Alternative 2.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the same scenario as described above in the No Action Alternative would apply. Additionally under Alternative 3:

1. (a) Ferry Purchase (and Dock Facility Improvements) would have short-term minor adverse impacts with regard to introducing non-native species into the project area, even though best management practices would be implemented. The risk is low but comes from bringing in the new ferries and dock materials from elsewhere.

2. (b) Ferry Purchase (and Interim Dock Facilities) would have less of an impact than the complete version of this project immediately above because the dock facilities would not be built. However, due to the new ferries, there would still be short-term minor adverse impacts.
The lack of any other past, present, and reasonably foreseeable future actions noted in this Alternative or in Alternative 1 means that there are only impacts from the project itself and that there are no cumulative impacts on this resource.

Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities

Under Alternative 4, the same action as described in Alternative 3 above would be likely to impact the non-native species of the area; no other actions impacting this resource are anticipated. Therefore, there are only impacts from the project itself and there are no cumulative impacts on this resource.

12.92.4 Human Uses and Socioeconomics

12.92.4.1 Potential Impacts to Socioeconomics and Environmental Justice

Impacts of Alternative 1: No Action

Under the No Action Alternative, the proposed Ferry Purchase (and Dock Facility Improvements) project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following actions are impacting and will impact the project area’s socioeconomics and environmental justice as follows:

1. The Restore Visitor Access to Fort Pickens and Santa Rosa areas at Gulf Islands National Seashore Project has long-term beneficial impacts on the socioeconomics of the Pensacola/Pensacola Beach area by restoring the roads through the Fort Pickens and Santa Rosa areas of the Seashore and bringing back visitors and commuters who spend money in the area.

2. The Pensacola Naval Air Station’s continued operations have long-term beneficial impacts on the socioeconomics of the Pensacola/Pensacola Beach area by employing a large workforce that spends its money in the area.

3. FDEP/FWC 10 Living Shoreline Projects would have short-term beneficial socioeconomic impacts on communities surrounding the project area because workers would buy goods and services from local businesses during project construction.

4. The FDOT Pensacola Bay Bridge Replacement Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because workers would buy goods and services from local businesses during project construction. It would also have long-term beneficial impacts on the socioeconomics of the area by ensuring flow of visitors (and their dollars) into the area over reliable and attractive new infrastructure.

5. Maintenance dredging of Intracoastal Waterways and Pensacola Harbor Gulf Entrance Channel has long-term beneficial impact because it allows ships to continue to use Pensacola Bay as a shipping hub, creating many local jobs and bringing goods into the area.

6. City of Pensacola, Community Maritime Park has long-term beneficial impacts on the area by attracting tourists (and their dollars) to it and to the surrounding areas. It creates many jobs in the local area.

7. Fort Pickens Ferry Support Facilities and Shuttle Service Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because workers would buy goods and services from local businesses during project construction. It
would also have long-term beneficial impacts by attracting visitors (and their dollars) to the surrounding communities and to the Seashore to use them in conjunction with the ferry service.

8. The Fort Pickens Road Realignment, Resurfacing, and Entrance Station Reconfiguration Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because workers would buy goods and services from local businesses during project construction. It would also have long-term beneficial impacts by attracting visitors (and their dollars) to the Pensacola Beach area with improved roads and visitor access to the Seashore.

9. The Fort Pickens Pier and Ferry Service Project would have long-term beneficial impacts on socioeconomics of the Pensacola/Pensacola Beach area by attracting visitors (and their dollars) to the area to ride the ferry.

The past, present, and reasonably foreseeable future actions (#1-9, above) would result, on balance, in short- and long-term beneficial cumulative impacts on socioeconomics. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources**

Under Alternative 2, the same nine actions as are described above in the No Action Alternative are expected to impact the socioeconomics of the area. Additionally under Alternative 2:

1. Pensacola Bay Living Shorelines would have short-term beneficial socioeconomic impacts on communities surrounding the project area because workers would buy goods and services from local businesses during project construction.

The cumulative impacts of Alternative 2 would be slightly greater than Alternative 1 but still be essentially the same: short- and long-term beneficial cumulative. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the past, present, and reasonably foreseeable future actions #1-9 described in Alternative 1 above are expected to impact socioeconomics in the same way as stated there. Additionally under Alternative 3:

1. The Scallop Enhancement for Increased Recreational Fishing Opportunity in the Florida Panhandle Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because workers would buy goods and services from local businesses during project construction. It would also have long-term beneficial impacts by attracting scallop fishermen (and their dollars) to the area.

2. The Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area.
because workers would buy goods and services from local businesses during project construction. It would also have long-term beneficial impacts by attracting visitors and fishermen (and their dollars) to the area, and by creating permanent jobs in the local area.

3. The Florida Artificial Reef Creation and Restoration Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because workers would buy goods and services from local businesses during project construction. It would also have long-term beneficial impacts by attracting snorkelers and scuba divers (and their dollars) to the area.

4. Bob Sikes Pier Restoration Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because workers would buy goods and services from local businesses during project construction. It would also have long-term beneficial impacts by attracting visitors and fishermen (and their dollars) to the area.

5. Gulf Breeze Wayside Boat Ramp would have short-term beneficial socioeconomic impacts on communities surrounding the project area because workers would buy goods and services from local businesses during project construction. It would also have long-term beneficial impacts by attracting visitors and fishermen (and their dollars) to the area.

6. The Beach Enhancement project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because workers would buy goods and services from local businesses during project construction.

7. (a) The Ferry Purchase (and Dock Facility Improvements) Project would have short-term beneficial socioeconomic impacts on communities surrounding the project area because workers would buy goods and services from local businesses during project construction. It would also have long-term beneficial impacts by attracting visitors (and their dollars) to the area. It may also have long-term beneficial impacts to environmental justice by providing another transportation option to travelers in the region.

8. (b) The Ferry Purchase (and Interim Dock Facilities) Project would have long-term (i.e., until the new dock facilities are built) minor adverse impacts to socioeconomics if normal marina users (i.e. boat owners/users) use the marina less or differently than they currently are due to the presence of the ferries and passengers. It would also have long-term beneficial effects in areas served by the ferry operation by attracting visitors (and their dollars) there. There may also be long-term environmental justice benefits by providing another regional transportation option.

The nine past, present, and reasonably foreseeable future actions described in Alternative 1 (#1-9) and the six actions above (#11-16), when combined with the short-term and long-term beneficial impacts of implementing the proposed Ferry Purchase (and Dock Facility Improvements) project (#17a, above), would result, on balance, in short- and long-term beneficial cumulative impacts on the resource. The Ferry Purchase (and Dock Facility Improvements) project would contribute a small short-term and substantial long-term beneficial increment to the cumulative impacts.
If the Interim version of the proposed project (#17b, above) were implemented instead, the cumulative impacts of Alternative 3 would be: short- and long-term beneficial, and long-term minor adverse cumulative. The Interim project would contribute all the adverse increment to the cumulative impact.

**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same 16 actions as are described in Alternative 3 above, plus the action in Alternative 2 above (#11), would be likely to impact the socioeconomics of the project area; no other actions impacting this resource are anticipated. If the complete version of the project (#17a, above) is done, the cumulative impacts of Alternative 4 would be essentially the same: short- and long-term beneficial cumulative. The Ferry Purchase (and Dock Facility Improvements) project would contribute a small short-term and substantial long-term beneficial increment to the cumulative impacts.

If the Interim version of the proposed project (#17b, above) were implemented instead, the cumulative impacts of Alternative 4 would be slightly less beneficial than if the complete version were done, but slightly greater than the Interim version cumulative impacts in Alternative 3 – i.e., short- and long-term beneficial cumulative and long-term minor adverse. The Interim project would contribute all the adverse increment to the cumulative impact.

**12.92.4.2 Potential Impacts to Cultural Resources**

**Impacts of Alternative 1: No Action**

Under the No Action Alternative, the proposed Ferry Purchase (and Dock Facility Improvements) Project would not occur. And, although other past, present, and reasonably foreseeable future actions are and would be occurring, none would occur in close enough proximity to the project area to impact the area’s known cultural resources. As such, there are no cumulative impacts on this resource – adverse or beneficial – under Alternative 1.

**Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources**

Under Alternative 2, the same scenario as described above in the No Action Alternative would apply. As such, there are no cumulative impacts on cultural resources – adverse or beneficial – under Alternative 2.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the proposed Ferry Purchase (and Dock Facility Improvements) Project would occur and 106 reviews will be conducted as required to determine possible impacts and any necessary mitigation; the same is true for the Ferry Purchase (and Interim Docking Facilities) option if it is implemented. And, although other past, present, and reasonably foreseeable future actions are and would be occurring, none would occur in close enough proximity to the project area to impact the project area’s known cultural resources. As such, there are no cumulative impacts on this resource – adverse or beneficial – under Alternative 3.
Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities
Under Alternative 4, the same scenario as described above in Alternative 3 will apply. As such, there are no cumulative impacts on cultural resources – adverse or beneficial – under Alternative 4.

12.92.4.3 Potential Impacts to Infrastructure

Impacts of Alternative 1: No Action
Under the No Action Alternative, the proposed Ferry Purchase (and Dock Facility Improvements) project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following action will impact the project area’s infrastructure as follows:

1. The Fort Pickens Pier and Ferry Service Project would have a long-term, beneficial impact on the infrastructure of the area because it creates the means for an entirely new mode of transportation between Fort Pickens, Pensacola, and Pensacola Beach. The construction of the pier at the Fort Pickens Historic Area also benefits the project area’s infrastructure because it makes it possible for large boats – including the ferries – to dock there.

The reasonably foreseeable future action (#1, above) would result, on balance, in long-term beneficial cumulative impacts on the resource. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources
Under Alternative 2, the same action as is described above in the No Action Alternative is expected to impact the infrastructure of the area; no other actions impacting this resource are anticipated. Therefore the cumulative impacts of Alternative 2 would be the same as for Alternative 1: long-term beneficial cumulative. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities
Under Alternative 3, the past, present, and reasonably foreseeable future action described in Alternative 1 above (#1) is expected to impact area’s infrastructure in the same way as stated there. Additionally under Alternative 3:

1. Bob Sikes Pier Restoration would have a long-term beneficial impact on the infrastructure of the area because it would improve and restore existing infrastructure immediately adjacent to the project area.
2. (a) The Ferry Purchase (and Dock Facility Improvements) Project would have long-term, beneficial impacts to the area’s infrastructure because it purchases the ferries which are an expensive and integral part of the larger ferry system infrastructure. It could also have long-term minor adverse impacts on infrastructure where capacity is not increased (e.g., water and sewer lines).
3. (b) The Ferry Purchase (and Interim Dock Facilities) Project would have long-term beneficial impacts to the area’s infrastructure because it purchases the ferries which are an expensive and integral part of the larger ferry system infrastructure. It would also have long-term minor adverse impacts to the area’s infrastructure because the use of the unimproved existing docks and adjacent facilities would put a strain on existing infrastructure. It could also have long-term minor adverse impacts on infrastructure where capacity is not increased (e.g., water and sewer lines).

The reasonably foreseeable future action described in Alternative 1 (#1) and the action above (#2), when combined with the long-term minor adverse, and long-term beneficial impacts of implementing the proposed project (#3a, above), would result, on balance, in long-term beneficial and long-term minor adverse cumulative impacts on the resource. The Ferry Purchase (and Dock Facility Improvements) project would contribute a substantial beneficial increment to both of the cumulative impacts.

If the Interim version of the proposed Project (#4b, above) were implemented instead, the cumulative impacts for this Alternative would still be, on balance, long-term beneficial and long-term minor adverse cumulative. The Interim project would contribute a lower, but still substantial beneficial increment to both of the cumulative impacts.

**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same three actions as are described in Alternative 3 above would be likely to impact the infrastructure of the area; no other actions impacting this resource are anticipated. Therefore, the cumulative impacts of Alternative 4 would be the same as for Alternative 3: long-term beneficial, and long-term minor adverse cumulative. The Ferry Purchase (and Dock Facility Improvements) project would contribute a substantial beneficial increment to both of the cumulative impacts.

If the Interim version of the proposed (#3b, above) were implemented instead, the cumulative impacts of Alternative 4 would still be less beneficial than if the complete version were done, but the same as the Interim version cumulative impacts in Alternative 3 – i.e., long-term beneficial, and long-term minor adverse cumulative. The Interim project would contribute a lower, but still substantial beneficial increment to both of the cumulative impacts.

12.92.4.4 Potential Impacts to Land and Marine Management

**Impacts of Alternative 1: No Action**

Under the No Action Alternative, the proposed Ferry Purchase (and Dock Facility Improvements) project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following action will impact the project area’s land and marine management as follows:

1. The Fort Pickens Pier and Ferry Service Project would have long-term beneficial impacts on land and marine management by 1) improving public access to the resources at the Fort Pickens area,
2) allowing the resources there to be managed for the benefit of human enjoyment, and 3) aligning with and furthering the management goals of the Seashore.

The reasonably foreseeable future action (#1, above) would result, on balance, in long-term beneficial cumulative impacts on the resource. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources**

Under Alternative 2, the same action as is described above in the No Action Alternative is expected to impact the land and marine management of the area; no other actions impacting this resource are anticipated. Therefore the cumulative impacts of Alternative 2 would be the same as for Alternative 1: long-term beneficial cumulative. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

**Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities**

Under Alternative 3, the future action #1 described in Alternative 1 above is expected to impact land and marine management in the same way as stated there. Additionally under Alternative 3:

1. (a) The Ferry Purchase (and Dock Facility Improvements) Project would have long-term beneficial impacts to the area’s land and marine management because it would 1) improve public access to the resources at the Fort Pickens area, 2) allowing the resources there to be managed for the benefit of human enjoyment, and 3) align with and further the transportation management goals of the Pensacola Bay area.

2. (b) The Ferry Purchase (and Interim Dock Facilities) Project would have long-term beneficial impacts to the area’s land and marine management because it would 1) improve public access to the resources at the Fort Pickens area, 2) allow the resources there to be managed for the benefit of human enjoyment, and 3) align with and further the transportation management goals of the Pensacola Bay area. However, the benefit to be derived from this Interim option would be less because appropriate facilities would not be tailored to the ferry operation.

The future action described in Alternative 1 (#1), when combined with the long-term beneficial impacts of implementing the proposed project (#2a, above), would result, on balance, in long-term beneficial cumulative impacts on land and marine management. The Ferry Purchase (and Dock Facility Improvements) project would contribute a substantial beneficial increment to the cumulative impact.

If the Interim version of the proposed project (#2b, above) were implemented instead, the beneficial impacts of Alternative 4 would be less beneficial, but still, on balance, essentially the same: long-term beneficial cumulative. The Interim project would contribute a substantial beneficial increment to the cumulative impacts.
Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities

Under Alternative 4, the same two actions as are described in Alternative 3 above would be likely to impact land and marine management of the project area; no other actions impacting this resource are anticipated. As such, the cumulative impacts of Alternative 4 would be the same as Alternative 3: long-term beneficial cumulative. The Ferry Purchase (and Dock Facility Improvements) project would contribute a substantial beneficial increment to the cumulative impact.

If the Interim version of the proposed project (#2b, above) were implemented instead, the beneficial impacts Alternative 4 would be less beneficial, but still, on balance, essentially the same: long-term beneficial cumulative. The Interim project would contribute a substantial beneficial increment to the cumulative impacts.

12.92.4.5 Potential Impacts to Aesthetics and Visual Resources

Impacts of Alternative 1: No Action

Under the No Action Alternative, the proposed Ferry Purchase (and Dock Facility Improvements) Project would not occur. And, although other past, present, and reasonably foreseeable future actions are and would be occurring, none would occur in close enough proximity to the project area to contribute to cumulative impact on the area’s aesthetics and visual resources. As such, there are no cumulative impacts on this resource – adverse or beneficial – under Alternative 1.

Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources

Under Alternative 2, the same scenario as described above in the No Action Alternative would apply. Additionally under Alternative 2:

1. Pensacola Bay Living Shorelines would have short-term, minor adverse impact to aesthetics and visual resources in the area during project completion because construction would bring traffic, heavy equipment, clutter and activity. It would also have long-term minor adverse impacts due to the installation of navigational signs. It would also have a long-term beneficial impact to the aesthetics in the project area by revegetating denuded, eroded shoreline.

The cumulative impacts of Alternative 2 would, on balance, be short- and long-term minor adverse, and long-term beneficial cumulative. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities

Under Alternative 2, the same scenario as described above in the No Action Alternative would apply. Additionally under Alternative 3:
1. Scallop Enhancement for Increased Recreational Fishing Opportunity would have a short-term minor adverse impact to aesthetics and visual resources in the area because of boat traffic during project completion.

2. Bob Sikes Pier Restoration would have a short-term minor adverse impact to aesthetics and visual resources in the area during project completion because construction of the pier would bring traffic, heavy equipment, clutter and activity. It would have long-term beneficial impacts by improving the appearance of the pier and adjacent area.

3. (a) The Ferry Purchase (and Dock Facility Improvements) Project would have short-term minor adverse impacts to the area’s aesthetics and visual resources because of the clutter and activity associated with construction. It would also have long-term minor adverse impacts for those who prefer more natural landscapes/seascape because the new facilities would make the area even less natural. However, it is also possible that the aesthetic experience for those using the ferries in these areas would be improved, which could result in a long-term beneficial impact.

(b) The Ferry Purchase (and Interim Dock Facilities) Project would result in a long-term minor adverse impact for people seeing other travelers and possibly experiencing congestion in the dock area. It also would result in a long-term beneficial impact because the aesthetic experience for those using the ferries in these areas would be improved.

The two future actions described immediately above (#2-3), when combined with the short-term and long-term minor adverse, and long-term beneficial impacts of implementing the proposed project (#4, above), would result, on balance, in short- and long-term minor adverse, and long-term beneficial cumulative impacts on the resource. The Ferry Purchase (and Dock Facility Improvements) project would contribute a substantial beneficial increment to all the cumulative impacts.

If the Interim version of the proposed project (#4b, above) were implemented instead, the cumulative impacts for this Alternative would be slightly less adverse, but still be, on balance, short- and long-term minor adverse, and long-term beneficial cumulative. The Ferry Purchase (and Interim Dock Facilities) project would still contribute a substantial increment to the long-term minor adverse and long-term beneficial cumulative impacts.

**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same three actions as are described in Alternative 3 above, plus the action in Alternative 2 above (#1), would be likely to impact the aesthetics and recreational use of the project area; no other actions impacting this resource are anticipated. If the complete version of the Ferry Purchase (and Dock Facility Improvements) project (#4a, above) is done, all the cumulative impacts of Alternative 4 would be slightly greater than Alternative 3, but would still be essentially the same: short- and long-term minor adverse, and long-term beneficial cumulative. The Ferry Purchase (and Dock Facility Improvements) project would contribute a substantial beneficial increment to all the cumulative impacts.

If the Interim version of the proposed project (#4b, above) were implemented instead, the cumulative impacts of Alternative 4 would still be slightly less adverse than if the complete version were done, but
the same as the interim version cumulative impacts in Alternative 3 — i.e., short- and long-term minor adverse, and long-term beneficial cumulative. The Ferry Purchase (and Interim Dock Facilities) project would contribute a substantial increment to the long-term minor adverse and long-term beneficial cumulative impacts.

12.92.4.6 Potential Impacts to Tourism and Recreational Use

Impacts of Alternative 1: No Action
Under the No Action Alternative, the proposed Ferry Purchase (and Dock Facility Improvements) project would not occur; however, other past, present, and reasonably foreseeable future actions are and would. The following actions are impacting and will impact the project area’s tourism and recreational as follows:

1. City of Pensacola, Community Maritime Park has long-term beneficial impacts on the area’s tourism and recreational use because it provides many recreational opportunities, such as an amphitheater and baseball stadium, that draw tourists to that area.
2. The Restore Visitor Access to Fort Pickens and Santa Rosa areas at Gulf Islands National Seashore Project has a long-term beneficial impact on the area’s tourism and recreational use because restoring the road increased visitor access to and use of many beach and picnic areas on Santa Rosa Island and draws tourists to that area.
3. The Fort Pickens Pier and Ferry Service Project would have long-term beneficial impacts to the area’s tourism and recreational use by providing an additional tourist attraction near the project area (especially once the landside shuttle is operating) and also an additional means of transportation to take visitors to – or near – the project area.
4. Fort Pickens Ferry Support Facilities and Shuttle Service Project would have long-term beneficial impacts to the tourism and recreational use in the area by providing an additional means of transportation for visitors to use to see and recreate in the area.

The past, present, and reasonably foreseeable future actions (#1-4, above) would result, on balance, in long-term beneficial cumulative impacts on the resource. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources
Under Alternative 2, the same four actions as are described above in the No Action Alternative are expected to impact the infrastructure of the area; no other actions impacting this resource are anticipated. Therefore the cumulative impacts of Alternative 2 would be the same as for Alternative 1: long-term beneficial cumulative. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.
Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities

Under Alternative 3, the past, present, and reasonably foreseeable future actions #1-4 described in Alternative 1 above are expected to impact area’s tourism and recreational use in the same way as stated there. Additionally under Alternative 3:

1. Bob Sikes Pier Restoration would have a long-term beneficial impact on the tourism and recreational use in the area by improving the visitor experience for those who use Bob Sikes Pier and drawing tourists to the ferry project area.
2. The Florida Gulf Coast Marine Fisheries Hatchery/Enhancement Center Project would have a long-term beneficial impact on the tourism and recreational use in the area by increasing the availability of sport fish and drawing tourists to the ferry project area.
3. (a) Ferry Purchase (and Dock Facility Improvements) Project would have long-term beneficial impacts to tourism and recreational use because it purchases the ferries and improves dock facilities, thereby facilitating the establishment of a successful ferry service which many tourists would use.
4. (b) The Ferry Purchase (and Interim Dock Facilities) Project would have the same long-term beneficial impacts on the area’s tourism and recreational use as the permanent version of this project because it would still allow the ferry service to operate and bring tourists to the area. It would also have a long-term minor adverse impact on tourism and recreational use because the existing facilities would not be as user-friendly and capable of handling the additional tourists the ferries would bring as updated facilities would be.

The four past, present, and reasonably foreseeable future actions described in Alternative 1 (#1-4) and the two actions above (#5-6), when combined with the long-term beneficial impacts of implementing the proposed project (#7a, above), would result, on balance, in long-term beneficial cumulative impacts on the resource. The Ferry Purchase (and Dock Facility Improvements) project would contribute a very substantial beneficial increment to the cumulative impacts.

If the Interim version of the proposed project (#7b, above) were implemented instead, the cumulative impacts for this Alternative would be, on balance, long-term beneficial and long-term minor adverse cumulative. The Interim project would contribute a slightly lower, but still substantial beneficial increment to the cumulative impacts.

Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities

Under Alternative 4, the same seven actions as are described in Alternative 3 above would be likely to impact the tourism and recreational use of the area; no other actions impacting this resource are anticipated. Therefore, the cumulative impacts of Alternative 4 would be the same as for Alternative 3: long-term beneficial and long-term minor adverse cumulative. The Ferry Purchase (and Dock Facility Improvements) project would contribute a very substantial beneficial increment to the cumulative impacts.
If the Interim version of the proposed project (#7b, above) were implemented instead, the cumulative impacts for this Alternative would be the same as the Interim version cumulative impacts in Alternative 3 – i.e., long-term beneficial and long-term minor adverse cumulative. The Ferry Purchase (and Interim Dock Facilities) project would contribute a substantial beneficial increment to the cumulative impacts.

12.92.4.7 Potential Impacts to Public Health and Safety and Shoreline Protection

Impacts of Alternative 1: No Action

Under the No Action Alternative, the proposed Ferry Purchase (and Dock Facility Improvements) Project would not occur. And, although other past, present, and reasonably foreseeable future actions are and would be occurring, none would occur in close enough proximity to the project area to contribute to its cumulative impact on the area’s public health and safety and shoreline protection. As such, there are no cumulative impacts on this resource – adverse or beneficial – under Alternative 1.

Impacts of Alternative 2: Contribute to Restoring Habitats and Living Coastal and Marine Resources

Under Alternative 2, the same scenario as described above in the No Action Alternative would apply. Additionally under Alternative 2:

1. Pensacola Bay Living Shorelines would have long-term, beneficial impacts to public health and safety and shoreline protection because they help stabilize shorelines and reduce erosion, and increase shoreline resiliency in an area very close to the Plaza de Luna dock area.

The cumulative impacts of Alternative 2 would, on balance, be long-term beneficial cumulative. Since the Ferry Purchase (and Dock Facility Improvements) project would not be implemented under this Alternative, it would not contribute any increment to this cumulative impact.

Impacts of Alternative 3: Contribute to Providing and Enhancing Recreational Opportunities

Under Alternative 3, the past, present, and reasonably foreseeable future action described in Alternative 1 above (#1) is expected to impact public health and safety and shoreline protection in the same way as stated there. Additionally under Alternative 3:

1. (a) Ferry Purchase (and Dock Facility Improvements) Project would have short-term minor adverse impacts on the area’s public health and safety during construction in and near the water and busy areas; long-term minor impacts due to the inherent risks associated with people using boat docks; and long-term, beneficial impacts on public safety by facilitating the establishment of a successful ferry service which would provide an alternative means of access to – and egress from – the barrier island in the event that an extreme storm destroys the road to/from the Fort Pickens Historic Area or makes it impassable.

2. (b) The Ferry Purchase (and Interim Dock Facilities) Project would have long-term (i.e., until the new dock facilities are built) minor adverse impacts on public safety (greater than the permanent Dock Facility Improvements impacts) because docking areas in particular would not be optimally sized or constructed to accommodate the greater number of people using them. There would also be a long-term beneficial impact on public health and safety by facilitating the
establishment of a successful ferry service which would provide an alternative means of access to – and egress from – the Fort Pickens area of the barrier island.

The lack of any other past, present, and reasonably foreseeable future actions noted in this Alternative or in Alternative 1 means that there are only impacts from the project itself and that there are no cumulative impacts on this resource.

**Impacts of Alternative 4: Contribute to Restoring Habitats, Living Coastal and Marine Resources, and Recreational Opportunities**

Under Alternative 4, the same action as described in Alternative 3 above (#2a), plus the action in Alternative 2 above (#1), would be likely to impact public health and safety and shoreline protection of the project area; no other actions impacting this resource are anticipated. As such, the cumulative impacts of Alternative 4 would be, on balance, long-term beneficial for public health and safety and also for shoreline protection. The Ferry Purchase (and Dock Facility Improvements) project would contribute a substantial beneficial increment to the cumulative impact for public health and safety.

If the Interim version of the proposed project (#2b, above) were implemented instead, the cumulative impacts of Alternative 4 would be, on balance, less beneficial than if the complete version (#2a) were done, but would still be long-term beneficial for public health and safety since the ferry operation will greatly outlast the interim (but still long-term) dock facilities option. Cumulative impacts on shoreline protection would be the same. The Interim project would contribute a substantial long-term beneficial increment to the cumulative impact for public health and safety.